Home | History | Annotate | Download | only in runtime
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Garbage collector: marking and scanning
      6 
      7 package runtime
      8 
      9 import (
     10 	"runtime/internal/atomic"
     11 	"runtime/internal/sys"
     12 	"unsafe"
     13 )
     14 
     15 const (
     16 	fixedRootFinalizers = iota
     17 	fixedRootFreeGStacks
     18 	fixedRootCount
     19 
     20 	// rootBlockBytes is the number of bytes to scan per data or
     21 	// BSS root.
     22 	rootBlockBytes = 256 << 10
     23 
     24 	// rootBlockSpans is the number of spans to scan per span
     25 	// root.
     26 	rootBlockSpans = 8 * 1024 // 64MB worth of spans
     27 
     28 	// maxObletBytes is the maximum bytes of an object to scan at
     29 	// once. Larger objects will be split up into "oblets" of at
     30 	// most this size. Since we can scan 12 MB/ms, 128 KB bounds
     31 	// scan preemption at ~100 s.
     32 	//
     33 	// This must be > _MaxSmallSize so that the object base is the
     34 	// span base.
     35 	maxObletBytes = 128 << 10
     36 
     37 	// idleCheckThreshold specifies how many units of work to do
     38 	// between run queue checks in an idle worker. Assuming a scan
     39 	// rate of 1 MB/ms, this is ~100 s. Lower values have higher
     40 	// overhead in the scan loop (the scheduler check may perform
     41 	// a syscall, so its overhead is nontrivial). Higher values
     42 	// make the system less responsive to incoming work.
     43 	idleCheckThreshold = 100000
     44 )
     45 
     46 // gcMarkRootPrepare queues root scanning jobs (stacks, globals, and
     47 // some miscellany) and initializes scanning-related state.
     48 //
     49 // The caller must have call gcCopySpans().
     50 //
     51 // The world must be stopped.
     52 //
     53 //go:nowritebarrier
     54 func gcMarkRootPrepare() {
     55 	if gcphase == _GCmarktermination {
     56 		work.nFlushCacheRoots = int(gomaxprocs)
     57 	} else {
     58 		work.nFlushCacheRoots = 0
     59 	}
     60 
     61 	// Compute how many data and BSS root blocks there are.
     62 	nBlocks := func(bytes uintptr) int {
     63 		return int((bytes + rootBlockBytes - 1) / rootBlockBytes)
     64 	}
     65 
     66 	work.nDataRoots = 0
     67 	work.nBSSRoots = 0
     68 
     69 	// Only scan globals once per cycle; preferably concurrently.
     70 	if !work.markrootDone {
     71 		for _, datap := range activeModules() {
     72 			nDataRoots := nBlocks(datap.edata - datap.data)
     73 			if nDataRoots > work.nDataRoots {
     74 				work.nDataRoots = nDataRoots
     75 			}
     76 		}
     77 
     78 		for _, datap := range activeModules() {
     79 			nBSSRoots := nBlocks(datap.ebss - datap.bss)
     80 			if nBSSRoots > work.nBSSRoots {
     81 				work.nBSSRoots = nBSSRoots
     82 			}
     83 		}
     84 	}
     85 
     86 	if !work.markrootDone {
     87 		// On the first markroot, we need to scan span roots.
     88 		// In concurrent GC, this happens during concurrent
     89 		// mark and we depend on addfinalizer to ensure the
     90 		// above invariants for objects that get finalizers
     91 		// after concurrent mark. In STW GC, this will happen
     92 		// during mark termination.
     93 		//
     94 		// We're only interested in scanning the in-use spans,
     95 		// which will all be swept at this point. More spans
     96 		// may be added to this list during concurrent GC, but
     97 		// we only care about spans that were allocated before
     98 		// this mark phase.
     99 		work.nSpanRoots = mheap_.sweepSpans[mheap_.sweepgen/2%2].numBlocks()
    100 
    101 		// On the first markroot, we need to scan all Gs. Gs
    102 		// may be created after this point, but it's okay that
    103 		// we ignore them because they begin life without any
    104 		// roots, so there's nothing to scan, and any roots
    105 		// they create during the concurrent phase will be
    106 		// scanned during mark termination. During mark
    107 		// termination, allglen isn't changing, so we'll scan
    108 		// all Gs.
    109 		work.nStackRoots = int(atomic.Loaduintptr(&allglen))
    110 		work.nRescanRoots = 0
    111 	} else {
    112 		// We've already scanned span roots and kept the scan
    113 		// up-to-date during concurrent mark.
    114 		work.nSpanRoots = 0
    115 
    116 		// On the second pass of markroot, we're just scanning
    117 		// dirty stacks. It's safe to access rescan since the
    118 		// world is stopped.
    119 		work.nStackRoots = 0
    120 		work.nRescanRoots = len(work.rescan.list)
    121 	}
    122 
    123 	work.markrootNext = 0
    124 	work.markrootJobs = uint32(fixedRootCount + work.nFlushCacheRoots + work.nDataRoots + work.nBSSRoots + work.nSpanRoots + work.nStackRoots + work.nRescanRoots)
    125 }
    126 
    127 // gcMarkRootCheck checks that all roots have been scanned. It is
    128 // purely for debugging.
    129 func gcMarkRootCheck() {
    130 	if work.markrootNext < work.markrootJobs {
    131 		print(work.markrootNext, " of ", work.markrootJobs, " markroot jobs done\n")
    132 		throw("left over markroot jobs")
    133 	}
    134 
    135 	lock(&allglock)
    136 	// Check that stacks have been scanned.
    137 	var gp *g
    138 	if gcphase == _GCmarktermination && debug.gcrescanstacks > 0 {
    139 		for i := 0; i < len(allgs); i++ {
    140 			gp = allgs[i]
    141 			if !(gp.gcscandone && gp.gcscanvalid) && readgstatus(gp) != _Gdead {
    142 				goto fail
    143 			}
    144 		}
    145 	} else {
    146 		for i := 0; i < work.nStackRoots; i++ {
    147 			gp = allgs[i]
    148 			if !gp.gcscandone {
    149 				goto fail
    150 			}
    151 		}
    152 	}
    153 	unlock(&allglock)
    154 	return
    155 
    156 fail:
    157 	println("gp", gp, "goid", gp.goid,
    158 		"status", readgstatus(gp),
    159 		"gcscandone", gp.gcscandone,
    160 		"gcscanvalid", gp.gcscanvalid)
    161 	unlock(&allglock) // Avoid self-deadlock with traceback.
    162 	throw("scan missed a g")
    163 }
    164 
    165 // ptrmask for an allocation containing a single pointer.
    166 var oneptrmask = [...]uint8{1}
    167 
    168 // markroot scans the i'th root.
    169 //
    170 // Preemption must be disabled (because this uses a gcWork).
    171 //
    172 // nowritebarrier is only advisory here.
    173 //
    174 //go:nowritebarrier
    175 func markroot(gcw *gcWork, i uint32) {
    176 	// TODO(austin): This is a bit ridiculous. Compute and store
    177 	// the bases in gcMarkRootPrepare instead of the counts.
    178 	baseFlushCache := uint32(fixedRootCount)
    179 	baseData := baseFlushCache + uint32(work.nFlushCacheRoots)
    180 	baseBSS := baseData + uint32(work.nDataRoots)
    181 	baseSpans := baseBSS + uint32(work.nBSSRoots)
    182 	baseStacks := baseSpans + uint32(work.nSpanRoots)
    183 	baseRescan := baseStacks + uint32(work.nStackRoots)
    184 	end := baseRescan + uint32(work.nRescanRoots)
    185 
    186 	// Note: if you add a case here, please also update heapdump.go:dumproots.
