Home | History | Annotate | Download | only in runtime
      1 // Copyright 2014 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Go execution tracer.
      6 // The tracer captures a wide range of execution events like goroutine
      7 // creation/blocking/unblocking, syscall enter/exit/block, GC-related events,
      8 // changes of heap size, processor start/stop, etc and writes them to a buffer
      9 // in a compact form. A precise nanosecond-precision timestamp and a stack
     10 // trace is captured for most events.
     11 // See https://golang.org/s/go15trace for more info.
     12 
     13 package runtime
     14 
     15 import (
     16 	"runtime/internal/sys"
     17 	"unsafe"
     18 )
     19 
     20 // Event types in the trace, args are given in square brackets.
     21 const (
     22 	traceEvNone           = 0  // unused
     23 	traceEvBatch          = 1  // start of per-P batch of events [pid, timestamp]
     24 	traceEvFrequency      = 2  // contains tracer timer frequency [frequency (ticks per second)]
     25 	traceEvStack          = 3  // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}]
     26 	traceEvGomaxprocs     = 4  // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id]
     27 	traceEvProcStart      = 5  // start of P [timestamp, thread id]
     28 	traceEvProcStop       = 6  // stop of P [timestamp]
     29 	traceEvGCStart        = 7  // GC start [timestamp, seq, stack id]
     30 	traceEvGCDone         = 8  // GC done [timestamp]
     31 	traceEvGCScanStart    = 9  // GC mark termination start [timestamp]
     32 	traceEvGCScanDone     = 10 // GC mark termination done [timestamp]
     33 	traceEvGCSweepStart   = 11 // GC sweep start [timestamp, stack id]
     34 	traceEvGCSweepDone    = 12 // GC sweep done [timestamp]
     35 	traceEvGoCreate       = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id]
     36 	traceEvGoStart        = 14 // goroutine starts running [timestamp, goroutine id, seq]
     37 	traceEvGoEnd          = 15 // goroutine ends [timestamp]
     38 	traceEvGoStop         = 16 // goroutine stops (like in select{}) [timestamp, stack]
     39 	traceEvGoSched        = 17 // goroutine calls Gosched [timestamp, stack]
     40 	traceEvGoPreempt      = 18 // goroutine is preempted [timestamp, stack]
     41 	traceEvGoSleep        = 19 // goroutine calls Sleep [timestamp, stack]
     42 	traceEvGoBlock        = 20 // goroutine blocks [timestamp, stack]
     43 	traceEvGoUnblock      = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack]
     44 	traceEvGoBlockSend    = 22 // goroutine blocks on chan send [timestamp, stack]
     45 	traceEvGoBlockRecv    = 23 // goroutine blocks on chan recv [timestamp, stack]
     46 	traceEvGoBlockSelect  = 24 // goroutine blocks on select [timestamp, stack]
     47 	traceEvGoBlockSync    = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack]
     48 	traceEvGoBlockCond    = 26 // goroutine blocks on Cond [timestamp, stack]
     49 	traceEvGoBlockNet     = 27 // goroutine blocks on network [timestamp, stack]
     50 	traceEvGoSysCall      = 28 // syscall enter [timestamp, stack]
     51 	traceEvGoSysExit      = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp]
     52 	traceEvGoSysBlock     = 30 // syscall blocks [timestamp]
     53 	traceEvGoWaiting      = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id]
     54 	traceEvGoInSyscall    = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id]
     55 	traceEvHeapAlloc      = 33 // memstats.heap_live change [timestamp, heap_alloc]
     56 	traceEvNextGC         = 34 // memstats.next_gc change [timestamp, next_gc]
     57 	traceEvTimerGoroutine = 35 // denotes timer goroutine [timer goroutine id]
     58 	traceEvFutileWakeup   = 36 // denotes that the previous wakeup of this goroutine was futile [timestamp]
     59 	traceEvString         = 37 // string dictionary entry [ID, length, string]
     60 	traceEvGoStartLocal   = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id]
     61 	traceEvGoUnblockLocal = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack]
     62 	traceEvGoSysExitLocal = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp]
     63 	traceEvGoStartLabel   = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id]
     64 	traceEvGoBlockGC      = 42 // goroutine blocks on GC assist [timestamp, stack]
     65 	traceEvCount          = 43
     66 )
     67 
     68 const (
     69 	// Timestamps in trace are cputicks/traceTickDiv.
     70 	// This makes absolute values of timestamp diffs smaller,
     71 	// and so they are encoded in less number of bytes.
     72 	// 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine).
     73 	// The suggested increment frequency for PowerPC's time base register is
     74 	// 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64
     75 	// and ppc64le.
     76 	// Tracing won't work reliably for architectures where cputicks is emulated
     77 	// by nanotime, so the value doesn't matter for those architectures.
     78 	traceTickDiv = 16 + 48*(sys.Goarch386|sys.GoarchAmd64|sys.GoarchAmd64p32)
     79 	// Maximum number of PCs in a single stack trace.
     80 	// Since events contain only stack id rather than whole stack trace,
     81 	// we can allow quite large values here.
     82 	traceStackSize = 128
     83 	// Identifier of a fake P that is used when we trace without a real P.
     84 	traceGlobProc = -1
     85 	// Maximum number of bytes to encode uint64 in base-128.
     86 	traceBytesPerNumber = 10
     87 	// Shift of the number of arguments in the first event byte.
     88 	traceArgCountShift = 6
     89 	// Flag passed to traceGoPark to denote that the previous wakeup of this
     90 	// goroutine was futile. For example, a goroutine was unblocked on a mutex,
     91 	// but another goroutine got ahead and acquired the mutex before the first
     92 	// goroutine is scheduled, so the first goroutine has to block again.
