1 /* Motorola 68k series support for 32-bit ELF 2 Copyright (C) 1993-2014 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 #include "bfdlink.h" 24 #include "libbfd.h" 25 #include "elf-bfd.h" 26 #include "elf/m68k.h" 27 #include "opcode/m68k.h" 28 29 static bfd_boolean 30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *); 31 32 static reloc_howto_type howto_table[] = 33 { 34 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE), 35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE), 36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE), 37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE), 38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE), 39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE), 40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE), 41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE), 42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE), 43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE), 44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE), 45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE), 46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE), 47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE), 48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE), 49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE), 50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE), 51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE), 52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE), 53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE), 54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE), 55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE), 56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE), 57 /* GNU extension to record C++ vtable hierarchy. */ 58 HOWTO (R_68K_GNU_VTINHERIT, /* type */ 59 0, /* rightshift */ 60 2, /* size (0 = byte, 1 = short, 2 = long) */ 61 0, /* bitsize */ 62 FALSE, /* pc_relative */ 63 0, /* bitpos */ 64 complain_overflow_dont, /* complain_on_overflow */ 65 NULL, /* special_function */ 66 "R_68K_GNU_VTINHERIT", /* name */ 67 FALSE, /* partial_inplace */ 68 0, /* src_mask */ 69 0, /* dst_mask */ 70 FALSE), 71 /* GNU extension to record C++ vtable member usage. */ 72 HOWTO (R_68K_GNU_VTENTRY, /* type */ 73 0, /* rightshift */ 74 2, /* size (0 = byte, 1 = short, 2 = long) */ 75 0, /* bitsize */ 76 FALSE, /* pc_relative */ 77 0, /* bitpos */ 78 complain_overflow_dont, /* complain_on_overflow */ 79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 80 "R_68K_GNU_VTENTRY", /* name */ 81 FALSE, /* partial_inplace */ 82 0, /* src_mask */ 83 0, /* dst_mask */ 84 FALSE), 85 86 /* TLS general dynamic variable reference. */ 87 HOWTO (R_68K_TLS_GD32, /* type */ 88 0, /* rightshift */ 89 2, /* size (0 = byte, 1 = short, 2 = long) */ 90 32, /* bitsize */ 91 FALSE, /* pc_relative */ 92 0, /* bitpos */ 93 complain_overflow_bitfield, /* complain_on_overflow */ 94 bfd_elf_generic_reloc, /* special_function */ 95 "R_68K_TLS_GD32", /* name */ 96 FALSE, /* partial_inplace */ 97 0, /* src_mask */ 98 0xffffffff, /* dst_mask */ 99 FALSE), /* pcrel_offset */ 100 101 HOWTO (R_68K_TLS_GD16, /* type */ 102 0, /* rightshift */ 103 1, /* size (0 = byte, 1 = short, 2 = long) */ 104 16, /* bitsize */ 105 FALSE, /* pc_relative */ 106 0, /* bitpos */ 107 complain_overflow_signed, /* complain_on_overflow */ 108 bfd_elf_generic_reloc, /* special_function */ 109 "R_68K_TLS_GD16", /* name */ 110 FALSE, /* partial_inplace */ 111 0, /* src_mask */ 112 0x0000ffff, /* dst_mask */ 113 FALSE), /* pcrel_offset */ 114 115 HOWTO (R_68K_TLS_GD8, /* type */ 116 0, /* rightshift */ 117 0, /* size (0 = byte, 1 = short, 2 = long) */ 118 8, /* bitsize */ 119 FALSE, /* pc_relative */ 120 0, /* bitpos */ 121 complain_overflow_signed, /* complain_on_overflow */ 122 bfd_elf_generic_reloc, /* special_function */ 123 "R_68K_TLS_GD8", /* name */ 124 FALSE, /* partial_inplace */ 125 0, /* src_mask */ 126 0x000000ff, /* dst_mask */ 127 FALSE), /* pcrel_offset */ 128 129 /* TLS local dynamic variable reference. */ 130 HOWTO (R_68K_TLS_LDM32, /* type */ 131 0, /* rightshift */ 132 2, /* size (0 = byte, 1 = short, 2 = long) */ 133 32, /* bitsize */ 134 FALSE, /* pc_relative */ 135 0, /* bitpos */ 136 complain_overflow_bitfield, /* complain_on_overflow */ 137 bfd_elf_generic_reloc, /* special_function */ 138 "R_68K_TLS_LDM32", /* name */ 139 FALSE, /* partial_inplace */ 140 0, /* src_mask */ 141 0xffffffff, /* dst_mask */ 142 FALSE), /* pcrel_offset */ 143 144 HOWTO (R_68K_TLS_LDM16, /* type */ 145 0, /* rightshift */ 146 1, /* size (0 = byte, 1 = short, 2 = long) */ 147 16, /* bitsize */ 148 FALSE, /* pc_relative */ 149 0, /* bitpos */ 150 complain_overflow_signed, /* complain_on_overflow */ 151 bfd_elf_generic_reloc, /* special_function */ 152 "R_68K_TLS_LDM16", /* name */ 153 FALSE, /* partial_inplace */ 154 0, /* src_mask */ 155 0x0000ffff, /* dst_mask */ 156 FALSE), /* pcrel_offset */ 157 158 HOWTO (R_68K_TLS_LDM8, /* type */ 159 0, /* rightshift */ 160 0, /* size (0 = byte, 1 = short, 2 = long) */ 161 8, /* bitsize */ 162 FALSE, /* pc_relative */ 163 0, /* bitpos */ 164 complain_overflow_signed, /* complain_on_overflow */ 165 bfd_elf_generic_reloc, /* special_function */ 166 "R_68K_TLS_LDM8", /* name */ 167 FALSE, /* partial_inplace */ 168 0, /* src_mask */ 169 0x000000ff, /* dst_mask */ 170 FALSE), /* pcrel_offset */ 171 172 HOWTO (R_68K_TLS_LDO32, /* type */ 173 0, /* rightshift */ 174 2, /* size (0 = byte, 1 = short, 2 = long) */ 175 32, /* bitsize */ 176 FALSE, /* pc_relative */ 177 0, /* bitpos */ 178 complain_overflow_bitfield, /* complain_on_overflow */ 179 bfd_elf_generic_reloc, /* special_function */ 180 "R_68K_TLS_LDO32", /* name */ 181 FALSE, /* partial_inplace */ 182 0, /* src_mask */ 183 0xffffffff, /* dst_mask */ 184 FALSE), /* pcrel_offset */ 185 186 HOWTO (R_68K_TLS_LDO16, /* type */ 187 0, /* rightshift */ 188 1, /* size (0 = byte, 1 = short, 2 = long) */ 189 16, /* bitsize */ 190 FALSE, /* pc_relative */ 191 0, /* bitpos */ 192 complain_overflow_signed, /* complain_on_overflow */ 193 bfd_elf_generic_reloc, /* special_function */ 194 "R_68K_TLS_LDO16", /* name */ 195 FALSE, /* partial_inplace */ 196 0, /* src_mask */ 197 0x0000ffff, /* dst_mask */ 198 FALSE), /* pcrel_offset */ 199 200 HOWTO (R_68K_TLS_LDO8, /* type */ 201 0, /* rightshift */ 202 0, /* size (0 = byte, 1 = short, 2 = long) */ 203 8, /* bitsize */ 204 FALSE, /* pc_relative */ 205 0, /* bitpos */ 206 complain_overflow_signed, /* complain_on_overflow */ 207 bfd_elf_generic_reloc, /* special_function */ 208 "R_68K_TLS_LDO8", /* name */ 209 FALSE, /* partial_inplace */ 210 0, /* src_mask */ 211 0x000000ff, /* dst_mask */ 212 FALSE), /* pcrel_offset */ 213 214 /* TLS initial execution variable reference. */ 215 HOWTO (R_68K_TLS_IE32, /* type */ 216 0, /* rightshift */ 217 2, /* size (0 = byte, 1 = short, 2 = long) */ 218 32, /* bitsize */ 219 FALSE, /* pc_relative */ 220 0, /* bitpos */ 221 complain_overflow_bitfield, /* complain_on_overflow */ 222 bfd_elf_generic_reloc, /* special_function */ 223 "R_68K_TLS_IE32", /* name */ 224 FALSE, /* partial_inplace */ 225 0, /* src_mask */ 226 0xffffffff, /* dst_mask */ 227 FALSE), /* pcrel_offset */ 228 229 HOWTO (R_68K_TLS_IE16, /* type */ 230 0, /* rightshift */ 231 1, /* size (0 = byte, 1 = short, 2 = long) */ 232 16, /* bitsize */ 233 FALSE, /* pc_relative */ 234 0, /* bitpos */ 235 complain_overflow_signed, /* complain_on_overflow */ 236 bfd_elf_generic_reloc, /* special_function */ 237 "R_68K_TLS_IE16", /* name */ 238 FALSE, /* partial_inplace */ 239 0, /* src_mask */ 240 0x0000ffff, /* dst_mask */ 241 FALSE), /* pcrel_offset */ 242 243 HOWTO (R_68K_TLS_IE8, /* type */ 244 0, /* rightshift */ 245 0, /* size (0 = byte, 1 = short, 2 = long) */ 246 8, /* bitsize */ 247 FALSE, /* pc_relative */ 248 0, /* bitpos */ 249 complain_overflow_signed, /* complain_on_overflow */ 250 bfd_elf_generic_reloc, /* special_function */ 251 "R_68K_TLS_IE8", /* name */ 252 FALSE, /* partial_inplace */ 253 0, /* src_mask */ 254 0x000000ff, /* dst_mask */ 255 FALSE), /* pcrel_offset */ 256 257 /* TLS local execution variable reference. */ 258 HOWTO (R_68K_TLS_LE32, /* type */ 259 0, /* rightshift */ 260 2, /* size (0 = byte, 1 = short, 2 = long) */ 261 32, /* bitsize */ 262 FALSE, /* pc_relative */ 263 0, /* bitpos */ 264 complain_overflow_bitfield, /* complain_on_overflow */ 265 bfd_elf_generic_reloc, /* special_function */ 266 "R_68K_TLS_LE32", /* name */ 267 FALSE, /* partial_inplace */ 268 0, /* src_mask */ 269 0xffffffff, /* dst_mask */ 270 FALSE), /* pcrel_offset */ 271 272 HOWTO (R_68K_TLS_LE16, /* type */ 273 0, /* rightshift */ 274 1, /* size (0 = byte, 1 = short, 2 = long) */ 275 16, /* bitsize */ 276 FALSE, /* pc_relative */ 277 0, /* bitpos */ 278 complain_overflow_signed, /* complain_on_overflow */ 279 bfd_elf_generic_reloc, /* special_function */ 280 "R_68K_TLS_LE16", /* name */ 281 FALSE, /* partial_inplace */ 282 0, /* src_mask */ 283 0x0000ffff, /* dst_mask */ 284 FALSE), /* pcrel_offset */ 285 286 HOWTO (R_68K_TLS_LE8, /* type */ 287 0, /* rightshift */ 288 0, /* size (0 = byte, 1 = short, 2 = long) */ 289 8, /* bitsize */ 290 FALSE, /* pc_relative */ 291 0, /* bitpos */ 292 complain_overflow_signed, /* complain_on_overflow */ 293 bfd_elf_generic_reloc, /* special_function */ 294 "R_68K_TLS_LE8", /* name */ 295 FALSE, /* partial_inplace */ 296 0, /* src_mask */ 297 0x000000ff, /* dst_mask */ 298 FALSE), /* pcrel_offset */ 299 300 /* TLS GD/LD dynamic relocations. */ 301 HOWTO (R_68K_TLS_DTPMOD32, /* type */ 302 0, /* rightshift */ 303 2, /* size (0 = byte, 1 = short, 2 = long) */ 304 32, /* bitsize */ 305 FALSE, /* pc_relative */ 306 0, /* bitpos */ 307 complain_overflow_dont, /* complain_on_overflow */ 308 bfd_elf_generic_reloc, /* special_function */ 309 "R_68K_TLS_DTPMOD32", /* name */ 310 FALSE, /* partial_inplace */ 311 0, /* src_mask */ 312 0xffffffff, /* dst_mask */ 313 FALSE), /* pcrel_offset */ 314 315 HOWTO (R_68K_TLS_DTPREL32, /* type */ 316 0, /* rightshift */ 317 2, /* size (0 = byte, 1 = short, 2 = long) */ 318 32, /* bitsize */ 319 FALSE, /* pc_relative */ 320 0, /* bitpos */ 321 complain_overflow_dont, /* complain_on_overflow */ 322 bfd_elf_generic_reloc, /* special_function */ 323 "R_68K_TLS_DTPREL32", /* name */ 324 FALSE, /* partial_inplace */ 325 0, /* src_mask */ 326 0xffffffff, /* dst_mask */ 327 FALSE), /* pcrel_offset */ 328 329 HOWTO (R_68K_TLS_TPREL32, /* type */ 330 0, /* rightshift */ 331 2, /* size (0 = byte, 1 = short, 2 = long) */ 332 32, /* bitsize */ 333 FALSE, /* pc_relative */ 334 0, /* bitpos */ 335 complain_overflow_dont, /* complain_on_overflow */ 336 bfd_elf_generic_reloc, /* special_function */ 337 "R_68K_TLS_TPREL32", /* name */ 338 FALSE, /* partial_inplace */ 339 0, /* src_mask */ 340 0xffffffff, /* dst_mask */ 341 FALSE), /* pcrel_offset */ 342 }; 343 344 static void 345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst) 346 { 347 unsigned int indx = ELF32_R_TYPE (dst->r_info); 348 349 if (indx >= (unsigned int) R_68K_max) 350 { 351 (*_bfd_error_handler) (_("%B: invalid relocation type %d"), 352 abfd, (int) indx); 353 indx = R_68K_NONE; 354 } 355 cache_ptr->howto = &howto_table[indx]; 356 } 357 358 #define elf_info_to_howto rtype_to_howto 359 360 static const struct 361 { 362 bfd_reloc_code_real_type bfd_val; 363 int elf_val; 364 } 365 reloc_map[] = 366 { 367 { BFD_RELOC_NONE, R_68K_NONE }, 368 { BFD_RELOC_32, R_68K_32 }, 369 { BFD_RELOC_16, R_68K_16 }, 370 { BFD_RELOC_8, R_68K_8 }, 371 { BFD_RELOC_32_PCREL, R_68K_PC32 }, 372 { BFD_RELOC_16_PCREL, R_68K_PC16 }, 373 { BFD_RELOC_8_PCREL, R_68K_PC8 }, 374 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 }, 375 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 }, 376 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 }, 377 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O }, 378 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O }, 379 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O }, 380 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 }, 381 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 }, 382 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 }, 383 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O }, 384 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O }, 385 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O }, 386 { BFD_RELOC_NONE, R_68K_COPY }, 387 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT }, 388 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT }, 389 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE }, 390 { BFD_RELOC_CTOR, R_68K_32 }, 391 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT }, 392 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY }, 393 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 }, 394 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 }, 395 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 }, 396 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 }, 397 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 }, 398 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 }, 399 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 }, 400 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 }, 401 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 }, 402 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 }, 403 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 }, 404 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 }, 405 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 }, 406 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 }, 407 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 }, 408 }; 409 410 static reloc_howto_type * 411 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 412 bfd_reloc_code_real_type code) 413 { 414 unsigned int i; 415 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++) 416 { 417 if (reloc_map[i].bfd_val == code) 418 return &howto_table[reloc_map[i].elf_val]; 419 } 420 return 0; 421 } 422 423 static reloc_howto_type * 424 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) 425 { 426 unsigned int i; 427 428 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++) 429 if (howto_table[i].name != NULL 430 && strcasecmp (howto_table[i].name, r_name) == 0) 431 return &howto_table[i]; 432 433 return NULL; 434 } 435 436 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup 437 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup 438 #define ELF_ARCH bfd_arch_m68k 439 #define ELF_TARGET_ID M68K_ELF_DATA 440 441 /* Functions for the m68k ELF linker. */ 443 444 /* The name of the dynamic interpreter. This is put in the .interp 445 section. */ 446 447 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" 448 449 /* Describes one of the various PLT styles. */ 450 451 struct elf_m68k_plt_info 452 { 453 /* The size of each PLT entry. */ 454 bfd_vma size; 455 456 /* The template for the first PLT entry. */ 457 const bfd_byte *plt0_entry; 458 459 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations. 460 The comments by each member indicate the value that the relocation 461 is against. */ 462 struct { 463 unsigned int got4; /* .got + 4 */ 464 unsigned int got8; /* .got + 8 */ 465 } plt0_relocs; 466 467 /* The template for a symbol's PLT entry. */ 468 const bfd_byte *symbol_entry; 469 470 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations. 471 The comments by each member indicate the value that the relocation 472 is against. */ 473 struct { 474 unsigned int got; /* the symbol's .got.plt entry */ 475 unsigned int plt; /* .plt */ 476 } symbol_relocs; 477 478 /* The offset of the resolver stub from the start of SYMBOL_ENTRY. 479 The stub starts with "move.l #relocoffset,%d0". */ 480 bfd_vma symbol_resolve_entry; 481 }; 482 483 /* The size in bytes of an entry in the procedure linkage table. */ 484 485 #define PLT_ENTRY_SIZE 20 486 487 /* The first entry in a procedure linkage table looks like this. See 488 the SVR4 ABI m68k supplement to see how this works. */ 489 490 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] = 491 { 492 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 493 0, 0, 0, 2, /* + (.got + 4) - . */ 494 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */ 495 0, 0, 0, 2, /* + (.got + 8) - . */ 496 0, 0, 0, 0 /* pad out to 20 bytes. */ 497 }; 498 499 /* Subsequent entries in a procedure linkage table look like this. */ 500 501 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] = 502 { 503 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */ 504 0, 0, 0, 2, /* + (.got.plt entry) - . */ 505 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 506 0, 0, 0, 0, /* + reloc index */ 507 0x60, 0xff, /* bra.l .plt */ 508 0, 0, 0, 0 /* + .plt - . */ 509 }; 510 511 static const struct elf_m68k_plt_info elf_m68k_plt_info = { 512 PLT_ENTRY_SIZE, 513 elf_m68k_plt0_entry, { 4, 12 }, 514 elf_m68k_plt_entry, { 4, 16 }, 8 515 }; 516 517 #define ISAB_PLT_ENTRY_SIZE 24 518 519 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] = 520 { 521 0x20, 0x3c, /* move.l #offset,%d0 */ 522 0, 0, 0, 0, /* + (.got + 4) - . */ 523 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */ 524 0x20, 0x3c, /* move.l #offset,%d0 */ 525 0, 0, 0, 0, /* + (.got + 8) - . */ 526 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 527 0x4e, 0xd0, /* jmp (%a0) */ 528 0x4e, 0x71 /* nop */ 529 }; 530 531 /* Subsequent entries in a procedure linkage table look like this. */ 532 533 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] = 534 { 535 0x20, 0x3c, /* move.l #offset,%d0 */ 536 0, 0, 0, 0, /* + (.got.plt entry) - . */ 537 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 538 0x4e, 0xd0, /* jmp (%a0) */ 539 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 540 0, 0, 0, 0, /* + reloc index */ 541 0x60, 0xff, /* bra.l .plt */ 542 0, 0, 0, 0 /* + .plt - . */ 543 }; 544 545 static const struct elf_m68k_plt_info elf_isab_plt_info = { 546 ISAB_PLT_ENTRY_SIZE, 547 elf_isab_plt0_entry, { 2, 12 }, 548 elf_isab_plt_entry, { 2, 20 }, 12 549 }; 550 551 #define ISAC_PLT_ENTRY_SIZE 24 552 553 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] = 554 { 555 0x20, 0x3c, /* move.l #offset,%d0 */ 556 0, 0, 0, 0, /* replaced with .got + 4 - . */ 557 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */ 558 0x20, 0x3c, /* move.l #offset,%d0 */ 559 0, 0, 0, 0, /* replaced with .got + 8 - . */ 560 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 561 0x4e, 0xd0, /* jmp (%a0) */ 562 0x4e, 0x71 /* nop */ 563 }; 564 565 /* Subsequent entries in a procedure linkage table look like this. */ 566 567 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] = 568 { 569 0x20, 0x3c, /* move.l #offset,%d0 */ 570 0, 0, 0, 0, /* replaced with (.got entry) - . */ 571 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 572 0x4e, 0xd0, /* jmp (%a0) */ 573 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 574 0, 0, 0, 0, /* replaced with offset into relocation table */ 575 0x61, 0xff, /* bsr.l .plt */ 576 0, 0, 0, 0 /* replaced with .plt - . */ 577 }; 578 579 static const struct elf_m68k_plt_info elf_isac_plt_info = { 580 ISAC_PLT_ENTRY_SIZE, 581 elf_isac_plt0_entry, { 2, 12}, 582 elf_isac_plt_entry, { 2, 20 }, 12 583 }; 584 585 #define CPU32_PLT_ENTRY_SIZE 24 586 /* Procedure linkage table entries for the cpu32 */ 587 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] = 588 { 589 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 590 0, 0, 0, 2, /* + (.got + 4) - . */ 591 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 592 0, 0, 0, 2, /* + (.got + 8) - . */ 593 0x4e, 0xd1, /* jmp %a1@ */ 594 0, 0, 0, 0, /* pad out to 24 bytes. */ 595 0, 0 596 }; 597 598 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] = 599 { 600 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 601 0, 0, 0, 2, /* + (.got.plt entry) - . */ 602 0x4e, 0xd1, /* jmp %a1@ */ 603 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 604 0, 0, 0, 0, /* + reloc index */ 605 0x60, 0xff, /* bra.l .plt */ 606 0, 0, 0, 0, /* + .plt - . */ 607 0, 0 608 }; 609 610 static const struct elf_m68k_plt_info elf_cpu32_plt_info = { 611 CPU32_PLT_ENTRY_SIZE, 612 elf_cpu32_plt0_entry, { 4, 12 }, 613 elf_cpu32_plt_entry, { 4, 18 }, 10 614 }; 615 616 /* The m68k linker needs to keep track of the number of relocs that it 617 decides to copy in check_relocs for each symbol. This is so that it 618 can discard PC relative relocs if it doesn't need them when linking 619 with -Bsymbolic. We store the information in a field extending the 620 regular ELF linker hash table. */ 621 622 /* This structure keeps track of the number of PC relative relocs we have 623 copied for a given symbol. */ 624 625 struct elf_m68k_pcrel_relocs_copied 626 { 627 /* Next section. */ 628 struct elf_m68k_pcrel_relocs_copied *next; 629 /* A section in dynobj. */ 630 asection *section; 631 /* Number of relocs copied in this section. */ 632 bfd_size_type count; 633 }; 634 635 /* Forward declaration. */ 636 struct elf_m68k_got_entry; 637 638 /* m68k ELF linker hash entry. */ 639 640 struct elf_m68k_link_hash_entry 641 { 642 struct elf_link_hash_entry root; 643 644 /* Number of PC relative relocs copied for this symbol. */ 645 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied; 646 647 /* Key to got_entries. */ 648 unsigned long got_entry_key; 649 650 /* List of GOT entries for this symbol. This list is build during 651 offset finalization and is used within elf_m68k_finish_dynamic_symbol 652 to traverse all GOT entries for a particular symbol. 653 654 ??? We could've used root.got.glist field instead, but having 655 a separate field is cleaner. */ 656 struct elf_m68k_got_entry *glist; 657 }; 658 659 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent)) 660 661 /* Key part of GOT entry in hashtable. */ 662 struct elf_m68k_got_entry_key 663 { 664 /* BFD in which this symbol was defined. NULL for global symbols. */ 665 const bfd *bfd; 666 667 /* Symbol index. Either local symbol index or h->got_entry_key. */ 668 unsigned long symndx; 669 670 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32}, 671 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}. 