Home | History | Annotate | Download | only in reflect
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package reflect
      6 
      7 import (
      8 	"math"
      9 	"runtime"
     10 	"unsafe"
     11 )
     12 
     13 const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
     14 
     15 // Value is the reflection interface to a Go value.
     16 //
     17 // Not all methods apply to all kinds of values. Restrictions,
     18 // if any, are noted in the documentation for each method.
     19 // Use the Kind method to find out the kind of value before
     20 // calling kind-specific methods. Calling a method
     21 // inappropriate to the kind of type causes a run time panic.
     22 //
     23 // The zero Value represents no value.
     24 // Its IsValid method returns false, its Kind method returns Invalid,
     25 // its String method returns "<invalid Value>", and all other methods panic.
     26 // Most functions and methods never return an invalid value.
     27 // If one does, its documentation states the conditions explicitly.
     28 //
     29 // A Value can be used concurrently by multiple goroutines provided that
     30 // the underlying Go value can be used concurrently for the equivalent
     31 // direct operations.
     32 //
     33 // Using == on two Values does not compare the underlying values
     34 // they represent, but rather the contents of the Value structs.
     35 // To compare two Values, compare the results of the Interface method.
     36 type Value struct {
     37 	// typ holds the type of the value represented by a Value.
     38 	typ *rtype
     39 
     40 	// Pointer-valued data or, if flagIndir is set, pointer to data.
     41 	// Valid when either flagIndir is set or typ.pointers() is true.
     42 	ptr unsafe.Pointer
     43 
     44 	// flag holds metadata about the value.
     45 	// The lowest bits are flag bits:
     46 	//	- flagStickyRO: obtained via unexported not embedded field, so read-only
     47 	//	- flagEmbedRO: obtained via unexported embedded field, so read-only
     48 	//	- flagIndir: val holds a pointer to the data
     49 	//	- flagAddr: v.CanAddr is true (implies flagIndir)
     50 	//	- flagMethod: v is a method value.
     51 	// The next five bits give the Kind of the value.
     52 	// This repeats typ.Kind() except for method values.
     53 	// The remaining 23+ bits give a method number for method values.
     54 	// If flag.kind() != Func, code can assume that flagMethod is unset.
     55 	// If ifaceIndir(typ), code can assume that flagIndir is set.
     56 	flag
     57 
     58 	// A method value represents a curried method invocation
     59 	// like r.Read for some receiver r. The typ+val+flag bits describe
     60 	// the receiver r, but the flag's Kind bits say Func (methods are
     61 	// functions), and the top bits of the flag give the method number
     62 	// in r's type's method table.
     63 }
     64 
     65 type flag uintptr
     66 
     67 const (
     68 	flagKindWidth        = 5 // there are 27 kinds
     69 	flagKindMask    flag = 1<<flagKindWidth - 1
     70 	flagStickyRO    flag = 1 << 5
     71 	flagEmbedRO     flag = 1 << 6
     72 	flagIndir       flag = 1 << 7
     73 	flagAddr        flag = 1 << 8
     74 	flagMethod      flag = 1 << 9
     75 	flagMethodShift      = 10
     76 	flagRO          flag = flagStickyRO | flagEmbedRO
     77 )
     78 
     79 func (f flag) kind() Kind {
     80 	return Kind(f & flagKindMask)
     81 }
     82 
     83 // pointer returns the underlying pointer represented by v.
     84 // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
     85 func (v Value) pointer() unsafe.Pointer {
     86 	if v.typ.size != ptrSize || !v.typ.pointers() {
     87 		panic("can't call pointer on a non-pointer Value")
     88 	}
     89 	if v.flag&flagIndir != 0 {
     90 		return *(*unsafe.Pointer)(v.ptr)
     91 	}
     92 	return v.ptr
     93 }
     94 
     95 // packEface converts v to the empty interface.
     96 func packEface(v Value) interface{} {
     97 	t := v.typ
     98 	var i interface{}
     99 	e := (*emptyInterface)(unsafe.Pointer(&i))
    100 	// First, fill in the data portion of the interface.
    101 	switch {
    102 	case ifaceIndir(t):
    103 		if v.flag&flagIndir == 0 {
    104 			panic("bad indir")
    105 		}
    106 		// Value is indirect, and so is the interface we're making.
    107 		ptr := v.ptr
    108 		if v.flag&flagAddr != 0 {
    109 			// TODO: pass safe boolean from valueInterface so
    110 			// we don't need to copy if safe==true?
    111 			c := unsafe_New(t)
    112 			typedmemmove(t, c, ptr)
    113 			ptr = c
    114 		}
    115 		e.word = ptr
    116 	case v.flag&flagIndir != 0:
    117 		// Value is indirect, but interface is direct. We need
    118 		// to load the data at v.ptr into the interface data word.
    119 		e.word = *(*unsafe.Pointer)(v.ptr)
    120 	default:
    121 		// Value is direct, and so is the interface.
    122 		e.word = v.ptr
    123 	}
    124 	// Now, fill in the type portion. We're very careful here not
    125 	// to have any operation between the e.word and e.typ assignments
    126 	// that would let the garbage collector observe the partially-built
    127 	// interface value.
    128 	e.typ = t
    129 	return i
    130 }
    131 
    132 // unpackEface converts the empty interface i to a Value.
    133 func unpackEface(i interface{}) Value {
    134 	e := (*emptyInterface)(unsafe.Pointer(&i))
    135 	// NOTE: don't read e.word until we know whether it is really a pointer or not.
    136 	t := e.typ
    137 	if t == nil {
    138 		return Value{}
    139 	}
    140 	f := flag(t.Kind())
    141 	if ifaceIndir(t) {
    142 		f |= flagIndir
    143 	}
    144 	return Value{t, e.word, f}
    145 }
    146 
    147 // A ValueError occurs when a Value method is invoked on
    148 // a Value that does not support it. Such cases are documented
    149 // in the description of each method.
    150 type ValueError struct {
    151 	Method string
    152 	Kind   Kind
    153 }
    154 
    155 func (e *ValueError) Error() string {
    156 	if e.Kind == 0 {
    157 		return "reflect: call of " + e.Method + " on zero Value"
    158 	}
    159 	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
    160 }
    161 
    162 // methodName returns the name of the calling method,
    163 // assumed to be two stack frames above.
    164 func methodName() string {
    165 	pc, _, _, _ := runtime.Caller(2)
    166 	f := runtime.FuncForPC(pc)
    167 	if f == nil {
    168 		return "unknown method"
    169 	}
    170 	return f.Name()
    171 }
    172 
    173 // emptyInterface is the header for an interface{} value.
    174 type emptyInterface struct {
    175 	typ  *rtype
    176 	word unsafe.Pointer
    177 }
    178 
    179 // nonEmptyInterface is the header for a interface value with methods.
    180 type nonEmptyInterface struct {
    181 	// see ../runtime/iface.go:/Itab
    182 	itab *struct {
    183 		ityp   *rtype // static interface type
    184 		typ    *rtype // dynamic concrete type
    185 		link   unsafe.Pointer
    186 		bad    int32
    187 		unused int32
    188 		fun    [100000]unsafe.Pointer // method table
    189 	}
    190 	word unsafe.Pointer
    191 }
    192 
    193 // mustBe panics if f's kind is not expected.
    194 // Making this a method on flag instead of on Value
    195 // (and embedding flag in Value) means that we can write
    196 // the very clear v.mustBe(Bool) and have it compile into
    197 // v.flag.mustBe(Bool), which will only bother to copy the
    198 // single important word for the receiver.
    199 func (f flag) mustBe(expected Kind) {
    200 	if f.kind() != expected {
    201 		panic(&ValueError{methodName(), f.kind()})
    202 	}
    203 }
    204 
    205 // mustBeExported panics if f records that the value was obtained using
    206 // an unexported field.
    207 func (f flag) mustBeExported() {
    208 	if f == 0 {
    209 		panic(&ValueError{methodName(), 0})
    210 	}
    211 	if f&flagRO != 0 {
    212 		panic("reflect: " + methodName() + " using value obtained using unexported field")
    213 	}
    214 }
    215 
    216 // mustBeAssignable panics if f records that the value is not assignable,
    217 // which is to say that either it was obtained using an unexported field
    218 // or it is not addressable.
    219 func (f flag) mustBeAssignable() {
    220 	if f == 0 {
    221 		panic(&ValueError{methodName(), Invalid})
    222 	}
    223 	// Assignable if addressable and not read-only.
    224 	if f&flagRO != 0 {
    225 		panic("reflect: " + methodName() + " using value obtained using unexported field")
    226 	}
    227 	if f&flagAddr == 0 {
    228 		panic("reflect: " + methodName() + " using unaddressable value")
    229 	}
    230 }
    231 
    232 // Addr returns a pointer value representing the address of v.
    233 // It panics if CanAddr() returns false.
    234 // Addr is typically used to obtain a pointer to a struct field
    235 // or slice element in order to call a method that requires a
    236 // pointer receiver.
    237 func (v Value) Addr() Value {
    238 	if v.flag&flagAddr == 0 {
    239 		panic("reflect.Value.Addr of unaddressable value")
    240 	}
    241 	return Value{v.typ.ptrTo(), v.ptr, (v.flag & flagRO) | flag(Ptr)}
    242 }
    243 
    244 // Bool returns v's underlying value.
    245 // It panics if v's kind is not Bool.
    246 func (v Value) Bool() bool {
    247 	v.mustBe(Bool)
    248 	return *(*bool)(v.ptr)
    249 }
    250 
    251 // Bytes returns v's underlying value.
    252 // It panics if v's underlying value is not a slice of bytes.
    253 func (v Value) Bytes() []byte {
    254 	v.mustBe(Slice)
    255 	if v.typ.Elem().Kind() != Uint8 {
    256 		panic("reflect.Value.Bytes of non-byte slice")
    257 	}
    258 	// Slice is always bigger than a word; assume flagIndir.
    259 	return *(*[]byte)(v.ptr)
    260 }
    261 
    262 // runes returns v's underlying value.
    263 // It panics if v's underlying value is not a slice of runes (int32s).
    264 func (v Value) runes() []rune {
    265 	v.mustBe(Slice)
    266 	if v.typ.Elem().Kind() != Int32 {
    267 		panic("reflect.Value.Bytes of non-rune slice")
    268 	}
    269 	// Slice is always bigger than a word; assume flagIndir.
    270 	return *(*[]rune)(v.ptr)
    271 }
    272 
    273 // CanAddr reports whether the value's address can be obtained with Addr.
    274 // Such values are called addressable. A value is addressable if it is
    275 // an element of a slice, an element of an addressable array,
    276 // a field of an addressable struct, or the result of dereferencing a pointer.
    277 // If CanAddr returns false, calling Addr will panic.
    278 func (v Value) CanAddr() bool {
    279 	return v.flag&flagAddr != 0
    280 }
    281 
    282 // CanSet reports whether the value of v can be changed.
    283 // A Value can be changed only if it is addressable and was not
    284 // obtained by the use of unexported struct fields.
    285 // If CanSet returns false, calling Set or any type-specific
    286 // setter (e.g., SetBool, SetInt) will panic.
    287 func (v Value) CanSet() bool {
    288 	return v.flag&(flagAddr|flagRO) == flagAddr
    289 }
    290 
    291 // Call calls the function v with the input arguments in.
    292 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
    293 // Call panics if v's Kind is not Func.
    294 // It returns the output results as Values.
    295 // As in Go, each input argument must be assignable to the
    296 // type of the function's corresponding input parameter.
    297 // If v is a variadic function, Call creates the variadic slice parameter
    298 // itself, copying in the corresponding values.
    299 func (v Value) Call(in []Value) []Value {
    300 	v.mustBe(Func)
    301 	v.mustBeExported()
    302 	return v.call("Call", in)
    303 }
    304 
    305 // CallSlice calls the variadic function v with the input arguments in,
    306 // assigning the slice in[len(in)-1] to v's final variadic argument.
    307 // For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
    308 // CallSlice panics if v's Kind is not Func or if v is not variadic.
    309 // It returns the output results as Values.
    310 // As in Go, each input argument must be assignable to the
    311 // type of the function's corresponding input parameter.
    312 func (v Value) CallSlice(in []Value) []Value {
    313 	v.mustBe(Func)
    314 	v.mustBeExported()
    315 	return v.call("CallSlice", in)
    316 }
    317 
    318 var callGC bool // for testing; see TestCallMethodJump
    319 
    320 func (v Value) call(op string, in []Value) []Value {
    321 	// Get function pointer, type.