     93 	// Such wakeups happen on buffered channels and sync.Mutex,
     94 	// but are generally not interesting for end user.
     95 	traceFutileWakeup byte = 128
     96 )
     97 
     98 // trace is global tracing context.
     99 var trace struct {
    100 	lock          mutex       // protects the following members
    101 	lockOwner     *g          // to avoid deadlocks during recursive lock locks
    102 	enabled       bool        // when set runtime traces events
    103 	shutdown      bool        // set when we are waiting for trace reader to finish after setting enabled to false
    104 	headerWritten bool        // whether ReadTrace has emitted trace header
    105 	footerWritten bool        // whether ReadTrace has emitted trace footer
    106 	shutdownSema  uint32      // used to wait for ReadTrace completion
    107 	seqStart      uint64      // sequence number when tracing was started
    108 	ticksStart    int64       // cputicks when tracing was started
    109 	ticksEnd      int64       // cputicks when tracing was stopped
    110 	timeStart     int64       // nanotime when tracing was started
    111 	timeEnd       int64       // nanotime when tracing was stopped
    112 	seqGC         uint64      // GC start/done sequencer
    113 	reading       traceBufPtr // buffer currently handed off to user
    114 	empty         traceBufPtr // stack of empty buffers
    115 	fullHead      traceBufPtr // queue of full buffers
    116 	fullTail      traceBufPtr
    117 	reader        guintptr        // goroutine that called ReadTrace, or nil
    118 	stackTab      traceStackTable // maps stack traces to unique ids
    119 
    120 	// Dictionary for traceEvString.
    121 	//
    122 	// Currently this is used only at trace setup and for
    123 	// func/file:line info after tracing session, so we assume
    124 	// single-threaded access.
    125 	strings   map[string]uint64
    126 	stringSeq uint64
    127 
    128 	// markWorkerLabels maps gcMarkWorkerMode to string ID.
    129 	markWorkerLabels [len(gcMarkWorkerModeStrings)]uint64
    130 
    131 	bufLock mutex       // protects buf
    132 	buf     traceBufPtr // global trace buffer, used when running without a p
    133 }
    134 
    135 // traceBufHeader is per-P tracing buffer.
    136 type traceBufHeader struct {
    137 	link      traceBufPtr             // in trace.empty/full
    138 	lastTicks uint64                  // when we wrote the last event
    139 	pos       int                     // next write offset in arr
    140 	stk       [traceStackSize]uintptr // scratch buffer for traceback
    141 }
    142 
    143 // traceBuf is per-P tracing buffer.
    144 //
    145 //go:notinheap
    146 type traceBuf struct {
    147 	traceBufHeader
    148 	arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf
    149 }
    150 
    151 // traceBufPtr is a *traceBuf that is not traced by the garbage
    152 // collector and doesn't have write barriers. traceBufs are not
    153 // allocated from the GC'd heap, so this is safe, and are often
    154 // manipulated in contexts where write barriers are not allowed, so
    155 // this is necessary.
    156 //
    157 // TODO: Since traceBuf is now go:notinheap, this isn't necessary.
    158 type traceBufPtr uintptr
    159 
    160 func (tp traceBufPtr) ptr() *traceBuf   { return (*traceBuf)(unsafe.Pointer(tp)) }
    161 func (tp *traceBufPtr) set(b *traceBuf) { *tp = traceBufPtr(unsafe.Pointer(b)) }
    162 func traceBufPtrOf(b *traceBuf) traceBufPtr {
    163 	return traceBufPtr(unsafe.Pointer(b))
    164 }
    165 
    166 // StartTrace enables tracing for the current process.
    167 // While tracing, the data will be buffered and available via ReadTrace.
    168 // StartTrace returns an error if tracing is already enabled.
    169 // Most clients should use the runtime/trace package or the testing package's
    170 // -test.trace flag instead of calling StartTrace directly.
    171 func StartTrace() error {
    172 	// Stop the world, so that we can take a consistent snapshot
    173 	// of all goroutines at the beginning of the trace.
    174 	stopTheWorld("start tracing")
    175 
    176 	// We are in stop-the-world, but syscalls can finish and write to trace concurrently.
    177 	// Exitsyscall could check trace.enabled long before and then suddenly wake up
    178 	// and decide to write to trace at a random point in time.
    179 	// However, such syscall will use the global trace.buf buffer, because we've
    180 	// acquired all p's by doing stop-the-world. So this protects us from such races.
    181 	lock(&trace.bufLock)
    182 
    183 	if trace.enabled || trace.shutdown {
    184 		unlock(&trace.bufLock)
    185 		startTheWorld()
    186 		return errorString("tracing is already enabled")
    187 	}
    188 
    189 	// Can't set trace.enabled yet. While the world is stopped, exitsyscall could
    190 	// already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here.
    191 	// That would lead to an inconsistent trace:
    192 	// - either GoSysExit appears before EvGoInSyscall,
    193 	// - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below.
    194 	// To instruct traceEvent that it must not ignore events below, we set startingtrace.
    195 	// trace.enabled is set afterwards once we have emitted all preliminary events.
    196 	_g_ := getg()
    197 	_g_.m.startingtrace = true
    198 
    199 	// Obtain current stack ID to use in all traceEvGoCreate events below.