    187 	switch {
    188 	case baseFlushCache <= i && i < baseData:
    189 		flushmcache(int(i - baseFlushCache))
    190 
    191 	case baseData <= i && i < baseBSS:
    192 		for _, datap := range activeModules() {
    193 			markrootBlock(datap.data, datap.edata-datap.data, datap.gcdatamask.bytedata, gcw, int(i-baseData))
    194 		}
    195 
    196 	case baseBSS <= i && i < baseSpans:
    197 		for _, datap := range activeModules() {
    198 			markrootBlock(datap.bss, datap.ebss-datap.bss, datap.gcbssmask.bytedata, gcw, int(i-baseBSS))
    199 		}
    200 
    201 	case i == fixedRootFinalizers:
    202 		for fb := allfin; fb != nil; fb = fb.alllink {
    203 			cnt := uintptr(atomic.Load(&fb.cnt))
    204 			scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), cnt*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], gcw)
    205 		}
    206 
    207 	case i == fixedRootFreeGStacks:
    208 		// Only do this once per GC cycle; preferably
    209 		// concurrently.
    210 		if !work.markrootDone {
    211 			// Switch to the system stack so we can call
    212 			// stackfree.
    213 			systemstack(markrootFreeGStacks)
    214 		}
    215 
    216 	case baseSpans <= i && i < baseStacks:
    217 		// mark MSpan.specials
    218 		markrootSpans(gcw, int(i-baseSpans))
    219 
    220 	default:
    221 		// the rest is scanning goroutine stacks
    222 		var gp *g
    223 		if baseStacks <= i && i < baseRescan {
    224 			gp = allgs[i-baseStacks]
    225 		} else if baseRescan <= i && i < end {
    226 			gp = work.rescan.list[i-baseRescan].ptr()
    227 			if gp.gcRescan != int32(i-baseRescan) {
    228 				// Looking for issue #17099.
    229 				println("runtime: gp", gp, "found at rescan index", i-baseRescan, "but should be at", gp.gcRescan)
    230 				throw("bad g rescan index")
    231 			}
    232 		} else {
    233 			throw("markroot: bad index")
    234 		}
    235 
    236 		// remember when we've first observed the G blocked
    237 		// needed only to output in traceback
    238 		status := readgstatus(gp) // We are not in a scan state
    239 		if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 {
    240 			gp.waitsince = work.tstart
    241 		}
    242 
    243 		// scang must be done on the system stack in case
    244 		// we're trying to scan our own stack.
    245 		systemstack(func() {
    246 			// If this is a self-scan, put the user G in
    247 			// _Gwaiting to prevent self-deadlock. It may
    248 			// already be in _Gwaiting if this is a mark
    249 			// worker or we're in mark termination.
    250 			userG := getg().m.curg
    251 			selfScan := gp == userG && readgstatus(userG) == _Grunning
    252 			if selfScan {
    253 				casgstatus(userG, _Grunning, _Gwaiting)
    254 				userG.waitreason = "garbage collection scan"
    255 			}
    256 
    257 			// TODO: scang blocks until gp's stack has
    258 			// been scanned, which may take a while for
    259 			// running goroutines. Consider doing this in
    260 			// two phases where the first is non-blocking:
    261 			// we scan the stacks we can and ask running
    262 			// goroutines to scan themselves; and the
    263 			// second blocks.
    264 			scang(gp, gcw)
    265 
    266 			if selfScan {
    267 				casgstatus(userG, _Gwaiting, _Grunning)
    268 			}
    269 		})
    270 	}
    271 }
    272 
    273 // markrootBlock scans the shard'th shard of the block of memory [b0,
    274 // b0+n0), with the given pointer mask.
    275 //
    276 //go:nowritebarrier
    277 func markrootBlock(b0, n0 uintptr, ptrmask0 *uint8, gcw *gcWork, shard int) {
    278 	if rootBlockBytes%(8*sys.PtrSize) != 0 {
    279 		// This is necessary to pick byte offsets in ptrmask0.
    280 		throw("rootBlockBytes must be a multiple of 8*ptrSize")
    281 	}
    282 
    283 	b := b0 + uintptr(shard)*rootBlockBytes
    284 	if b >= b0+n0 {
    285 		return
    286 	}
    287 	ptrmask := (*uint8)(add(unsafe.Pointer(ptrmask0), uintptr(shard)*(rootBlockBytes/(8*sys.PtrSize))))
    288 	n := uintptr(rootBlockBytes)
    289 	if b+n > b0+n0 {
    290 		n = b0 + n0 - b
    291 	}
    292 
    293 	// Scan this shard.
    294 	scanblock(b, n, ptrmask, gcw)
    295 }
    296 
    297 // markrootFreeGStacks frees stacks of dead Gs.
    298 //
    299 // This does not free stacks of dead Gs cached on Ps, but having a few
    300 // cached stacks around isn't a problem.
    301 //
    302 //TODO go:nowritebarrier
    303 func markrootFreeGStacks() {
    304 	// Take list of dead Gs with stacks.
    305 	lock(&sched.gflock)
    306 	list := sched.gfreeStack
    307 	sched.gfreeStack = nil
    308 	unlock(&sched.gflock)
    309 	if list == nil {
    310 		return
    311 	}
    312 
    313 	// Free stacks.
    314 	tail := list
    315 	for gp := list; gp != nil; gp = gp.schedlink.ptr() {
    316 		shrinkstack(gp)
    317 		tail = gp
    318 	}
    319 
    320 	// Put Gs back on the free list.
    321 	lock(&sched.gflock)
    322 	tail.schedlink.set(sched.gfreeNoStack)
    323 	sched.gfreeNoStack = list
    324 	unlock(&sched.gflock)
    325 }
    326 
    327 // markrootSpans marks roots for one shard of work.spans.
    328 //
    329 //go:nowritebarrier
    330 func markrootSpans(gcw *gcWork, shard int) {
    331 	// Objects with finalizers have two GC-related invariants:
    332 	//
    333 	// 1) Everything reachable from the object must be marked.
    334 	// This ensures that when we pass the object to its finalizer,
    335 	// everything the finalizer can reach will be retained.
    336 	//
    337 	// 2) Finalizer specials (which are not in the garbage
    338 	// collected heap) are roots. In practice, this means the fn
    339 	// field must be scanned.
    340 	//
    341 	// TODO(austin): There are several ideas for making this more
    342 	// efficient in issue #11485.
    343 
    344 	if work.markrootDone {
    345 		throw("markrootSpans during second markroot")
    346 	}
    347 
    348 	sg := mheap_.sweepgen
    349 	spans := mheap_.sweepSpans[mheap_.sweepgen/2%2].block(shard)
    350 	// Note that work.spans may not include spans that were
    351 	// allocated between entering the scan phase and now. This is
    352 	// okay because any objects with finalizers in those spans
    353 	// must have been allocated and given finalizers after we
    354 	// entered the scan phase, so addfinalizer will have ensured
    355 	// the above invariants for them.
    356 	for _, s := range spans {
    357 		if s.state != mSpanInUse {
    358 			continue
    359 		}
    360 		if !useCheckmark && s.sweepgen != sg {
    361 			// sweepgen was updated (+2) during non-checkmark GC pass
    362 			print("sweep ", s.sweepgen, " ", sg, "\n")
    363 			throw("gc: unswept span")
    364 		}
    365 
    366 		// Speculatively check if there are any specials
    367 		// without acquiring the span lock. This may race with
    368 		// adding the first special to a span, but in that
    369 		// case addfinalizer will observe that the GC is
    370 		// active (which is globally synchronized) and ensure
    371 		// the above invariants. We may also ensure the
    372 		// invariants, but it's okay to scan an object twice.
    373 		if s.specials == nil {
    374 			continue
    375 		}
    376 
    377 		// Lock the specials to prevent a special from being
    378 		// removed from the list while we're traversing it.
    379 		lock(&s.speciallock)
    380 
    381 		for sp := s.specials; sp != nil; sp = sp.next {
    382 			if sp.kind != _KindSpecialFinalizer {
    383 				continue
    384 			}
    385 			// don't mark finalized object, but scan it so we
    386 			// retain everything it points to.
