Home | History | Annotate | Download | only in flate
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package flate
      6 
      7 import (
      8 	"math"
      9 	"sort"
     10 )
     11 
     12 // hcode is a huffman code with a bit code and bit length.
     13 type hcode struct {
     14 	code, len uint16
     15 }
     16 
     17 type huffmanEncoder struct {
     18 	codes     []hcode
     19 	freqcache []literalNode
     20 	bitCount  [17]int32
     21 	lns       byLiteral // stored to avoid repeated allocation in generate
     22 	lfs       byFreq    // stored to avoid repeated allocation in generate
     23 }
     24 
     25 type literalNode struct {
     26 	literal uint16
     27 	freq    int32
     28 }
     29 
     30 // A levelInfo describes the state of the constructed tree for a given depth.
     31 type levelInfo struct {
     32 	// Our level.  for better printing
     33 	level int32
     34 
     35 	// The frequency of the last node at this level
     36 	lastFreq int32
     37 
     38 	// The frequency of the next character to add to this level
     39 	nextCharFreq int32
     40 
     41 	// The frequency of the next pair (from level below) to add to this level.
     42 	// Only valid if the "needed" value of the next lower level is 0.
     43 	nextPairFreq int32
     44 
     45 	// The number of chains remaining to generate for this level before moving
     46 	// up to the next level
     47 	needed int32
     48 }
     49 
     50 // set sets the code and length of an hcode.
     51 func (h *hcode) set(code uint16, length uint16) {
     52 	h.len = length
     53 	h.code = code
     54 }
     55 
     56 func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
     57 
     58 func newHuffmanEncoder(size int) *huffmanEncoder {
     59 	return &huffmanEncoder{codes: make([]hcode, size)}
     60 }
     61 
     62 // Generates a HuffmanCode corresponding to the fixed literal table
     63 func generateFixedLiteralEncoding() *huffmanEncoder {
     64 	h := newHuffmanEncoder(maxNumLit)
     65 	codes := h.codes
     66 	var ch uint16
     67 	for ch = 0; ch < maxNumLit; ch++ {
     68 		var bits uint16
     69 		var size uint16
     70 		switch {
     71 		case ch < 144:
     72 			// size 8, 000110000  .. 10111111
     73 			bits = ch + 48
     74 			size = 8
     75 			break
     76 		case ch < 256:
     77 			// size 9, 110010000 .. 111111111
     78 			bits = ch + 400 - 144
     79 			size = 9
     80 			break
     81 		case ch < 280:
     82 			// size 7, 0000000 .. 0010111
     83 			bits = ch - 256
     84 			size = 7
     85 			break
     86 		default:
     87 			// size 8, 11000000 .. 11000111
     88 			bits = ch + 192 - 280
     89 			size = 8
     90 		}
     91 		codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
     92 	}
     93 	return h
     94 }
     95 
     96 func generateFixedOffsetEncoding() *huffmanEncoder {
     97 	h := newHuffmanEncoder(30)
     98 	codes := h.codes
     99 	for ch := range codes {
    100 		codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
    101 	}
    102 	return h
    103 }
    104 
    105 var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
    106 var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
    107 
    108 func (h *huffmanEncoder) bitLength(freq []int32) int {
    109 	var total int
    110 	for i, f := range freq {
    111 		if f != 0 {
    112 			total += int(f) * int(h.codes[i].len)
    113 		}
    114 	}
    115 	return total
    116 }
    117 
    118 const maxBitsLimit = 16
    119 
    120 // Return the number of literals assigned to each bit size in the Huffman encoding
    121 //
    122 // This method is only called when list.length >= 3
    123 // The cases of 0, 1, and 2 literals are handled by special case code.
    124 //
    125 // list  An array of the literals with non-zero frequencies
    126 //             and their associated frequencies. The array is in order of increasing
    127 //             frequency, and has as its last element a special element with frequency
    128 //             MaxInt32
    129 // maxBits     The maximum number of bits that should be used to encode any literal.
    130 //             Must be less than 16.