    200 	mp := acquirem()
    201 	stkBuf := make([]uintptr, traceStackSize)
    202 	stackID := traceStackID(mp, stkBuf, 2)
    203 	releasem(mp)
    204 
    205 	for _, gp := range allgs {
    206 		status := readgstatus(gp)
    207 		if status != _Gdead {
    208 			gp.traceseq = 0
    209 			gp.tracelastp = getg().m.p
    210 			// +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
    211 			id := trace.stackTab.put([]uintptr{gp.startpc + sys.PCQuantum})
    212 			traceEvent(traceEvGoCreate, -1, uint64(gp.goid), uint64(id), stackID)
    213 		}
    214 		if status == _Gwaiting {
    215 			// traceEvGoWaiting is implied to have seq=1.
    216 			gp.traceseq++
    217 			traceEvent(traceEvGoWaiting, -1, uint64(gp.goid))
    218 		}
    219 		if status == _Gsyscall {
    220 			gp.traceseq++
    221 			traceEvent(traceEvGoInSyscall, -1, uint64(gp.goid))
    222 		} else {
    223 			gp.sysblocktraced = false
    224 		}
    225 	}
    226 	traceProcStart()
    227 	traceGoStart()
    228 	// Note: ticksStart needs to be set after we emit traceEvGoInSyscall events.
    229 	// If we do it the other way around, it is possible that exitsyscall will
    230 	// query sysexitticks after ticksStart but before traceEvGoInSyscall timestamp.
    231 	// It will lead to a false conclusion that cputicks is broken.
    232 	trace.ticksStart = cputicks()
    233 	trace.timeStart = nanotime()
    234 	trace.headerWritten = false
    235 	trace.footerWritten = false
    236 	trace.strings = make(map[string]uint64)
    237 	trace.stringSeq = 0
    238 	trace.seqGC = 0
    239 	_g_.m.startingtrace = false
    240 	trace.enabled = true
    241 
    242 	// Register runtime goroutine labels.
    243 	_, pid, bufp := traceAcquireBuffer()
    244 	buf := (*bufp).ptr()
    245 	if buf == nil {
    246 		buf = traceFlush(0).ptr()
    247 		(*bufp).set(buf)
    248 	}
    249 	for i, label := range gcMarkWorkerModeStrings[:] {
    250 		trace.markWorkerLabels[i], buf = traceString(buf, label)
    251 	}
    252 	traceReleaseBuffer(pid)
    253 
    254 	unlock(&trace.bufLock)
    255 
    256 	startTheWorld()
    257 	return nil
    258 }
    259 
    260 // StopTrace stops tracing, if it was previously enabled.
    261 // StopTrace only returns after all the reads for the trace have completed.
    262 func StopTrace() {
    263 	// Stop the world so that we can collect the trace buffers from all p's below,
    264 	// and also to avoid races with traceEvent.
    265 	stopTheWorld("stop tracing")
    266 
    267 	// See the comment in StartTrace.
    268 	lock(&trace.bufLock)
    269 
    270 	if !trace.enabled {
    271 		unlock(&trace.bufLock)
    272 		startTheWorld()
    273 		return
    274 	}
    275 
    276 	traceGoSched()
    277 
    278 	for _, p := range &allp {
    279 		if p == nil {
    280 			break
    281 		}
    282 		buf := p.tracebuf
    283 		if buf != 0 {
    284 			traceFullQueue(buf)
    285 			p.tracebuf = 0
    286 		}
    287 	}
    288 	if trace.buf != 0 {
    289 		buf := trace.buf
    290 		trace.buf = 0
    291 		if buf.ptr().pos != 0 {
    292 			traceFullQueue(buf)
    293 		}
    294 	}
    295 
    296 	for {
    297 		trace.ticksEnd = cputicks()
    298 		trace.timeEnd = nanotime()
    299 		// Windows time can tick only every 15ms, wait for at least one tick.
    300 		if trace.timeEnd != trace.timeStart {
    301 			break
    302 		}
    303 		osyield()
    304 	}
    305 
    306 	trace.enabled = false
    307 	trace.shutdown = true
    308 	unlock(&trace.bufLock)
    309 
    310 	startTheWorld()
    311 
    312 	// The world is started but we've set trace.shutdown, so new tracing can't start.
    313 	// Wait for the trace reader to flush pending buffers and stop.
    314 	semacquire(&trace.shutdownSema, 0)
    315 	if raceenabled {
    316 		raceacquire(unsafe.Pointer(&trace.shutdownSema))
    317 	}
    318 
    319 	// The lock protects us from races with StartTrace/StopTrace because they do stop-the-world.
    320 	lock(&trace.lock)
    321 	for _, p := range &allp {
    322 		if p == nil {
    323 			break
    324 		}
    325 		if p.tracebuf != 0 {
    326 			throw("trace: non-empty trace buffer in proc")
    327 		}
    328 	}
    329 	if trace.buf != 0 {
    330 		throw("trace: non-empty global trace buffer")
    331 	}
    332 	if trace.fullHead != 0 || trace.fullTail != 0 {
    333 		throw("trace: non-empty full trace buffer")
    334 	}
    335 	if trace.reading != 0 || trace.reader != 0 {
    336 		throw("trace: reading after shutdown")
    337 	}
    338 	for trace.empty != 0 {
    339 		buf := trace.empty
    340 		trace.empty = buf.ptr().link
    341 		sysFree(unsafe.Pointer(buf), unsafe.Sizeof(*buf.ptr()), &memstats.other_sys)
    342 	}
    343 	trace.strings = nil
    344 	trace.shutdown = false
    345 	unlock(&trace.lock)
    346 }
    347 
    348 // ReadTrace returns the next chunk of binary tracing data, blocking until data
    349 // is available. If tracing is turned off and all the data accumulated while it
    350 // was on has been returned, ReadTrace returns nil. The caller must copy the
    351 // returned data before calling ReadTrace again.
    352 // ReadTrace must be called from one goroutine at a time.