672 673 From perspective of hashtable key, only elf_m68k_got_reloc_type (type) 674 matters. That is, we distinguish between, say, R_68K_GOT16O 675 and R_68K_GOT32O when allocating offsets, but they are considered to be 676 the same when searching got->entries. */ 677 enum elf_m68k_reloc_type type; 678 }; 679 680 /* Size of the GOT offset suitable for relocation. */ 681 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST }; 682 683 /* Entry of the GOT. */ 684 struct elf_m68k_got_entry 685 { 686 /* GOT entries are put into a got->entries hashtable. This is the key. */ 687 struct elf_m68k_got_entry_key key_; 688 689 /* GOT entry data. We need s1 before offset finalization and s2 after. */ 690 union 691 { 692 struct 693 { 694 /* Number of times this entry is referenced. It is used to 695 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */ 696 bfd_vma refcount; 697 } s1; 698 699 struct 700 { 701 /* Offset from the start of .got section. To calculate offset relative 702 to GOT pointer one should substract got->offset from this value. */ 703 bfd_vma offset; 704 705 /* Pointer to the next GOT entry for this global symbol. 706 Symbols have at most one entry in one GOT, but might 707 have entries in more than one GOT. 708 Root of this list is h->glist. 709 NULL for local symbols. */ 710 struct elf_m68k_got_entry *next; 711 } s2; 712 } u; 713 }; 714 715 /* Return representative type for relocation R_TYPE. 716 This is used to avoid enumerating many relocations in comparisons, 717 switches etc. */ 718 719 static enum elf_m68k_reloc_type 720 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type) 721 { 722 switch (r_type) 723 { 724 /* In most cases R_68K_GOTx relocations require the very same 725 handling as R_68K_GOT32O relocation. In cases when we need 726 to distinguish between the two, we use explicitly compare against 727 r_type. */ 728 case R_68K_GOT32: 729 case R_68K_GOT16: 730 case R_68K_GOT8: 731 case R_68K_GOT32O: 732 case R_68K_GOT16O: 733 case R_68K_GOT8O: 734 return R_68K_GOT32O; 735 736 case R_68K_TLS_GD32: 737 case R_68K_TLS_GD16: 738 case R_68K_TLS_GD8: 739 return R_68K_TLS_GD32; 740 741 case R_68K_TLS_LDM32: 742 case R_68K_TLS_LDM16: 743 case R_68K_TLS_LDM8: 744 return R_68K_TLS_LDM32; 745 746 case R_68K_TLS_IE32: 747 case R_68K_TLS_IE16: 748 case R_68K_TLS_IE8: 749 return R_68K_TLS_IE32; 750 751 default: 752 BFD_ASSERT (FALSE); 753 return 0; 754 } 755 } 756 757 /* Return size of the GOT entry offset for relocation R_TYPE. */ 758 759 static enum elf_m68k_got_offset_size 760 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type) 761 { 762 switch (r_type) 763 { 764 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8: 765 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32: 766 case R_68K_TLS_IE32: 767 return R_32; 768 769 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16: 770 case R_68K_TLS_IE16: 771 return R_16; 772 773 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8: 774 case R_68K_TLS_IE8: 775 return R_8; 776 777 default: 778 BFD_ASSERT (FALSE); 779 return 0; 780 } 781 } 782 783 /* Return number of GOT entries we need to allocate in GOT for 784 relocation R_TYPE. */ 785 786 static bfd_vma 787 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type) 788 { 789 switch (elf_m68k_reloc_got_type (r_type)) 790 { 791 case R_68K_GOT32O: 792 case R_68K_TLS_IE32: 793 return 1; 794 795 case R_68K_TLS_GD32: 796 case R_68K_TLS_LDM32: 797 return 2; 798 799 default: 800 BFD_ASSERT (FALSE); 801 return 0; 802 } 803 } 804 805 /* Return TRUE if relocation R_TYPE is a TLS one. */ 806 807 static bfd_boolean 808 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type) 809 { 810 switch (r_type) 811 { 812 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8: 813 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8: 814 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8: 815 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8: 816 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8: 817 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32: 818 return TRUE; 819 820 default: 821 return FALSE; 822 } 823 } 824 825 /* Data structure representing a single GOT. */ 826 struct elf_m68k_got 827 { 828 /* Hashtable of 'struct elf_m68k_got_entry's. 829 Starting size of this table is the maximum number of 830 R_68K_GOT8O entries. */ 831 htab_t entries; 832 833 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require 834 several GOT slots. 835 836 n_slots[R_8] is the count of R_8 slots in this GOT. 837 n_slots[R_16] is the cumulative count of R_8 and R_16 slots 838 in this GOT. 839 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots 840 in this GOT. This is the total number of slots. */ 841 bfd_vma n_slots[R_LAST]; 842 843 /* Number of local (entry->key_.h == NULL) slots in this GOT. 844 This is only used to properly calculate size of .rela.got section; 845 see elf_m68k_partition_multi_got. */ 846 bfd_vma local_n_slots; 847 848 /* Offset of this GOT relative to beginning of .got section. */ 849 bfd_vma offset; 850 }; 851 852 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */ 853 struct elf_m68k_bfd2got_entry 854 { 855 /* BFD. */ 856 const bfd *bfd; 857 858 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own 859 GOT structure. After partitioning several BFD's might [and often do] 860 share a single GOT. */ 861 struct elf_m68k_got *got; 862 }; 863 864 /* The main data structure holding all the pieces. */ 865 struct elf_m68k_multi_got 866 { 867 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry 868 here, then it doesn't need a GOT (this includes the case of a BFD 869 having an empty GOT). 870 871 ??? This hashtable can be replaced by an array indexed by bfd->id. */ 872 htab_t bfd2got; 873 874 /* Next symndx to assign a global symbol. 875 h->got_entry_key is initialized from this counter. */ 876 unsigned long global_symndx; 877 }; 878 879 /* m68k ELF linker hash table. */ 880 881 struct elf_m68k_link_hash_table 882 { 883 struct elf_link_hash_table root; 884 885 /* Small local sym cache. */ 886 struct sym_cache sym_cache; 887 888 /* The PLT format used by this link, or NULL if the format has not 889 yet been chosen. */ 890 const struct elf_m68k_plt_info *plt_info; 891 892 /* True, if GP is loaded within each function which uses it. 893 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */ 894 bfd_boolean local_gp_p; 895 896 /* Switch controlling use of negative offsets to double the size of GOTs. */ 897 bfd_boolean use_neg_got_offsets_p; 898 899 /* Switch controlling generation of multiple GOTs. */ 900 bfd_boolean allow_multigot_p; 901 902 /* Multi-GOT data structure. */ 903 struct elf_m68k_multi_got multi_got_; 904 }; 905 906 /* Get the m68k ELF linker hash table from a link_info structure. */ 907 908 #define elf_m68k_hash_table(p) \ 909 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 910 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL) 911 912 /* Shortcut to multi-GOT data. */ 913 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_) 914 915 /* Create an entry in an m68k ELF linker hash table. */ 916 917 static struct bfd_hash_entry * 918 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry, 919 struct bfd_hash_table *table, 920 const char *string) 921 { 922 struct bfd_hash_entry *ret = entry; 923 924 /* Allocate the structure if it has not already been allocated by a 925 subclass. */ 926 if (ret == NULL) 927 ret = bfd_hash_allocate (table, 928 sizeof (struct elf_m68k_link_hash_entry)); 929 if (ret == NULL) 930 return ret; 931 932 /* Call the allocation method of the superclass. */ 933 ret = _bfd_elf_link_hash_newfunc (ret, table, string); 934 if (ret != NULL) 935 { 936 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL; 937 elf_m68k_hash_entry (ret)->got_entry_key = 0; 938 elf_m68k_hash_entry (ret)->glist = NULL; 939 } 940 941 return ret; 942 } 943 944 /* Destroy an m68k ELF linker hash table. */ 945 946 static void 947 elf_m68k_link_hash_table_free (bfd *obfd) 948 { 949 struct elf_m68k_link_hash_table *htab; 950 951 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash; 952 953 if (htab->multi_got_.bfd2got != NULL) 954 { 955 htab_delete (htab->multi_got_.bfd2got); 956 htab->multi_got_.bfd2got = NULL; 957 } 958 _bfd_elf_link_hash_table_free (obfd); 959 } 960 961 /* Create an m68k ELF linker hash table. */ 962 963 static struct bfd_link_hash_table * 964 elf_m68k_link_hash_table_create (bfd *abfd) 965 { 966 struct elf_m68k_link_hash_table *ret; 967 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table); 968 969 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt); 970 if (ret == (struct elf_m68k_link_hash_table *) NULL) 971 return NULL; 972 973 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 974 elf_m68k_link_hash_newfunc, 975 sizeof (struct elf_m68k_link_hash_entry), 976 M68K_ELF_DATA)) 977 { 978 free (ret); 979 return NULL; 980 } 981 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free; 982 983 ret->multi_got_.global_symndx = 1; 984 985 return &ret->root.root; 986 } 987 988 /* Set the right machine number. */ 989 990 static bfd_boolean 991 elf32_m68k_object_p (bfd *abfd) 992 { 993 unsigned int mach = 0; 994 unsigned features = 0; 995 flagword eflags = elf_elfheader (abfd)->e_flags; 996 997 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 998 features |= m68000; 999 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1000 features |= cpu32; 1001 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1002 features |= fido_a; 1003 else 1004 { 1005 switch (eflags & EF_M68K_CF_ISA_MASK) 1006 { 1007 case EF_M68K_CF_ISA_A_NODIV: 1008 features |= mcfisa_a; 1009 break; 1010 case EF_M68K_CF_ISA_A: 1011 features |= mcfisa_a|mcfhwdiv; 1012 break; 1013 case EF_M68K_CF_ISA_A_PLUS: 1014 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp; 1015 break; 1016 case EF_M68K_CF_ISA_B_NOUSP: 1017 features |= mcfisa_a|mcfisa_b|mcfhwdiv; 1018 break; 1019 case EF_M68K_CF_ISA_B: 1020 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp; 1021 break; 1022 case EF_M68K_CF_ISA_C: 1023 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp; 1024 break; 1025 case EF_M68K_CF_ISA_C_NODIV: 1026 features |= mcfisa_a|mcfisa_c|mcfusp; 1027 break; 1028 } 1029 switch (eflags & EF_M68K_CF_MAC_MASK) 1030 { 1031 case EF_M68K_CF_MAC: 1032 features |= mcfmac; 1033 break; 1034 case EF_M68K_CF_EMAC: 1035 features |= mcfemac; 1036 break; 1037 } 1038 if (eflags & EF_M68K_CF_FLOAT) 1039 features |= cfloat; 1040 } 1041 1042 mach = bfd_m68k_features_to_mach (features); 1043 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach); 1044 1045 return TRUE; 1046 } 1047 1048 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag 1049 field based on the machine number. */ 1050 1051 static void 1052 elf_m68k_final_write_processing (bfd *abfd, 1053 bfd_boolean linker ATTRIBUTE_UNUSED) 1054 { 1055 int mach = bfd_get_mach (abfd); 1056 unsigned long e_flags = elf_elfheader (abfd)->e_flags; 1057 1058 if (!e_flags) 1059 { 1060 unsigned int arch_mask; 1061 1062 arch_mask = bfd_m68k_mach_to_features (mach); 1063 1064 if (arch_mask & m68000) 1065 e_flags = EF_M68K_M68000; 1066 else if (arch_mask & cpu32) 1067 e_flags = EF_M68K_CPU32; 1068 else if (arch_mask & fido_a) 1069 e_flags = EF_M68K_FIDO; 1070 else 1071 { 1072 switch (arch_mask 1073 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp)) 1074 { 1075 case mcfisa_a: 1076 e_flags |= EF_M68K_CF_ISA_A_NODIV; 1077 break; 1078 case mcfisa_a | mcfhwdiv: 1079 e_flags |= EF_M68K_CF_ISA_A; 