    131 // return      An integer array in which array[i] indicates the number of literals
    132 //             that should be encoded in i bits.
    133 func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
    134 	if maxBits >= maxBitsLimit {
    135 		panic("flate: maxBits too large")
    136 	}
    137 	n := int32(len(list))
    138 	list = list[0 : n+1]
    139 	list[n] = maxNode()
    140 
    141 	// The tree can't have greater depth than n - 1, no matter what. This
    142 	// saves a little bit of work in some small cases
    143 	if maxBits > n-1 {
    144 		maxBits = n - 1
    145 	}
    146 
    147 	// Create information about each of the levels.
    148 	// A bogus "Level 0" whose sole purpose is so that
    149 	// level1.prev.needed==0.  This makes level1.nextPairFreq
    150 	// be a legitimate value that never gets chosen.
    151 	var levels [maxBitsLimit]levelInfo
    152 	// leafCounts[i] counts the number of literals at the left
    153 	// of ancestors of the rightmost node at level i.
    154 	// leafCounts[i][j] is the number of literals at the left
    155 	// of the level j ancestor.
    156 	var leafCounts [maxBitsLimit][maxBitsLimit]int32
    157 
    158 	for level := int32(1); level <= maxBits; level++ {
    159 		// For every level, the first two items are the first two characters.
    160 		// We initialize the levels as if we had already figured this out.
    161 		levels[level] = levelInfo{
    162 			level:        level,
    163 			lastFreq:     list[1].freq,
    164 			nextCharFreq: list[2].freq,
    165 			nextPairFreq: list[0].freq + list[1].freq,
    166 		}
    167 		leafCounts[level][level] = 2
    168 		if level == 1 {
    169 			levels[level].nextPairFreq = math.MaxInt32
    170 		}
    171 	}
    172 
    173 	// We need a total of 2*n - 2 items at top level and have already generated 2.
    174 	levels[maxBits].needed = 2*n - 4
    175 
    176 	level := maxBits
    177 	for {
    178 		l := &levels[level]
    179 		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
    180 			// We've run out of both leafs and pairs.
    181 			// End all calculations for this level.
    182 			// To make sure we never come back to this level or any lower level,
    183 			// set nextPairFreq impossibly large.
    184 			l.needed = 0
    185 			levels[level+1].nextPairFreq = math.MaxInt32
    186 			level++
    187 			continue
    188 		}
    189 
    190 		prevFreq := l.lastFreq
    191 		if l.nextCharFreq < l.nextPairFreq {
    192 			// The next item on this row is a leaf node.
    193 			n := leafCounts[level][level] + 1
    194 			l.lastFreq = l.nextCharFreq
    195 			// Lower leafCounts are the same of the previous node.
    196 			leafCounts[level][level] = n
    197 			l.nextCharFreq = list[n].freq
    198 		} else {
    199 			// The next item on this row is a pair from the previous row.
    200 			// nextPairFreq isn't valid until we generate two
    201 			// more values in the level below
    202 			l.lastFreq = l.nextPairFreq
    203 			// Take leaf counts from the lower level, except counts[level] remains the same.
    204 			copy(leafCounts[level][:level], leafCounts[level-1][:level])
    205 			levels[l.level-1].needed = 2
    206 		}
    207 
    208 		if l.needed--; l.needed == 0 {
    209 			// We've done everything we need to do for this level.
    210 			// Continue calculating one level up. Fill in nextPairFreq
    211 			// of that level with the sum of the two nodes we've just calculated on
    212 			// this level.
    213 			if l.level == maxBits {
    214 				// All done!
    215 				break
    216 			}
    217 			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
    218 			level++
    219 		} else {
    220 			// If we stole from below, move down temporarily to replenish it.
    221 			for levels[level-1].needed > 0 {
    222 				level--
    223 			}
    224 		}
    225 	}
    226 
    227 	// Somethings is wrong if at the end, the top level is null or hasn't used
    228 	// all of the leaves.