    353 func ReadTrace() []byte {
    354 	// This function may need to lock trace.lock recursively
    355 	// (goparkunlock -> traceGoPark -> traceEvent -> traceFlush).
    356 	// To allow this we use trace.lockOwner.
    357 	// Also this function must not allocate while holding trace.lock:
    358 	// allocation can call heap allocate, which will try to emit a trace
    359 	// event while holding heap lock.
    360 	lock(&trace.lock)
    361 	trace.lockOwner = getg()
    362 
    363 	if trace.reader != 0 {
    364 		// More than one goroutine reads trace. This is bad.
    365 		// But we rather do not crash the program because of tracing,
    366 		// because tracing can be enabled at runtime on prod servers.
    367 		trace.lockOwner = nil
    368 		unlock(&trace.lock)
    369 		println("runtime: ReadTrace called from multiple goroutines simultaneously")
    370 		return nil
    371 	}
    372 	// Recycle the old buffer.
    373 	if buf := trace.reading; buf != 0 {
    374 		buf.ptr().link = trace.empty
    375 		trace.empty = buf
    376 		trace.reading = 0
    377 	}
    378 	// Write trace header.
    379 	if !trace.headerWritten {
    380 		trace.headerWritten = true
    381 		trace.lockOwner = nil
    382 		unlock(&trace.lock)
    383 		return []byte("go 1.8 trace\x00\x00\x00\x00")
    384 	}
    385 	// Wait for new data.
    386 	if trace.fullHead == 0 && !trace.shutdown {
    387 		trace.reader.set(getg())
    388 		goparkunlock(&trace.lock, "trace reader (blocked)", traceEvGoBlock, 2)
    389 		lock(&trace.lock)
    390 	}
    391 	// Write a buffer.
    392 	if trace.fullHead != 0 {
    393 		buf := traceFullDequeue()
    394 		trace.reading = buf
    395 		trace.lockOwner = nil
    396 		unlock(&trace.lock)
    397 		return buf.ptr().arr[:buf.ptr().pos]
    398 	}
    399 	// Write footer with timer frequency.
    400 	if !trace.footerWritten {
    401 		trace.footerWritten = true
    402 		// Use float64 because (trace.ticksEnd - trace.ticksStart) * 1e9 can overflow int64.
    403 		freq := float64(trace.ticksEnd-trace.ticksStart) * 1e9 / float64(trace.timeEnd-trace.timeStart) / traceTickDiv
    404 		trace.lockOwner = nil
    405 		unlock(&trace.lock)
    406 		var data []byte
    407 		data = append(data, traceEvFrequency|0<<traceArgCountShift)
    408 		data = traceAppend(data, uint64(freq))
    409 		if timers.gp != nil {
    410 			data = append(data, traceEvTimerGoroutine|0<<traceArgCountShift)
    411 			data = traceAppend(data, uint64(timers.gp.goid))
    412 		}
    413 		// This will emit a bunch of full buffers, we will pick them up
    414 		// on the next iteration.
    415 		trace.stackTab.dump()
    416 		return data
    417 	}
    418 	// Done.
    419 	if trace.shutdown {
    420 		trace.lockOwner = nil
    421 		unlock(&trace.lock)
    422 		if raceenabled {
    423 			// Model synchronization on trace.shutdownSema, which race
    424 			// detector does not see. This is required to avoid false
    425 			// race reports on writer passed to trace.Start.
    426 			racerelease(unsafe.Pointer(&trace.shutdownSema))
    427 		}
    428 		// trace.enabled is already reset, so can call traceable functions.
    429 		semrelease(&trace.shutdownSema)
    430 		return nil
    431 	}
    432 	// Also bad, but see the comment above.
    433 	trace.lockOwner = nil
    434 	unlock(&trace.lock)
    435 	println("runtime: spurious wakeup of trace reader")
    436 	return nil
    437 }
    438 
    439 // traceReader returns the trace reader that should be woken up, if any.
    440 func traceReader() *g {
    441 	if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) {
    442 		return nil
    443 	}
    444 	lock(&trace.lock)
    445 	if trace.reader == 0 || (trace.fullHead == 0 && !trace.shutdown) {
    446 		unlock(&trace.lock)
    447 		return nil
    448 	}
    449 	gp := trace.reader.ptr()
    450 	trace.reader.set(nil)
    451 	unlock(&trace.lock)
    452 	return gp
    453 }
    454 
    455 // traceProcFree frees trace buffer associated with pp.
    456 func traceProcFree(pp *p) {
    457 	buf := pp.tracebuf
    458 	pp.tracebuf = 0
    459 	if buf == 0 {
    460 		return
    461 	}
    462 	lock(&trace.lock)
    463 	traceFullQueue(buf)
    464 	unlock(&trace.lock)
    465 }
    466 
    467 // traceFullQueue queues buf into queue of full buffers.
    468 func traceFullQueue(buf traceBufPtr) {
    469 	buf.ptr().link = 0
    470 	if trace.fullHead == 0 {
    471 		trace.fullHead = buf
    472 	} else {
    473 		trace.fullTail.ptr().link = buf
    474 	}
    475 	trace.fullTail = buf
    476 }
    477 
    478 // traceFullDequeue dequeues from queue of full buffers.
    479 func traceFullDequeue() traceBufPtr {
    480 	buf := trace.fullHead
    481 	if buf == 0 {
    482 		return 0
    483 	}
    484 	trace.fullHead = buf.ptr().link
    485 	if trace.fullHead == 0 {
    486 		trace.fullTail = 0
    487 	}
    488 	buf.ptr().link = 0
    489 	return buf
    490 }
    491 
    492 // traceEvent writes a single event to trace buffer, flushing the buffer if necessary.
