Home | History | Annotate | Download | only in big
      1 // Copyright 2015 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // This file implements nat-to-string conversion functions.
      6 
      7 package big
      8 
      9 import (
     10 	"errors"
     11 	"fmt"
     12 	"io"
     13 	"math"
     14 	"sync"
     15 )
     16 
     17 const digits = "0123456789abcdefghijklmnopqrstuvwxyz"
     18 
     19 // Note: MaxBase = len(digits), but it must remain a rune constant
     20 //       for API compatibility.
     21 
     22 // MaxBase is the largest number base accepted for string conversions.
     23 const MaxBase = 'z' - 'a' + 10 + 1
     24 
     25 // maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M.
     26 // For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word.
     27 // In other words, at most n digits in base b fit into a Word.
     28 // TODO(gri) replace this with a table, generated at build time.
     29 func maxPow(b Word) (p Word, n int) {
     30 	p, n = b, 1 // assuming b <= _M
     31 	for max := _M / b; p <= max; {
     32 		// p == b**n && p <= max
     33 		p *= b
     34 		n++
     35 	}
     36 	// p == b**n && p <= _M
     37 	return
     38 }
     39 
     40 // pow returns x**n for n > 0, and 1 otherwise.
     41 func pow(x Word, n int) (p Word) {
     42 	// n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1
     43 	// thus x**n == product of x**(2**i) for all i where bi == 1
     44 	// (Russian Peasant Method for exponentiation)
     45 	p = 1
     46 	for n > 0 {
     47 		if n&1 != 0 {
     48 			p *= x
     49 		}
     50 		x *= x
     51 		n >>= 1
     52 	}
     53 	return
     54 }
     55 
     56 // scan scans the number corresponding to the longest possible prefix
     57 // from r representing an unsigned number in a given conversion base.
     58 // It returns the corresponding natural number res, the actual base b,
     59 // a digit count, and a read or syntax error err, if any.
     60 //
     61 //	number   = [ prefix ] mantissa .
     62 //	prefix   = "0" [ "x" | "X" | "b" | "B" ] .
     63 //      mantissa = digits | digits "." [ digits ] | "." digits .
     64 //	digits   = digit { digit } .
     65 //	digit    = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
     66 //
     67 // Unless fracOk is set, the base argument must be 0 or a value between
     68 // 2 and MaxBase. If fracOk is set, the base argument must be one of
     69 // 0, 2, 10, or 16. Providing an invalid base argument leads to a run-
     70 // time panic.
     71 //
     72 // For base 0, the number prefix determines the actual base: A prefix of
     73 // ``0x'' or ``0X'' selects base 16; if fracOk is not set, the ``0'' prefix
     74 // selects base 8, and a ``0b'' or ``0B'' prefix selects base 2. Otherwise
     75 // the selected base is 10 and no prefix is accepted.
     76 //
     77 // If fracOk is set, an octal prefix is ignored (a leading ``0'' simply
     78 // stands for a zero digit), and a period followed by a fractional part
     79 // is permitted. The result value is computed as if there were no period
     80 // present; and the count value is used to determine the fractional part.
     81 //
     82 // A result digit count > 0 corresponds to the number of (non-prefix) digits
     83 // parsed. A digit count <= 0 indicates the presence of a period (if fracOk
     84 // is set, only), and -count is the number of fractional digits found.
     85 // In this case, the actual value of the scanned number is res * b**count.