    387 			spf := (*specialfinalizer)(unsafe.Pointer(sp))
    388 			// A finalizer can be set for an inner byte of an object, find object beginning.
    389 			p := s.base() + uintptr(spf.special.offset)/s.elemsize*s.elemsize
    390 
    391 			// Mark everything that can be reached from
    392 			// the object (but *not* the object itself or
    393 			// we'll never collect it).
    394 			scanobject(p, gcw)
    395 
    396 			// The special itself is a root.
    397 			scanblock(uintptr(unsafe.Pointer(&spf.fn)), sys.PtrSize, &oneptrmask[0], gcw)
    398 		}
    399 
    400 		unlock(&s.speciallock)
    401 	}
    402 }
    403 
    404 // gcAssistAlloc performs GC work to make gp's assist debt positive.
    405 // gp must be the calling user gorountine.
    406 //
    407 // This must be called with preemption enabled.
    408 func gcAssistAlloc(gp *g) {
    409 	// Don't assist in non-preemptible contexts. These are
    410 	// generally fragile and won't allow the assist to block.
    411 	if getg() == gp.m.g0 {
    412 		return
    413 	}
    414 	if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" {
    415 		return
    416 	}
    417 
    418 retry:
    419 	// Compute the amount of scan work we need to do to make the
    420 	// balance positive. When the required amount of work is low,
    421 	// we over-assist to build up credit for future allocations
    422 	// and amortize the cost of assisting.
    423 	debtBytes := -gp.gcAssistBytes
    424 	scanWork := int64(gcController.assistWorkPerByte * float64(debtBytes))
    425 	if scanWork < gcOverAssistWork {
    426 		scanWork = gcOverAssistWork
    427 		debtBytes = int64(gcController.assistBytesPerWork * float64(scanWork))
    428 	}
    429 
    430 	// Steal as much credit as we can from the background GC's
    431 	// scan credit. This is racy and may drop the background
    432 	// credit below 0 if two mutators steal at the same time. This
    433 	// will just cause steals to fail until credit is accumulated
    434 	// again, so in the long run it doesn't really matter, but we
    435 	// do have to handle the negative credit case.
    436 	bgScanCredit := atomic.Loadint64(&gcController.bgScanCredit)
    437 	stolen := int64(0)
    438 	if bgScanCredit > 0 {
    439 		if bgScanCredit < scanWork {
    440 			stolen = bgScanCredit
    441 			gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(stolen))
    442 		} else {
    443 			stolen = scanWork
    444 			gp.gcAssistBytes += debtBytes
    445 		}
    446 		atomic.Xaddint64(&gcController.bgScanCredit, -stolen)
    447 
    448 		scanWork -= stolen
    449 
    450 		if scanWork == 0 {
    451 			// We were able to steal all of the credit we
    452 			// needed.
    453 			return
    454 		}
    455 	}
    456 
    457 	// Perform assist work
    458 	systemstack(func() {
    459 		gcAssistAlloc1(gp, scanWork)
    460 		// The user stack may have moved, so this can't touch
    461 		// anything on it until it returns from systemstack.
    462 	})
    463 
    464 	completed := gp.param != nil
    465 	gp.param = nil
    466 	if completed {
    467 		gcMarkDone()
    468 	}
    469 
    470 	if gp.gcAssistBytes < 0 {
    471 		// We were unable steal enough credit or perform
    472 		// enough work to pay off the assist debt. We need to
    473 		// do one of these before letting the mutator allocate
    474 		// more to prevent over-allocation.
    475 		//
    476 		// If this is because we were preempted, reschedule
    477 		// and try some more.
    478 		if gp.preempt {
    479 			Gosched()
    480 			goto retry
    481 		}
    482 
    483 		// Add this G to an assist queue and park. When the GC
    484 		// has more background credit, it will satisfy queued
    485 		// assists before flushing to the global credit pool.
    486 		//
    487 		// Note that this does *not* get woken up when more
    488 		// work is added to the work list. The theory is that
    489 		// there wasn't enough work to do anyway, so we might
    490 		// as well let background marking take care of the
    491 		// work that is available.
    492 		if !gcParkAssist() {
    493 			goto retry
    494 		}
    495 
    496 		// At this point either background GC has satisfied
    497 		// this G's assist debt, or the GC cycle is over.
    498 	}
    499 }
    500 
    501 // gcAssistAlloc1 is the part of gcAssistAlloc that runs on the system
    502 // stack. This is a separate function to make it easier to see that
    503 // we're not capturing anything from the user stack, since the user
    504 // stack may move while we're in this function.
    505 //
    506 // gcAssistAlloc1 indicates whether this assist completed the mark
    507 // phase by setting gp.param to non-nil. This can't be communicated on
    508 // the stack since it may move.
    509 //
    510 //go:systemstack
    511 func gcAssistAlloc1(gp *g, scanWork int64) {
    512 	// Clear the flag indicating that this assist completed the
    513 	// mark phase.
    514 	gp.param = nil
    515 
    516 	if atomic.Load(&gcBlackenEnabled) == 0 {
    517 		// The gcBlackenEnabled check in malloc races with the
    518 		// store that clears it but an atomic check in every malloc
    519 		// would be a performance hit.
    520 		// Instead we recheck it here on the non-preemptable system
    521 		// stack to determine if we should preform an assist.
    522 
    523 		// GC is done, so ignore any remaining debt.
    524 		gp.gcAssistBytes = 0
    525 		return
    526 	}
    527 	// Track time spent in this assist. Since we're on the
    528 	// system stack, this is non-preemptible, so we can
    529 	// just measure start and end time.
    530 	startTime := nanotime()
    531 
    532 	decnwait := atomic.Xadd(&work.nwait, -1)
    533 	if decnwait == work.nproc {
    534 		println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc)
    535 		throw("nwait > work.nprocs")
    536 	}
    537 
    538 	// gcDrainN requires the caller to be preemptible.
    539 	casgstatus(gp, _Grunning, _Gwaiting)
    540 	gp.waitreason = "GC assist marking"
    541 
    542 	// drain own cached work first in the hopes that it
    543 	// will be more cache friendly.
    544 	gcw := &getg().m.p.ptr().gcw
    545 	workDone := gcDrainN(gcw, scanWork)
    546 	// If we are near the end of the mark phase
    547 	// dispose of the gcw.
    548 	if gcBlackenPromptly {
    549 		gcw.dispose()
    550 	}
    551 
    552 	casgstatus(gp, _Gwaiting, _Grunning)
    553 
    554 	// Record that we did this much scan work.
    555 	//
    556 	// Back out the number of bytes of assist credit that
    557 	// this scan work counts for. The "1+" is a poor man's
    558 	// round-up, to ensure this adds credit even if
    559 	// assistBytesPerWork is very low.
    560 	gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(workDone))
    561 
    562 	// If this is the last worker and we ran out of work,
    563 	// signal a completion point.
    564 	incnwait := atomic.Xadd(&work.nwait, +1)
    565 	if incnwait > work.nproc {
    566 		println("runtime: work.nwait=", incnwait,
    567 			"work.nproc=", work.nproc,
    568 			"gcBlackenPromptly=", gcBlackenPromptly)
    569 		throw("work.nwait > work.nproc")
    570 	}
    571 
    572 	if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
    573 		// This has reached a background completion point. Set
    574 		// gp.param to a non-nil value to indicate this. It
    575 		// doesn't matter what we set it to (it just has to be
    576 		// a valid pointer).
    577 		gp.param = unsafe.Pointer(gp)
    578 	}
    579 	duration := nanotime() - startTime
    580 	_p_ := gp.m.p.ptr()
    581 	_p_.gcAssistTime += duration
    582 	if _p_.gcAssistTime > gcAssistTimeSlack {
    583 		atomic.Xaddint64(&gcController.assistTime, _p_.gcAssistTime)
    584 		_p_.gcAssistTime = 0
    585 	}
    586 }
    587 
    588 // gcWakeAllAssists wakes all currently blocked assists. This is used
    589 // at the end of a GC cycle. gcBlackenEnabled must be false to prevent
    590 // new assists from going to sleep after this point.