    322 	t := v.typ
    323 	var (
    324 		fn       unsafe.Pointer
    325 		rcvr     Value
    326 		rcvrtype *rtype
    327 	)
    328 	if v.flag&flagMethod != 0 {
    329 		rcvr = v
    330 		rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
    331 	} else if v.flag&flagIndir != 0 {
    332 		fn = *(*unsafe.Pointer)(v.ptr)
    333 	} else {
    334 		fn = v.ptr
    335 	}
    336 
    337 	if fn == nil {
    338 		panic("reflect.Value.Call: call of nil function")
    339 	}
    340 
    341 	isSlice := op == "CallSlice"
    342 	n := t.NumIn()
    343 	if isSlice {
    344 		if !t.IsVariadic() {
    345 			panic("reflect: CallSlice of non-variadic function")
    346 		}
    347 		if len(in) < n {
    348 			panic("reflect: CallSlice with too few input arguments")
    349 		}
    350 		if len(in) > n {
    351 			panic("reflect: CallSlice with too many input arguments")
    352 		}
    353 	} else {
    354 		if t.IsVariadic() {
    355 			n--
    356 		}
    357 		if len(in) < n {
    358 			panic("reflect: Call with too few input arguments")
    359 		}
    360 		if !t.IsVariadic() && len(in) > n {
    361 			panic("reflect: Call with too many input arguments")
    362 		}
    363 	}
    364 	for _, x := range in {
    365 		if x.Kind() == Invalid {
    366 			panic("reflect: " + op + " using zero Value argument")
    367 		}
    368 	}
    369 	for i := 0; i < n; i++ {
    370 		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
    371 			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
    372 		}
    373 	}
    374 	if !isSlice && t.IsVariadic() {
    375 		// prepare slice for remaining values
    376 		m := len(in) - n
    377 		slice := MakeSlice(t.In(n), m, m)
    378 		elem := t.In(n).Elem()
    379 		for i := 0; i < m; i++ {
    380 			x := in[n+i]
    381 			if xt := x.Type(); !xt.AssignableTo(elem) {
    382 				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
    383 			}
    384 			slice.Index(i).Set(x)
    385 		}
    386 		origIn := in
    387 		in = make([]Value, n+1)
    388 		copy(in[:n], origIn)
    389 		in[n] = slice
    390 	}
    391 
    392 	nin := len(in)
    393 	if nin != t.NumIn() {
    394 		panic("reflect.Value.Call: wrong argument count")
    395 	}
    396 	nout := t.NumOut()
    397 
    398 	// Compute frame type.
    399 	frametype, _, retOffset, _, framePool := funcLayout(t, rcvrtype)
    400 
    401 	// Allocate a chunk of memory for frame.
    402 	var args unsafe.Pointer
    403 	if nout == 0 {
    404 		args = framePool.Get().(unsafe.Pointer)
    405 	} else {
    406 		// Can't use pool if the function has return values.
    407 		// We will leak pointer to args in ret, so its lifetime is not scoped.
    408 		args = unsafe_New(frametype)
    409 	}
    410 	off := uintptr(0)
    411 
    412 	// Copy inputs into args.
    413 	if rcvrtype != nil {
    414 		storeRcvr(rcvr, args)
    415 		off = ptrSize
    416 	}
    417 	for i, v := range in {
    418 		v.mustBeExported()
    419 		targ := t.In(i).(*rtype)
    420 		a := uintptr(targ.align)
    421 		off = (off + a - 1) &^ (a - 1)
    422 		n := targ.size
    423 		addr := unsafe.Pointer(uintptr(args) + off)
    424 		v = v.assignTo("reflect.Value.Call", targ, addr)
    425 		if v.flag&flagIndir != 0 {
    426 			typedmemmove(targ, addr, v.ptr)
    427 		} else {
    428 			*(*unsafe.Pointer)(addr) = v.ptr
    429 		}
    430 		off += n
    431 	}
    432 
    433 	// Call.
    434 	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
    435 
    436 	// For testing; see TestCallMethodJump.
    437 	if callGC {
    438 		runtime.GC()
    439 	}
    440 
    441 	var ret []Value
    442 	if nout == 0 {
    443 		// This is untyped because the frame is really a
    444 		// stack, even though it's a heap object.
    445 		memclrNoHeapPointers(args, frametype.size)
    446 		framePool.Put(args)
    447 	} else {
    448 		// Zero the now unused input area of args,
    449 		// because the Values returned by this function contain pointers to the args object,
    450 		// and will thus keep the args object alive indefinitely.
    451 		memclrNoHeapPointers(args, retOffset)
    452 		// Wrap Values around return values in args.
    453 		ret = make([]Value, nout)
    454 		off = retOffset
    455 		for i := 0; i < nout; i++ {
    456 			tv := t.Out(i)
    457 			a := uintptr(tv.Align())
    458 			off = (off + a - 1) &^ (a - 1)
    459 			fl := flagIndir | flag(tv.Kind())
    460 			ret[i] = Value{tv.common(), unsafe.Pointer(uintptr(args) + off), fl}
    461 			off += tv.Size()
    462 		}
    463 	}
    464 
    465 	return ret
    466 }
    467 
    468 // callReflect is the call implementation used by a function
    469 // returned by MakeFunc. In many ways it is the opposite of the
    470 // method Value.call above. The method above converts a call using Values
    471 // into a call of a function with a concrete argument frame, while
    472 // callReflect converts a call of a function with a concrete argument
    473 // frame into a call using Values.
    474 // It is in this file so that it can be next to the call method above.
    475 // The remainder of the MakeFunc implementation is in makefunc.go.
    476 //
    477 // NOTE: This function must be marked as a "wrapper" in the generated code,
    478 // so that the linker can make it work correctly for panic and recover.
    479 // The gc compilers know to do that for the name "reflect.callReflect".
    480 func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) {
    481 	ftyp := ctxt.typ
    482 	f := ctxt.fn
    483 
    484 	// Copy argument frame into Values.
    485 	ptr := frame
    486 	off := uintptr(0)
    487 	in := make([]Value, 0, int(ftyp.inCount))
    488 	for _, typ := range ftyp.in() {
    489 		off += -off & uintptr(typ.align-1)
    490 		addr := unsafe.Pointer(uintptr(ptr) + off)
    491 		v := Value{typ, nil, flag(typ.Kind())}
    492 		if ifaceIndir(typ) {
    493 			// value cannot be inlined in interface data.
    494 			// Must make a copy, because f might keep a reference to it,
    495 			// and we cannot let f keep a reference to the stack frame
    496 			// after this function returns, not even a read-only reference.
    497 			v.ptr = unsafe_New(typ)
    498 			typedmemmove(typ, v.ptr, addr)
    499 			v.flag |= flagIndir
    500 		} else {
    501 			v.ptr = *(*unsafe.Pointer)(addr)
    502 		}
    503 		in = append(in, v)
    504 		off += typ.size
    505 	}
    506 
    507 	// Call underlying function.
    508 	out := f(in)
    509 	numOut := ftyp.NumOut()
    510 	if len(out) != numOut {
    511 		panic("reflect: wrong return count from function created by MakeFunc")
    512 	}
    513 
    514 	// Copy results back into argument frame.
    515 	if numOut > 0 {
    516 		off += -off & (ptrSize - 1)
    517 		if runtime.GOARCH == "amd64p32" {
    518 			off = align(off, 8)
    519 		}
    520 		for i, typ := range ftyp.out() {
    521 			v := out[i]
    522 			if v.typ != typ {
    523 				panic("reflect: function created by MakeFunc using " + funcName(f) +
    524 					" returned wrong type: have " +
    525 					out[i].typ.String() + " for " + typ.String())
    526 			}
    527 			if v.flag&flagRO != 0 {
    528 				panic("reflect: function created by MakeFunc using " + funcName(f) +
    529 					" returned value obtained from unexported field")
    530 			}
    531 			off += -off & uintptr(typ.align-1)
    532 			addr := unsafe.Pointer(uintptr(ptr) + off)
    533 			if v.flag&flagIndir != 0 {
    534 				typedmemmove(typ, addr, v.ptr)
    535 			} else {
    536 				*(*unsafe.Pointer)(addr) = v.ptr
    537 			}
    538 			off += typ.size
    539 		}
    540 	}
    541 
    542 	// runtime.getArgInfo expects to be able to find ctxt on the
    543 	// stack when it finds our caller, makeFuncStub. Make sure it
    544 	// doesn't get garbage collected.
    545 	runtime.KeepAlive(ctxt)
    546 }
    547 
    548 // methodReceiver returns information about the receiver
    549 // described by v. The Value v may or may not have the
    550 // flagMethod bit set, so the kind cached in v.flag should
    551 // not be used.
    552 // The return value rcvrtype gives the method's actual receiver type.
    553 // The return value t gives the method type signature (without the receiver).
    554 // The return value fn is a pointer to the method code.
    555 func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) {
    556 	i := methodIndex
    557 	if v.typ.Kind() == Interface {
    558 		tt := (*interfaceType)(unsafe.Pointer(v.typ))
    559 		if uint(i) >= uint(len(tt.methods)) {
    560 			panic("reflect: internal error: invalid method index")
    561 		}
    562 		m := &tt.methods[i]
    563 		if !tt.nameOff(m.name).isExported() {
    564 			panic("reflect: " + op + " of unexported method")
    565 		}
    566 		iface := (*nonEmptyInterface)(v.ptr)
    567 		if iface.itab == nil {
    568 			panic("reflect: " + op + " of method on nil interface value")
    569 		}
    570 		rcvrtype = iface.itab.typ
    571 		fn = unsafe.Pointer(&iface.itab.fun[i])
    572 		t = tt.typeOff(m.typ)
    573 	} else {
    574 		rcvrtype = v.typ
    575 		ut := v.typ.uncommon()
    576 		if ut == nil || uint(i) >= uint(ut.mcount) {
    577 			panic("reflect: internal error: invalid method index")
    578 		}
    579 		m := ut.methods()[i]
    580 		if !v.typ.nameOff(m.name).isExported() {
    581 			panic("reflect: " + op + " of unexported method")
    582 		}
    583 		ifn := v.typ.textOff(m.ifn)
    584 		fn = unsafe.Pointer(&ifn)
    585 		t = v.typ.typeOff(m.mtyp)
    586 	}
    587 	return
    588 }
    589 
    590 // v is a method receiver. Store at p the word which is used to
    591 // encode that receiver at the start of the argument list.
    592 // Reflect uses the "interface" calling convention for
    593 // methods, which always uses one word to record the receiver.
    594 func storeRcvr(v Value, p unsafe.Pointer) {
    595 	t := v.typ
    596 	if t.Kind() == Interface {
    597 		// the interface data word becomes the receiver word
    598 		iface := (*nonEmptyInterface)(v.ptr)
    599 		*(*unsafe.Pointer)(p) = iface.word
    600 	} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
    601 		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
    602 	} else {
    603 		*(*unsafe.Pointer)(p) = v.ptr
    604 	}
    605 }
    606 
    607 // align returns the result of rounding x up to a multiple of n.
    608 // n must be a power of two.
    609 func align(x, n uintptr) uintptr {
    610 	return (x + n - 1) &^ (n - 1)
    611 }
    612 
    613 // callMethod is the call implementation used by a function returned
    614 // by makeMethodValue (used by v.Method(i).Interface()).
    615 // It is a streamlined version of the usual reflect call: the caller has
    616 // already laid out the argument frame for us, so we don't have
    617 // to deal with individual Values for each argument.
    618 // It is in this file so that it can be next to the two similar functions above.
    619 // The remainder of the makeMethodValue implementation is in makefunc.go.
    620 //
    621 // NOTE: This function must be marked as a "wrapper" in the generated code,
    622 // so that the linker can make it work correctly for panic and recover.
    623 // The gc compilers know to do that for the name "reflect.callMethod".
    624 func callMethod(ctxt *methodValue, frame unsafe.Pointer) {
    625 	rcvr := ctxt.rcvr
    626 	rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method)
    627 	frametype, argSize, retOffset, _, framePool := funcLayout(t, rcvrtype)
    628 
    629 	// Make a new frame that is one word bigger so we can store the receiver.
    630 	args := framePool.Get().(unsafe.Pointer)
    631 
    632 	// Copy in receiver and rest of args.