     86 //
     87 func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) {
     88 	// reject illegal bases
     89 	baseOk := base == 0 ||
     90 		!fracOk && 2 <= base && base <= MaxBase ||
     91 		fracOk && (base == 2 || base == 10 || base == 16)
     92 	if !baseOk {
     93 		panic(fmt.Sprintf("illegal number base %d", base))
     94 	}
     95 
     96 	// one char look-ahead
     97 	ch, err := r.ReadByte()
     98 	if err != nil {
     99 		return
    100 	}
    101 
    102 	// determine actual base
    103 	b = base
    104 	if base == 0 {
    105 		// actual base is 10 unless there's a base prefix
    106 		b = 10
    107 		if ch == '0' {
    108 			count = 1
    109 			switch ch, err = r.ReadByte(); err {
    110 			case nil:
    111 				// possibly one of 0x, 0X, 0b, 0B
    112 				if !fracOk {
    113 					b = 8
    114 				}
    115 				switch ch {
    116 				case 'x', 'X':
    117 					b = 16
    118 				case 'b', 'B':
    119 					b = 2
    120 				}
    121 				switch b {
    122 				case 16, 2:
    123 					count = 0 // prefix is not counted
    124 					if ch, err = r.ReadByte(); err != nil {
    125 						// io.EOF is also an error in this case
    126 						return
    127 					}
    128 				case 8:
    129 					count = 0 // prefix is not counted
    130 				}
    131 			case io.EOF:
    132 				// input is "0"
    133 				res = z[:0]
    134 				err = nil
    135 				return
    136 			default:
    137 				// read error
    138 				return
    139 			}
    140 		}
    141 	}
    142 
    143 	// convert string
    144 	// Algorithm: Collect digits in groups of at most n digits in di
    145 	// and then use mulAddWW for every such group to add them to the
    146 	// result.
    147 	z = z[:0]
    148 	b1 := Word(b)
    149 	bn, n := maxPow(b1) // at most n digits in base b1 fit into Word
    150 	di := Word(0)       // 0 <= di < b1**i < bn
    151 	i := 0              // 0 <= i < n
    152 	dp := -1            // position of decimal point
    153 	for {
    154 		if fracOk && ch == '.' {
    155 			fracOk = false
    156 			dp = count
    157 			// advance
    158 			if ch, err = r.ReadByte(); err != nil {
    159 				if err == io.EOF {
    160 					err = nil
    161 					break
    162 				}
    163 				return
    164 			}
    165 		}
    166 
    167 		// convert rune into digit value d1
    168 		var d1 Word
    169 		switch {
    170 		case '0' <= ch && ch <= '9':
    171 			d1 = Word(ch - '0')
    172 		case 'a' <= ch && ch <= 'z':
    173 			d1 = Word(ch - 'a' + 10)
    174 		case 'A' <= ch && ch <= 'Z':
    175 			d1 = Word(ch - 'A' + 10)
    176 		default:
    177 			d1 = MaxBase + 1
    178 		}
    179 		if d1 >= b1 {
    180 			r.UnreadByte() // ch does not belong to number anymore
    181 			break
    182 		}
    183 		count++
    184 
    185 		// collect d1 in di
    186 		di = di*b1 + d1
    187 		i++
    188 
    189 		// if di is "full", add it to the result
    190 		if i == n {
    191 			z = z.mulAddWW(z, bn, di)
    192 			di = 0
    193 			i = 0
    194 		}
    195 
    196 		// advance
    197 		if ch, err = r.ReadByte(); err != nil {
    198 			if err == io.EOF {
    199 				err = nil
    200 				break
    201 			}
    202 			return
    203 		}
    204 	}
    205 
    206 	if count == 0 {
    207 		// no digits found
    208 		switch {
    209 		case base == 0 && b == 8:
    210 			// there was only the octal prefix 0 (possibly followed by digits > 7);
    211 			// count as one digit and return base 10, not 8
    212 			count = 1
    213 			b = 10
    214 		case base != 0 || b != 8:
    215 			// there was neither a mantissa digit nor the octal prefix 0
    216 			err = errors.New("syntax error scanning number")
    217 		}
    218 		return
    219 	}
    220 	// count > 0
    221 
    222 	// add remaining digits to result
    223 	if i > 0 {
    224 		z = z.mulAddWW(z, pow(b1, i), di)
    225 	}
    226 	res = z.norm()
    227 
    228 	// adjust for fraction, if any
    229 	if dp >= 0 {
    230 		// 0 <= dp <= count > 0
    231 		count = dp - count
    232 	}
    233 
    234 	return
    235 }
    236 
    237 // utoa converts x to an ASCII representation in the given base;
    238 // base must be between 2 and MaxBase, inclusive.
    239 func (x nat) utoa(base int) []byte {
    240 	return x.itoa(false, base)
    241 }
    242 
    243 // itoa is like utoa but it prepends a '-' if neg && x != 0.