    493 // ev is event type.
    494 // If skip > 0, write current stack id as the last argument (skipping skip top frames).
    495 // If skip = 0, this event type should contain a stack, but we don't want
    496 // to collect and remember it for this particular call.
    497 func traceEvent(ev byte, skip int, args ...uint64) {
    498 	mp, pid, bufp := traceAcquireBuffer()
    499 	// Double-check trace.enabled now that we've done m.locks++ and acquired bufLock.
    500 	// This protects from races between traceEvent and StartTrace/StopTrace.
    501 
    502 	// The caller checked that trace.enabled == true, but trace.enabled might have been
    503 	// turned off between the check and now. Check again. traceLockBuffer did mp.locks++,
    504 	// StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero,
    505 	// so if we see trace.enabled == true now, we know it's true for the rest of the function.
    506 	// Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace
    507 	// during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer.
    508 	if !trace.enabled && !mp.startingtrace {
    509 		traceReleaseBuffer(pid)
    510 		return
    511 	}
    512 	buf := (*bufp).ptr()
    513 	const maxSize = 2 + 5*traceBytesPerNumber // event type, length, sequence, timestamp, stack id and two add params
    514 	if buf == nil || len(buf.arr)-buf.pos < maxSize {
    515 		buf = traceFlush(traceBufPtrOf(buf)).ptr()
    516 		(*bufp).set(buf)
    517 	}
    518 
    519 	ticks := uint64(cputicks()) / traceTickDiv
    520 	tickDiff := ticks - buf.lastTicks
    521 	if buf.pos == 0 {
    522 		buf.byte(traceEvBatch | 1<<traceArgCountShift)
    523 		buf.varint(uint64(pid))
    524 		buf.varint(ticks)
    525 		tickDiff = 0
    526 	}
    527 	buf.lastTicks = ticks
    528 	narg := byte(len(args))
    529 	if skip >= 0 {
    530 		narg++
    531 	}
    532 	// We have only 2 bits for number of arguments.
    533 	// If number is >= 3, then the event type is followed by event length in bytes.
    534 	if narg > 3 {
    535 		narg = 3
    536 	}
    537 	startPos := buf.pos
    538 	buf.byte(ev | narg<<traceArgCountShift)
    539 	var lenp *byte
    540 	if narg == 3 {
    541 		// Reserve the byte for length assuming that length < 128.
    542 		buf.varint(0)
    543 		lenp = &buf.arr[buf.pos-1]
    544 	}
    545 	buf.varint(tickDiff)
    546 	for _, a := range args {
    547 		buf.varint(a)
    548 	}
    549 	if skip == 0 {
    550 		buf.varint(0)
    551 	} else if skip > 0 {
    552 		buf.varint(traceStackID(mp, buf.stk[:], skip))
    553 	}
    554 	evSize := buf.pos - startPos
    555 	if evSize > maxSize {
    556 		throw("invalid length of trace event")
    557 	}
    558 	if lenp != nil {
    559 		// Fill in actual length.
    560 		*lenp = byte(evSize - 2)
    561 	}
    562 	traceReleaseBuffer(pid)
    563 }
    564 
    565 func traceStackID(mp *m, buf []uintptr, skip int) uint64 {
    566 	_g_ := getg()
    567 	gp := mp.curg
    568 	var nstk int
    569 	if gp == _g_ {
    570 		nstk = callers(skip+1, buf[:])
    571 	} else if gp != nil {
    572 		gp = mp.curg
    573 		// This may happen when tracing a system call,
    574 		// so we must lock the stack.
    575 		if gcTryLockStackBarriers(gp) {
    576 			nstk = gcallers(gp, skip, buf[:])
    577 			gcUnlockStackBarriers(gp)
    578 		}
    579 	}
    580 	if nstk > 0 {
    581 		nstk-- // skip runtime.goexit
    582 	}
    583 	if nstk > 0 && gp.goid == 1 {
    584 		nstk-- // skip runtime.main
    585 	}
    586 	id := trace.stackTab.put(buf[:nstk])
    587 	return uint64(id)
    588 }
    589 
    590 // traceAcquireBuffer returns trace buffer to use and, if necessary, locks it.
    591 func traceAcquireBuffer() (mp *m, pid int32, bufp *traceBufPtr) {
    592 	mp = acquirem()
    593 	if p := mp.p.ptr(); p != nil {
    594 		return mp, p.id, &p.tracebuf
    595 	}
    596 	lock(&trace.bufLock)
    597 	return mp, traceGlobProc, &trace.buf
    598 }
    599 
    600 // traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer.
    601 func traceReleaseBuffer(pid int32) {
    602 	if pid == traceGlobProc {
    603 		unlock(&trace.bufLock)
    604 	}
    605 	releasem(getg().m)
    606 }
    607 
    608 // traceFlush puts buf onto stack of full buffers and returns an empty buffer.