    591 func gcWakeAllAssists() {
    592 	lock(&work.assistQueue.lock)
    593 	injectglist(work.assistQueue.head.ptr())
    594 	work.assistQueue.head.set(nil)
    595 	work.assistQueue.tail.set(nil)
    596 	unlock(&work.assistQueue.lock)
    597 }
    598 
    599 // gcParkAssist puts the current goroutine on the assist queue and parks.
    600 //
    601 // gcParkAssist returns whether the assist is now satisfied. If it
    602 // returns false, the caller must retry the assist.
    603 //
    604 //go:nowritebarrier
    605 func gcParkAssist() bool {
    606 	lock(&work.assistQueue.lock)
    607 	// If the GC cycle finished while we were getting the lock,
    608 	// exit the assist. The cycle can't finish while we hold the
    609 	// lock.
    610 	if atomic.Load(&gcBlackenEnabled) == 0 {
    611 		unlock(&work.assistQueue.lock)
    612 		return true
    613 	}
    614 
    615 	gp := getg()
    616 	oldHead, oldTail := work.assistQueue.head, work.assistQueue.tail
    617 	if oldHead == 0 {
    618 		work.assistQueue.head.set(gp)
    619 	} else {
    620 		oldTail.ptr().schedlink.set(gp)
    621 	}
    622 	work.assistQueue.tail.set(gp)
    623 	gp.schedlink.set(nil)
    624 
    625 	// Recheck for background credit now that this G is in
    626 	// the queue, but can still back out. This avoids a
    627 	// race in case background marking has flushed more
    628 	// credit since we checked above.
    629 	if atomic.Loadint64(&gcController.bgScanCredit) > 0 {
    630 		work.assistQueue.head = oldHead
    631 		work.assistQueue.tail = oldTail
    632 		if oldTail != 0 {
    633 			oldTail.ptr().schedlink.set(nil)
    634 		}
    635 		unlock(&work.assistQueue.lock)
    636 		return false
    637 	}
    638 	// Park.
    639 	goparkunlock(&work.assistQueue.lock, "GC assist wait", traceEvGoBlockGC, 2)
    640 	return true
    641 }
    642 
    643 // gcFlushBgCredit flushes scanWork units of background scan work
    644 // credit. This first satisfies blocked assists on the
    645 // work.assistQueue and then flushes any remaining credit to
    646 // gcController.bgScanCredit.
    647 //
    648 // Write barriers are disallowed because this is used by gcDrain after
    649 // it has ensured that all work is drained and this must preserve that
    650 // condition.
    651 //
    652 //go:nowritebarrierrec
    653 func gcFlushBgCredit(scanWork int64) {
    654 	if work.assistQueue.head == 0 {
    655 		// Fast path; there are no blocked assists. There's a
    656 		// small window here where an assist may add itself to
    657 		// the blocked queue and park. If that happens, we'll
    658 		// just get it on the next flush.
    659 		atomic.Xaddint64(&gcController.bgScanCredit, scanWork)
    660 		return
    661 	}
    662 
    663 	scanBytes := int64(float64(scanWork) * gcController.assistBytesPerWork)
    664 
    665 	lock(&work.assistQueue.lock)
    666 	gp := work.assistQueue.head.ptr()
    667 	for gp != nil && scanBytes > 0 {
    668 		// Note that gp.gcAssistBytes is negative because gp
    669 		// is in debt. Think carefully about the signs below.
    670 		if scanBytes+gp.gcAssistBytes >= 0 {
    671 			// Satisfy this entire assist debt.
    672 			scanBytes += gp.gcAssistBytes
    673 			gp.gcAssistBytes = 0
    674 			xgp := gp
    675 			gp = gp.schedlink.ptr()
    676 			// It's important that we *not* put xgp in
    677 			// runnext. Otherwise, it's possible for user
    678 			// code to exploit the GC worker's high
    679 			// scheduler priority to get itself always run
    680 			// before other goroutines and always in the
    681 			// fresh quantum started by GC.
    682 			ready(xgp, 0, false)
    683 		} else {
    684 			// Partially satisfy this assist.
    685 			gp.gcAssistBytes += scanBytes
    686 			scanBytes = 0
    687 			// As a heuristic, we move this assist to the
    688 			// back of the queue so that large assists
    689 			// can't clog up the assist queue and
    690 			// substantially delay small assists.
    691 			xgp := gp
    692 			gp = gp.schedlink.ptr()
    693 			if gp == nil {
    694 				// gp is the only assist in the queue.
    695 				gp = xgp
    696 			} else {
    697 				xgp.schedlink = 0
    698 				work.assistQueue.tail.ptr().schedlink.set(xgp)
    699 				work.assistQueue.tail.set(xgp)
    700 			}
    701 			break
    702 		}
    703 	}
    704 	work.assistQueue.head.set(gp)
    705 	if gp == nil {
    706 		work.assistQueue.tail.set(nil)
    707 	}
    708 
    709 	if scanBytes > 0 {
    710 		// Convert from scan bytes back to work.
    711 		scanWork = int64(float64(scanBytes) * gcController.assistWorkPerByte)
    712 		atomic.Xaddint64(&gcController.bgScanCredit, scanWork)
    713 	}
    714 	unlock(&work.assistQueue.lock)
    715 }
    716 
    717 // scanstack scans gp's stack, greying all pointers found on the stack.
    718 //
    719 // During mark phase, it also installs stack barriers while traversing
    720 // gp's stack. During mark termination, it stops scanning when it
    721 // reaches an unhit stack barrier.
    722 //
    723 // scanstack is marked go:systemstack because it must not be preempted
    724 // while using a workbuf.
    725 //
    726 //go:nowritebarrier
    727 //go:systemstack
    728 func scanstack(gp *g, gcw *gcWork) {
    729 	if gp.gcscanvalid {
    730 		return
    731 	}
    732 
    733 	if readgstatus(gp)&_Gscan == 0 {
    734 		print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n")
    735 		throw("scanstack - bad status")
    736 	}
    737 
    738 	switch readgstatus(gp) &^ _Gscan {
    739 	default:
    740 		print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
    741 		throw("mark - bad status")
    742 	case _Gdead:
    743 		return
    744 	case _Grunning:
    745 		print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
    746 		throw("scanstack: goroutine not stopped")
    747 	case _Grunnable, _Gsyscall, _Gwaiting:
    748 		// ok
    749 	}
    750 
    751 	if gp == getg() {
    752 		throw("can't scan our own stack")
    753 	}
    754 	mp := gp.m
    755 	if mp != nil && mp.helpgc != 0 {
    756 		throw("can't scan gchelper stack")
    757 	}
    758 
    759 	// Shrink the stack if not much of it is being used. During
    760 	// concurrent GC, we can do this during concurrent mark.
    761 	if !work.markrootDone {
    762 		shrinkstack(gp)
    763 	}
    764 
    765 	// Prepare for stack barrier insertion/removal.
    766 	var sp, barrierOffset, nextBarrier uintptr
    767 	if gp.syscallsp != 0 {
    768 		sp = gp.syscallsp
    769 	} else {
    770 		sp = gp.sched.sp
    771 	}
    772 	gcLockStackBarriers(gp) // Not necessary during mark term, but harmless.
    773 	switch gcphase {
    774 	case _GCmark:
    775 		// Install stack barriers during stack scan.
    776 		barrierOffset = uintptr(firstStackBarrierOffset)
    777 		nextBarrier = sp + barrierOffset
    778 
    779 		if debug.gcstackbarrieroff > 0 {
    780 			nextBarrier = ^uintptr(0)
    781 		}
    782 
    783 		// Remove any existing stack barriers before we
    784 		// install new ones.
