Home | History | Annotate | Download | only in syntax
      1 // Copyright 2011 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 package syntax
      6 
      7 // Simplify returns a regexp equivalent to re but without counted repetitions
      8 // and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
      9 // The resulting regexp will execute correctly but its string representation
     10 // will not produce the same parse tree, because capturing parentheses
     11 // may have been duplicated or removed. For example, the simplified form
     12 // for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
     13 // The returned regexp may share structure with or be the original.
     14 func (re *Regexp) Simplify() *Regexp {
     15 	if re == nil {
     16 		return nil
     17 	}
     18 	switch re.Op {
     19 	case OpCapture, OpConcat, OpAlternate:
     20 		// Simplify children, building new Regexp if children change.
     21 		nre := re
     22 		for i, sub := range re.Sub {
     23 			nsub := sub.Simplify()
     24 			if nre == re && nsub != sub {
     25 				// Start a copy.
     26 				nre = new(Regexp)
     27 				*nre = *re
     28 				nre.Rune = nil
     29 				nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...)
     30 			}
     31 			if nre != re {
     32 				nre.Sub = append(nre.Sub, nsub)
     33 			}
     34 		}
     35 		return nre
     36 
     37 	case OpStar, OpPlus, OpQuest:
     38 		sub := re.Sub[0].Simplify()
     39 		return simplify1(re.Op, re.Flags, sub, re)
     40 
     41 	case OpRepeat:
     42 		// Special special case: x{0} matches the empty string
     43 		// and doesn't even need to consider x.
     44 		if re.Min == 0 && re.Max == 0 {
     45 			return &Regexp{Op: OpEmptyMatch}
     46 		}
     47 
     48 		// The fun begins.
     49 		sub := re.Sub[0].Simplify()
     50 
     51 		// x{n,} means at least n matches of x.
     52 		if re.Max == -1 {
     53 			// Special case: x{0,} is x*.
     54 			if re.Min == 0 {
     55 				return simplify1(OpStar, re.Flags, sub, nil)
     56 			}
     57 
     58 			// Special case: x{1,} is x+.
     59 			if re.Min == 1 {
     60 				return simplify1(OpPlus, re.Flags, sub, nil)
     61 			}
     62 
     63 			// General case: x{4,} is xxxx+.
     64 			nre := &Regexp{Op: OpConcat}
     65 			nre.Sub = nre.Sub0[:0]
     66 			for i := 0; i < re.Min-1; i++ {
     67 				nre.Sub = append(nre.Sub, sub)
     68 			}
     69 			nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil))
     70 			return nre
     71 		}
     72 
     73 		// Special case x{0} handled above.
     74 
     75 		// Special case: x{1} is just x.
     76 		if re.Min == 1 && re.Max == 1 {
     77 			return sub
     78 		}
     79 
     80 		// General case: x{n,m} means n copies of x and m copies of x?
     81 		// The machine will do less work if we nest the final m copies,
     82 		// so that x{2,5} = xx(x(x(x)?)?)?
     83 
     84 		// Build leading prefix: xx.
     85 		var prefix *Regexp
     86 		if re.Min > 0 {
     87 			prefix = &Regexp{Op: OpConcat}
     88 			prefix.Sub = prefix.Sub0[:0]
     89 			for i := 0; i < re.Min; i++ {
     90 				prefix.Sub = append(prefix.Sub, sub)
     91 			}
     92 		}
     93 
     94 		// Build and attach suffix: (x(x(x)?)?)?
     95 		if re.Max > re.Min {
     96 			suffix := simplify1(OpQuest, re.Flags, sub, nil)
     97 			for i := re.Min + 1; i < re.Max; i++ {
     98 				nre2 := &Regexp{Op: OpConcat}
     99 				nre2.Sub = append(nre2.Sub0[:0], sub, suffix)
    100 				suffix = simplify1(OpQuest, re.Flags, nre2, nil)
    101 			}
    102 			if prefix == nil {
    103 				return suffix
    104 			}
    105 			prefix.Sub = append(prefix.Sub, suffix)
    106 		}
    107 		if prefix != nil {
    108 			return prefix
    109 		}
    110 
    111 		// Some degenerate case like min > max or min < max < 0.
    112 		// Handle as impossible match.
    113 		return &Regexp{Op: OpNoMatch}
    114 	}
    115 
    116 	return re
    117 }
    118 
    119 // simplify1 implements Simplify for the unary OpStar,
    120 // OpPlus, and OpQuest operators. It returns the simple regexp
    121 // equivalent to
    122 //
    123 //	Regexp{Op: op, Flags: flags, Sub: {sub}}
    124 //
    125 // under the assumption that sub is already simple, and
    126 // without first allocating that structure. If the regexp
    127 // to be returned turns out to be equivalent to re, simplify1
    128 // returns re instead.
    129 //
    130 // simplify1 is factored out of Simplify because the implementation
    131 // for other operators generates these unary expressions.
    132 // Letting them call simplify1 makes sure the expressions they
    133 // generate are simple.
    134 func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp {
    135 	// Special case: repeat the empty string as much as
    136 	// you want, but it's still the empty string.
    137 	if sub.Op == OpEmptyMatch {
    138 		return sub
    139 	}
    140 	// The operators are idempotent if the flags match.
    141 	if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy {
    142 		return sub
    143 	}
    144 	if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] {
    145 		return re
    146 	}
    147 
    148 	re = &Regexp{Op: op, Flags: flags}
    149 	re.Sub = append(re.Sub0[:0], sub)
    150 	return re
    151 }
    152