    633 	storeRcvr(rcvr, args)
    634 	typedmemmovepartial(frametype, unsafe.Pointer(uintptr(args)+ptrSize), frame, ptrSize, argSize-ptrSize)
    635 
    636 	// Call.
    637 	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
    638 
    639 	// Copy return values. On amd64p32, the beginning of return values
    640 	// is 64-bit aligned, so the caller's frame layout (which doesn't have
    641 	// a receiver) is different from the layout of the fn call, which has
    642 	// a receiver.
    643 	// Ignore any changes to args and just copy return values.
    644 	callerRetOffset := retOffset - ptrSize
    645 	if runtime.GOARCH == "amd64p32" {
    646 		callerRetOffset = align(argSize-ptrSize, 8)
    647 	}
    648 	typedmemmovepartial(frametype,
    649 		unsafe.Pointer(uintptr(frame)+callerRetOffset),
    650 		unsafe.Pointer(uintptr(args)+retOffset),
    651 		retOffset,
    652 		frametype.size-retOffset)
    653 
    654 	// This is untyped because the frame is really a stack, even
    655 	// though it's a heap object.
    656 	memclrNoHeapPointers(args, frametype.size)
    657 	framePool.Put(args)
    658 
    659 	// See the comment in callReflect.
    660 	runtime.KeepAlive(ctxt)
    661 }
    662 
    663 // funcName returns the name of f, for use in error messages.
    664 func funcName(f func([]Value) []Value) string {
    665 	pc := *(*uintptr)(unsafe.Pointer(&f))
    666 	rf := runtime.FuncForPC(pc)
    667 	if rf != nil {
    668 		return rf.Name()
    669 	}
    670 	return "closure"
    671 }
    672 
    673 // Cap returns v's capacity.
    674 // It panics if v's Kind is not Array, Chan, or Slice.
    675 func (v Value) Cap() int {
    676 	k := v.kind()
    677 	switch k {
    678 	case Array:
    679 		return v.typ.Len()
    680 	case Chan:
    681 		return chancap(v.pointer())
    682 	case Slice:
    683 		// Slice is always bigger than a word; assume flagIndir.
    684 		return (*sliceHeader)(v.ptr).Cap
    685 	}
    686 	panic(&ValueError{"reflect.Value.Cap", v.kind()})
    687 }
    688 
    689 // Close closes the channel v.
    690 // It panics if v's Kind is not Chan.
    691 func (v Value) Close() {
    692 	v.mustBe(Chan)
    693 	v.mustBeExported()
    694 	chanclose(v.pointer())
    695 }
    696 
    697 // Complex returns v's underlying value, as a complex128.
    698 // It panics if v's Kind is not Complex64 or Complex128
    699 func (v Value) Complex() complex128 {
    700 	k := v.kind()
    701 	switch k {
    702 	case Complex64:
    703 		return complex128(*(*complex64)(v.ptr))
    704 	case Complex128:
    705 		return *(*complex128)(v.ptr)
    706 	}
    707 	panic(&ValueError{"reflect.Value.Complex", v.kind()})
    708 }
    709 
    710 // Elem returns the value that the interface v contains
    711 // or that the pointer v points to.
    712 // It panics if v's Kind is not Interface or Ptr.
    713 // It returns the zero Value if v is nil.
    714 func (v Value) Elem() Value {
    715 	k := v.kind()
    716 	switch k {
    717 	case Interface:
    718 		var eface interface{}
    719 		if v.typ.NumMethod() == 0 {
    720 			eface = *(*interface{})(v.ptr)
    721 		} else {
    722 			eface = (interface{})(*(*interface {
    723 				M()
    724 			})(v.ptr))
    725 		}
    726 		x := unpackEface(eface)
    727 		if x.flag != 0 {
    728 			x.flag |= v.flag & flagRO
    729 		}
    730 		return x
    731 	case Ptr:
    732 		ptr := v.ptr
    733 		if v.flag&flagIndir != 0 {
    734 			ptr = *(*unsafe.Pointer)(ptr)
    735 		}
    736 		// The returned value's address is v's value.
    737 		if ptr == nil {
    738 			return Value{}
    739 		}
    740 		tt := (*ptrType)(unsafe.Pointer(v.typ))
    741 		typ := tt.elem
    742 		fl := v.flag&flagRO | flagIndir | flagAddr
    743 		fl |= flag(typ.Kind())
    744 		return Value{typ, ptr, fl}
    745 	}
    746 	panic(&ValueError{"reflect.Value.Elem", v.kind()})
    747 }
    748 
    749 // Field returns the i'th field of the struct v.
    750 // It panics if v's Kind is not Struct or i is out of range.
    751 func (v Value) Field(i int) Value {
    752 	if v.kind() != Struct {
    753 		panic(&ValueError{"reflect.Value.Field", v.kind()})
    754 	}
    755 	tt := (*structType)(unsafe.Pointer(v.typ))
    756 	if uint(i) >= uint(len(tt.fields)) {
    757 		panic("reflect: Field index out of range")
    758 	}
    759 	field := &tt.fields[i]
    760 	typ := field.typ
    761 
    762 	// Inherit permission bits from v, but clear flagEmbedRO.
    763 	fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
    764 	// Using an unexported field forces flagRO.
    765 	if !field.name.isExported() {
    766 		if field.name.name() == "" {
    767 			fl |= flagEmbedRO
    768 		} else {
    769 			fl |= flagStickyRO
    770 		}
    771 	}
    772 	// Either flagIndir is set and v.ptr points at struct,
    773 	// or flagIndir is not set and v.ptr is the actual struct data.
    774 	// In the former case, we want v.ptr + offset.
    775 	// In the latter case, we must have field.offset = 0,
    776 	// so v.ptr + field.offset is still okay.
    777 	ptr := unsafe.Pointer(uintptr(v.ptr) + field.offset)
    778 	return Value{typ, ptr, fl}
    779 }
    780 
    781 // FieldByIndex returns the nested field corresponding to index.
    782 // It panics if v's Kind is not struct.
    783 func (v Value) FieldByIndex(index []int) Value {
    784 	if len(index) == 1 {
    785 		return v.Field(index[0])
    786 	}
    787 	v.mustBe(Struct)
    788 	for i, x := range index {
    789 		if i > 0 {
    790 			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
    791 				if v.IsNil() {
    792 					panic("reflect: indirection through nil pointer to embedded struct")
    793 				}
    794 				v = v.Elem()
    795 			}
    796 		}
    797 		v = v.Field(x)
    798 	}
    799 	return v
    800 }
    801 
    802 // FieldByName returns the struct field with the given name.
    803 // It returns the zero Value if no field was found.
    804 // It panics if v's Kind is not struct.
    805 func (v Value) FieldByName(name string) Value {
    806 	v.mustBe(Struct)
    807 	if f, ok := v.typ.FieldByName(name); ok {
    808 		return v.FieldByIndex(f.Index)
    809 	}
    810 	return Value{}
    811 }
    812 
    813 // FieldByNameFunc returns the struct field with a name
    814 // that satisfies the match function.
    815 // It panics if v's Kind is not struct.
    816 // It returns the zero Value if no field was found.
    817 func (v Value) FieldByNameFunc(match func(string) bool) Value {
    818 	if f, ok := v.typ.FieldByNameFunc(match); ok {
    819 		return v.FieldByIndex(f.Index)
    820 	}
    821 	return Value{}
    822 }
    823 
    824 // Float returns v's underlying value, as a float64.
    825 // It panics if v's Kind is not Float32 or Float64
    826 func (v Value) Float() float64 {
    827 	k := v.kind()
    828 	switch k {
    829 	case Float32:
    830 		return float64(*(*float32)(v.ptr))
    831 	case Float64:
    832 		return *(*float64)(v.ptr)
    833 	}
    834 	panic(&ValueError{"reflect.Value.Float", v.kind()})
    835 }
    836 
    837 var uint8Type = TypeOf(uint8(0)).(*rtype)
    838 
    839 // Index returns v's i'th element.
    840 // It panics if v's Kind is not Array, Slice, or String or i is out of range.
    841 func (v Value) Index(i int) Value {
    842 	switch v.kind() {
    843 	case Array:
    844 		tt := (*arrayType)(unsafe.Pointer(v.typ))
    845 		if uint(i) >= uint(tt.len) {
    846 			panic("reflect: array index out of range")
    847 		}
    848 		typ := tt.elem
    849 		offset := uintptr(i) * typ.size
    850 
    851 		// Either flagIndir is set and v.ptr points at array,
    852 		// or flagIndir is not set and v.ptr is the actual array data.
    853 		// In the former case, we want v.ptr + offset.
    854 		// In the latter case, we must be doing Index(0), so offset = 0,
    855 		// so v.ptr + offset is still okay.
    856 		val := unsafe.Pointer(uintptr(v.ptr) + offset)
    857 		fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind()) // bits same as overall array
    858 		return Value{typ, val, fl}
    859 
    860 	case Slice:
    861 		// Element flag same as Elem of Ptr.
    862 		// Addressable, indirect, possibly read-only.
    863 		s := (*sliceHeader)(v.ptr)
    864 		if uint(i) >= uint(s.Len) {
    865 			panic("reflect: slice index out of range")
    866 		}
    867 		tt := (*sliceType)(unsafe.Pointer(v.typ))
    868 		typ := tt.elem
    869 		val := arrayAt(s.Data, i, typ.size)
    870 		fl := flagAddr | flagIndir | v.flag&flagRO | flag(typ.Kind())
    871 		return Value{typ, val, fl}
    872 
    873 	case String:
    874 		s := (*stringHeader)(v.ptr)
    875 		if uint(i) >= uint(s.Len) {
    876 			panic("reflect: string index out of range")
    877 		}
    878 		p := arrayAt(s.Data, i, 1)
    879 		fl := v.flag&flagRO | flag(Uint8) | flagIndir
    880 		return Value{uint8Type, p, fl}
    881 	}
    882 	panic(&ValueError{"reflect.Value.Index", v.kind()})
    883 }
    884 
    885 // Int returns v's underlying value, as an int64.
    886 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
    887 func (v Value) Int() int64 {
    888 	k := v.kind()
    889 	p := v.ptr
    890 	switch k {
    891 	case Int:
    892 		return int64(*(*int)(p))
    893 	case Int8:
    894 		return int64(*(*int8)(p))
    895 	case Int16:
    896 		return int64(*(*int16)(p))
    897 	case Int32:
    898 		return int64(*(*int32)(p))
    899 	case Int64:
    900 		return *(*int64)(p)
    901 	}
    902 	panic(&ValueError{"reflect.Value.Int", v.kind()})
    903 }
    904 
    905 // CanInterface reports whether Interface can be used without panicking.
    906 func (v Value) CanInterface() bool {
    907 	if v.flag == 0 {
    908 		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
    909 	}
    910 	return v.flag&flagRO == 0
    911 }
    912 
    913 // Interface returns v's current value as an interface{}.
    914 // It is equivalent to:
    915 //	var i interface{} = (v's underlying value)
    916 // It panics if the Value was obtained by accessing
    917 // unexported struct fields.
    918 func (v Value) Interface() (i interface{}) {
    919 	return valueInterface(v, true)
    920 }
    921 
    922 func valueInterface(v Value, safe bool) interface{} {
    923 	if v.flag == 0 {
    924 		panic(&ValueError{"reflect.Value.Interface", 0})
    925 	}
    926 	if safe && v.flag&flagRO != 0 {
    927 		// Do not allow access to unexported values via Interface,
    928 		// because they might be pointers that should not be
    929 		// writable or methods or function that should not be callable.
    930 		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
    931 	}
    932 	if v.flag&flagMethod != 0 {
    933 		v = makeMethodValue("Interface", v)
    934 	}
    935 
    936 	if v.kind() == Interface {
    937 		// Special case: return the element inside the interface.
    938 		// Empty interface has one layout, all interfaces with
    939 		// methods have a second layout.
    940 		if v.NumMethod() == 0 {
    941 			return *(*interface{})(v.ptr)
    942 		}
    943 		return *(*interface {
    944 			M()
    945 		})(v.ptr)
    946 	}
    947 
    948 	// TODO: pass safe to packEface so we don't need to copy if safe==true?
    949 	return packEface(v)
    950 }
    951 
    952 // InterfaceData returns the interface v's value as a uintptr pair.
    953 // It panics if v's Kind is not Interface.
    954 func (v Value) InterfaceData() [2]uintptr {
    955 	// TODO: deprecate this
    956 	v.mustBe(Interface)
    957 	// We treat this as a read operation, so we allow
    958 	// it even for unexported data, because the caller
    959 	// has to import "unsafe" to turn it into something
    960 	// that can be abused.