    785 		gcRemoveStackBarriers(gp)
    786 
    787 	case _GCmarktermination:
    788 		if !work.markrootDone {
    789 			// This is a STW GC. There may be stale stack
    790 			// barriers from an earlier cycle since we
    791 			// never passed through mark phase.
    792 			gcRemoveStackBarriers(gp)
    793 		}
    794 
    795 		if int(gp.stkbarPos) == len(gp.stkbar) {
    796 			// gp hit all of the stack barriers (or there
    797 			// were none). Re-scan the whole stack.
    798 			nextBarrier = ^uintptr(0)
    799 		} else {
    800 			// Only re-scan up to the lowest un-hit
    801 			// barrier. Any frames above this have not
    802 			// executed since the concurrent scan of gp and
    803 			// any writes through up-pointers to above
    804 			// this barrier had write barriers.
    805 			nextBarrier = gp.stkbar[gp.stkbarPos].savedLRPtr
    806 			if debugStackBarrier {
    807 				print("rescan below ", hex(nextBarrier), " in [", hex(sp), ",", hex(gp.stack.hi), ") goid=", gp.goid, "\n")
    808 			}
    809 		}
    810 
    811 	default:
    812 		throw("scanstack in wrong phase")
    813 	}
    814 
    815 	// Scan the stack.
    816 	var cache pcvalueCache
    817 	n := 0
    818 	scanframe := func(frame *stkframe, unused unsafe.Pointer) bool {
    819 		scanframeworker(frame, &cache, gcw)
    820 
    821 		if frame.fp > nextBarrier {
    822 			// We skip installing a barrier on bottom-most
    823 			// frame because on LR machines this LR is not
    824 			// on the stack.
    825 			if gcphase == _GCmark && n != 0 {
    826 				if gcInstallStackBarrier(gp, frame) {
    827 					barrierOffset *= 2
    828 					nextBarrier = sp + barrierOffset
    829 				}
    830 			} else if gcphase == _GCmarktermination {
    831 				// We just scanned a frame containing
    832 				// a return to a stack barrier. Since
    833 				// this frame never returned, we can
    834 				// stop scanning.
    835 				return false
    836 			}
    837 		}
    838 		n++
    839 
    840 		return true
    841 	}
    842 	gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0)
    843 	tracebackdefers(gp, scanframe, nil)
    844 	gcUnlockStackBarriers(gp)
    845 	if gcphase == _GCmark {
    846 		// gp may have added itself to the rescan list between
    847 		// when GC started and now. It's clean now, so remove
    848 		// it. This isn't safe during mark termination because
    849 		// mark termination is consuming this list, but it's
    850 		// also not necessary.
    851 		dequeueRescan(gp)
    852 	}
    853 	gp.gcscanvalid = true
    854 }
    855 
    856 // Scan a stack frame: local variables and function arguments/results.
    857 //go:nowritebarrier
    858 func scanframeworker(frame *stkframe, cache *pcvalueCache, gcw *gcWork) {
    859 
    860 	f := frame.fn
    861 	targetpc := frame.continpc
    862 	if targetpc == 0 {
    863 		// Frame is dead.
    864 		return
    865 	}
    866 	if _DebugGC > 1 {
    867 		print("scanframe ", funcname(f), "\n")
    868 	}
    869 	if targetpc != f.entry {
    870 		targetpc--
    871 	}
    872 	pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, cache)
    873 	if pcdata == -1 {
    874 		// We do not have a valid pcdata value but there might be a
    875 		// stackmap for this function. It is likely that we are looking
    876 		// at the function prologue, assume so and hope for the best.
    877 		pcdata = 0
    878 	}
    879 
    880 	// Scan local variables if stack frame has been allocated.
    881 	size := frame.varp - frame.sp
    882 	var minsize uintptr
    883 	switch sys.ArchFamily {
    884 	case sys.ARM64:
    885 		minsize = sys.SpAlign
    886 	default:
    887 		minsize = sys.MinFrameSize
    888 	}
    889 	if size > minsize {
    890 		stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
    891 		if stkmap == nil || stkmap.n <= 0 {
    892 			print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
    893 			throw("missing stackmap")
    894 		}
    895 
    896 		// Locals bitmap information, scan just the pointers in locals.
    897 		if pcdata < 0 || pcdata >= stkmap.n {
    898 			// don't know where we are
    899 			print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
    900 			throw("scanframe: bad symbol table")
    901 		}
    902 		bv := stackmapdata(stkmap, pcdata)
    903 		size = uintptr(bv.n) * sys.PtrSize
    904 		scanblock(frame.varp-size, size, bv.bytedata, gcw)
    905 	}
    906 
    907 	// Scan arguments.
    908 	if frame.arglen > 0 {
    909 		var bv bitvector
    910 		if frame.argmap != nil {
    911 			bv = *frame.argmap
    912 		} else {
    913 			stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
    914 			if stkmap == nil || stkmap.n <= 0 {
    915 				print("runtime: frame ", funcname(f), " untyped args ", hex(frame.argp), "+", hex(frame.arglen), "\n")
    916 				throw("missing stackmap")
    917 			}
    918 			if pcdata < 0 || pcdata >= stkmap.n {
    919 				// don't know where we are
    920 				print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
    921 				throw("scanframe: bad symbol table")
    922 			}
    923 			bv = stackmapdata(stkmap, pcdata)
    924 		}
    925 		scanblock(frame.argp, uintptr(bv.n)*sys.PtrSize, bv.bytedata, gcw)
    926 	}
    927 }
    928 
    929 // queueRescan adds gp to the stack rescan list and clears
    930 // gp.gcscanvalid. The caller must own gp and ensure that gp isn't
    931 // already on the rescan list.
    932 func queueRescan(gp *g) {
    933 	if debug.gcrescanstacks == 0 {
    934 		// Clear gcscanvalid to keep assertions happy.
    935 		//
    936 		// TODO: Remove gcscanvalid entirely when we remove
    937 		// stack rescanning.
    938 		gp.gcscanvalid = false
    939 		return
    940 	}
    941 
    942 	if gcphase == _GCoff {
    943 		gp.gcscanvalid = false
    944 		return
    945 	}
    946 	if gp.gcRescan != -1 {
    947 		throw("g already on rescan list")
    948 	}
    949 
    950 	lock(&work.rescan.lock)
    951 	gp.gcscanvalid = false
    952 
    953 	// Recheck gcphase under the lock in case there was a phase change.
    954 	if gcphase == _GCoff {
    955 		unlock(&work.rescan.lock)
    956 		return
    957 	}
    958 	if len(work.rescan.list) == cap(work.rescan.list) {
    959 		throw("rescan list overflow")
    960 	}
    961 	n := len(work.rescan.list)
    962 	gp.gcRescan = int32(n)
    963 	work.rescan.list = work.rescan.list[:n+1]
    964 	work.rescan.list[n].set(gp)
    965 	unlock(&work.rescan.lock)
    966 }
    967 
    968 // dequeueRescan removes gp from the stack rescan list, if gp is on
    969 // the rescan list. The caller must own gp.
    970 func dequeueRescan(gp *g) {
    971 	if debug.gcrescanstacks == 0 {
    972 		return
    973 	}
    974 
    975 	if gp.gcRescan == -1 {
    976 		return
    977 	}
    978 	if gcphase == _GCoff {
    979 		gp.gcRescan = -1
    980 		return
    981 	}
    982 
    983 	lock(&work.rescan.lock)
    984 	if work.rescan.list[gp.gcRescan].ptr() != gp {
    985 		throw("bad dequeueRescan")
    986 	}
    987 	// Careful: gp may itself be the last G on the list.