    609 func traceFlush(buf traceBufPtr) traceBufPtr {
    610 	owner := trace.lockOwner
    611 	dolock := owner == nil || owner != getg().m.curg
    612 	if dolock {
    613 		lock(&trace.lock)
    614 	}
    615 	if buf != 0 {
    616 		traceFullQueue(buf)
    617 	}
    618 	if trace.empty != 0 {
    619 		buf = trace.empty
    620 		trace.empty = buf.ptr().link
    621 	} else {
    622 		buf = traceBufPtr(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys))
    623 		if buf == 0 {
    624 			throw("trace: out of memory")
    625 		}
    626 	}
    627 	bufp := buf.ptr()
    628 	bufp.link.set(nil)
    629 	bufp.pos = 0
    630 	bufp.lastTicks = 0
    631 	if dolock {
    632 		unlock(&trace.lock)
    633 	}
    634 	return buf
    635 }
    636 
    637 func traceString(buf *traceBuf, s string) (uint64, *traceBuf) {
    638 	if s == "" {
    639 		return 0, buf
    640 	}
    641 	if id, ok := trace.strings[s]; ok {
    642 		return id, buf
    643 	}
    644 
    645 	trace.stringSeq++
    646 	id := trace.stringSeq
    647 	trace.strings[s] = id
    648 
    649 	size := 1 + 2*traceBytesPerNumber + len(s)
    650 	if len(buf.arr)-buf.pos < size {
    651 		buf = traceFlush(traceBufPtrOf(buf)).ptr()
    652 	}
    653 	buf.byte(traceEvString)
    654 	buf.varint(id)
    655 	buf.varint(uint64(len(s)))
    656 	buf.pos += copy(buf.arr[buf.pos:], s)
    657 	return id, buf
    658 }
    659 
    660 // traceAppend appends v to buf in little-endian-base-128 encoding.
    661 func traceAppend(buf []byte, v uint64) []byte {
    662 	for ; v >= 0x80; v >>= 7 {
    663 		buf = append(buf, 0x80|byte(v))
    664 	}
    665 	buf = append(buf, byte(v))
    666 	return buf
    667 }
    668 
    669 // varint appends v to buf in little-endian-base-128 encoding.
    670 func (buf *traceBuf) varint(v uint64) {
    671 	pos := buf.pos
    672 	for ; v >= 0x80; v >>= 7 {
    673 		buf.arr[pos] = 0x80 | byte(v)
    674 		pos++
    675 	}
    676 	buf.arr[pos] = byte(v)
    677 	pos++
    678 	buf.pos = pos
    679 }
    680 
    681 // byte appends v to buf.
    682 func (buf *traceBuf) byte(v byte) {
    683 	buf.arr[buf.pos] = v
    684 	buf.pos++
    685 }
    686 
    687 // traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids.
    688 // It is lock-free for reading.
    689 type traceStackTable struct {
    690 	lock mutex
    691 	seq  uint32
    692 	mem  traceAlloc
    693 	tab  [1 << 13]traceStackPtr
    694 }
    695 
    696 // traceStack is a single stack in traceStackTable.
    697 type traceStack struct {
    698 	link traceStackPtr
    699 	hash uintptr
    700 	id   uint32
    701 	n    int
    702 	stk  [0]uintptr // real type [n]uintptr
    703 }
    704 
    705 type traceStackPtr uintptr
    706 
    707 func (tp traceStackPtr) ptr() *traceStack { return (*traceStack)(unsafe.Pointer(tp)) }
    708 
    709 // stack returns slice of PCs.
    710 func (ts *traceStack) stack() []uintptr {
    711 	return (*[traceStackSize]uintptr)(unsafe.Pointer(&ts.stk))[:ts.n]
    712 }
    713 
    714 // put returns a unique id for the stack trace pcs and caches it in the table,
    715 // if it sees the trace for the first time.
    716 func (tab *traceStackTable) put(pcs []uintptr) uint32 {
    717 	if len(pcs) == 0 {
    718 		return 0
    719 	}
    720 	hash := memhash(unsafe.Pointer(&pcs[0]), 0, uintptr(len(pcs))*unsafe.Sizeof(pcs[0]))
    721 	// First, search the hashtable w/o the mutex.
    722 	if id := tab.find(pcs, hash); id != 0 {
    723 		return id
    724 	}
    725 	// Now, double check under the mutex.
    726 	lock(&tab.lock)
    727 	if id := tab.find(pcs, hash); id != 0 {
    728 		unlock(&tab.lock)
    729 		return id
    730 	}
    731 	// Create new record.
    732 	tab.seq++
    733 	stk := tab.newStack(len(pcs))
    734 	stk.hash = hash
    735 	stk.id = tab.seq
    736 	stk.n = len(pcs)
    737 	stkpc := stk.stack()
    738 	for i, pc := range pcs {
    739 		stkpc[i] = pc
    740 	}
    741 	part := int(hash % uintptr(len(tab.tab)))
    742 	stk.link = tab.tab[part]
    743 	atomicstorep(unsafe.Pointer(&tab.tab[part]), unsafe.Pointer(stk))
    744 	unlock(&tab.lock)
    745 	return stk.id
    746 }
    747 
    748 // find checks if the stack trace pcs is already present in the table.
    749 func (tab *traceStackTable) find(pcs []uintptr, hash uintptr) uint32 {
    750 	part := int(hash % uintptr(len(tab.tab)))
    751 Search:
    752 	for stk := tab.tab[part].ptr(); stk != nil; stk = stk.link.ptr() {
    753 		if stk.hash == hash && stk.n == len(pcs) {
    754 			for i, stkpc := range stk.stack() {
    755 				if stkpc != pcs[i] {
    756 					continue Search
    757 				}
    758 			}
    759 			return stk.id
    760 		}
    761 	}
    762 	return 0
    763 }
    764 
    765 // newStack allocates a new stack of size n.
    766 func (tab *traceStackTable) newStack(n int) *traceStack {
    767 	return (*traceStack)(tab.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr(n)*sys.PtrSize))
    768 }
    769 
    770 // dump writes all previously cached stacks to trace buffers,
    771 // releases all memory and resets state.