    961 	// Interface value is always bigger than a word; assume flagIndir.
    962 	return *(*[2]uintptr)(v.ptr)
    963 }
    964 
    965 // IsNil reports whether its argument v is nil. The argument must be
    966 // a chan, func, interface, map, pointer, or slice value; if it is
    967 // not, IsNil panics. Note that IsNil is not always equivalent to a
    968 // regular comparison with nil in Go. For example, if v was created
    969 // by calling ValueOf with an uninitialized interface variable i,
    970 // i==nil will be true but v.IsNil will panic as v will be the zero
    971 // Value.
    972 func (v Value) IsNil() bool {
    973 	k := v.kind()
    974 	switch k {
    975 	case Chan, Func, Map, Ptr:
    976 		if v.flag&flagMethod != 0 {
    977 			return false
    978 		}
    979 		ptr := v.ptr
    980 		if v.flag&flagIndir != 0 {
    981 			ptr = *(*unsafe.Pointer)(ptr)
    982 		}
    983 		return ptr == nil
    984 	case Interface, Slice:
    985 		// Both interface and slice are nil if first word is 0.
    986 		// Both are always bigger than a word; assume flagIndir.
    987 		return *(*unsafe.Pointer)(v.ptr) == nil
    988 	}
    989 	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
    990 }
    991 
    992 // IsValid reports whether v represents a value.
    993 // It returns false if v is the zero Value.
    994 // If IsValid returns false, all other methods except String panic.
    995 // Most functions and methods never return an invalid value.
    996 // If one does, its documentation states the conditions explicitly.
    997 func (v Value) IsValid() bool {
    998 	return v.flag != 0
    999 }
   1000 
   1001 // Kind returns v's Kind.
   1002 // If v is the zero Value (IsValid returns false), Kind returns Invalid.
   1003 func (v Value) Kind() Kind {
   1004 	return v.kind()
   1005 }
   1006 
   1007 // Len returns v's length.
   1008 // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
   1009 func (v Value) Len() int {
   1010 	k := v.kind()
   1011 	switch k {
   1012 	case Array:
   1013 		tt := (*arrayType)(unsafe.Pointer(v.typ))
   1014 		return int(tt.len)
   1015 	case Chan:
   1016 		return chanlen(v.pointer())
   1017 	case Map:
   1018 		return maplen(v.pointer())
   1019 	case Slice:
   1020 		// Slice is bigger than a word; assume flagIndir.
   1021 		return (*sliceHeader)(v.ptr).Len
   1022 	case String:
   1023 		// String is bigger than a word; assume flagIndir.
   1024 		return (*stringHeader)(v.ptr).Len
   1025 	}
   1026 	panic(&ValueError{"reflect.Value.Len", v.kind()})
   1027 }
   1028 
   1029 // MapIndex returns the value associated with key in the map v.
   1030 // It panics if v's Kind is not Map.
   1031 // It returns the zero Value if key is not found in the map or if v represents a nil map.
   1032 // As in Go, the key's value must be assignable to the map's key type.
   1033 func (v Value) MapIndex(key Value) Value {
   1034 	v.mustBe(Map)
   1035 	tt := (*mapType)(unsafe.Pointer(v.typ))
   1036 
   1037 	// Do not require key to be exported, so that DeepEqual
   1038 	// and other programs can use all the keys returned by
   1039 	// MapKeys as arguments to MapIndex. If either the map
   1040 	// or the key is unexported, though, the result will be
   1041 	// considered unexported. This is consistent with the
   1042 	// behavior for structs, which allow read but not write
   1043 	// of unexported fields.
   1044 	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
   1045 
   1046 	var k unsafe.Pointer
   1047 	if key.flag&flagIndir != 0 {
   1048 		k = key.ptr
   1049 	} else {
   1050 		k = unsafe.Pointer(&key.ptr)
   1051 	}
   1052 	e := mapaccess(v.typ, v.pointer(), k)
   1053 	if e == nil {
   1054 		return Value{}
   1055 	}
   1056 	typ := tt.elem
   1057 	fl := (v.flag | key.flag) & flagRO
   1058 	fl |= flag(typ.Kind())
   1059 	if ifaceIndir(typ) {
   1060 		// Copy result so future changes to the map
   1061 		// won't change the underlying value.
   1062 		c := unsafe_New(typ)
   1063 		typedmemmove(typ, c, e)
   1064 		return Value{typ, c, fl | flagIndir}
   1065 	} else {
   1066 		return Value{typ, *(*unsafe.Pointer)(e), fl}
   1067 	}
   1068 }
   1069 
   1070 // MapKeys returns a slice containing all the keys present in the map,
   1071 // in unspecified order.
   1072 // It panics if v's Kind is not Map.
   1073 // It returns an empty slice if v represents a nil map.
   1074 func (v Value) MapKeys() []Value {
   1075 	v.mustBe(Map)
   1076 	tt := (*mapType)(unsafe.Pointer(v.typ))
   1077 	keyType := tt.key
   1078 
   1079 	fl := v.flag&flagRO | flag(keyType.Kind())
   1080 
   1081 	m := v.pointer()
   1082 	mlen := int(0)
   1083 	if m != nil {
   1084 		mlen = maplen(m)
   1085 	}
   1086 	it := mapiterinit(v.typ, m)
   1087 	a := make([]Value, mlen)
   1088 	var i int
   1089 	for i = 0; i < len(a); i++ {
   1090 		key := mapiterkey(it)
   1091 		if key == nil {
   1092 			// Someone deleted an entry from the map since we
   1093 			// called maplen above. It's a data race, but nothing
   1094 			// we can do about it.
   1095 			break
   1096 		}
   1097 		if ifaceIndir(keyType) {
   1098 			// Copy result so future changes to the map
   1099 			// won't change the underlying value.
   1100 			c := unsafe_New(keyType)
   1101 			typedmemmove(keyType, c, key)
   1102 			a[i] = Value{keyType, c, fl | flagIndir}
   1103 		} else {
   1104 			a[i] = Value{keyType, *(*unsafe.Pointer)(key), fl}
   1105 		}
   1106 		mapiternext(it)
   1107 	}
   1108 	return a[:i]
   1109 }
   1110 
   1111 // Method returns a function value corresponding to v's i'th method.
   1112 // The arguments to a Call on the returned function should not include
   1113 // a receiver; the returned function will always use v as the receiver.
   1114 // Method panics if i is out of range or if v is a nil interface value.
   1115 func (v Value) Method(i int) Value {
   1116 	if v.typ == nil {
   1117 		panic(&ValueError{"reflect.Value.Method", Invalid})
   1118 	}
   1119 	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
   1120 		panic("reflect: Method index out of range")
   1121 	}
   1122 	if v.typ.Kind() == Interface && v.IsNil() {
   1123 		panic("reflect: Method on nil interface value")
   1124 	}
   1125 	fl := v.flag & (flagStickyRO | flagIndir) // Clear flagEmbedRO
   1126 	fl |= flag(Func)
   1127 	fl |= flag(i)<<flagMethodShift | flagMethod
   1128 	return Value{v.typ, v.ptr, fl}
   1129 }
   1130 
   1131 // NumMethod returns the number of methods in the value's method set.
   1132 func (v Value) NumMethod() int {
   1133 	if v.typ == nil {
   1134 		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
   1135 	}
   1136 	if v.flag&flagMethod != 0 {
   1137 		return 0
   1138 	}
   1139 	return v.typ.NumMethod()
   1140 }
   1141 
   1142 // MethodByName returns a function value corresponding to the method
   1143 // of v with the given name.
   1144 // The arguments to a Call on the returned function should not include
   1145 // a receiver; the returned function will always use v as the receiver.
   1146 // It returns the zero Value if no method was found.
   1147 func (v Value) MethodByName(name string) Value {
   1148 	if v.typ == nil {
   1149 		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
   1150 	}
   1151 	if v.flag&flagMethod != 0 {
   1152 		return Value{}
   1153 	}
   1154 	m, ok := v.typ.MethodByName(name)
   1155 	if !ok {
   1156 		return Value{}
   1157 	}
   1158 	return v.Method(m.Index)
   1159 }
   1160 
   1161 // NumField returns the number of fields in the struct v.
   1162 // It panics if v's Kind is not Struct.
   1163 func (v Value) NumField() int {
   1164 	v.mustBe(Struct)
   1165 	tt := (*structType)(unsafe.Pointer(v.typ))
   1166 	return len(tt.fields)
   1167 }
   1168 
   1169 // OverflowComplex reports whether the complex128 x cannot be represented by v's type.
   1170 // It panics if v's Kind is not Complex64 or Complex128.
   1171 func (v Value) OverflowComplex(x complex128) bool {
   1172 	k := v.kind()
   1173 	switch k {
   1174 	case Complex64:
   1175 		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
   1176 	case Complex128:
   1177 		return false
   1178 	}
   1179 	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
   1180 }
   1181 
   1182 // OverflowFloat reports whether the float64 x cannot be represented by v's type.
   1183 // It panics if v's Kind is not Float32 or Float64.
   1184 func (v Value) OverflowFloat(x float64) bool {
   1185 	k := v.kind()
   1186 	switch k {
   1187 	case Float32:
   1188 		return overflowFloat32(x)
   1189 	case Float64:
   1190 		return false
   1191 	}
   1192 	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
   1193 }
   1194 
   1195 func overflowFloat32(x float64) bool {
   1196 	if x < 0 {
   1197 		x = -x
   1198 	}
   1199 	return math.MaxFloat32 < x && x <= math.MaxFloat64
   1200 }
   1201 
   1202 // OverflowInt reports whether the int64 x cannot be represented by v's type.
   1203 // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
   1204 func (v Value) OverflowInt(x int64) bool {
   1205 	k := v.kind()
   1206 	switch k {
   1207 	case Int, Int8, Int16, Int32, Int64:
   1208 		bitSize := v.typ.size * 8
   1209 		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
   1210 		return x != trunc
   1211 	}
   1212 	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
   1213 }
   1214 
   1215 // OverflowUint reports whether the uint64 x cannot be represented by v's type.
   1216 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
   1217 func (v Value) OverflowUint(x uint64) bool {
   1218 	k := v.kind()
   1219 	switch k {
   1220 	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
   1221 		bitSize := v.typ.size * 8
   1222 		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
   1223 		return x != trunc
   1224 	}
   1225 	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
   1226 }
   1227 
   1228 // Pointer returns v's value as a uintptr.
   1229 // It returns uintptr instead of unsafe.Pointer so that
   1230 // code using reflect cannot obtain unsafe.Pointers
   1231 // without importing the unsafe package explicitly.
   1232 // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
   1233 //
   1234 // If v's Kind is Func, the returned pointer is an underlying
   1235 // code pointer, but not necessarily enough to identify a
   1236 // single function uniquely. The only guarantee is that the
   1237 // result is zero if and only if v is a nil func Value.
   1238 //
   1239 // If v's Kind is Slice, the returned pointer is to the first
   1240 // element of the slice. If the slice is nil the returned value
   1241 // is 0.  If the slice is empty but non-nil the return value is non-zero.
   1242 func (v Value) Pointer() uintptr {
   1243 	// TODO: deprecate
   1244 	k := v.kind()
   1245 	switch k {
   1246 	case Chan, Map, Ptr, UnsafePointer:
   1247 		return uintptr(v.pointer())
   1248 	case Func:
   1249 		if v.flag&flagMethod != 0 {
   1250 			// As the doc comment says, the returned pointer is an
   1251 			// underlying code pointer but not necessarily enough to
   1252 			// identify a single function uniquely. All method expressions
   1253 			// created via reflect have the same underlying code pointer,
   1254 			// so their Pointers are equal. The function used here must
   1255 			// match the one used in makeMethodValue.
   1256 			f := methodValueCall
   1257 			return **(**uintptr)(unsafe.Pointer(&f))
   1258 		}
   1259 		p := v.pointer()
   1260 		// Non-nil func value points at data block.
   1261 		// First word of data block is actual code.
   1262 		if p != nil {
   1263 			p = *(*unsafe.Pointer)(p)
   1264 		}
   1265 		return uintptr(p)
   1266 
   1267 	case Slice:
   1268 		return (*SliceHeader)(v.ptr).Data
   1269 	}
   1270 	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
   1271 }
   1272 
   1273 // Recv receives and returns a value from the channel v.