    988 	last := work.rescan.list[len(work.rescan.list)-1]
    989 	work.rescan.list[gp.gcRescan] = last
    990 	last.ptr().gcRescan = gp.gcRescan
    991 	gp.gcRescan = -1
    992 	work.rescan.list = work.rescan.list[:len(work.rescan.list)-1]
    993 	unlock(&work.rescan.lock)
    994 }
    995 
    996 type gcDrainFlags int
    997 
    998 const (
    999 	gcDrainUntilPreempt gcDrainFlags = 1 << iota
   1000 	gcDrainNoBlock
   1001 	gcDrainFlushBgCredit
   1002 	gcDrainIdle
   1003 
   1004 	// gcDrainBlock means neither gcDrainUntilPreempt or
   1005 	// gcDrainNoBlock. It is the default, but callers should use
   1006 	// the constant for documentation purposes.
   1007 	gcDrainBlock gcDrainFlags = 0
   1008 )
   1009 
   1010 // gcDrain scans roots and objects in work buffers, blackening grey
   1011 // objects until all roots and work buffers have been drained.
   1012 //
   1013 // If flags&gcDrainUntilPreempt != 0, gcDrain returns when g.preempt
   1014 // is set. This implies gcDrainNoBlock.
   1015 //
   1016 // If flags&gcDrainIdle != 0, gcDrain returns when there is other work
   1017 // to do. This implies gcDrainNoBlock.
   1018 //
   1019 // If flags&gcDrainNoBlock != 0, gcDrain returns as soon as it is
   1020 // unable to get more work. Otherwise, it will block until all
   1021 // blocking calls are blocked in gcDrain.
   1022 //
   1023 // If flags&gcDrainFlushBgCredit != 0, gcDrain flushes scan work
   1024 // credit to gcController.bgScanCredit every gcCreditSlack units of
   1025 // scan work.
   1026 //
   1027 //go:nowritebarrier
   1028 func gcDrain(gcw *gcWork, flags gcDrainFlags) {
   1029 	if !writeBarrier.needed {
   1030 		throw("gcDrain phase incorrect")
   1031 	}
   1032 
   1033 	gp := getg().m.curg
   1034 	preemptible := flags&gcDrainUntilPreempt != 0
   1035 	blocking := flags&(gcDrainUntilPreempt|gcDrainIdle|gcDrainNoBlock) == 0
   1036 	flushBgCredit := flags&gcDrainFlushBgCredit != 0
   1037 	idle := flags&gcDrainIdle != 0
   1038 
   1039 	initScanWork := gcw.scanWork
   1040 	// idleCheck is the scan work at which to perform the next
   1041 	// idle check with the scheduler.
   1042 	idleCheck := initScanWork + idleCheckThreshold
   1043 
   1044 	// Drain root marking jobs.
   1045 	if work.markrootNext < work.markrootJobs {
   1046 		for !(preemptible && gp.preempt) {
   1047 			job := atomic.Xadd(&work.markrootNext, +1) - 1
   1048 			if job >= work.markrootJobs {
   1049 				break
   1050 			}
   1051 			markroot(gcw, job)
   1052 			if idle && pollWork() {
   1053 				goto done
   1054 			}
   1055 		}
   1056 	}
   1057 
   1058 	// Drain heap marking jobs.
   1059 	for !(preemptible && gp.preempt) {
   1060 		// Try to keep work available on the global queue. We used to
   1061 		// check if there were waiting workers, but it's better to
   1062 		// just keep work available than to make workers wait. In the
   1063 		// worst case, we'll do O(log(_WorkbufSize)) unnecessary
   1064 		// balances.
   1065 		if work.full == 0 {
   1066 			gcw.balance()
   1067 		}
   1068 
   1069 		var b uintptr
   1070 		if blocking {
   1071 			b = gcw.get()
   1072 		} else {
   1073 			b = gcw.tryGetFast()
   1074 			if b == 0 {
   1075 				b = gcw.tryGet()
   1076 			}
   1077 		}
   1078 		if b == 0 {
   1079 			// work barrier reached or tryGet failed.
   1080 			break
   1081 		}
   1082 		scanobject(b, gcw)
   1083 
   1084 		// Flush background scan work credit to the global
   1085 		// account if we've accumulated enough locally so
   1086 		// mutator assists can draw on it.
   1087 		if gcw.scanWork >= gcCreditSlack {
   1088 			atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
   1089 			if flushBgCredit {
   1090 				gcFlushBgCredit(gcw.scanWork - initScanWork)
   1091 				initScanWork = 0
   1092 			}
   1093 			idleCheck -= gcw.scanWork
   1094 			gcw.scanWork = 0
   1095 
   1096 			if idle && idleCheck <= 0 {
   1097 				idleCheck += idleCheckThreshold
   1098 				if pollWork() {
   1099 					break
   1100 				}
   1101 			}
   1102 		}
   1103 	}
   1104 
   1105 	// In blocking mode, write barriers are not allowed after this
   1106 	// point because we must preserve the condition that the work
   1107 	// buffers are empty.
   1108 
   1109 done:
   1110 	// Flush remaining scan work credit.
   1111 	if gcw.scanWork > 0 {
   1112 		atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
   1113 		if flushBgCredit {
   1114 			gcFlushBgCredit(gcw.scanWork - initScanWork)
   1115 		}
   1116 		gcw.scanWork = 0
   1117 	}
   1118 }
   1119 
   1120 // gcDrainN blackens grey objects until it has performed roughly
   1121 // scanWork units of scan work or the G is preempted. This is
   1122 // best-effort, so it may perform less work if it fails to get a work
   1123 // buffer. Otherwise, it will perform at least n units of work, but
   1124 // may perform more because scanning is always done in whole object
   1125 // increments. It returns the amount of scan work performed.
   1126 //
   1127 // The caller goroutine must be in a preemptible state (e.g.,
   1128 // _Gwaiting) to prevent deadlocks during stack scanning. As a
   1129 // consequence, this must be called on the system stack.
   1130 //
   1131 //go:nowritebarrier
   1132 //go:systemstack
   1133 func gcDrainN(gcw *gcWork, scanWork int64) int64 {
   1134 	if !writeBarrier.needed {
   1135 		throw("gcDrainN phase incorrect")
   1136 	}
   1137 
   1138 	// There may already be scan work on the gcw, which we don't
   1139 	// want to claim was done by this call.
   1140 	workFlushed := -gcw.scanWork
   1141 
   1142 	gp := getg().m.curg
   1143 	for !gp.preempt && workFlushed+gcw.scanWork < scanWork {
   1144 		// See gcDrain comment.
   1145 		if work.full == 0 {
   1146 			gcw.balance()
   1147 		}
   1148 
   1149 		// This might be a good place to add prefetch code...
   1150 		// if(wbuf.nobj > 4) {
   1151 		//         PREFETCH(wbuf->obj[wbuf.nobj - 3];
   1152 		//  }
   1153 		//
   1154 		b := gcw.tryGetFast()
   1155 		if b == 0 {
   1156 			b = gcw.tryGet()
   1157 		}
   1158 
   1159 		if b == 0 {
   1160 			// Try to do a root job.
   1161 			//
   1162 			// TODO: Assists should get credit for this
   1163 			// work.
   1164 			if work.markrootNext < work.markrootJobs {
   1165 				job := atomic.Xadd(&work.markrootNext, +1) - 1
   1166 				if job < work.markrootJobs {
   1167 					markroot(gcw, job)
   1168 					continue
   1169 				}
   1170 			}
   1171 			// No heap or root jobs.
   1172 			break
   1173 		}
   1174 		scanobject(b, gcw)
   1175 
   1176 		// Flush background scan work credit.
   1177 		if gcw.scanWork >= gcCreditSlack {
   1178 			atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
   1179 			workFlushed += gcw.scanWork
   1180 			gcw.scanWork = 0
   1181 		}
   1182 	}
   1183 
   1184 	// Unlike gcDrain, there's no need to flush remaining work
   1185 	// here because this never flushes to bgScanCredit and
   1186 	// gcw.dispose will flush any remaining work to scanWork.