1080 break; 1081 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp: 1082 e_flags |= EF_M68K_CF_ISA_A_PLUS; 1083 break; 1084 case mcfisa_a | mcfisa_b | mcfhwdiv: 1085 e_flags |= EF_M68K_CF_ISA_B_NOUSP; 1086 break; 1087 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp: 1088 e_flags |= EF_M68K_CF_ISA_B; 1089 break; 1090 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp: 1091 e_flags |= EF_M68K_CF_ISA_C; 1092 break; 1093 case mcfisa_a | mcfisa_c | mcfusp: 1094 e_flags |= EF_M68K_CF_ISA_C_NODIV; 1095 break; 1096 } 1097 if (arch_mask & mcfmac) 1098 e_flags |= EF_M68K_CF_MAC; 1099 else if (arch_mask & mcfemac) 1100 e_flags |= EF_M68K_CF_EMAC; 1101 if (arch_mask & cfloat) 1102 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E; 1103 } 1104 elf_elfheader (abfd)->e_flags = e_flags; 1105 } 1106 } 1107 1108 /* Keep m68k-specific flags in the ELF header. */ 1109 1110 static bfd_boolean 1111 elf32_m68k_set_private_flags (bfd *abfd, flagword flags) 1112 { 1113 elf_elfheader (abfd)->e_flags = flags; 1114 elf_flags_init (abfd) = TRUE; 1115 return TRUE; 1116 } 1117 1118 /* Merge backend specific data from an object file to the output 1119 object file when linking. */ 1120 static bfd_boolean 1121 elf32_m68k_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 1122 { 1123 flagword out_flags; 1124 flagword in_flags; 1125 flagword out_isa; 1126 flagword in_isa; 1127 const bfd_arch_info_type *arch_info; 1128 1129 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour 1130 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 1131 return FALSE; 1132 1133 /* Get the merged machine. This checks for incompatibility between 1134 Coldfire & non-Coldfire flags, incompability between different 1135 Coldfire ISAs, and incompability between different MAC types. */ 1136 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE); 1137 if (!arch_info) 1138 return FALSE; 1139 1140 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach); 1141 1142 in_flags = elf_elfheader (ibfd)->e_flags; 1143 if (!elf_flags_init (obfd)) 1144 { 1145 elf_flags_init (obfd) = TRUE; 1146 out_flags = in_flags; 1147 } 1148 else 1149 { 1150 out_flags = elf_elfheader (obfd)->e_flags; 1151 unsigned int variant_mask; 1152 1153 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 1154 variant_mask = 0; 1155 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1156 variant_mask = 0; 1157 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1158 variant_mask = 0; 1159 else 1160 variant_mask = EF_M68K_CF_ISA_MASK; 1161 1162 in_isa = (in_flags & variant_mask); 1163 out_isa = (out_flags & variant_mask); 1164 if (in_isa > out_isa) 1165 out_flags ^= in_isa ^ out_isa; 1166 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32 1167 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1168 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO 1169 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)) 1170 out_flags = EF_M68K_FIDO; 1171 else 1172 out_flags |= in_flags ^ in_isa; 1173 } 1174 elf_elfheader (obfd)->e_flags = out_flags; 1175 1176 return TRUE; 1177 } 1178 1179 /* Display the flags field. */ 1180 1181 static bfd_boolean 1182 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr) 1183 { 1184 FILE *file = (FILE *) ptr; 1185 flagword eflags = elf_elfheader (abfd)->e_flags; 1186 1187 BFD_ASSERT (abfd != NULL && ptr != NULL); 1188 1189 /* Print normal ELF private data. */ 1190 _bfd_elf_print_private_bfd_data (abfd, ptr); 1191 1192 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ 1193 1194 /* xgettext:c-format */ 1195 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 1196 1197 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 1198 fprintf (file, " [m68000]"); 1199 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1200 fprintf (file, " [cpu32]"); 1201 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1202 fprintf (file, " [fido]"); 1203 else 1204 { 1205 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E) 1206 fprintf (file, " [cfv4e]"); 1207 1208 if (eflags & EF_M68K_CF_ISA_MASK) 1209 { 1210 char const *isa = _("unknown"); 1211 char const *mac = _("unknown"); 1212 char const *additional = ""; 1213 1214 switch (eflags & EF_M68K_CF_ISA_MASK) 1215 { 1216 case EF_M68K_CF_ISA_A_NODIV: 1217 isa = "A"; 1218 additional = " [nodiv]"; 1219 break; 1220 case EF_M68K_CF_ISA_A: 1221 isa = "A"; 1222 break; 1223 case EF_M68K_CF_ISA_A_PLUS: 1224 isa = "A+"; 1225 break; 1226 case EF_M68K_CF_ISA_B_NOUSP: 1227 isa = "B"; 1228 additional = " [nousp]"; 1229 break; 1230 case EF_M68K_CF_ISA_B: 1231 isa = "B"; 1232 break; 1233 case EF_M68K_CF_ISA_C: 1234 isa = "C"; 1235 break; 1236 case EF_M68K_CF_ISA_C_NODIV: 1237 isa = "C"; 1238 additional = " [nodiv]"; 1239 break; 1240 } 1241 fprintf (file, " [isa %s]%s", isa, additional); 1242 1243 if (eflags & EF_M68K_CF_FLOAT) 1244 fprintf (file, " [float]"); 1245 1246 switch (eflags & EF_M68K_CF_MAC_MASK) 1247 { 1248 case 0: 1249 mac = NULL; 1250 break; 1251 case EF_M68K_CF_MAC: 1252 mac = "mac"; 1253 break; 1254 case EF_M68K_CF_EMAC: 1255 mac = "emac"; 1256 break; 1257 case EF_M68K_CF_EMAC_B: 1258 mac = "emac_b"; 1259 break; 1260 } 1261 if (mac) 1262 fprintf (file, " [%s]", mac); 1263 } 1264 } 1265 1266 fputc ('\n', file); 1267 1268 return TRUE; 1269 } 1270 1271 /* Multi-GOT support implementation design: 1272 1273 Multi-GOT starts in check_relocs hook. There we scan all 1274 relocations of a BFD and build a local GOT (struct elf_m68k_got) 1275 for it. If a single BFD appears to require too many GOT slots with 1276 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification 1277 to user. 1278 After check_relocs has been invoked for each input BFD, we have 1279 constructed a GOT for each input BFD. 1280 1281 To minimize total number of GOTs required for a particular output BFD 1282 (as some environments support only 1 GOT per output object) we try 1283 to merge some of the GOTs to share an offset space. Ideally [and in most 1284 cases] we end up with a single GOT. In cases when there are too many 1285 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with 1286 several GOTs, assuming the environment can handle them. 1287 1288 Partitioning is done in elf_m68k_partition_multi_got. We start with 1289 an empty GOT and traverse bfd2got hashtable putting got_entries from 1290 local GOTs to the new 'big' one. We do that by constructing an 1291 intermediate GOT holding all the entries the local GOT has and the big 1292 GOT lacks. Then we check if there is room in the big GOT to accomodate 1293 all the entries from diff. On success we add those entries to the big 1294 GOT; on failure we start the new 'big' GOT and retry the adding of 1295 entries from the local GOT. Note that this retry will always succeed as 1296 each local GOT doesn't overflow the limits. After partitioning we 1297 end up with each bfd assigned one of the big GOTs. GOT entries in the 1298 big GOTs are initialized with GOT offsets. Note that big GOTs are 1299 positioned consequently in program space and represent a single huge GOT 1300 to the outside world. 1301 1302 After that we get to elf_m68k_relocate_section. There we 1303 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol 1304 relocations to refer to appropriate [assigned to current input_bfd] 1305 big GOT. 1306 1307 Notes: 1308 1309 GOT entry type: We have several types of GOT entries. 1310 * R_8 type is used in entries for symbols that have at least one 1311 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40 1312 such entries in one GOT. 1313 * R_16 type is used in entries for symbols that have at least one 1314 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations. 1315 We can have at most 0x4000 such entries in one GOT. 1316 * R_32 type is used in all other cases. We can have as many 1317 such entries in one GOT as we'd like. 1318 When counting relocations we have to include the count of the smaller 1319 ranged relocations in the counts of the larger ranged ones in order 1320 to correctly detect overflow. 1321 1322 Sorting the GOT: In each GOT starting offsets are assigned to 1323 R_8 entries, which are followed by R_16 entries, and 1324 R_32 entries go at the end. See finalize_got_offsets for details. 1325 1326 Negative GOT offsets: To double usable offset range of GOTs we use 1327 negative offsets. As we assign entries with GOT offsets relative to 1328 start of .got section, the offset values are positive. They become 1329 negative only in relocate_section where got->offset value is 1330 subtracted from them. 1331 1332 3 special GOT entries: There are 3 special GOT entries used internally 1333 by loader. These entries happen to be placed to .got.plt section, 1334 so we don't do anything about them in multi-GOT support. 1335 1336 Memory management: All data except for hashtables 1337 multi_got->bfd2got and got->entries are allocated on 1338 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info' 1339 to most functions), so we don't need to care to free them. At the 1340 moment of allocation hashtables are being linked into main data 1341 structure (multi_got), all pieces of which are reachable from 1342 elf_m68k_multi_got (info). We deallocate them in 1343 elf_m68k_link_hash_table_free. */ 1344 1345 /* Initialize GOT. */ 1346 1347 static void 1348 elf_m68k_init_got (struct elf_m68k_got *got) 1349 { 1350 got->entries = NULL; 1351 got->n_slots[R_8] = 0; 1352 got->n_slots[R_16] = 0; 1353 got->n_slots[R_32] = 0; 1354 got->local_n_slots = 0; 1355 got->offset = (bfd_vma) -1; 1356 } 1357 1358 /* Destruct GOT. */ 1359 1360 static void 1361 elf_m68k_clear_got (struct elf_m68k_got *got) 1362 { 1363 if (got->entries != NULL) 1364 { 1365 htab_delete (got->entries); 1366 got->entries = NULL; 1367 } 1368 } 1369 1370 /* Create and empty GOT structure. INFO is the context where memory 1371 should be allocated. */ 1372 1373 static struct elf_m68k_got * 1374 elf_m68k_create_empty_got (struct bfd_link_info *info) 1375 { 1376 struct elf_m68k_got *got; 1377 1378 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got)); 1379 if (got == NULL) 1380 return NULL; 1381 1382 elf_m68k_init_got (got); 1383 1384 return got; 1385 } 1386 1387 /* Initialize KEY. */ 1388 1389 static void 1390 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key, 1391 struct elf_link_hash_entry *h, 1392 const bfd *abfd, unsigned long symndx, 1393 enum elf_m68k_reloc_type reloc_type) 1394 { 1395 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32) 1396 /* All TLS_LDM relocations share a single GOT entry. */ 1397 { 1398 key->bfd = NULL; 1399 key->symndx = 0; 1400 } 1401 else if (h != NULL) 1402 /* Global symbols are identified with their got_entry_key. */ 1403 { 1404 key->bfd = NULL; 1405 key->symndx = elf_m68k_hash_entry (h)->got_entry_key; 1406 BFD_ASSERT (key->symndx != 0); 1407 } 1408 else 1409 /* Local symbols are identified by BFD they appear in and symndx. */ 1410 { 1411 key->bfd = abfd; 1412 key->symndx = symndx; 1413 } 1414 1415 key->type = reloc_type; 1416 } 1417 1418 /* Calculate hash of got_entry. 