   1274 // It panics if v's Kind is not Chan.
   1275 // The receive blocks until a value is ready.
   1276 // The boolean value ok is true if the value x corresponds to a send
   1277 // on the channel, false if it is a zero value received because the channel is closed.
   1278 func (v Value) Recv() (x Value, ok bool) {
   1279 	v.mustBe(Chan)
   1280 	v.mustBeExported()
   1281 	return v.recv(false)
   1282 }
   1283 
   1284 // internal recv, possibly non-blocking (nb).
   1285 // v is known to be a channel.
   1286 func (v Value) recv(nb bool) (val Value, ok bool) {
   1287 	tt := (*chanType)(unsafe.Pointer(v.typ))
   1288 	if ChanDir(tt.dir)&RecvDir == 0 {
   1289 		panic("reflect: recv on send-only channel")
   1290 	}
   1291 	t := tt.elem
   1292 	val = Value{t, nil, flag(t.Kind())}
   1293 	var p unsafe.Pointer
   1294 	if ifaceIndir(t) {
   1295 		p = unsafe_New(t)
   1296 		val.ptr = p
   1297 		val.flag |= flagIndir
   1298 	} else {
   1299 		p = unsafe.Pointer(&val.ptr)
   1300 	}
   1301 	selected, ok := chanrecv(v.typ, v.pointer(), nb, p)
   1302 	if !selected {
   1303 		val = Value{}
   1304 	}
   1305 	return
   1306 }
   1307 
   1308 // Send sends x on the channel v.
   1309 // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
   1310 // As in Go, x's value must be assignable to the channel's element type.
   1311 func (v Value) Send(x Value) {
   1312 	v.mustBe(Chan)
   1313 	v.mustBeExported()
   1314 	v.send(x, false)
   1315 }
   1316 
   1317 // internal send, possibly non-blocking.
   1318 // v is known to be a channel.
   1319 func (v Value) send(x Value, nb bool) (selected bool) {
   1320 	tt := (*chanType)(unsafe.Pointer(v.typ))
   1321 	if ChanDir(tt.dir)&SendDir == 0 {
   1322 		panic("reflect: send on recv-only channel")
   1323 	}
   1324 	x.mustBeExported()
   1325 	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
   1326 	var p unsafe.Pointer
   1327 	if x.flag&flagIndir != 0 {
   1328 		p = x.ptr
   1329 	} else {
   1330 		p = unsafe.Pointer(&x.ptr)
   1331 	}
   1332 	return chansend(v.typ, v.pointer(), p, nb)
   1333 }
   1334 
   1335 // Set assigns x to the value v.
   1336 // It panics if CanSet returns false.
   1337 // As in Go, x's value must be assignable to v's type.
   1338 func (v Value) Set(x Value) {
   1339 	v.mustBeAssignable()
   1340 	x.mustBeExported() // do not let unexported x leak
   1341 	var target unsafe.Pointer
   1342 	if v.kind() == Interface {
   1343 		target = v.ptr
   1344 	}
   1345 	x = x.assignTo("reflect.Set", v.typ, target)
   1346 	if x.flag&flagIndir != 0 {
   1347 		typedmemmove(v.typ, v.ptr, x.ptr)
   1348 	} else {
   1349 		*(*unsafe.Pointer)(v.ptr) = x.ptr
   1350 	}
   1351 }
   1352 
   1353 // SetBool sets v's underlying value.
   1354 // It panics if v's Kind is not Bool or if CanSet() is false.
   1355 func (v Value) SetBool(x bool) {
   1356 	v.mustBeAssignable()
   1357 	v.mustBe(Bool)
   1358 	*(*bool)(v.ptr) = x
   1359 }
   1360 
   1361 // SetBytes sets v's underlying value.
   1362 // It panics if v's underlying value is not a slice of bytes.
   1363 func (v Value) SetBytes(x []byte) {
   1364 	v.mustBeAssignable()
   1365 	v.mustBe(Slice)
   1366 	if v.typ.Elem().Kind() != Uint8 {
   1367 		panic("reflect.Value.SetBytes of non-byte slice")
   1368 	}
   1369 	*(*[]byte)(v.ptr) = x
   1370 }
   1371 
   1372 // setRunes sets v's underlying value.
   1373 // It panics if v's underlying value is not a slice of runes (int32s).
   1374 func (v Value) setRunes(x []rune) {
   1375 	v.mustBeAssignable()
   1376 	v.mustBe(Slice)
   1377 	if v.typ.Elem().Kind() != Int32 {
   1378 		panic("reflect.Value.setRunes of non-rune slice")
   1379 	}
   1380 	*(*[]rune)(v.ptr) = x
   1381 }
   1382 
   1383 // SetComplex sets v's underlying value to x.
   1384 // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
   1385 func (v Value) SetComplex(x complex128) {
   1386 	v.mustBeAssignable()
   1387 	switch k := v.kind(); k {
   1388 	default:
   1389 		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
   1390 	case Complex64:
   1391 		*(*complex64)(v.ptr) = complex64(x)
   1392 	case Complex128:
   1393 		*(*complex128)(v.ptr) = x
   1394 	}
   1395 }
   1396 
   1397 // SetFloat sets v's underlying value to x.
   1398 // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
   1399 func (v Value) SetFloat(x float64) {
   1400 	v.mustBeAssignable()
   1401 	switch k := v.kind(); k {
   1402 	default:
   1403 		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
   1404 	case Float32:
   1405 		*(*float32)(v.ptr) = float32(x)
   1406 	case Float64:
   1407 		*(*float64)(v.ptr) = x
   1408 	}
   1409 }
   1410 
   1411 // SetInt sets v's underlying value to x.
   1412 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
   1413 func (v Value) SetInt(x int64) {
   1414 	v.mustBeAssignable()
   1415 	switch k := v.kind(); k {
   1416 	default:
   1417 		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
   1418 	case Int:
   1419 		*(*int)(v.ptr) = int(x)
   1420 	case Int8:
   1421 		*(*int8)(v.ptr) = int8(x)
   1422 	case Int16:
   1423 		*(*int16)(v.ptr) = int16(x)
   1424 	case Int32:
   1425 		*(*int32)(v.ptr) = int32(x)
   1426 	case Int64:
   1427 		*(*int64)(v.ptr) = x
   1428 	}
   1429 }
   1430 
   1431 // SetLen sets v's length to n.
   1432 // It panics if v's Kind is not Slice or if n is negative or
   1433 // greater than the capacity of the slice.
   1434 func (v Value) SetLen(n int) {
   1435 	v.mustBeAssignable()
   1436 	v.mustBe(Slice)
   1437 	s := (*sliceHeader)(v.ptr)
   1438 	if uint(n) > uint(s.Cap) {
   1439 		panic("reflect: slice length out of range in SetLen")
   1440 	}
   1441 	s.Len = n
   1442 }
   1443 
   1444 // SetCap sets v's capacity to n.
   1445 // It panics if v's Kind is not Slice or if n is smaller than the length or
   1446 // greater than the capacity of the slice.
   1447 func (v Value) SetCap(n int) {
   1448 	v.mustBeAssignable()
   1449 	v.mustBe(Slice)
   1450 	s := (*sliceHeader)(v.ptr)
   1451 	if n < s.Len || n > s.Cap {
   1452 		panic("reflect: slice capacity out of range in SetCap")
   1453 	}
   1454 	s.Cap = n
   1455 }
   1456 
   1457 // SetMapIndex sets the value associated with key in the map v to val.
   1458 // It panics if v's Kind is not Map.
   1459 // If val is the zero Value, SetMapIndex deletes the key from the map.
   1460 // Otherwise if v holds a nil map, SetMapIndex will panic.
   1461 // As in Go, key's value must be assignable to the map's key type,
   1462 // and val's value must be assignable to the map's value type.
   1463 func (v Value) SetMapIndex(key, val Value) {
   1464 	v.mustBe(Map)
   1465 	v.mustBeExported()
   1466 	key.mustBeExported()
   1467 	tt := (*mapType)(unsafe.Pointer(v.typ))
   1468 	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
   1469 	var k unsafe.Pointer
   1470 	if key.flag&flagIndir != 0 {
   1471 		k = key.ptr
   1472 	} else {
   1473 		k = unsafe.Pointer(&key.ptr)
   1474 	}
   1475 	if val.typ == nil {
   1476 		mapdelete(v.typ, v.pointer(), k)
   1477 		return
   1478 	}
   1479 	val.mustBeExported()
   1480 	val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
   1481 	var e unsafe.Pointer
   1482 	if val.flag&flagIndir != 0 {
   1483 		e = val.ptr
   1484 	} else {
   1485 		e = unsafe.Pointer(&val.ptr)
   1486 	}
   1487 	mapassign(v.typ, v.pointer(), k, e)
   1488 }
   1489 
   1490 // SetUint sets v's underlying value to x.
   1491 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
   1492 func (v Value) SetUint(x uint64) {
   1493 	v.mustBeAssignable()
   1494 	switch k := v.kind(); k {
   1495 	default:
   1496 		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
   1497 	case Uint:
   1498 		*(*uint)(v.ptr) = uint(x)
   1499 	case Uint8:
   1500 		*(*uint8)(v.ptr) = uint8(x)
   1501 	case Uint16:
   1502 		*(*uint16)(v.ptr) = uint16(x)
   1503 	case Uint32:
   1504 		*(*uint32)(v.ptr) = uint32(x)
   1505 	case Uint64:
   1506 		*(*uint64)(v.ptr) = x
   1507 	case Uintptr:
   1508 		*(*uintptr)(v.ptr) = uintptr(x)
   1509 	}
   1510 }
   1511 
   1512 // SetPointer sets the unsafe.Pointer value v to x.
   1513 // It panics if v's Kind is not UnsafePointer.
   1514 func (v Value) SetPointer(x unsafe.Pointer) {
   1515 	v.mustBeAssignable()
   1516 	v.mustBe(UnsafePointer)
   1517 	*(*unsafe.Pointer)(v.ptr) = x
   1518 }
   1519 
   1520 // SetString sets v's underlying value to x.
   1521 // It panics if v's Kind is not String or if CanSet() is false.
   1522 func (v Value) SetString(x string) {
   1523 	v.mustBeAssignable()
   1524 	v.mustBe(String)
   1525 	*(*string)(v.ptr) = x
   1526 }
   1527 
   1528 // Slice returns v[i:j].
   1529 // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
   1530 // or if the indexes are out of bounds.
   1531 func (v Value) Slice(i, j int) Value {
   1532 	var (
   1533 		cap  int
   1534 		typ  *sliceType
   1535 		base unsafe.Pointer
   1536 	)
   1537 	switch kind := v.kind(); kind {
   1538 	default:
   1539 		panic(&ValueError{"reflect.Value.Slice", v.kind()})
   1540 
   1541 	case Array:
   1542 		if v.flag&flagAddr == 0 {
   1543 			panic("reflect.Value.Slice: slice of unaddressable array")
   1544 		}
   1545 		tt := (*arrayType)(unsafe.Pointer(v.typ))
   1546 		cap = int(tt.len)
   1547 		typ = (*sliceType)(unsafe.Pointer(tt.slice))
   1548 		base = v.ptr
   1549 
   1550 	case Slice:
   1551 		typ = (*sliceType)(unsafe.Pointer(v.typ))
   1552 		s := (*sliceHeader)(v.ptr)
   1553 		base = s.Data
   1554 		cap = s.Cap
   1555 
   1556 	case String:
   1557 		s := (*stringHeader)(v.ptr)
   1558 		if i < 0 || j < i || j > s.Len {
   1559 			panic("reflect.Value.Slice: string slice index out of bounds")
   1560 		}
   1561 		t := stringHeader{arrayAt(s.Data, i, 1), j - i}
   1562 		return Value{v.typ, unsafe.Pointer(&t), v.flag}
   1563 	}
   1564 
   1565 	if i < 0 || j < i || j > cap {
   1566 		panic("reflect.Value.Slice: slice index out of bounds")
   1567 	}
   1568 
   1569 	// Declare slice so that gc can see the base pointer in it.
   1570 	var x []unsafe.Pointer
   1571 
   1572 	// Reinterpret as *sliceHeader to edit.