    244 func (x nat) itoa(neg bool, base int) []byte {
    245 	if base < 2 || base > MaxBase {
    246 		panic("invalid base")
    247 	}
    248 
    249 	// x == 0
    250 	if len(x) == 0 {
    251 		return []byte("0")
    252 	}
    253 	// len(x) > 0
    254 
    255 	// allocate buffer for conversion
    256 	i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most
    257 	if neg {
    258 		i++
    259 	}
    260 	s := make([]byte, i)
    261 
    262 	// convert power of two and non power of two bases separately
    263 	if b := Word(base); b == b&-b {
    264 		// shift is base b digit size in bits
    265 		shift := trailingZeroBits(b) // shift > 0 because b >= 2
    266 		mask := Word(1<<shift - 1)
    267 		w := x[0]         // current word
    268 		nbits := uint(_W) // number of unprocessed bits in w
    269 
    270 		// convert less-significant words (include leading zeros)
    271 		for k := 1; k < len(x); k++ {
    272 			// convert full digits
    273 			for nbits >= shift {
    274 				i--
    275 				s[i] = digits[w&mask]
    276 				w >>= shift
    277 				nbits -= shift
    278 			}
    279 
    280 			// convert any partial leading digit and advance to next word
    281 			if nbits == 0 {
    282 				// no partial digit remaining, just advance
    283 				w = x[k]
    284 				nbits = _W
    285 			} else {
    286 				// partial digit in current word w (== x[k-1]) and next word x[k]
    287 				w |= x[k] << nbits
    288 				i--
    289 				s[i] = digits[w&mask]
    290 
    291 				// advance
    292 				w = x[k] >> (shift - nbits)
    293 				nbits = _W - (shift - nbits)
    294 			}
    295 		}
    296 
    297 		// convert digits of most-significant word w (omit leading zeros)
    298 		for w != 0 {
    299 			i--
    300 			s[i] = digits[w&mask]
    301 			w >>= shift
    302 		}
    303 
    304 	} else {
    305 		bb, ndigits := maxPow(b)
    306 
    307 		// construct table of successive squares of bb*leafSize to use in subdivisions
    308 		// result (table != nil) <=> (len(x) > leafSize > 0)
    309 		table := divisors(len(x), b, ndigits, bb)
    310 
    311 		// preserve x, create local copy for use by convertWords
    312 		q := nat(nil).set(x)
    313 
    314 		// convert q to string s in base b
    315 		q.convertWords(s, b, ndigits, bb, table)
    316 
    317 		// strip leading zeros
    318 		// (x != 0; thus s must contain at least one non-zero digit
    319 		// and the loop will terminate)
    320 		i = 0
    321 		for s[i] == '0' {
    322 			i++
    323 		}
    324 	}
    325 
    326 	if neg {
    327 		i--
    328 		s[i] = '-'
    329 	}
    330 
    331 	return s[i:]
    332 }
    333 
    334 // Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
    335 // by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
    336 // repeated nat/Word division.
    337 //
    338 // The iterative method processes n Words by n divW() calls, each of which visits every Word in the
    339 // incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
    340 // Recursive conversion divides q by its approximate square root, yielding two parts, each half
    341 // the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
    342 // plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
    343 // is made better by splitting the subblocks recursively. Best is to split blocks until one more
    344 // split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
    345 // iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
    346 // range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
    347 // ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
    348 // specific hardware.