   1187 
   1188 	return workFlushed + gcw.scanWork
   1189 }
   1190 
   1191 // scanblock scans b as scanobject would, but using an explicit
   1192 // pointer bitmap instead of the heap bitmap.
   1193 //
   1194 // This is used to scan non-heap roots, so it does not update
   1195 // gcw.bytesMarked or gcw.scanWork.
   1196 //
   1197 //go:nowritebarrier
   1198 func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) {
   1199 	// Use local copies of original parameters, so that a stack trace
   1200 	// due to one of the throws below shows the original block
   1201 	// base and extent.
   1202 	b := b0
   1203 	n := n0
   1204 
   1205 	arena_start := mheap_.arena_start
   1206 	arena_used := mheap_.arena_used
   1207 
   1208 	for i := uintptr(0); i < n; {
   1209 		// Find bits for the next word.
   1210 		bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8)))
   1211 		if bits == 0 {
   1212 			i += sys.PtrSize * 8
   1213 			continue
   1214 		}
   1215 		for j := 0; j < 8 && i < n; j++ {
   1216 			if bits&1 != 0 {
   1217 				// Same work as in scanobject; see comments there.
   1218 				obj := *(*uintptr)(unsafe.Pointer(b + i))
   1219 				if obj != 0 && arena_start <= obj && obj < arena_used {
   1220 					if obj, hbits, span, objIndex := heapBitsForObject(obj, b, i); obj != 0 {
   1221 						greyobject(obj, b, i, hbits, span, gcw, objIndex)
   1222 					}
   1223 				}
   1224 			}
   1225 			bits >>= 1
   1226 			i += sys.PtrSize
   1227 		}
   1228 	}
   1229 }
   1230 
   1231 // scanobject scans the object starting at b, adding pointers to gcw.
   1232 // b must point to the beginning of a heap object or an oblet.
   1233 // scanobject consults the GC bitmap for the pointer mask and the
   1234 // spans for the size of the object.
   1235 //
   1236 //go:nowritebarrier
   1237 func scanobject(b uintptr, gcw *gcWork) {
   1238 	// Note that arena_used may change concurrently during
   1239 	// scanobject and hence scanobject may encounter a pointer to
   1240 	// a newly allocated heap object that is *not* in
   1241 	// [start,used). It will not mark this object; however, we
   1242 	// know that it was just installed by a mutator, which means
   1243 	// that mutator will execute a write barrier and take care of
   1244 	// marking it. This is even more pronounced on relaxed memory
   1245 	// architectures since we access arena_used without barriers
   1246 	// or synchronization, but the same logic applies.
   1247 	arena_start := mheap_.arena_start
   1248 	arena_used := mheap_.arena_used
   1249 
   1250 	// Find the bits for b and the size of the object at b.
   1251 	//
   1252 	// b is either the beginning of an object, in which case this
   1253 	// is the size of the object to scan, or it points to an
   1254 	// oblet, in which case we compute the size to scan below.
   1255 	hbits := heapBitsForAddr(b)
   1256 	s := spanOfUnchecked(b)
   1257 	n := s.elemsize
   1258 	if n == 0 {
   1259 		throw("scanobject n == 0")
   1260 	}
   1261 
   1262 	if n > maxObletBytes {
   1263 		// Large object. Break into oblets for better
   1264 		// parallelism and lower latency.
   1265 		if b == s.base() {
   1266 			// It's possible this is a noscan object (not
   1267 			// from greyobject, but from other code
   1268 			// paths), in which case we must *not* enqueue
   1269 			// oblets since their bitmaps will be
   1270 			// uninitialized.
   1271 			if !hbits.hasPointers(n) {
   1272 				// Bypass the whole scan.
   1273 				gcw.bytesMarked += uint64(n)
   1274 				return
   1275 			}
   1276 
   1277 			// Enqueue the other oblets to scan later.
   1278 			// Some oblets may be in b's scalar tail, but
   1279 			// these will be marked as "no more pointers",
   1280 			// so we'll drop out immediately when we go to
   1281 			// scan those.
   1282 			for oblet := b + maxObletBytes; oblet < s.base()+s.elemsize; oblet += maxObletBytes {
   1283 				if !gcw.putFast(oblet) {
   1284 					gcw.put(oblet)
   1285 				}
   1286 			}
   1287 		}
   1288 
   1289 		// Compute the size of the oblet. Since this object
   1290 		// must be a large object, s.base() is the beginning
   1291 		// of the object.
   1292 		n = s.base() + s.elemsize - b
   1293 		if n > maxObletBytes {
   1294 			n = maxObletBytes
   1295 		}
   1296 	}
   1297 
   1298 	var i uintptr
   1299 	for i = 0; i < n; i += sys.PtrSize {
   1300 		// Find bits for this word.
   1301 		if i != 0 {
   1302 			// Avoid needless hbits.next() on last iteration.
   1303 			hbits = hbits.next()
   1304 		}
   1305 		// Load bits once. See CL 22712 and issue 16973 for discussion.
   1306 		bits := hbits.bits()
   1307 		// During checkmarking, 1-word objects store the checkmark
   1308 		// in the type bit for the one word. The only one-word objects
   1309 		// are pointers, or else they'd be merged with other non-pointer
   1310 		// data into larger allocations.
   1311 		if i != 1*sys.PtrSize && bits&bitScan == 0 {
   1312 			break // no more pointers in this object
   1313 		}
   1314 		if bits&bitPointer == 0 {
   1315 			continue // not a pointer
   1316 		}
   1317 
   1318 		// Work here is duplicated in scanblock and above.
   1319 		// If you make changes here, make changes there too.
   1320 		obj := *(*uintptr)(unsafe.Pointer(b + i))
   1321 
   1322 		// At this point we have extracted the next potential pointer.
   1323 		// Check if it points into heap and not back at the current object.
   1324 		if obj != 0 && arena_start <= obj && obj < arena_used && obj-b >= n {
   1325 			// Mark the object.
   1326 			if obj, hbits, span, objIndex := heapBitsForObject(obj, b, i); obj != 0 {
   1327 				greyobject(obj, b, i, hbits, span, gcw, objIndex)
   1328 			}
   1329 		}
   1330 	}
   1331 	gcw.bytesMarked += uint64(n)
   1332 	gcw.scanWork += int64(i)
   1333 }
   1334 
   1335 // Shade the object if it isn't already.
   1336 // The object is not nil and known to be in the heap.
   1337 // Preemption must be disabled.
   1338 //go:nowritebarrier
   1339 func shade(b uintptr) {
   1340 	if obj, hbits, span, objIndex := heapBitsForObject(b, 0, 0); obj != 0 {
   1341 		gcw := &getg().m.p.ptr().gcw
   1342 		greyobject(obj, 0, 0, hbits, span, gcw, objIndex)
   1343 		if gcphase == _GCmarktermination || gcBlackenPromptly {
   1344 			// Ps aren't allowed to cache work during mark
   1345 			// termination.
   1346 			gcw.dispose()
   1347 		}
   1348 	}
   1349 }
   1350 
   1351 // obj is the start of an object with mark mbits.
   1352 // If it isn't already marked, mark it and enqueue into gcw.
   1353 // base and off are for debugging only and could be removed.
   1354 //go:nowritebarrierrec
   1355 func greyobject(obj, base, off uintptr, hbits heapBits, span *mspan, gcw *gcWork, objIndex uintptr) {
   1356 	// obj should be start of allocation, and so must be at least pointer-aligned.