   1573 	s := (*sliceHeader)(unsafe.Pointer(&x))
   1574 	s.Len = j - i
   1575 	s.Cap = cap - i
   1576 	if cap-i > 0 {
   1577 		s.Data = arrayAt(base, i, typ.elem.Size())
   1578 	} else {
   1579 		// do not advance pointer, to avoid pointing beyond end of slice
   1580 		s.Data = base
   1581 	}
   1582 
   1583 	fl := v.flag&flagRO | flagIndir | flag(Slice)
   1584 	return Value{typ.common(), unsafe.Pointer(&x), fl}
   1585 }
   1586 
   1587 // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
   1588 // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
   1589 // or if the indexes are out of bounds.
   1590 func (v Value) Slice3(i, j, k int) Value {
   1591 	var (
   1592 		cap  int
   1593 		typ  *sliceType
   1594 		base unsafe.Pointer
   1595 	)
   1596 	switch kind := v.kind(); kind {
   1597 	default:
   1598 		panic(&ValueError{"reflect.Value.Slice3", v.kind()})
   1599 
   1600 	case Array:
   1601 		if v.flag&flagAddr == 0 {
   1602 			panic("reflect.Value.Slice3: slice of unaddressable array")
   1603 		}
   1604 		tt := (*arrayType)(unsafe.Pointer(v.typ))
   1605 		cap = int(tt.len)
   1606 		typ = (*sliceType)(unsafe.Pointer(tt.slice))
   1607 		base = v.ptr
   1608 
   1609 	case Slice:
   1610 		typ = (*sliceType)(unsafe.Pointer(v.typ))
   1611 		s := (*sliceHeader)(v.ptr)
   1612 		base = s.Data
   1613 		cap = s.Cap
   1614 	}
   1615 
   1616 	if i < 0 || j < i || k < j || k > cap {
   1617 		panic("reflect.Value.Slice3: slice index out of bounds")
   1618 	}
   1619 
   1620 	// Declare slice so that the garbage collector
   1621 	// can see the base pointer in it.
   1622 	var x []unsafe.Pointer
   1623 
   1624 	// Reinterpret as *sliceHeader to edit.
   1625 	s := (*sliceHeader)(unsafe.Pointer(&x))
   1626 	s.Len = j - i
   1627 	s.Cap = k - i
   1628 	if k-i > 0 {
   1629 		s.Data = arrayAt(base, i, typ.elem.Size())
   1630 	} else {
   1631 		// do not advance pointer, to avoid pointing beyond end of slice
   1632 		s.Data = base
   1633 	}
   1634 
   1635 	fl := v.flag&flagRO | flagIndir | flag(Slice)
   1636 	return Value{typ.common(), unsafe.Pointer(&x), fl}
   1637 }
   1638 
   1639 // String returns the string v's underlying value, as a string.
   1640 // String is a special case because of Go's String method convention.
   1641 // Unlike the other getters, it does not panic if v's Kind is not String.
   1642 // Instead, it returns a string of the form "<T value>" where T is v's type.
   1643 // The fmt package treats Values specially. It does not call their String
   1644 // method implicitly but instead prints the concrete values they hold.
   1645 func (v Value) String() string {
   1646 	switch k := v.kind(); k {
   1647 	case Invalid:
   1648 		return "<invalid Value>"
   1649 	case String:
   1650 		return *(*string)(v.ptr)
   1651 	}
   1652 	// If you call String on a reflect.Value of other type, it's better to
   1653 	// print something than to panic. Useful in debugging.
   1654 	return "<" + v.Type().String() + " Value>"
   1655 }
   1656 
   1657 // TryRecv attempts to receive a value from the channel v but will not block.
   1658 // It panics if v's Kind is not Chan.
   1659 // If the receive delivers a value, x is the transferred value and ok is true.
   1660 // If the receive cannot finish without blocking, x is the zero Value and ok is false.
   1661 // If the channel is closed, x is the zero value for the channel's element type and ok is false.
   1662 func (v Value) TryRecv() (x Value, ok bool) {
   1663 	v.mustBe(Chan)
   1664 	v.mustBeExported()
   1665 	return v.recv(true)
   1666 }
   1667 
   1668 // TrySend attempts to send x on the channel v but will not block.
   1669 // It panics if v's Kind is not Chan.
   1670 // It reports whether the value was sent.
   1671 // As in Go, x's value must be assignable to the channel's element type.
   1672 func (v Value) TrySend(x Value) bool {
   1673 	v.mustBe(Chan)
   1674 	v.mustBeExported()
   1675 	return v.send(x, true)
   1676 }
   1677 
   1678 // Type returns v's type.
   1679 func (v Value) Type() Type {
   1680 	f := v.flag
   1681 	if f == 0 {
   1682 		panic(&ValueError{"reflect.Value.Type", Invalid})
   1683 	}
   1684 	if f&flagMethod == 0 {
   1685 		// Easy case
   1686 		return v.typ
   1687 	}
   1688 
   1689 	// Method value.
   1690 	// v.typ describes the receiver, not the method type.
   1691 	i := int(v.flag) >> flagMethodShift
   1692 	if v.typ.Kind() == Interface {
   1693 		// Method on interface.
   1694 		tt := (*interfaceType)(unsafe.Pointer(v.typ))
   1695 		if uint(i) >= uint(len(tt.methods)) {
   1696 			panic("reflect: internal error: invalid method index")
   1697 		}
   1698 		m := &tt.methods[i]
   1699 		return v.typ.typeOff(m.typ)
   1700 	}
   1701 	// Method on concrete type.
   1702 	ut := v.typ.uncommon()
   1703 	if ut == nil || uint(i) >= uint(ut.mcount) {
   1704 		panic("reflect: internal error: invalid method index")
   1705 	}
   1706 	m := ut.methods()[i]
   1707 	return v.typ.typeOff(m.mtyp)
   1708 }
   1709 
   1710 // Uint returns v's underlying value, as a uint64.
   1711 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
   1712 func (v Value) Uint() uint64 {
   1713 	k := v.kind()
   1714 	p := v.ptr
   1715 	switch k {
   1716 	case Uint:
   1717 		return uint64(*(*uint)(p))
   1718 	case Uint8:
   1719 		return uint64(*(*uint8)(p))
   1720 	case Uint16:
   1721 		return uint64(*(*uint16)(p))
   1722 	case Uint32:
   1723 		return uint64(*(*uint32)(p))
   1724 	case Uint64:
   1725 		return *(*uint64)(p)
   1726 	case Uintptr:
   1727 		return uint64(*(*uintptr)(p))
   1728 	}
   1729 	panic(&ValueError{"reflect.Value.Uint", v.kind()})
   1730 }
   1731 
   1732 // UnsafeAddr returns a pointer to v's data.
   1733 // It is for advanced clients that also import the "unsafe" package.
   1734 // It panics if v is not addressable.
   1735 func (v Value) UnsafeAddr() uintptr {
   1736 	// TODO: deprecate
   1737 	if v.typ == nil {
   1738 		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
   1739 	}
   1740 	if v.flag&flagAddr == 0 {
   1741 		panic("reflect.Value.UnsafeAddr of unaddressable value")
   1742 	}
   1743 	return uintptr(v.ptr)
   1744 }
   1745 
   1746 // StringHeader is the runtime representation of a string.
   1747 // It cannot be used safely or portably and its representation may
   1748 // change in a later release.
   1749 // Moreover, the Data field is not sufficient to guarantee the data
   1750 // it references will not be garbage collected, so programs must keep
   1751 // a separate, correctly typed pointer to the underlying data.
   1752 type StringHeader struct {
   1753 	Data uintptr
   1754 	Len  int
   1755 }
   1756 
   1757 // stringHeader is a safe version of StringHeader used within this package.
   1758 type stringHeader struct {
   1759 	Data unsafe.Pointer
   1760 	Len  int
   1761 }
   1762 
   1763 // SliceHeader is the runtime representation of a slice.
   1764 // It cannot be used safely or portably and its representation may
   1765 // change in a later release.
   1766 // Moreover, the Data field is not sufficient to guarantee the data
   1767 // it references will not be garbage collected, so programs must keep
   1768 // a separate, correctly typed pointer to the underlying data.
   1769 type SliceHeader struct {
   1770 	Data uintptr
   1771 	Len  int
   1772 	Cap  int
   1773 }
   1774 
   1775 // sliceHeader is a safe version of SliceHeader used within this package.
   1776 type sliceHeader struct {
   1777 	Data unsafe.Pointer
   1778 	Len  int
   1779 	Cap  int
   1780 }
   1781 
   1782 func typesMustMatch(what string, t1, t2 Type) {
   1783 	if t1 != t2 {
   1784 		panic(what + ": " + t1.String() + " != " + t2.String())
   1785 	}
   1786 }
   1787 
   1788 // arrayAt returns the i-th element of p, a C-array whose elements are
   1789 // eltSize wide (in bytes).
   1790 func arrayAt(p unsafe.Pointer, i int, eltSize uintptr) unsafe.Pointer {
   1791 	return unsafe.Pointer(uintptr(p) + uintptr(i)*eltSize)
   1792 }
   1793 
   1794 // grow grows the slice s so that it can hold extra more values, allocating
   1795 // more capacity if needed. It also returns the old and new slice lengths.
   1796 func grow(s Value, extra int) (Value, int, int) {
   1797 	i0 := s.Len()
   1798 	i1 := i0 + extra
   1799 	if i1 < i0 {
   1800 		panic("reflect.Append: slice overflow")
   1801 	}
   1802 	m := s.Cap()
   1803 	if i1 <= m {
   1804 		return s.Slice(0, i1), i0, i1
   1805 	}
   1806 	if m == 0 {
   1807 		m = extra
   1808 	} else {
   1809 		for m < i1 {
   1810 			if i0 < 1024 {
   1811 				m += m
   1812 			} else {
   1813 				m += m / 4
   1814 			}
   1815 		}
   1816 	}
   1817 	t := MakeSlice(s.Type(), i1, m)
   1818 	Copy(t, s)
   1819 	return t, i0, i1
   1820 }
   1821 
   1822 // Append appends the values x to a slice s and returns the resulting slice.
   1823 // As in Go, each x's value must be assignable to the slice's element type.
   1824 func Append(s Value, x ...Value) Value {
   1825 	s.mustBe(Slice)
   1826 	s, i0, i1 := grow(s, len(x))
   1827 	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
   1828 		s.Index(i).Set(x[j])
   1829 	}
   1830 	return s
   1831 }
   1832 
   1833 // AppendSlice appends a slice t to a slice s and returns the resulting slice.
   1834 // The slices s and t must have the same element type.
   1835 func AppendSlice(s, t Value) Value {
   1836 	s.mustBe(Slice)
   1837 	t.mustBe(Slice)
   1838 	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
   1839 	s, i0, i1 := grow(s, t.Len())
   1840 	Copy(s.Slice(i0, i1), t)
   1841 	return s
   1842 }
   1843 
   1844 // Copy copies the contents of src into dst until either
   1845 // dst has been filled or src has been exhausted.
   1846 // It returns the number of elements copied.
   1847 // Dst and src each must have kind Slice or Array, and
   1848 // dst and src must have the same element type.
   1849 func Copy(dst, src Value) int {
   1850 	dk := dst.kind()
   1851 	if dk != Array && dk != Slice {
   1852 		panic(&ValueError{"reflect.Copy", dk})
   1853 	}
   1854 	if dk == Array {
   1855 		dst.mustBeAssignable()
   1856 	}
   1857 	dst.mustBeExported()
   1858 
   1859 	sk := src.kind()
   1860 	if sk != Array && sk != Slice {
   1861 		panic(&ValueError{"reflect.Copy", sk})
   1862 	}
   1863 	src.mustBeExported()
   1864 
   1865 	de := dst.typ.Elem()
   1866 	se := src.typ.Elem()
   1867 	typesMustMatch("reflect.Copy", de, se)
   1868 
   1869 	var ds, ss sliceHeader
   1870 	if dk == Array {
   1871 		ds.Data = dst.ptr
   1872 		ds.Len = dst.Len()
   1873 		ds.Cap = ds.Len
   1874 	} else {
   1875 		ds = *(*sliceHeader)(dst.ptr)
   1876 	}
   1877 	if sk == Array {
   1878 		ss.Data = src.ptr
   1879 		ss.Len = src.Len()
   1880 		ss.Cap = ss.Len
   1881 	} else {
   1882 		ss = *(*sliceHeader)(src.ptr)
   1883 	}
   1884 
   1885 	return typedslicecopy(de.common(), ds, ss)
   1886 }
   1887 
   1888 // A runtimeSelect is a single case passed to rselect.