    772 func (tab *traceStackTable) dump() {
    773 	frames := make(map[uintptr]traceFrame)
    774 	var tmp [(2 + 4*traceStackSize) * traceBytesPerNumber]byte
    775 	buf := traceFlush(0).ptr()
    776 	for _, stk := range tab.tab {
    777 		stk := stk.ptr()
    778 		for ; stk != nil; stk = stk.link.ptr() {
    779 			tmpbuf := tmp[:0]
    780 			tmpbuf = traceAppend(tmpbuf, uint64(stk.id))
    781 			tmpbuf = traceAppend(tmpbuf, uint64(stk.n))
    782 			for _, pc := range stk.stack() {
    783 				var frame traceFrame
    784 				frame, buf = traceFrameForPC(buf, frames, pc)
    785 				tmpbuf = traceAppend(tmpbuf, uint64(pc))
    786 				tmpbuf = traceAppend(tmpbuf, uint64(frame.funcID))
    787 				tmpbuf = traceAppend(tmpbuf, uint64(frame.fileID))
    788 				tmpbuf = traceAppend(tmpbuf, uint64(frame.line))
    789 			}
    790 			// Now copy to the buffer.
    791 			size := 1 + traceBytesPerNumber + len(tmpbuf)
    792 			if len(buf.arr)-buf.pos < size {
    793 				buf = traceFlush(traceBufPtrOf(buf)).ptr()
    794 			}
    795 			buf.byte(traceEvStack | 3<<traceArgCountShift)
    796 			buf.varint(uint64(len(tmpbuf)))
    797 			buf.pos += copy(buf.arr[buf.pos:], tmpbuf)
    798 		}
    799 	}
    800 
    801 	lock(&trace.lock)
    802 	traceFullQueue(traceBufPtrOf(buf))
    803 	unlock(&trace.lock)
    804 
    805 	tab.mem.drop()
    806 	*tab = traceStackTable{}
    807 }
    808 
    809 type traceFrame struct {
    810 	funcID uint64
    811 	fileID uint64
    812 	line   uint64
    813 }
    814 
    815 func traceFrameForPC(buf *traceBuf, frames map[uintptr]traceFrame, pc uintptr) (traceFrame, *traceBuf) {
    816 	if frame, ok := frames[pc]; ok {
    817 		return frame, buf
    818 	}
    819 
    820 	var frame traceFrame
    821 	f := findfunc(pc)
    822 	if f == nil {
    823 		frames[pc] = frame
    824 		return frame, buf
    825 	}
    826 
    827 	fn := funcname(f)
    828 	const maxLen = 1 << 10
    829 	if len(fn) > maxLen {
    830 		fn = fn[len(fn)-maxLen:]
    831 	}
    832 	frame.funcID, buf = traceString(buf, fn)
    833 	file, line := funcline(f, pc-sys.PCQuantum)
    834 	frame.line = uint64(line)
    835 	if len(file) > maxLen {
    836 		file = file[len(file)-maxLen:]
    837 	}
    838 	frame.fileID, buf = traceString(buf, file)
    839 	return frame, buf
    840 }
    841 
    842 // traceAlloc is a non-thread-safe region allocator.
    843 // It holds a linked list of traceAllocBlock.
    844 type traceAlloc struct {
    845 	head traceAllocBlockPtr
    846 	off  uintptr
    847 }
    848 
    849 // traceAllocBlock is a block in traceAlloc.
    850 //
    851 // traceAllocBlock is allocated from non-GC'd memory, so it must not
    852 // contain heap pointers. Writes to pointers to traceAllocBlocks do
    853 // not need write barriers.
    854 //
    855 //go:notinheap
    856 type traceAllocBlock struct {
    857 	next traceAllocBlockPtr
    858 	data [64<<10 - sys.PtrSize]byte
    859 }
    860 
    861 // TODO: Since traceAllocBlock is now go:notinheap, this isn't necessary.
    862 type traceAllocBlockPtr uintptr
    863 
    864 func (p traceAllocBlockPtr) ptr() *traceAllocBlock   { return (*traceAllocBlock)(unsafe.Pointer(p)) }
    865 func (p *traceAllocBlockPtr) set(x *traceAllocBlock) { *p = traceAllocBlockPtr(unsafe.Pointer(x)) }
    866 
    867 // alloc allocates n-byte block.
    868 func (a *traceAlloc) alloc(n uintptr) unsafe.Pointer {
    869 	n = round(n, sys.PtrSize)
    870 	if a.head == 0 || a.off+n > uintptr(len(a.head.ptr().data)) {
    871 		if n > uintptr(len(a.head.ptr().data)) {
    872 			throw("trace: alloc too large")
    873 		}
    874 		block := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys))
    875 		if block == nil {
    876 			throw("trace: out of memory")
    877 		}
    878 		block.next.set(a.head.ptr())
    879 		a.head.set(block)
    880 		a.off = 0
    881 	}
    882 	p := &a.head.ptr().data[a.off]
    883 	a.off += n
    884 	return unsafe.Pointer(p)
    885 }
    886 
    887 // drop frees all previously allocated memory and resets the allocator.
    888 func (a *traceAlloc) drop() {
    889 	for a.head != 0 {
    890 		block := a.head.ptr()
    891 		a.head.set(block.next.ptr())
    892 		sysFree(unsafe.Pointer(block), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)
    893 	}
    894 }
    895 
    896 // The following functions write specific events to trace.
    897 
    898 func traceGomaxprocs(procs int32) {
    899 	traceEvent(traceEvGomaxprocs, 1, uint64(procs))
    900 }
    901 
    902 func traceProcStart() {
    903 	traceEvent(traceEvProcStart, -1, uint64(getg().m.id))
    904 }
    905 
    906 func traceProcStop(pp *p) {
    907 	// Sysmon and stopTheWorld can stop Ps blocked in syscalls,
    908 	// to handle this we temporary employ the P.