   1357 	if obj&(sys.PtrSize-1) != 0 {
   1358 		throw("greyobject: obj not pointer-aligned")
   1359 	}
   1360 	mbits := span.markBitsForIndex(objIndex)
   1361 
   1362 	if useCheckmark {
   1363 		if !mbits.isMarked() {
   1364 			printlock()
   1365 			print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n")
   1366 			print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n")
   1367 
   1368 			// Dump the source (base) object
   1369 			gcDumpObject("base", base, off)
   1370 
   1371 			// Dump the object
   1372 			gcDumpObject("obj", obj, ^uintptr(0))
   1373 
   1374 			throw("checkmark found unmarked object")
   1375 		}
   1376 		if hbits.isCheckmarked(span.elemsize) {
   1377 			return
   1378 		}
   1379 		hbits.setCheckmarked(span.elemsize)
   1380 		if !hbits.isCheckmarked(span.elemsize) {
   1381 			throw("setCheckmarked and isCheckmarked disagree")
   1382 		}
   1383 	} else {
   1384 		if debug.gccheckmark > 0 && span.isFree(objIndex) {
   1385 			print("runtime: marking free object ", hex(obj), " found at *(", hex(base), "+", hex(off), ")\n")
   1386 			gcDumpObject("base", base, off)
   1387 			gcDumpObject("obj", obj, ^uintptr(0))
   1388 			throw("marking free object")
   1389 		}
   1390 
   1391 		// If marked we have nothing to do.
   1392 		if mbits.isMarked() {
   1393 			return
   1394 		}
   1395 		// mbits.setMarked() // Avoid extra call overhead with manual inlining.
   1396 		atomic.Or8(mbits.bytep, mbits.mask)
   1397 		// If this is a noscan object, fast-track it to black
   1398 		// instead of greying it.
   1399 		if !hbits.hasPointers(span.elemsize) {
   1400 			gcw.bytesMarked += uint64(span.elemsize)
   1401 			return
   1402 		}
   1403 	}
   1404 
   1405 	// Queue the obj for scanning. The PREFETCH(obj) logic has been removed but
   1406 	// seems like a nice optimization that can be added back in.
   1407 	// There needs to be time between the PREFETCH and the use.
   1408 	// Previously we put the obj in an 8 element buffer that is drained at a rate
   1409 	// to give the PREFETCH time to do its work.
   1410 	// Use of PREFETCHNTA might be more appropriate than PREFETCH
   1411 	if !gcw.putFast(obj) {
   1412 		gcw.put(obj)
   1413 	}
   1414 }
   1415 
   1416 // gcDumpObject dumps the contents of obj for debugging and marks the
   1417 // field at byte offset off in obj.
   1418 func gcDumpObject(label string, obj, off uintptr) {
   1419 	if obj < mheap_.arena_start || obj >= mheap_.arena_used {
   1420 		print(label, "=", hex(obj), " is not in the Go heap\n")
   1421 		return
   1422 	}
   1423 	k := obj >> _PageShift
   1424 	x := k
   1425 	x -= mheap_.arena_start >> _PageShift
   1426 	s := mheap_.spans[x]
   1427 	print(label, "=", hex(obj), " k=", hex(k))
   1428 	if s == nil {
   1429 		print(" s=nil\n")
   1430 		return
   1431 	}
   1432 	print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.sizeclass=", s.sizeclass, " s.elemsize=", s.elemsize, " s.state=")
   1433 	if 0 <= s.state && int(s.state) < len(mSpanStateNames) {
   1434 		print(mSpanStateNames[s.state], "\n")
   1435 	} else {
   1436 		print("unknown(", s.state, ")\n")
   1437 	}
   1438 
   1439 	skipped := false
   1440 	size := s.elemsize
   1441 	if s.state == _MSpanStack && size == 0 {
   1442 		// We're printing something from a stack frame. We
   1443 		// don't know how big it is, so just show up to an
   1444 		// including off.
   1445 		size = off + sys.PtrSize
   1446 	}
   1447 	for i := uintptr(0); i < size; i += sys.PtrSize {
   1448 		// For big objects, just print the beginning (because
   1449 		// that usually hints at the object's type) and the
   1450 		// fields around off.
   1451 		if !(i < 128*sys.PtrSize || off-16*sys.PtrSize < i && i < off+16*sys.PtrSize) {
   1452 			skipped = true
   1453 			continue
   1454 		}
   1455 		if skipped {
   1456 			print(" ...\n")
   1457 			skipped = false
   1458 		}
   1459 		print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + i))))
   1460 		if i == off {
   1461 			print(" <==")
   1462 		}
   1463 		print("\n")
   1464 	}
   1465 	if skipped {
   1466 		print(" ...\n")
   1467 	}
   1468 }
   1469 
   1470 // gcmarknewobject marks a newly allocated object black. obj must
   1471 // not contain any non-nil pointers.
   1472 //
   1473 // This is nosplit so it can manipulate a gcWork without preemption.
   1474 //
   1475 //go:nowritebarrier
   1476 //go:nosplit
   1477 func gcmarknewobject(obj, size, scanSize uintptr) {
   1478 	if useCheckmark && !gcBlackenPromptly { // The world should be stopped so this should not happen.
   1479 		throw("gcmarknewobject called while doing checkmark")
   1480 	}
   1481 	markBitsForAddr(obj).setMarked()
   1482 	gcw := &getg().m.p.ptr().gcw
   1483 	gcw.bytesMarked += uint64(size)
   1484 	gcw.scanWork += int64(scanSize)
   1485 	if gcBlackenPromptly {
   1486 		// There shouldn't be anything in the work queue, but
   1487 		// we still need to flush stats.
   1488 		gcw.dispose()
   1489 	}
   1490 }
   1491 
   1492 // gcMarkTinyAllocs greys all active tiny alloc blocks.
   1493 //
   1494 // The world must be stopped.
   1495 func gcMarkTinyAllocs() {
   1496 	for _, p := range &allp {
   1497 		if p == nil || p.status == _Pdead {
   1498 			break
   1499 		}
   1500 		c := p.mcache
   1501 		if c == nil || c.tiny == 0 {
   1502 			continue
   1503 		}
   1504 		_, hbits, span, objIndex := heapBitsForObject(c.tiny, 0, 0)
   1505 		gcw := &p.gcw
   1506 		greyobject(c.tiny, 0, 0, hbits, span, gcw, objIndex)
   1507 		if gcBlackenPromptly {
   1508 			gcw.dispose()
   1509 		}
   1510 	}
   1511 }
   1512 
   1513 // Checkmarking
   1514 
   1515 // To help debug the concurrent GC we remark with the world
   1516 // stopped ensuring that any object encountered has their normal
   1517 // mark bit set. To do this we use an orthogonal bit
   1518 // pattern to indicate the object is marked. The following pattern
   1519 // uses the upper two bits in the object's boundary nibble.
   1520 // 01: scalar  not marked
   1521 // 10: pointer not marked
   1522 // 11: pointer     marked
   1523 // 00: scalar      marked
   1524 // Xoring with 01 will flip the pattern from marked to unmarked and vica versa.
   1525 // The higher bit is 1 for pointers and 0 for scalars, whether the object
   1526 // is marked or not.
   1527 // The first nibble no longer holds the typeDead pattern indicating that the
   1528 // there are no more pointers in the object. This information is held
   1529 // in the second nibble.
   1530 
   1531 // If useCheckmark is true, marking of an object uses the
   1532 // checkmark bits (encoding above) instead of the standard
   1533 // mark bits.
   1534 var useCheckmark = false
   1535 
   1536 //go:nowritebarrier
   1537 func initCheckmarks() {
   1538 	useCheckmark = true
   1539 	for _, s := range mheap_.allspans {
   1540 		if s.state == _MSpanInUse {
   1541 			heapBitsForSpan(s.base()).initCheckmarkSpan(s.layout())
   1542 		}
   1543 	}
   1544 }
   1545 
   1546 func clearCheckmarks() {
   1547 	useCheckmark = false
   1548 	for _, s := range mheap_.allspans {
   1549 		if s.state == _MSpanInUse {
   1550 			heapBitsForSpan(s.base()).clearCheckmarkSpan(s.layout())
   1551 		}
   1552 	}
   1553 }
   1554