   1889 // This must match ../runtime/select.go:/runtimeSelect
   1890 type runtimeSelect struct {
   1891 	dir SelectDir      // SelectSend, SelectRecv or SelectDefault
   1892 	typ *rtype         // channel type
   1893 	ch  unsafe.Pointer // channel
   1894 	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
   1895 }
   1896 
   1897 // rselect runs a select. It returns the index of the chosen case.
   1898 // If the case was a receive, val is filled in with the received value.
   1899 // The conventional OK bool indicates whether the receive corresponds
   1900 // to a sent value.
   1901 //go:noescape
   1902 func rselect([]runtimeSelect) (chosen int, recvOK bool)
   1903 
   1904 // A SelectDir describes the communication direction of a select case.
   1905 type SelectDir int
   1906 
   1907 // NOTE: These values must match ../runtime/select.go:/selectDir.
   1908 
   1909 const (
   1910 	_             SelectDir = iota
   1911 	SelectSend              // case Chan <- Send
   1912 	SelectRecv              // case <-Chan:
   1913 	SelectDefault           // default
   1914 )
   1915 
   1916 // A SelectCase describes a single case in a select operation.
   1917 // The kind of case depends on Dir, the communication direction.
   1918 //
   1919 // If Dir is SelectDefault, the case represents a default case.
   1920 // Chan and Send must be zero Values.
   1921 //
   1922 // If Dir is SelectSend, the case represents a send operation.
   1923 // Normally Chan's underlying value must be a channel, and Send's underlying value must be
   1924 // assignable to the channel's element type. As a special case, if Chan is a zero Value,
   1925 // then the case is ignored, and the field Send will also be ignored and may be either zero
   1926 // or non-zero.
   1927 //
   1928 // If Dir is SelectRecv, the case represents a receive operation.
   1929 // Normally Chan's underlying value must be a channel and Send must be a zero Value.
   1930 // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
   1931 // When a receive operation is selected, the received Value is returned by Select.
   1932 //
   1933 type SelectCase struct {
   1934 	Dir  SelectDir // direction of case
   1935 	Chan Value     // channel to use (for send or receive)
   1936 	Send Value     // value to send (for send)
   1937 }
   1938 
   1939 // Select executes a select operation described by the list of cases.
   1940 // Like the Go select statement, it blocks until at least one of the cases
   1941 // can proceed, makes a uniform pseudo-random choice,
   1942 // and then executes that case. It returns the index of the chosen case
   1943 // and, if that case was a receive operation, the value received and a
   1944 // boolean indicating whether the value corresponds to a send on the channel
   1945 // (as opposed to a zero value received because the channel is closed).
   1946 func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
   1947 	// NOTE: Do not trust that caller is not modifying cases data underfoot.
   1948 	// The range is safe because the caller cannot modify our copy of the len
   1949 	// and each iteration makes its own copy of the value c.
   1950 	runcases := make([]runtimeSelect, len(cases))
   1951 	haveDefault := false
   1952 	for i, c := range cases {
   1953 		rc := &runcases[i]
   1954 		rc.dir = c.Dir
   1955 		switch c.Dir {
   1956 		default:
   1957 			panic("reflect.Select: invalid Dir")
   1958 
   1959 		case SelectDefault: // default
   1960 			if haveDefault {
   1961 				panic("reflect.Select: multiple default cases")
   1962 			}
   1963 			haveDefault = true
   1964 			if c.Chan.IsValid() {
   1965 				panic("reflect.Select: default case has Chan value")
   1966 			}
   1967 			if c.Send.IsValid() {
   1968 				panic("reflect.Select: default case has Send value")
   1969 			}
   1970 
   1971 		case SelectSend:
   1972 			ch := c.Chan
   1973 			if !ch.IsValid() {
   1974 				break
   1975 			}
   1976 			ch.mustBe(Chan)
   1977 			ch.mustBeExported()
   1978 			tt := (*chanType)(unsafe.Pointer(ch.typ))
   1979 			if ChanDir(tt.dir)&SendDir == 0 {
   1980 				panic("reflect.Select: SendDir case using recv-only channel")
   1981 			}
   1982 			rc.ch = ch.pointer()
   1983 			rc.typ = &tt.rtype
   1984 			v := c.Send
   1985 			if !v.IsValid() {
   1986 				panic("reflect.Select: SendDir case missing Send value")
   1987 			}
   1988 			v.mustBeExported()
   1989 			v = v.assignTo("reflect.Select", tt.elem, nil)
   1990 			if v.flag&flagIndir != 0 {
   1991 				rc.val = v.ptr
   1992 			} else {
   1993 				rc.val = unsafe.Pointer(&v.ptr)
   1994 			}
   1995 
   1996 		case SelectRecv:
   1997 			if c.Send.IsValid() {
   1998 				panic("reflect.Select: RecvDir case has Send value")
   1999 			}
   2000 			ch := c.Chan
   2001 			if !ch.IsValid() {
   2002 				break
   2003 			}
   2004 			ch.mustBe(Chan)
   2005 			ch.mustBeExported()
   2006 			tt := (*chanType)(unsafe.Pointer(ch.typ))
   2007 			if ChanDir(tt.dir)&RecvDir == 0 {
   2008 				panic("reflect.Select: RecvDir case using send-only channel")
   2009 			}
   2010 			rc.ch = ch.pointer()
   2011 			rc.typ = &tt.rtype
   2012 			rc.val = unsafe_New(tt.elem)
   2013 		}
   2014 	}
   2015 
   2016 	chosen, recvOK = rselect(runcases)
   2017 	if runcases[chosen].dir == SelectRecv {
   2018 		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
   2019 		t := tt.elem
   2020 		p := runcases[chosen].val
   2021 		fl := flag(t.Kind())
   2022 		if ifaceIndir(t) {
   2023 			recv = Value{t, p, fl | flagIndir}
   2024 		} else {
   2025 			recv = Value{t, *(*unsafe.Pointer)(p), fl}
   2026 		}
   2027 	}
   2028 	return chosen, recv, recvOK
   2029 }
   2030 
   2031 /*
   2032  * constructors
   2033  */
   2034 
   2035 // implemented in package runtime
   2036 func unsafe_New(*rtype) unsafe.Pointer
   2037 func unsafe_NewArray(*rtype, int) unsafe.Pointer
   2038 
   2039 // MakeSlice creates a new zero-initialized slice value
   2040 // for the specified slice type, length, and capacity.
   2041 func MakeSlice(typ Type, len, cap int) Value {
   2042 	if typ.Kind() != Slice {
   2043 		panic("reflect.MakeSlice of non-slice type")
   2044 	}
   2045 	if len < 0 {
   2046 		panic("reflect.MakeSlice: negative len")
   2047 	}
   2048 	if cap < 0 {
   2049 		panic("reflect.MakeSlice: negative cap")
   2050 	}
   2051 	if len > cap {
   2052 		panic("reflect.MakeSlice: len > cap")
   2053 	}
   2054 
   2055 	s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
   2056 	return Value{typ.common(), unsafe.Pointer(&s), flagIndir | flag(Slice)}
   2057 }
   2058 
   2059 // MakeChan creates a new channel with the specified type and buffer size.
   2060 func MakeChan(typ Type, buffer int) Value {
   2061 	if typ.Kind() != Chan {
   2062 		panic("reflect.MakeChan of non-chan type")
   2063 	}
   2064 	if buffer < 0 {
   2065 		panic("reflect.MakeChan: negative buffer size")
   2066 	}
   2067 	if typ.ChanDir() != BothDir {
   2068 		panic("reflect.MakeChan: unidirectional channel type")
   2069 	}
   2070 	ch := makechan(typ.(*rtype), uint64(buffer))
   2071 	return Value{typ.common(), ch, flag(Chan)}
   2072 }
   2073 
   2074 // MakeMap creates a new map of the specified type.
   2075 func MakeMap(typ Type) Value {
   2076 	if typ.Kind() != Map {
   2077 		panic("reflect.MakeMap of non-map type")
   2078 	}
   2079 	m := makemap(typ.(*rtype))
   2080 	return Value{typ.common(), m, flag(Map)}
   2081 }
   2082 
   2083 // Indirect returns the value that v points to.
   2084 // If v is a nil pointer, Indirect returns a zero Value.
   2085 // If v is not a pointer, Indirect returns v.
   2086 func Indirect(v Value) Value {
   2087 	if v.Kind() != Ptr {
   2088 		return v
   2089 	}
   2090 	return v.Elem()
   2091 }
   2092 
   2093 // ValueOf returns a new Value initialized to the concrete value
   2094 // stored in the interface i. ValueOf(nil) returns the zero Value.
   2095 func ValueOf(i interface{}) Value {
   2096 	if i == nil {
   2097 		return Value{}
   2098 	}
   2099 
   2100 	// TODO: Maybe allow contents of a Value to live on the stack.
   2101 	// For now we make the contents always escape to the heap. It
   2102 	// makes life easier in a few places (see chanrecv/mapassign
   2103 	// comment below).
   2104 	escapes(i)
   2105 
   2106 	return unpackEface(i)
   2107 }
   2108 
   2109 // Zero returns a Value representing the zero value for the specified type.
   2110 // The result is different from the zero value of the Value struct,
   2111 // which represents no value at all.
   2112 // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
   2113 // The returned value is neither addressable nor settable.
   2114 func Zero(typ Type) Value {
   2115 	if typ == nil {
   2116 		panic("reflect: Zero(nil)")
   2117 	}
   2118 	t := typ.common()
   2119 	fl := flag(t.Kind())
   2120 	if ifaceIndir(t) {
   2121 		return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
   2122 	}
   2123 	return Value{t, nil, fl}
   2124 }
   2125 
   2126 // New returns a Value representing a pointer to a new zero value
   2127 // for the specified type. That is, the returned Value's Type is PtrTo(typ).
   2128 func New(typ Type) Value {
   2129 	if typ == nil {
   2130 		panic("reflect: New(nil)")
   2131 	}
   2132 	ptr := unsafe_New(typ.(*rtype))
   2133 	fl := flag(Ptr)
   2134 	return Value{typ.common().ptrTo(), ptr, fl}
   2135 }
   2136 
   2137 // NewAt returns a Value representing a pointer to a value of the
   2138 // specified type, using p as that pointer.
   2139 func NewAt(typ Type, p unsafe.Pointer) Value {
   2140 	fl := flag(Ptr)
   2141 	return Value{typ.common().ptrTo(), p, fl}
   2142 }
   2143 
   2144 // assignTo returns a value v that can be assigned directly to typ.
   2145 // It panics if v is not assignable to typ.
   2146 // For a conversion to an interface type, target is a suggested scratch space to use.
   2147 func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
   2148 	if v.flag&flagMethod != 0 {
   2149 		v = makeMethodValue(context, v)
   2150 	}
   2151 
   2152 	switch {
   2153 	case directlyAssignable(dst, v.typ):
   2154 		// Overwrite type so that they match.
   2155 		// Same memory layout, so no harm done.
   2156 		v.typ = dst
   2157 		fl := v.flag & (flagRO | flagAddr | flagIndir)
   2158 		fl |= flag(dst.Kind())
   2159 		return Value{dst, v.ptr, fl}
   2160 
   2161 	case implements(dst, v.typ):
   2162 		if target == nil {
   2163 			target = unsafe_New(dst)
   2164 		}
   2165 		x := valueInterface(v, false)
   2166 		if dst.NumMethod() == 0 {
   2167 			*(*interface{})(target) = x
   2168 		} else {
   2169 			ifaceE2I(dst, x, target)
   2170 		}
   2171 		return Value{dst, target, flagIndir | flag(Interface)}
   2172 	}
   2173 
   2174 	// Failed.
   2175 	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
   2176 }
   2177 
   2178 // Convert returns the value v converted to type t.
   2179 // If the usual Go conversion rules do not allow conversion
   2180 // of the value v to type t, Convert panics.
   2181 func (v Value) Convert(t Type) Value {
   2182 	if v.flag&flagMethod != 0 {
   2183 		v = makeMethodValue("Convert", v)
   2184 	}
   2185 	op := convertOp(t.common(), v.typ)
   2186 	if op == nil {
   2187 		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
   2188 	}
   2189 	return op(v, t)
   2190 }
   2191 
   2192 // convertOp returns the function to convert a value of type src
   2193 // to a value of type dst. If the conversion is illegal, convertOp returns nil.