1419 ??? Is it good? */ 1420 1421 static hashval_t 1422 elf_m68k_got_entry_hash (const void *_entry) 1423 { 1424 const struct elf_m68k_got_entry_key *key; 1425 1426 key = &((const struct elf_m68k_got_entry *) _entry)->key_; 1427 1428 return (key->symndx 1429 + (key->bfd != NULL ? (int) key->bfd->id : -1) 1430 + elf_m68k_reloc_got_type (key->type)); 1431 } 1432 1433 /* Check if two got entries are equal. */ 1434 1435 static int 1436 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2) 1437 { 1438 const struct elf_m68k_got_entry_key *key1; 1439 const struct elf_m68k_got_entry_key *key2; 1440 1441 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_; 1442 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_; 1443 1444 return (key1->bfd == key2->bfd 1445 && key1->symndx == key2->symndx 1446 && (elf_m68k_reloc_got_type (key1->type) 1447 == elf_m68k_reloc_got_type (key2->type))); 1448 } 1449 1450 /* When using negative offsets, we allocate one extra R_8, one extra R_16 1451 and one extra R_32 slots to simplify handling of 2-slot entries during 1452 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */ 1453 1454 /* Maximal number of R_8 slots in a single GOT. */ 1455 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \ 1456 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ 1457 ? (0x40 - 1) \ 1458 : 0x20) 1459 1460 /* Maximal number of R_8 and R_16 slots in a single GOT. */ 1461 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \ 1462 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ 1463 ? (0x4000 - 2) \ 1464 : 0x2000) 1465 1466 /* SEARCH - simply search the hashtable, don't insert new entries or fail when 1467 the entry cannot be found. 1468 FIND_OR_CREATE - search for an existing entry, but create new if there's 1469 no such. 1470 MUST_FIND - search for an existing entry and assert that it exist. 1471 MUST_CREATE - assert that there's no such entry and create new one. */ 1472 enum elf_m68k_get_entry_howto 1473 { 1474 SEARCH, 1475 FIND_OR_CREATE, 1476 MUST_FIND, 1477 MUST_CREATE 1478 }; 1479 1480 /* Get or create (depending on HOWTO) entry with KEY in GOT. 1481 INFO is context in which memory should be allocated (can be NULL if 1482 HOWTO is SEARCH or MUST_FIND). */ 1483 1484 static struct elf_m68k_got_entry * 1485 elf_m68k_get_got_entry (struct elf_m68k_got *got, 1486 const struct elf_m68k_got_entry_key *key, 1487 enum elf_m68k_get_entry_howto howto, 1488 struct bfd_link_info *info) 1489 { 1490 struct elf_m68k_got_entry entry_; 1491 struct elf_m68k_got_entry *entry; 1492 void **ptr; 1493 1494 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); 1495 1496 if (got->entries == NULL) 1497 /* This is the first entry in ABFD. Initialize hashtable. */ 1498 { 1499 if (howto == SEARCH) 1500 return NULL; 1501 1502 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT 1503 (info), 1504 elf_m68k_got_entry_hash, 1505 elf_m68k_got_entry_eq, NULL); 1506 if (got->entries == NULL) 1507 { 1508 bfd_set_error (bfd_error_no_memory); 1509 return NULL; 1510 } 1511 } 1512 1513 entry_.key_ = *key; 1514 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH 1515 ? INSERT : NO_INSERT)); 1516 if (ptr == NULL) 1517 { 1518 if (howto == SEARCH) 1519 /* Entry not found. */ 1520 return NULL; 1521 1522 /* We're out of memory. */ 1523 bfd_set_error (bfd_error_no_memory); 1524 return NULL; 1525 } 1526 1527 if (*ptr == NULL) 1528 /* We didn't find the entry and we're asked to create a new one. */ 1529 { 1530 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH); 1531 1532 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)); 1533 if (entry == NULL) 1534 return NULL; 1535 1536 /* Initialize new entry. */ 1537 entry->key_ = *key; 1538 1539 entry->u.s1.refcount = 0; 1540 1541 /* Mark the entry as not initialized. */ 1542 entry->key_.type = R_68K_max; 1543 1544 *ptr = entry; 1545 } 1546 else 1547 /* We found the entry. */ 1548 { 1549 BFD_ASSERT (howto != MUST_CREATE); 1550 1551 entry = *ptr; 1552 } 1553 1554 return entry; 1555 } 1556 1557 /* Update GOT counters when merging entry of WAS type with entry of NEW type. 1558 Return the value to which ENTRY's type should be set. */ 1559 1560 static enum elf_m68k_reloc_type 1561 elf_m68k_update_got_entry_type (struct elf_m68k_got *got, 1562 enum elf_m68k_reloc_type was, 1563 enum elf_m68k_reloc_type new_reloc) 1564 { 1565 enum elf_m68k_got_offset_size was_size; 1566 enum elf_m68k_got_offset_size new_size; 1567 bfd_vma n_slots; 1568 1569 if (was == R_68K_max) 1570 /* The type of the entry is not initialized yet. */ 1571 { 1572 /* Update all got->n_slots counters, including n_slots[R_32]. */ 1573 was_size = R_LAST; 1574 1575 was = new_reloc; 1576 } 1577 else 1578 { 1579 /* !!! We, probably, should emit an error rather then fail on assert 1580 in such a case. */ 1581 BFD_ASSERT (elf_m68k_reloc_got_type (was) 1582 == elf_m68k_reloc_got_type (new_reloc)); 1583 1584 was_size = elf_m68k_reloc_got_offset_size (was); 1585 } 1586 1587 new_size = elf_m68k_reloc_got_offset_size (new_reloc); 1588 n_slots = elf_m68k_reloc_got_n_slots (new_reloc); 1589 1590 while (was_size > new_size) 1591 { 1592 --was_size; 1593 got->n_slots[was_size] += n_slots; 1594 } 1595 1596 if (new_reloc > was) 1597 /* Relocations are ordered from bigger got offset size to lesser, 1598 so choose the relocation type with lesser offset size. */ 1599 was = new_reloc; 1600 1601 return was; 1602 } 1603 1604 /* Update GOT counters when removing an entry of type TYPE. */ 1605 1606 static void 1607 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got, 1608 enum elf_m68k_reloc_type type) 1609 { 1610 enum elf_m68k_got_offset_size os; 1611 bfd_vma n_slots; 1612 1613 n_slots = elf_m68k_reloc_got_n_slots (type); 1614 1615 /* Decrese counter of slots with offset size corresponding to TYPE 1616 and all greater offset sizes. */ 1617 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os) 1618 { 1619 BFD_ASSERT (got->n_slots[os] >= n_slots); 1620 1621 got->n_slots[os] -= n_slots; 1622 } 1623 } 1624 1625 /* Add new or update existing entry to GOT. 1626 H, ABFD, TYPE and SYMNDX is data for the entry. 1627 INFO is a context where memory should be allocated. */ 1628 1629 static struct elf_m68k_got_entry * 1630 elf_m68k_add_entry_to_got (struct elf_m68k_got *got, 1631 struct elf_link_hash_entry *h, 1632 const bfd *abfd, 1633 enum elf_m68k_reloc_type reloc_type, 1634 unsigned long symndx, 1635 struct bfd_link_info *info) 1636 { 1637 struct elf_m68k_got_entry_key key_; 1638 struct elf_m68k_got_entry *entry; 1639 1640 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0) 1641 elf_m68k_hash_entry (h)->got_entry_key 1642 = elf_m68k_multi_got (info)->global_symndx++; 1643 1644 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type); 1645 1646 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info); 1647 if (entry == NULL) 1648 return NULL; 1649 1650 /* Determine entry's type and update got->n_slots counters. */ 1651 entry->key_.type = elf_m68k_update_got_entry_type (got, 1652 entry->key_.type, 1653 reloc_type); 1654 1655 /* Update refcount. */ 1656 ++entry->u.s1.refcount; 1657 1658 if (entry->u.s1.refcount == 1) 1659 /* We see this entry for the first time. */ 1660 { 1661 if (entry->key_.bfd != NULL) 1662 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type); 1663 } 1664 1665 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots); 1666 1667 if ((got->n_slots[R_8] 1668 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1669 || (got->n_slots[R_16] 1670 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) 1671 /* This BFD has too many relocation. */ 1672 { 1673 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1674 (*_bfd_error_handler) (_("%B: GOT overflow: " 1675 "Number of relocations with 8-bit " 1676 "offset > %d"), 1677 abfd, 1678 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)); 1679 else 1680 (*_bfd_error_handler) (_("%B: GOT overflow: " 1681 "Number of relocations with 8- or 16-bit " 1682 "offset > %d"), 1683 abfd, 1684 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)); 1685 1686 return NULL; 1687 } 1688 1689 return entry; 1690 } 1691 1692 /* Compute the hash value of the bfd in a bfd2got hash entry. */ 1693 1694 static hashval_t 1695 elf_m68k_bfd2got_entry_hash (const void *entry) 1696 { 1697 const struct elf_m68k_bfd2got_entry *e; 1698 1699 e = (const struct elf_m68k_bfd2got_entry *) entry; 1700 1701 return e->bfd->id; 1702 } 1703 1704 /* Check whether two hash entries have the same bfd. */ 1705 1706 static int 1707 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2) 1708 { 1709 const struct elf_m68k_bfd2got_entry *e1; 1710 const struct elf_m68k_bfd2got_entry *e2; 1711 1712 e1 = (const struct elf_m68k_bfd2got_entry *) entry1; 1713 e2 = (const struct elf_m68k_bfd2got_entry *) entry2; 1714 1715 return e1->bfd == e2->bfd; 1716 } 1717 1718 /* Destruct a bfd2got entry. */ 1719 1720 static void 1721 elf_m68k_bfd2got_entry_del (void *_entry) 1722 { 1723 struct elf_m68k_bfd2got_entry *entry; 1724 1725 entry = (struct elf_m68k_bfd2got_entry *) _entry; 1726 1727 BFD_ASSERT (entry->got != NULL); 1728 elf_m68k_clear_got (entry->got); 1729 } 1730 1731 /* Find existing or create new (depending on HOWTO) bfd2got entry in 1732 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where 1733 memory should be allocated. */ 1734 1735 static struct elf_m68k_bfd2got_entry * 1736 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got, 1737 const bfd *abfd, 1738 enum elf_m68k_get_entry_howto howto, 1739 struct bfd_link_info *info) 1740 { 1741 struct elf_m68k_bfd2got_entry entry_; 1742 void **ptr; 1743 struct elf_m68k_bfd2got_entry *entry; 1744 1745 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); 1746 1747 if (multi_got->bfd2got == NULL) 1748 /* This is the first GOT. Initialize bfd2got. */ 1749 { 1750 if (howto == SEARCH) 1751 return NULL; 1752 1753 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash, 1754 elf_m68k_bfd2got_entry_eq, 1755 elf_m68k_bfd2got_entry_del); 1756 if (multi_got->bfd2got == NULL) 1757 { 1758 bfd_set_error (bfd_error_no_memory); 1759 return NULL; 1760 } 1761 } 1762 1763 entry_.bfd = abfd; 1764 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH 1765 ? INSERT : NO_INSERT)); 1766 if (ptr == NULL) 1767 { 1768 if (howto == SEARCH) 1769 /* Entry not found. */ 1770 return NULL; 1771 1772 /* We're out of memory. */ 1773 bfd_set_error (bfd_error_no_memory); 1774 return NULL; 1775 } 1776 1777 if (*ptr == NULL) 1778 /* Entry was not found. Create new one. */ 1779 { 1780 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH); 1781 1782 entry = ((struct elf_m68k_bfd2got_entry *) 1783 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry))); 1784 if (entry == NULL) 1785 return NULL; 1786 1787 entry->bfd = abfd; 1788 1789 entry->got = elf_m68k_create_empty_got (info); 1790 if (entry->got == NULL) 1791 return NULL; 1792 1793 *ptr = entry; 1794 } 1795 else 1796 { 1797 BFD_ASSERT (howto != MUST_CREATE); 1798 1799 /* Return existing entry. */ 1800 entry = *ptr; 1801 } 1802 1803 return entry; 1804 } 1805 1806 struct elf_m68k_can_merge_gots_arg 1807 { 1808 /* A current_got that we constructing a DIFF against. */ 1809 struct elf_m68k_got *big; 1810 1811 /* GOT holding entries not present or that should be changed in 1812 BIG. */ 1813 struct elf_m68k_got *diff; 1814 1815 /* Context where to allocate memory. */ 1816 struct bfd_link_info *info; 1817 1818 /* Error flag. */ 1819 bfd_boolean error_p; 1820 }; 1821 