    349 //
    350 func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) {
    351 	// split larger blocks recursively
    352 	if table != nil {
    353 		// len(q) > leafSize > 0
    354 		var r nat
    355 		index := len(table) - 1
    356 		for len(q) > leafSize {
    357 			// find divisor close to sqrt(q) if possible, but in any case < q
    358 			maxLength := q.bitLen()     // ~= log2 q, or at of least largest possible q of this bit length
    359 			minLength := maxLength >> 1 // ~= log2 sqrt(q)
    360 			for index > 0 && table[index-1].nbits > minLength {
    361 				index-- // desired
    362 			}
    363 			if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {
    364 				index--
    365 				if index < 0 {
    366 					panic("internal inconsistency")
    367 				}
    368 			}
    369 
    370 			// split q into the two digit number (q'*bbb + r) to form independent subblocks
    371 			q, r = q.div(r, q, table[index].bbb)
    372 
    373 			// convert subblocks and collect results in s[:h] and s[h:]
    374 			h := len(s) - table[index].ndigits
    375 			r.convertWords(s[h:], b, ndigits, bb, table[0:index])
    376 			s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1])
    377 		}
    378 	}
    379 
    380 	// having split any large blocks now process the remaining (small) block iteratively
    381 	i := len(s)
    382 	var r Word
    383 	if b == 10 {
    384 		// hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
    385 		for len(q) > 0 {
    386 			// extract least significant, base bb "digit"
    387 			q, r = q.divW(q, bb)
    388 			for j := 0; j < ndigits && i > 0; j++ {
    389 				i--
    390 				// avoid % computation since r%10 == r - int(r/10)*10;
    391 				// this appears to be faster for BenchmarkString10000Base10
    392 				// and smaller strings (but a bit slower for larger ones)
    393 				t := r / 10
    394 				s[i] = '0' + byte(r-t*10)
    395 				r = t
    396 			}
    397 		}
    398 	} else {
    399 		for len(q) > 0 {
    400 			// extract least significant, base bb "digit"
    401 			q, r = q.divW(q, bb)
    402 			for j := 0; j < ndigits && i > 0; j++ {
    403 				i--
    404 				s[i] = digits[r%b]
    405 				r /= b
    406 			}
    407 		}
    408 	}
    409 
    410 	// prepend high-order zeros
    411 	for i > 0 { // while need more leading zeros
    412 		i--
    413 		s[i] = '0'
    414 	}
    415 }
    416 
    417 // Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
    418 // Benchmark and configure leafSize using: go test -bench="Leaf"
    419 //   8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
    420 //   8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
    421 var leafSize int = 8 // number of Word-size binary values treat as a monolithic block
    422 
    423 type divisor struct {
    424 	bbb     nat // divisor
    425 	nbits   int // bit length of divisor (discounting leading zeros) ~= log2(bbb)
    426 	ndigits int // digit length of divisor in terms of output base digits
    427 }
    428 
    429 var cacheBase10 struct {
    430 	sync.Mutex
    431 	table [64]divisor // cached divisors for base 10
    432 }
    433 
    434 // expWW computes x**y
    435 func (z nat) expWW(x, y Word) nat {
    436 	return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
    437 }
    438 
    439 // construct table of powers of bb*leafSize to use in subdivisions
    440 func divisors(m int, b Word, ndigits int, bb Word) []divisor {
    441 	// only compute table when recursive conversion is enabled and x is large
    442 	if leafSize == 0 || m <= leafSize {
    443 		return nil
    444 	}
    445 
    446 	// determine k where (bb**leafSize)**(2**k) >= sqrt(x)
    447 	k := 1
    448 	for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 {
    449 		k++
    450 	}
    451 
    452 	// reuse and extend existing table of divisors or create new table as appropriate
    453 	var table []divisor // for b == 10, table overlaps with cacheBase10.table
    454 	if b == 10 {
    455 		cacheBase10.Lock()
    456 		table = cacheBase10.table[0:k] // reuse old table for this conversion
    457 	} else {
    458 		table = make([]divisor, k) // create new table for this conversion
    459 	}
    460 
    461 	// extend table
    462 	if table[k-1].ndigits == 0 {
    463 		// add new entries as needed
    464 		var larger nat
    465 		for i := 0; i < k; i++ {
    466 			if table[i].ndigits == 0 {
    467 				if i == 0 {
    468 					table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
    469 					table[0].ndigits = ndigits * leafSize
    470 				} else {
    471 					table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb)
    472 					table[i].ndigits = 2 * table[i-1].ndigits
    473 				}
    474 
    475 				// optimization: exploit aggregated extra bits in macro blocks
    476 				larger = nat(nil).set(table[i].bbb)
    477 				for mulAddVWW(larger, larger, b, 0) == 0 {
    478 					table[i].bbb = table[i].bbb.set(larger)
    479 					table[i].ndigits++
    480 				}
    481 
    482 				table[i].nbits = table[i].bbb.bitLen()
    483 			}
    484 		}
    485 	}
    486 
    487 	if b == 10 {
    488 		cacheBase10.Unlock()
    489 	}
    490 
    491 	return table
    492 }
    493