    909 	mp := acquirem()
    910 	oldp := mp.p
    911 	mp.p.set(pp)
    912 	traceEvent(traceEvProcStop, -1)
    913 	mp.p = oldp
    914 	releasem(mp)
    915 }
    916 
    917 func traceGCStart() {
    918 	traceEvent(traceEvGCStart, 3, trace.seqGC)
    919 	trace.seqGC++
    920 }
    921 
    922 func traceGCDone() {
    923 	traceEvent(traceEvGCDone, -1)
    924 }
    925 
    926 func traceGCScanStart() {
    927 	traceEvent(traceEvGCScanStart, -1)
    928 }
    929 
    930 func traceGCScanDone() {
    931 	traceEvent(traceEvGCScanDone, -1)
    932 }
    933 
    934 func traceGCSweepStart() {
    935 	traceEvent(traceEvGCSweepStart, 1)
    936 }
    937 
    938 func traceGCSweepDone() {
    939 	traceEvent(traceEvGCSweepDone, -1)
    940 }
    941 
    942 func traceGoCreate(newg *g, pc uintptr) {
    943 	newg.traceseq = 0
    944 	newg.tracelastp = getg().m.p
    945 	// +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
    946 	id := trace.stackTab.put([]uintptr{pc + sys.PCQuantum})
    947 	traceEvent(traceEvGoCreate, 2, uint64(newg.goid), uint64(id))
    948 }
    949 
    950 func traceGoStart() {
    951 	_g_ := getg().m.curg
    952 	_p_ := _g_.m.p
    953 	_g_.traceseq++
    954 	if _g_ == _p_.ptr().gcBgMarkWorker.ptr() {
    955 		traceEvent(traceEvGoStartLabel, -1, uint64(_g_.goid), _g_.traceseq, trace.markWorkerLabels[_p_.ptr().gcMarkWorkerMode])
    956 	} else if _g_.tracelastp == _p_ {
    957 		traceEvent(traceEvGoStartLocal, -1, uint64(_g_.goid))
    958 	} else {
    959 		_g_.tracelastp = _p_
    960 		traceEvent(traceEvGoStart, -1, uint64(_g_.goid), _g_.traceseq)
    961 	}
    962 }
    963 
    964 func traceGoEnd() {
    965 	traceEvent(traceEvGoEnd, -1)
    966 }
    967 
    968 func traceGoSched() {
    969 	_g_ := getg()
    970 	_g_.tracelastp = _g_.m.p
    971 	traceEvent(traceEvGoSched, 1)
    972 }
    973 
    974 func traceGoPreempt() {
    975 	_g_ := getg()
    976 	_g_.tracelastp = _g_.m.p
    977 	traceEvent(traceEvGoPreempt, 1)
    978 }
    979 
    980 func traceGoPark(traceEv byte, skip int, gp *g) {
    981 	if traceEv&traceFutileWakeup != 0 {
    982 		traceEvent(traceEvFutileWakeup, -1)
    983 	}
    984 	traceEvent(traceEv & ^traceFutileWakeup, skip)
    985 }
    986 
    987 func traceGoUnpark(gp *g, skip int) {
    988 	_p_ := getg().m.p
    989 	gp.traceseq++
    990 	if gp.tracelastp == _p_ {
    991 		traceEvent(traceEvGoUnblockLocal, skip, uint64(gp.goid))
    992 	} else {
    993 		gp.tracelastp = _p_
    994 		traceEvent(traceEvGoUnblock, skip, uint64(gp.goid), gp.traceseq)
    995 	}
    996 }
    997 
    998 func traceGoSysCall() {
    999 	traceEvent(traceEvGoSysCall, 1)
   1000 }
   1001 
   1002 func traceGoSysExit(ts int64) {
   1003 	if ts != 0 && ts < trace.ticksStart {
   1004 		// There is a race between the code that initializes sysexitticks
   1005 		// (in exitsyscall, which runs without a P, and therefore is not
   1006 		// stopped with the rest of the world) and the code that initializes
   1007 		// a new trace. The recorded sysexitticks must therefore be treated
   1008 		// as "best effort". If they are valid for this trace, then great,
   1009 		// use them for greater accuracy. But if they're not valid for this
   1010 		// trace, assume that the trace was started after the actual syscall
   1011 		// exit (but before we actually managed to start the goroutine,
   1012 		// aka right now), and assign a fresh time stamp to keep the log consistent.
   1013 		ts = 0
   1014 	}
   1015 	_g_ := getg().m.curg
   1016 	_g_.traceseq++
   1017 	_g_.tracelastp = _g_.m.p
   1018 	traceEvent(traceEvGoSysExit, -1, uint64(_g_.goid), _g_.traceseq, uint64(ts)/traceTickDiv)
   1019 }
   1020 
   1021 func traceGoSysBlock(pp *p) {
   1022 	// Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked,
   1023 	// to handle this we temporary employ the P.
   1024 	mp := acquirem()
   1025 	oldp := mp.p
   1026 	mp.p.set(pp)
   1027 	traceEvent(traceEvGoSysBlock, -1)
   1028 	mp.p = oldp
   1029 	releasem(mp)
   1030 }
   1031 
   1032 func traceHeapAlloc() {
   1033 	traceEvent(traceEvHeapAlloc, -1, memstats.heap_live)
   1034 }
   1035 
   1036 func traceNextGC() {
   1037 	if memstats.next_gc == ^uint64(0) {
   1038 		// Heap-based triggering is disabled.
   1039 		traceEvent(traceEvNextGC, -1, 0)
   1040 	} else {
   1041 		traceEvent(traceEvNextGC, -1, memstats.next_gc)
   1042 	}
   1043 }
   1044