1822 /* Process a single entry from the small GOT to see if it should be added 1823 or updated in the big GOT. */ 1824 1825 static int 1826 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg) 1827 { 1828 const struct elf_m68k_got_entry *entry1; 1829 struct elf_m68k_can_merge_gots_arg *arg; 1830 const struct elf_m68k_got_entry *entry2; 1831 enum elf_m68k_reloc_type type; 1832 1833 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr; 1834 arg = (struct elf_m68k_can_merge_gots_arg *) _arg; 1835 1836 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL); 1837 1838 if (entry2 != NULL) 1839 /* We found an existing entry. Check if we should update it. */ 1840 { 1841 type = elf_m68k_update_got_entry_type (arg->diff, 1842 entry2->key_.type, 1843 entry1->key_.type); 1844 1845 if (type == entry2->key_.type) 1846 /* ENTRY1 doesn't update data in ENTRY2. Skip it. 1847 To skip creation of difference entry we use the type, 1848 which we won't see in GOT entries for sure. */ 1849 type = R_68K_max; 1850 } 1851 else 1852 /* We didn't find the entry. Add entry1 to DIFF. */ 1853 { 1854 BFD_ASSERT (entry1->key_.type != R_68K_max); 1855 1856 type = elf_m68k_update_got_entry_type (arg->diff, 1857 R_68K_max, entry1->key_.type); 1858 1859 if (entry1->key_.bfd != NULL) 1860 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type); 1861 } 1862 1863 if (type != R_68K_max) 1864 /* Create an entry in DIFF. */ 1865 { 1866 struct elf_m68k_got_entry *entry; 1867 1868 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE, 1869 arg->info); 1870 if (entry == NULL) 1871 { 1872 arg->error_p = TRUE; 1873 return 0; 1874 } 1875 1876 entry->key_.type = type; 1877 } 1878 1879 return 1; 1880 } 1881 1882 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it. 1883 Construct DIFF GOT holding the entries which should be added or updated 1884 in BIG GOT to accumulate information from SMALL. 1885 INFO is the context where memory should be allocated. */ 1886 1887 static bfd_boolean 1888 elf_m68k_can_merge_gots (struct elf_m68k_got *big, 1889 const struct elf_m68k_got *small, 1890 struct bfd_link_info *info, 1891 struct elf_m68k_got *diff) 1892 { 1893 struct elf_m68k_can_merge_gots_arg arg_; 1894 1895 BFD_ASSERT (small->offset == (bfd_vma) -1); 1896 1897 arg_.big = big; 1898 arg_.diff = diff; 1899 arg_.info = info; 1900 arg_.error_p = FALSE; 1901 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_); 1902 if (arg_.error_p) 1903 { 1904 diff->offset = 0; 1905 return FALSE; 1906 } 1907 1908 /* Check for overflow. */ 1909 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8] 1910 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1911 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16] 1912 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) 1913 return FALSE; 1914 1915 return TRUE; 1916 } 1917 1918 struct elf_m68k_merge_gots_arg 1919 { 1920 /* The BIG got. */ 1921 struct elf_m68k_got *big; 1922 1923 /* Context where memory should be allocated. */ 1924 struct bfd_link_info *info; 1925 1926 /* Error flag. */ 1927 bfd_boolean error_p; 1928 }; 1929 1930 /* Process a single entry from DIFF got. Add or update corresponding 1931 entry in the BIG got. */ 1932 1933 static int 1934 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg) 1935 { 1936 const struct elf_m68k_got_entry *from; 1937 struct elf_m68k_merge_gots_arg *arg; 1938 struct elf_m68k_got_entry *to; 1939 1940 from = (const struct elf_m68k_got_entry *) *entry_ptr; 1941 arg = (struct elf_m68k_merge_gots_arg *) _arg; 1942 1943 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE, 1944 arg->info); 1945 if (to == NULL) 1946 { 1947 arg->error_p = TRUE; 1948 return 0; 1949 } 1950 1951 BFD_ASSERT (to->u.s1.refcount == 0); 1952 /* All we need to merge is TYPE. */ 1953 to->key_.type = from->key_.type; 1954 1955 return 1; 1956 } 1957 1958 /* Merge data from DIFF to BIG. INFO is context where memory should be 1959 allocated. */ 1960 1961 static bfd_boolean 1962 elf_m68k_merge_gots (struct elf_m68k_got *big, 1963 struct elf_m68k_got *diff, 1964 struct bfd_link_info *info) 1965 { 1966 if (diff->entries != NULL) 1967 /* DIFF is not empty. Merge it into BIG GOT. */ 1968 { 1969 struct elf_m68k_merge_gots_arg arg_; 1970 1971 /* Merge entries. */ 1972 arg_.big = big; 1973 arg_.info = info; 1974 arg_.error_p = FALSE; 1975 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_); 1976 if (arg_.error_p) 1977 return FALSE; 1978 1979 /* Merge counters. */ 1980 big->n_slots[R_8] += diff->n_slots[R_8]; 1981 big->n_slots[R_16] += diff->n_slots[R_16]; 1982 big->n_slots[R_32] += diff->n_slots[R_32]; 1983 big->local_n_slots += diff->local_n_slots; 1984 } 1985 else 1986 /* DIFF is empty. */ 1987 { 1988 BFD_ASSERT (diff->n_slots[R_8] == 0); 1989 BFD_ASSERT (diff->n_slots[R_16] == 0); 1990 BFD_ASSERT (diff->n_slots[R_32] == 0); 1991 BFD_ASSERT (diff->local_n_slots == 0); 1992 } 1993 1994 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p 1995 || ((big->n_slots[R_8] 1996 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1997 && (big->n_slots[R_16] 1998 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))); 1999 2000 return TRUE; 2001 } 2002 2003 struct elf_m68k_finalize_got_offsets_arg 2004 { 2005 /* Ranges of the offsets for GOT entries. 2006 R_x entries receive offsets between offset1[R_x] and offset2[R_x]. 2007 R_x is R_8, R_16 and R_32. */ 2008 bfd_vma *offset1; 2009 bfd_vma *offset2; 2010 2011 /* Mapping from global symndx to global symbols. 2012 This is used to build lists of got entries for global symbols. */ 2013 struct elf_m68k_link_hash_entry **symndx2h; 2014 2015 bfd_vma n_ldm_entries; 2016 }; 2017 2018 /* Assign ENTRY an offset. Build list of GOT entries for global symbols 2019 along the way. */ 2020 2021 static int 2022 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg) 2023 { 2024 struct elf_m68k_got_entry *entry; 2025 struct elf_m68k_finalize_got_offsets_arg *arg; 2026 2027 enum elf_m68k_got_offset_size got_offset_size; 2028 bfd_vma entry_size; 2029 2030 entry = (struct elf_m68k_got_entry *) *entry_ptr; 2031 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg; 2032 2033 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */ 2034 BFD_ASSERT (entry->u.s1.refcount == 0); 2035 2036 /* Get GOT offset size for the entry . */ 2037 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type); 2038 2039 /* Calculate entry size in bytes. */ 2040 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type); 2041 2042 /* Check if we should switch to negative range of the offsets. */ 2043 if (arg->offset1[got_offset_size] + entry_size 2044 > arg->offset2[got_offset_size]) 2045 { 2046 /* Verify that this is the only switch to negative range for 2047 got_offset_size. If this assertion fails, then we've miscalculated 2048 range for got_offset_size entries in 2049 elf_m68k_finalize_got_offsets. */ 2050 BFD_ASSERT (arg->offset2[got_offset_size] 2051 != arg->offset2[-(int) got_offset_size - 1]); 2052 2053 /* Switch. */ 2054 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1]; 2055 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1]; 2056 2057 /* Verify that now we have enough room for the entry. */ 2058 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size 2059 <= arg->offset2[got_offset_size]); 2060 } 2061 2062 /* Assign offset to entry. */ 2063 entry->u.s2.offset = arg->offset1[got_offset_size]; 2064 arg->offset1[got_offset_size] += entry_size; 2065 2066 if (entry->key_.bfd == NULL) 2067 /* Hook up this entry into the list of got_entries of H. */ 2068 { 2069 struct elf_m68k_link_hash_entry *h; 2070 2071 h = arg->symndx2h[entry->key_.symndx]; 2072 if (h != NULL) 2073 { 2074 entry->u.s2.next = h->glist; 2075 h->glist = entry; 2076 } 2077 else 2078 /* This should be the entry for TLS_LDM relocation then. */ 2079 { 2080 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type) 2081 == R_68K_TLS_LDM32) 2082 && entry->key_.symndx == 0); 2083 2084 ++arg->n_ldm_entries; 2085 } 2086 } 2087 else 2088 /* This entry is for local symbol. */ 2089 entry->u.s2.next = NULL; 2090 2091 return 1; 2092 } 2093 2094 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we 2095 should use negative offsets. 2096 Build list of GOT entries for global symbols along the way. 2097 SYMNDX2H is mapping from global symbol indices to actual 2098 global symbols. 2099 Return offset at which next GOT should start. */ 2100 2101 static void 2102 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got, 2103 bfd_boolean use_neg_got_offsets_p, 2104 struct elf_m68k_link_hash_entry **symndx2h, 2105 bfd_vma *final_offset, bfd_vma *n_ldm_entries) 2106 { 2107 struct elf_m68k_finalize_got_offsets_arg arg_; 2108 bfd_vma offset1_[2 * R_LAST]; 2109 bfd_vma offset2_[2 * R_LAST]; 2110 int i; 2111 bfd_vma start_offset; 2112 2113 BFD_ASSERT (got->offset != (bfd_vma) -1); 2114 2115 /* We set entry offsets relative to the .got section (and not the 2116 start of a particular GOT), so that we can use them in 2117 finish_dynamic_symbol without needing to know the GOT which they come 2118 from. */ 2119 2120 /* Put offset1 in the middle of offset1_, same for offset2. */ 2121 arg_.offset1 = offset1_ + R_LAST; 2122 arg_.offset2 = offset2_ + R_LAST; 2123 2124 start_offset = got->offset; 2125 2126 if (use_neg_got_offsets_p) 2127 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */ 2128 i = -(int) R_32 - 1; 2129 else 2130 /* Setup positives ranges for R_8, R_16 and R_32. */ 2131 i = (int) R_8; 2132 2133 for (; i <= (int) R_32; ++i) 2134 { 2135 int j; 2136 size_t n; 2137 2138 /* Set beginning of the range of offsets I. */ 2139 arg_.offset1[i] = start_offset; 2140 2141 /* Calculate number of slots that require I offsets. */ 2142 j = (i >= 0) ? i : -i - 1; 2143 n = (j >= 1) ? got->n_slots[j - 1] : 0; 2144 n = got->n_slots[j] - n; 2145 2146 if (use_neg_got_offsets_p && n != 0) 2147 { 2148 if (i < 0) 2149 /* We first fill the positive side of the range, so we might 2150 end up with one empty slot at that side when we can't fit 2151 whole 2-slot entry. Account for that at negative side of 2152 the interval with one additional entry. */ 2153 n = n / 2 + 1; 2154 else 2155 /* When the number of slots is odd, make positive side of the 2156 range one entry bigger. */ 2157 n = (n + 1) / 2; 2158 } 2159 2160 /* N is the number of slots that require I offsets. 2161 Calculate length of the range for I offsets. */ 2162 n = 4 * n; 2163 2164 /* Set end of the range. */ 2165 arg_.offset2[i] = start_offset + n; 2166 2167 start_offset = arg_.offset2[i]; 2168 } 2169 2170 if (!use_neg_got_offsets_p) 2171 /* Make sure that if we try to switch to negative offsets in 2172 elf_m68k_finalize_got_offsets_1, the assert therein will catch 2173 the bug. */ 2174 for (i = R_8; i <= R_32; ++i) 2175 arg_.offset2[-i - 1] = arg_.offset2[i]; 2176 2177 /* Setup got->offset. offset1[R_8] is either in the middle or at the 2178 beginning of GOT depending on use_neg_got_offsets_p. */ 2179 got->offset = arg_.offset1[R_8]; 2180 2181 arg_.symndx2h = symndx2h; 2182 arg_.n_ldm_entries = 0; 2183 2184 /* Assign offsets. */ 2185 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_); 2186 2187 /* Check offset ranges we have actually assigned. */ 2188 for (i = (int) R_8; i <= (int) R_32; ++i) 2189 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4); 2190 2191 *final_offset = start_offset; 2192 *n_ldm_entries = arg_.n_ldm_entries; 2193 } 2194 2195 struct elf_m68k_partition_multi_got_arg 2196 { 2197 /* The GOT we are adding entries to. Aka big got. */ 2198 struct elf_m68k_got *current_got; 2199 2200 /* Offset to assign the next CURRENT_GOT. */ 2201 bfd_vma offset; 2202 2203 /* Context where memory should be allocated. */ 2204 struct bfd_link_info *info; 2205 2206 /* Total number of slots in the .got section. 