   2194 func convertOp(dst, src *rtype) func(Value, Type) Value {
   2195 	switch src.Kind() {
   2196 	case Int, Int8, Int16, Int32, Int64:
   2197 		switch dst.Kind() {
   2198 		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   2199 			return cvtInt
   2200 		case Float32, Float64:
   2201 			return cvtIntFloat
   2202 		case String:
   2203 			return cvtIntString
   2204 		}
   2205 
   2206 	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   2207 		switch dst.Kind() {
   2208 		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   2209 			return cvtUint
   2210 		case Float32, Float64:
   2211 			return cvtUintFloat
   2212 		case String:
   2213 			return cvtUintString
   2214 		}
   2215 
   2216 	case Float32, Float64:
   2217 		switch dst.Kind() {
   2218 		case Int, Int8, Int16, Int32, Int64:
   2219 			return cvtFloatInt
   2220 		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
   2221 			return cvtFloatUint
   2222 		case Float32, Float64:
   2223 			return cvtFloat
   2224 		}
   2225 
   2226 	case Complex64, Complex128:
   2227 		switch dst.Kind() {
   2228 		case Complex64, Complex128:
   2229 			return cvtComplex
   2230 		}
   2231 
   2232 	case String:
   2233 		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
   2234 			switch dst.Elem().Kind() {
   2235 			case Uint8:
   2236 				return cvtStringBytes
   2237 			case Int32:
   2238 				return cvtStringRunes
   2239 			}
   2240 		}
   2241 
   2242 	case Slice:
   2243 		if dst.Kind() == String && src.Elem().PkgPath() == "" {
   2244 			switch src.Elem().Kind() {
   2245 			case Uint8:
   2246 				return cvtBytesString
   2247 			case Int32:
   2248 				return cvtRunesString
   2249 			}
   2250 		}
   2251 	}
   2252 
   2253 	// dst and src have same underlying type.
   2254 	if haveIdenticalUnderlyingType(dst, src, false) {
   2255 		return cvtDirect
   2256 	}
   2257 
   2258 	// dst and src are unnamed pointer types with same underlying base type.
   2259 	if dst.Kind() == Ptr && dst.Name() == "" &&
   2260 		src.Kind() == Ptr && src.Name() == "" &&
   2261 		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false) {
   2262 		return cvtDirect
   2263 	}
   2264 
   2265 	if implements(dst, src) {
   2266 		if src.Kind() == Interface {
   2267 			return cvtI2I
   2268 		}
   2269 		return cvtT2I
   2270 	}
   2271 
   2272 	return nil
   2273 }
   2274 
   2275 // makeInt returns a Value of type t equal to bits (possibly truncated),
   2276 // where t is a signed or unsigned int type.
   2277 func makeInt(f flag, bits uint64, t Type) Value {
   2278 	typ := t.common()
   2279 	ptr := unsafe_New(typ)
   2280 	switch typ.size {
   2281 	case 1:
   2282 		*(*uint8)(ptr) = uint8(bits)
   2283 	case 2:
   2284 		*(*uint16)(ptr) = uint16(bits)
   2285 	case 4:
   2286 		*(*uint32)(ptr) = uint32(bits)
   2287 	case 8:
   2288 		*(*uint64)(ptr) = bits
   2289 	}
   2290 	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
   2291 }
   2292 
   2293 // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
   2294 // where t is a float32 or float64 type.
   2295 func makeFloat(f flag, v float64, t Type) Value {
   2296 	typ := t.common()
   2297 	ptr := unsafe_New(typ)
   2298 	switch typ.size {
   2299 	case 4:
   2300 		*(*float32)(ptr) = float32(v)
   2301 	case 8:
   2302 		*(*float64)(ptr) = v
   2303 	}
   2304 	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
   2305 }
   2306 
   2307 // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
   2308 // where t is a complex64 or complex128 type.
   2309 func makeComplex(f flag, v complex128, t Type) Value {
   2310 	typ := t.common()
   2311 	ptr := unsafe_New(typ)
   2312 	switch typ.size {
   2313 	case 8:
   2314 		*(*complex64)(ptr) = complex64(v)
   2315 	case 16:
   2316 		*(*complex128)(ptr) = v
   2317 	}
   2318 	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
   2319 }
   2320 
   2321 func makeString(f flag, v string, t Type) Value {
   2322 	ret := New(t).Elem()
   2323 	ret.SetString(v)
   2324 	ret.flag = ret.flag&^flagAddr | f
   2325 	return ret
   2326 }
   2327 
   2328 func makeBytes(f flag, v []byte, t Type) Value {
   2329 	ret := New(t).Elem()
   2330 	ret.SetBytes(v)
   2331 	ret.flag = ret.flag&^flagAddr | f
   2332 	return ret
   2333 }
   2334 
   2335 func makeRunes(f flag, v []rune, t Type) Value {
   2336 	ret := New(t).Elem()
   2337 	ret.setRunes(v)
   2338 	ret.flag = ret.flag&^flagAddr | f
   2339 	return ret
   2340 }
   2341 
   2342 // These conversion functions are returned by convertOp
   2343 // for classes of conversions. For example, the first function, cvtInt,
   2344 // takes any value v of signed int type and returns the value converted
   2345 // to type t, where t is any signed or unsigned int type.
   2346 
   2347 // convertOp: intXX -> [u]intXX
   2348 func cvtInt(v Value, t Type) Value {
   2349 	return makeInt(v.flag&flagRO, uint64(v.Int()), t)
   2350 }
   2351 
   2352 // convertOp: uintXX -> [u]intXX
   2353 func cvtUint(v Value, t Type) Value {
   2354 	return makeInt(v.flag&flagRO, v.Uint(), t)
   2355 }
   2356 
   2357 // convertOp: floatXX -> intXX
   2358 func cvtFloatInt(v Value, t Type) Value {
   2359 	return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
   2360 }
   2361 
   2362 // convertOp: floatXX -> uintXX
   2363 func cvtFloatUint(v Value, t Type) Value {
   2364 	return makeInt(v.flag&flagRO, uint64(v.Float()), t)
   2365 }
   2366 
   2367 // convertOp: intXX -> floatXX
   2368 func cvtIntFloat(v Value, t Type) Value {
   2369 	return makeFloat(v.flag&flagRO, float64(v.Int()), t)
   2370 }
   2371 
   2372 // convertOp: uintXX -> floatXX
   2373 func cvtUintFloat(v Value, t Type) Value {
   2374 	return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
   2375 }
   2376 
   2377 // convertOp: floatXX -> floatXX
   2378 func cvtFloat(v Value, t Type) Value {
   2379 	return makeFloat(v.flag&flagRO, v.Float(), t)
   2380 }
   2381 
   2382 // convertOp: complexXX -> complexXX
   2383 func cvtComplex(v Value, t Type) Value {
   2384 	return makeComplex(v.flag&flagRO, v.Complex(), t)
   2385 }
   2386 
   2387 // convertOp: intXX -> string
   2388 func cvtIntString(v Value, t Type) Value {
   2389 	return makeString(v.flag&flagRO, string(v.Int()), t)
   2390 }
   2391 
   2392 // convertOp: uintXX -> string
   2393 func cvtUintString(v Value, t Type) Value {
   2394 	return makeString(v.flag&flagRO, string(v.Uint()), t)
   2395 }
   2396 
   2397 // convertOp: []byte -> string
   2398 func cvtBytesString(v Value, t Type) Value {
   2399 	return makeString(v.flag&flagRO, string(v.Bytes()), t)
   2400 }
   2401 
   2402 // convertOp: string -> []byte
   2403 func cvtStringBytes(v Value, t Type) Value {
   2404 	return makeBytes(v.flag&flagRO, []byte(v.String()), t)
   2405 }
   2406 
   2407 // convertOp: []rune -> string
   2408 func cvtRunesString(v Value, t Type) Value {
   2409 	return makeString(v.flag&flagRO, string(v.runes()), t)
   2410 }
   2411 
   2412 // convertOp: string -> []rune
   2413 func cvtStringRunes(v Value, t Type) Value {
   2414 	return makeRunes(v.flag&flagRO, []rune(v.String()), t)
   2415 }
   2416 
   2417 // convertOp: direct copy
   2418 func cvtDirect(v Value, typ Type) Value {
   2419 	f := v.flag
   2420 	t := typ.common()
   2421 	ptr := v.ptr
   2422 	if f&flagAddr != 0 {
   2423 		// indirect, mutable word - make a copy
   2424 		c := unsafe_New(t)
   2425 		typedmemmove(t, c, ptr)
   2426 		ptr = c
   2427 		f &^= flagAddr
   2428 	}
   2429 	return Value{t, ptr, v.flag&flagRO | f} // v.flag&flagRO|f == f?
   2430 }
   2431 
   2432 // convertOp: concrete -> interface
   2433 func cvtT2I(v Value, typ Type) Value {
   2434 	target := unsafe_New(typ.common())
   2435 	x := valueInterface(v, false)
   2436 	if typ.NumMethod() == 0 {
   2437 		*(*interface{})(target) = x
   2438 	} else {
   2439 		ifaceE2I(typ.(*rtype), x, target)
   2440 	}
   2441 	return Value{typ.common(), target, v.flag&flagRO | flagIndir | flag(Interface)}
   2442 }
   2443 
   2444 // convertOp: interface -> interface
   2445 func cvtI2I(v Value, typ Type) Value {
   2446 	if v.IsNil() {
   2447 		ret := Zero(typ)
   2448 		ret.flag |= v.flag & flagRO
   2449 		return ret
   2450 	}
   2451 	return cvtT2I(v.Elem(), typ)
   2452 }
   2453 
   2454 // implemented in ../runtime
   2455 func chancap(ch unsafe.Pointer) int
   2456 func chanclose(ch unsafe.Pointer)
   2457 func chanlen(ch unsafe.Pointer) int
   2458 
   2459 // Note: some of the noescape annotations below are technically a lie,
   2460 // but safe in the context of this package. Functions like chansend
   2461 // and mapassign don't escape the referent, but may escape anything
   2462 // the referent points to (they do shallow copies of the referent).
   2463 // It is safe in this package because the referent may only point
   2464 // to something a Value may point to, and that is always in the heap
   2465 // (due to the escapes() call in ValueOf).
   2466 
   2467 //go:noescape
   2468 func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
   2469 
   2470 //go:noescape
   2471 func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
   2472 
   2473 func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)
   2474 func makemap(t *rtype) (m unsafe.Pointer)
   2475 
   2476 //go:noescape
   2477 func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
   2478 
   2479 //go:noescape
   2480 func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
   2481 
   2482 //go:noescape
   2483 func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
   2484 
   2485 // m escapes into the return value, but the caller of mapiterinit
   2486 // doesn't let the return value escape.
   2487 //go:noescape
   2488 func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
   2489 
   2490 //go:noescape
   2491 func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
   2492 
   2493 //go:noescape
   2494 func mapiternext(it unsafe.Pointer)
   2495 
   2496 //go:noescape
   2497 func maplen(m unsafe.Pointer) int
   2498 
   2499 // call calls fn with a copy of the n argument bytes pointed at by arg.
   2500 // After fn returns, reflectcall copies n-retoffset result bytes
   2501 // back into arg+retoffset before returning. If copying result bytes back,
   2502 // the caller must pass the argument frame type as argtype, so that
   2503 // call can execute appropriate write barriers during the copy.
   2504 func call(argtype *rtype, fn, arg unsafe.Pointer, n uint32, retoffset uint32)
   2505 
   2506 func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
   2507 
   2508 // typedmemmove copies a value of type t to dst from src.
   2509 //go:noescape
   2510 func typedmemmove(t *rtype, dst, src unsafe.Pointer)
   2511 
   2512 // typedmemmovepartial is like typedmemmove but assumes that
   2513 // dst and src point off bytes into the value and only copies size bytes.
   2514 //go:noescape
   2515 func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
   2516 
   2517 // typedslicecopy copies a slice of elemType values from src to dst,
   2518 // returning the number of elements copied.
   2519 //go:noescape
   2520 func typedslicecopy(elemType *rtype, dst, src sliceHeader) int
   2521 
   2522 //go:noescape
   2523 func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
   2524 
   2525 // Dummy annotation marking that the value x escapes,
   2526 // for use in cases where the reflect code is so clever that
   2527 // the compiler cannot follow.
   2528 func escapes(x interface{}) {
   2529 	if dummy.b {
   2530 		dummy.x = x
   2531 	}
   2532 }
   2533 
   2534 var dummy struct {
   2535 	b bool
   2536 	x interface{}
   2537 }
   2538