    229 	if leafCounts[maxBits][maxBits] != n {
    230 		panic("leafCounts[maxBits][maxBits] != n")
    231 	}
    232 
    233 	bitCount := h.bitCount[:maxBits+1]
    234 	bits := 1
    235 	counts := &leafCounts[maxBits]
    236 	for level := maxBits; level > 0; level-- {
    237 		// chain.leafCount gives the number of literals requiring at least "bits"
    238 		// bits to encode.
    239 		bitCount[bits] = counts[level] - counts[level-1]
    240 		bits++
    241 	}
    242 	return bitCount
    243 }
    244 
    245 // Look at the leaves and assign them a bit count and an encoding as specified
    246 // in RFC 1951 3.2.2
    247 func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
    248 	code := uint16(0)
    249 	for n, bits := range bitCount {
    250 		code <<= 1
    251 		if n == 0 || bits == 0 {
    252 			continue
    253 		}
    254 		// The literals list[len(list)-bits] .. list[len(list)-bits]
    255 		// are encoded using "bits" bits, and get the values
    256 		// code, code + 1, ....  The code values are
    257 		// assigned in literal order (not frequency order).
    258 		chunk := list[len(list)-int(bits):]
    259 
    260 		h.lns.sort(chunk)
    261 		for _, node := range chunk {
    262 			h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
    263 			code++
    264 		}
    265 		list = list[0 : len(list)-int(bits)]
    266 	}
    267 }
    268 
    269 // Update this Huffman Code object to be the minimum code for the specified frequency count.
    270 //
    271 // freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
    272 // maxBits  The maximum number of bits to use for any literal.
    273 func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
    274 	if h.freqcache == nil {
    275 		// Allocate a reusable buffer with the longest possible frequency table.
    276 		// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
    277 		// The largest of these is maxNumLit, so we allocate for that case.
    278 		h.freqcache = make([]literalNode, maxNumLit+1)
    279 	}
    280 	list := h.freqcache[:len(freq)+1]
    281 	// Number of non-zero literals
    282 	count := 0
    283 	// Set list to be the set of all non-zero literals and their frequencies
    284 	for i, f := range freq {
    285 		if f != 0 {
    286 			list[count] = literalNode{uint16(i), f}
    287 			count++
    288 		} else {
    289 			list[count] = literalNode{}
    290 			h.codes[i].len = 0
    291 		}
    292 	}
    293 	list[len(freq)] = literalNode{}
    294 
    295 	list = list[:count]
    296 	if count <= 2 {
    297 		// Handle the small cases here, because they are awkward for the general case code. With
    298 		// two or fewer literals, everything has bit length 1.
    299 		for i, node := range list {
    300 			// "list" is in order of increasing literal value.
    301 			h.codes[node.literal].set(uint16(i), 1)
    302 		}
    303 		return
    304 	}
    305 	h.lfs.sort(list)
    306 
    307 	// Get the number of literals for each bit count
    308 	bitCount := h.bitCounts(list, maxBits)
    309 	// And do the assignment
    310 	h.assignEncodingAndSize(bitCount, list)
    311 }
    312 
    313 type byLiteral []literalNode
    314 
    315 func (s *byLiteral) sort(a []literalNode) {
    316 	*s = byLiteral(a)
    317 	sort.Sort(s)
    318 }
    319 
    320 func (s byLiteral) Len() int { return len(s) }
    321 
    322 func (s byLiteral) Less(i, j int) bool {
    323 	return s[i].literal < s[j].literal
    324 }
    325 
    326 func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
    327 
    328 type byFreq []literalNode
    329 
    330 func (s *byFreq) sort(a []literalNode) {
    331 	*s = byFreq(a)
    332 	sort.Sort(s)
    333 }
    334 
    335 func (s byFreq) Len() int { return len(s) }
    336 
    337 func (s byFreq) Less(i, j int) bool {
    338 	if s[i].freq == s[j].freq {
    339 		return s[i].literal < s[j].literal
    340 	}
    341 	return s[i].freq < s[j].freq
    342 }
    343 
    344 func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
    345