2207 This is used to calculate size of the .got and .rela.got sections. */ 2208 bfd_vma n_slots; 2209 2210 /* Difference in numbers of allocated slots in the .got section 2211 and necessary relocations in the .rela.got section. 2212 This is used to calculate size of the .rela.got section. */ 2213 bfd_vma slots_relas_diff; 2214 2215 /* Error flag. */ 2216 bfd_boolean error_p; 2217 2218 /* Mapping from global symndx to global symbols. 2219 This is used to build lists of got entries for global symbols. */ 2220 struct elf_m68k_link_hash_entry **symndx2h; 2221 }; 2222 2223 static void 2224 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg) 2225 { 2226 bfd_vma n_ldm_entries; 2227 2228 elf_m68k_finalize_got_offsets (arg->current_got, 2229 (elf_m68k_hash_table (arg->info) 2230 ->use_neg_got_offsets_p), 2231 arg->symndx2h, 2232 &arg->offset, &n_ldm_entries); 2233 2234 arg->n_slots += arg->current_got->n_slots[R_32]; 2235 2236 if (!arg->info->shared) 2237 /* If we are generating a shared object, we need to 2238 output a R_68K_RELATIVE reloc so that the dynamic 2239 linker can adjust this GOT entry. Overwise we 2240 don't need space in .rela.got for local symbols. */ 2241 arg->slots_relas_diff += arg->current_got->local_n_slots; 2242 2243 /* @LDM relocations require a 2-slot GOT entry, but only 2244 one relocation. Account for that. */ 2245 arg->slots_relas_diff += n_ldm_entries; 2246 2247 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots); 2248 } 2249 2250 2251 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT 2252 or start a new CURRENT_GOT. */ 2253 2254 static int 2255 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg) 2256 { 2257 struct elf_m68k_bfd2got_entry *entry; 2258 struct elf_m68k_partition_multi_got_arg *arg; 2259 struct elf_m68k_got *got; 2260 struct elf_m68k_got diff_; 2261 struct elf_m68k_got *diff; 2262 2263 entry = (struct elf_m68k_bfd2got_entry *) *_entry; 2264 arg = (struct elf_m68k_partition_multi_got_arg *) _arg; 2265 2266 got = entry->got; 2267 BFD_ASSERT (got != NULL); 2268 BFD_ASSERT (got->offset == (bfd_vma) -1); 2269 2270 diff = NULL; 2271 2272 if (arg->current_got != NULL) 2273 /* Construct diff. */ 2274 { 2275 diff = &diff_; 2276 elf_m68k_init_got (diff); 2277 2278 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff)) 2279 { 2280 if (diff->offset == 0) 2281 /* Offset set to 0 in the diff_ indicates an error. */ 2282 { 2283 arg->error_p = TRUE; 2284 goto final_return; 2285 } 2286 2287 if (elf_m68k_hash_table (arg->info)->allow_multigot_p) 2288 { 2289 elf_m68k_clear_got (diff); 2290 /* Schedule to finish up current_got and start new one. */ 2291 diff = NULL; 2292 } 2293 /* else 2294 Merge GOTs no matter what. If big GOT overflows, 2295 we'll fail in relocate_section due to truncated relocations. 2296 2297 ??? May be fail earlier? E.g., in can_merge_gots. */ 2298 } 2299 } 2300 else 2301 /* Diff of got against empty current_got is got itself. */ 2302 { 2303 /* Create empty current_got to put subsequent GOTs to. */ 2304 arg->current_got = elf_m68k_create_empty_got (arg->info); 2305 if (arg->current_got == NULL) 2306 { 2307 arg->error_p = TRUE; 2308 goto final_return; 2309 } 2310 2311 arg->current_got->offset = arg->offset; 2312 2313 diff = got; 2314 } 2315 2316 if (diff != NULL) 2317 { 2318 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info)) 2319 { 2320 arg->error_p = TRUE; 2321 goto final_return; 2322 } 2323 2324 /* Now we can free GOT. */ 2325 elf_m68k_clear_got (got); 2326 2327 entry->got = arg->current_got; 2328 } 2329 else 2330 { 2331 /* Finish up current_got. */ 2332 elf_m68k_partition_multi_got_2 (arg); 2333 2334 /* Schedule to start a new current_got. */ 2335 arg->current_got = NULL; 2336 2337 /* Retry. */ 2338 if (!elf_m68k_partition_multi_got_1 (_entry, _arg)) 2339 { 2340 BFD_ASSERT (arg->error_p); 2341 goto final_return; 2342 } 2343 } 2344 2345 final_return: 2346 if (diff != NULL) 2347 elf_m68k_clear_got (diff); 2348 2349 return arg->error_p == FALSE ? 1 : 0; 2350 } 2351 2352 /* Helper function to build symndx2h mapping. */ 2353 2354 static bfd_boolean 2355 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h, 2356 void *_arg) 2357 { 2358 struct elf_m68k_link_hash_entry *h; 2359 2360 h = elf_m68k_hash_entry (_h); 2361 2362 if (h->got_entry_key != 0) 2363 /* H has at least one entry in the GOT. */ 2364 { 2365 struct elf_m68k_partition_multi_got_arg *arg; 2366 2367 arg = (struct elf_m68k_partition_multi_got_arg *) _arg; 2368 2369 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL); 2370 arg->symndx2h[h->got_entry_key] = h; 2371 } 2372 2373 return TRUE; 2374 } 2375 2376 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build 2377 lists of GOT entries for global symbols. 2378 Calculate sizes of .got and .rela.got sections. */ 2379 2380 static bfd_boolean 2381 elf_m68k_partition_multi_got (struct bfd_link_info *info) 2382 { 2383 struct elf_m68k_multi_got *multi_got; 2384 struct elf_m68k_partition_multi_got_arg arg_; 2385 2386 multi_got = elf_m68k_multi_got (info); 2387 2388 arg_.current_got = NULL; 2389 arg_.offset = 0; 2390 arg_.info = info; 2391 arg_.n_slots = 0; 2392 arg_.slots_relas_diff = 0; 2393 arg_.error_p = FALSE; 2394 2395 if (multi_got->bfd2got != NULL) 2396 { 2397 /* Initialize symndx2h mapping. */ 2398 { 2399 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx 2400 * sizeof (*arg_.symndx2h)); 2401 if (arg_.symndx2h == NULL) 2402 return FALSE; 2403 2404 elf_link_hash_traverse (elf_hash_table (info), 2405 elf_m68k_init_symndx2h_1, &arg_); 2406 } 2407 2408 /* Partition. */ 2409 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1, 2410 &arg_); 2411 if (arg_.error_p) 2412 { 2413 free (arg_.symndx2h); 2414 arg_.symndx2h = NULL; 2415 2416 return FALSE; 2417 } 2418 2419 /* Finish up last current_got. */ 2420 elf_m68k_partition_multi_got_2 (&arg_); 2421 2422 free (arg_.symndx2h); 2423 } 2424 2425 if (elf_hash_table (info)->dynobj != NULL) 2426 /* Set sizes of .got and .rela.got sections. */ 2427 { 2428 asection *s; 2429 2430 s = bfd_get_linker_section (elf_hash_table (info)->dynobj, ".got"); 2431 if (s != NULL) 2432 s->size = arg_.offset; 2433 else 2434 BFD_ASSERT (arg_.offset == 0); 2435 2436 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots); 2437 arg_.n_slots -= arg_.slots_relas_diff; 2438 2439 s = bfd_get_linker_section (elf_hash_table (info)->dynobj, ".rela.got"); 2440 if (s != NULL) 2441 s->size = arg_.n_slots * sizeof (Elf32_External_Rela); 2442 else 2443 BFD_ASSERT (arg_.n_slots == 0); 2444 } 2445 else 2446 BFD_ASSERT (multi_got->bfd2got == NULL); 2447 2448 return TRUE; 2449 } 2450 2451 /* Specialized version of elf_m68k_get_got_entry that returns pointer 2452 to hashtable slot, thus allowing removal of entry via 2453 elf_m68k_remove_got_entry. */ 2454 2455 static struct elf_m68k_got_entry ** 2456 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got, 2457 struct elf_m68k_got_entry_key *key) 2458 { 2459 void **ptr; 2460 struct elf_m68k_got_entry entry_; 2461 struct elf_m68k_got_entry **entry_ptr; 2462 2463 entry_.key_ = *key; 2464 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT); 2465 BFD_ASSERT (ptr != NULL); 2466 2467 entry_ptr = (struct elf_m68k_got_entry **) ptr; 2468 2469 return entry_ptr; 2470 } 2471 2472 /* Remove entry pointed to by ENTRY_PTR from GOT. */ 2473 2474 static void 2475 elf_m68k_remove_got_entry (struct elf_m68k_got *got, 2476 struct elf_m68k_got_entry **entry_ptr) 2477 { 2478 struct elf_m68k_got_entry *entry; 2479 2480 entry = *entry_ptr; 2481 2482 /* Check that offsets have not been finalized yet. */ 2483 BFD_ASSERT (got->offset == (bfd_vma) -1); 2484 /* Check that this entry is indeed unused. */ 2485 BFD_ASSERT (entry->u.s1.refcount == 0); 2486 2487 elf_m68k_remove_got_entry_type (got, entry->key_.type); 2488 2489 if (entry->key_.bfd != NULL) 2490 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type); 2491 2492 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots); 2493 2494 htab_clear_slot (got->entries, (void **) entry_ptr); 2495 } 2496 2497 /* Copy any information related to dynamic linking from a pre-existing 2498 symbol to a newly created symbol. Also called to copy flags and 2499 other back-end info to a weakdef, in which case the symbol is not 2500 newly created and plt/got refcounts and dynamic indices should not 2501 be copied. */ 2502 2503 static void 2504 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info, 2505 struct elf_link_hash_entry *_dir, 2506 struct elf_link_hash_entry *_ind) 2507 { 2508 struct elf_m68k_link_hash_entry *dir; 2509 struct elf_m68k_link_hash_entry *ind; 2510 2511 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind); 2512 2513 if (_ind->root.type != bfd_link_hash_indirect) 2514 return; 2515 2516 dir = elf_m68k_hash_entry (_dir); 2517 ind = elf_m68k_hash_entry (_ind); 2518 2519 /* Any absolute non-dynamic relocations against an indirect or weak 2520 definition will be against the target symbol. */ 2521 _dir->non_got_ref |= _ind->non_got_ref; 2522 2523 /* We might have a direct symbol already having entries in the GOTs. 2524 Update its key only in case indirect symbol has GOT entries and 2525 assert that both indirect and direct symbols don't have GOT entries 2526 at the same time. */ 2527 if (ind->got_entry_key != 0) 2528 { 2529 BFD_ASSERT (dir->got_entry_key == 0); 2530 /* Assert that GOTs aren't partioned yet. */ 2531 BFD_ASSERT (ind->glist == NULL); 2532 2533 dir->got_entry_key = ind->got_entry_key; 2534 ind->got_entry_key = 0; 2535 } 2536 } 2537 2538 /* Look through the relocs for a section during the first phase, and 2539 allocate space in the global offset table or procedure linkage 2540 table. */ 2541 2542 static bfd_boolean 2543 elf_m68k_check_relocs (bfd *abfd, 2544 struct bfd_link_info *info, 2545 asection *sec, 2546 const Elf_Internal_Rela *relocs) 2547 { 2548 bfd *dynobj; 2549 Elf_Internal_Shdr *symtab_hdr; 2550 struct elf_link_hash_entry **sym_hashes; 2551 const Elf_Internal_Rela *rel; 2552 const Elf_Internal_Rela *rel_end; 2553 asection *sgot; 2554 asection *srelgot; 2555 asection *sreloc; 2556 struct elf_m68k_got *got; 2557 2558 if (info->relocatable) 2559 return TRUE; 2560 2561 dynobj = elf_hash_table (info)->dynobj; 2562 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2563 sym_hashes = elf_sym_hashes (abfd); 2564 2565 sgot = NULL; 2566 srelgot = NULL; 2567 sreloc = NULL; 2568 2569 got = NULL; 2570 2571 rel_end = relocs + sec->reloc_count; 2572 for (rel = relocs; rel < rel_end; rel++) 2573 { 2574 unsigned long r_symndx; 2575 struct elf_link_hash_entry *h; 2576 2577 r_symndx = ELF32_R_SYM (rel->r_info); 2578 2579 if (r_symndx < symtab_hdr->sh_info) 2580 h = NULL; 2581 else 2582 { 2583 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2584 while (h->root.type == bfd_link_hash_indirect 2585 || h->root.type == bfd_link_hash_warning) 2586 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2587 2588 /* PR15323, ref flags aren't set for references in the same 2589 object. */ 2590 h->root.non_ir_ref = 1; 2591 } 2592 2593 switch (ELF32_R_TYPE (rel->r_info)) 2594 { 2595 case R_68K_GOT8: 2596 case R_68K_GOT16: 2597 case R_68K_GOT32: 2598 if (h != NULL 2599 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 2600 break; 2601 /* Fall through. */ 2602 2603 /* Relative GOT relocations. */ 2604 case R_68K_GOT8O: 2605 case R_68K_GOT16O: 2606 case R_68K_GOT32O: 2607 /* Fall through. */ 2608 2609 /* TLS relocations. */ 2610 case R_68K_TLS_GD8: 2611 case R_68K_TLS_GD16: 2612 case R_68K_TLS_GD32: 2613 case R_68K_TLS_LDM8: 2614 case R_68K_TLS_LDM16: 2615 case R_68K_TLS_LDM32: 2616 case R_68K_TLS_IE8: 2617 case R_68K_TLS_IE16: 2618 case R_68K_TLS_IE32: 2619 2620 case R_68K_TLS_TPREL32: 2621 case R_68K_TLS_DTPREL32: 2622 2623 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32 2624 && info->shared) 2625 /* Do the special chorus for libraries with static TLS. */ 2626 info->flags |= DF_STATIC_TLS; 2627 2628 /* This symbol requires a global offset table entry. */ 2629 2630 if (dynobj == NULL) 2631 { 2632 /* Create the .got section. */ 2633 elf_hash_table (info)->dynobj = dynobj = abfd; 2634 if (!_bfd_elf_create_got_section (dynobj, info)) 2635 return FALSE; 2636 } 2637 2638 if (sgot == NULL) 2639 { 2640 sgot = bfd_get_linker_section (dynobj, ".got"); 2641 BFD_ASSERT (sgot != NULL); 2642 } 2643 2644 if (srelgot == NULL 2645 && (h != NULL || info->shared)) 2646 { 2647 srelgot = bfd_get_linker_section (dynobj, ".rela.got"); 2648 if (srelgot == NULL) 2649 { 2650 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS 2651 | SEC_IN_MEMORY | SEC_LINKER_CREATED 2652 | SEC_READONLY); 2653 srelgot = bfd_make_section_anyway_with_flags (dynobj, 2654 ".rela.got", 2655 flags); 2656 if (srelgot == NULL 2657 || !bfd_set_section_alignment (dynobj, srelgot, 2)) 2658 return FALSE; 2659 } 2660 } 2661 2662 if (got == NULL) 2663 { 2664 struct elf_m68k_bfd2got_entry *bfd2got_entry; 2665 2666 bfd2got_entry 2667 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 2668 abfd, FIND_OR_CREATE, info); 2669 if (bfd2got_entry == NULL) 2670 return FALSE; 2671 2672 got = bfd2got_entry->got; 2673 BFD_ASSERT (got != NULL); 2674 } 2675 2676 { 2677 struct elf_m68k_got_entry *got_entry; 2678 2679 /* Add entry to got. */ 2680 got_entry = elf_m68k_add_entry_to_got (got, h, abfd, 2681 ELF32_R_TYPE (rel->r_info), 2682 r_symndx, info); 2683 if (got_entry == NULL) 2684 return FALSE; 2685 2686 if (got_entry->u.s1.refcount == 1) 2687 { 2688 /* Make sure this symbol is output as a dynamic symbol. */ 2689 if (h != NULL 2690 && h->dynindx == -1 2691 && !h->forced_local) 2692 { 2693 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 2694 return FALSE; 2695 } 2696 } 2697 } 2698 2699 break; 2700 2701 case R_68K_PLT8: 2702 case R_68K_PLT16: 2703 case R_68K_PLT32: 2704 /* This symbol requires a procedure linkage table entry. We 2705 actually build the entry in adjust_dynamic_symbol, 2706 because this might be a case of linking PIC code which is 2707 never referenced by a dynamic object, in which case we 2708 don't need to generate a procedure linkage table entry 2709 after all. */ 2710 2711 /* If this is a local symbol, we resolve it directly without 2712 creating a procedure linkage table entry. */ 2713 if (h == NULL) 2714 continue; 2715 2716 h->needs_plt = 1; 2717 h->plt.refcount++; 2718 break; 2719 2720 case R_68K_PLT8O: 2721 case R_68K_PLT16O: 2722 case R_68K_PLT32O: 2723 /* This symbol requires a procedure linkage table entry. */ 2724 2725 if (h == NULL) 2726 { 2727 /* It does not make sense to have this relocation for a 2728 local symbol. FIXME: does it? How to handle it if 2729 it does make sense? */ 2730 bfd_set_error (bfd_error_bad_value); 2731 return FALSE; 2732 } 2733 2734 /* Make sure this symbol is output as a dynamic symbol. */ 2735 if (h->dynindx == -1 2736 && !h->forced_local) 2737 { 2738 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 2739 return FALSE; 2740 } 2741 2742 h->needs_plt = 1; 2743 h->plt.refcount++; 2744 break; 2745 2746 case R_68K_PC8: 2747 case R_68K_PC16: 2748 case R_68K_PC32: 2749 /* If we are creating a shared library and this is not a local 2750 symbol, we need to copy the reloc into the shared library. 2751 However when linking with -Bsymbolic and this is a global 2752 symbol which is defined in an object we are including in the 2753 link (i.e., DEF_REGULAR is set), then we can resolve the 2754 reloc directly. At this point we have not seen all the input 2755 files, so it is possible that DEF_REGULAR is not set now but 2756 will be set later (it is never cleared). We account for that 2757 possibility below by storing information in the 2758 pcrel_relocs_copied field of the hash table entry. */ 2759 if (!(info->shared 2760 && (sec->flags & SEC_ALLOC) != 0 2761 && h != NULL 2762 && (!info->symbolic 2763 || h->root.type == bfd_link_hash_defweak 2764 || !h->def_regular))) 2765 { 2766 if (h != NULL) 2767 { 2768 /* Make sure a plt entry is created for this symbol if 2769 it turns out to be a function defined by a dynamic 2770 object. */ 2771 h->plt.refcount++; 2772 } 2773 break; 2774 } 2775 /* Fall through. */ 2776 case R_68K_8: 2777 case R_68K_16: 2778 case R_68K_32: 2779 /* We don't need to handle relocs into sections not going into 2780 the "real" output. */ 2781 if ((sec->flags & SEC_ALLOC) == 0) 2782 break; 2783 2784 if (h != NULL) 2785 { 2786 /* Make sure a plt entry is created for this symbol if it 2787 turns out to be a function defined by a dynamic object. */ 2788 h->plt.refcount++; 2789 2790 if (info->executable) 2791 /* This symbol needs a non-GOT reference. */ 2792 h->non_got_ref = 1; 2793 } 2794 2795 /* If we are creating a shared library, we need to copy the 2796 reloc into the shared library. */ 2797 if (info->shared) 2798 { 2799 /* When creating a shared object, we must copy these 2800 reloc types into the output file. We create a reloc 2801 section in dynobj and make room for this reloc. */ 2802 if (sreloc == NULL) 2803 { 2804 sreloc = _bfd_elf_make_dynamic_reloc_section 2805 (sec, dynobj, 2, abfd, /*rela?*/ TRUE); 2806 2807 if (sreloc == NULL) 2808 return FALSE; 2809 } 2810 2811 if (sec->flags & SEC_READONLY 2812 /* Don't set DF_TEXTREL yet for PC relative 2813 relocations, they might be discarded later. */ 2814 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8 2815 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 2816 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)) 2817 info->flags |= DF_TEXTREL; 2818 2819 sreloc->size += sizeof (Elf32_External_Rela); 2820 2821 /* We count the number of PC relative relocations we have 2822 entered for this symbol, so that we can discard them 2823 again if, in the -Bsymbolic case, the symbol is later 2824 defined by a regular object, or, in the normal shared 2825 case, the symbol is forced to be local. Note that this 2826 function is only called if we are using an m68kelf linker 2827 hash table, which means that h is really a pointer to an 2828 elf_m68k_link_hash_entry. */ 2829 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8 2830 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 2831 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32) 2832 { 2833 struct elf_m68k_pcrel_relocs_copied *p; 2834 struct elf_m68k_pcrel_relocs_copied **head; 2835 2836 if (h != NULL) 2837 { 2838 struct elf_m68k_link_hash_entry *eh 2839 = elf_m68k_hash_entry (h); 2840 head = &eh->pcrel_relocs_copied; 2841 } 2842 else 2843 { 2844 asection *s; 2845 void *vpp; 2846 Elf_Internal_Sym *isym; 2847 2848 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache, 2849 abfd, r_symndx); 2850 if (isym == NULL) 2851 return FALSE; 2852 2853 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 2854 if (s == NULL) 2855 s = sec; 2856 2857 vpp = &elf_section_data (s)->local_dynrel; 2858 head = (struct elf_m68k_pcrel_relocs_copied **) vpp; 2859 } 2860 2861 for (p = *head; p != NULL; p = p->next) 2862 if (p->section == sreloc) 2863 break; 2864 2865 if (p == NULL) 2866 { 2867 p = ((struct elf_m68k_pcrel_relocs_copied *) 2868 bfd_alloc (dynobj, (bfd_size_type) sizeof *p)); 2869 if (p == NULL) 2870 return FALSE; 2871 p->next = *head; 2872 *head = p; 2873 p->section = sreloc; 2874 p->count = 0; 2875 } 2876 2877 ++p->count; 2878 } 2879 } 2880 2881 break; 2882 2883 /* This relocation describes the C++ object vtable hierarchy. 2884 Reconstruct it for later use during GC. */ 2885 case R_68K_GNU_VTINHERIT: 2886 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2887 return FALSE; 2888 break; 2889 2890 /* This relocation describes which C++ vtable entries are actually 2891 used. Record for later use during GC. */ 2892 case R_68K_GNU_VTENTRY: 2893 BFD_ASSERT (h != NULL); 2894 if (h != NULL 2895 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2896 return FALSE; 2897 break; 2898 2899 default: 2900 break; 2901 } 2902 } 2903 2904 return TRUE; 2905 } 2906 2907 /* Return the section that should be marked against GC for a given 2908 relocation. */ 2909 2910 static asection * 2911 elf_m68k_gc_mark_hook (asection *sec, 2912 struct bfd_link_info *info, 2913 Elf_Internal_Rela *rel, 2914 struct elf_link_hash_entry *h, 2915 Elf_Internal_Sym *sym) 2916 { 2917 if (h != NULL) 2918 switch (ELF32_R_TYPE (rel->r_info)) 2919 { 2920 case R_68K_GNU_VTINHERIT: 2921 case R_68K_GNU_VTENTRY: 2922 return NULL; 2923 } 2924 2925 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 2926 } 2927 2928 /* Update the got entry reference counts for the section being removed. */ 2929 2930 static bfd_boolean 2931 elf_m68k_gc_sweep_hook (bfd *abfd, 2932 struct bfd_link_info *info, 2933 asection *sec, 2934 const Elf_Internal_Rela *relocs) 2935 { 2936 Elf_Internal_Shdr *symtab_hdr; 2937 struct elf_link_hash_entry **sym_hashes; 2938 const Elf_Internal_Rela *rel, *relend; 2939 bfd *dynobj; 2940 struct elf_m68k_got *got; 2941 2942 if (info->relocatable) 2943 return TRUE; 2944 2945 dynobj = elf_hash_table (info)->dynobj; 2946 if (dynobj == NULL) 2947 return TRUE; 2948 2949 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2950 sym_hashes = elf_sym_hashes (abfd); 2951 got = NULL; 2952 2953 relend = relocs + sec->reloc_count; 2954 for (rel = relocs; rel < relend; rel++) 2955 { 2956 unsigned long r_symndx; 2957 struct elf_link_hash_entry *h = NULL; 2958 2959 r_symndx = ELF32_R_SYM (rel->r_info); 2960 if (r_symndx >= symtab_hdr->sh_info) 2961 { 2962 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2963 while (h->root.type == bfd_link_hash_indirect 2964 || h->root.type == bfd_link_hash_warning) 2965 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2966 } 2967 2968 switch (ELF32_R_TYPE (rel->r_info)) 2969 { 2970 case R_68K_GOT8: 2971 case R_68K_GOT16: 2972 case R_68K_GOT32: 2973 if (h != NULL 2974 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 2975 break; 2976 2977 /* FALLTHRU */ 2978 case R_68K_GOT8O: 2979 case R_68K_GOT16O: 2980 case R_68K_GOT32O: 2981 /* Fall through. */ 2982 2983 /* TLS relocations. */ 2984 case R_68K_TLS_GD8: 2985 case R_68K_TLS_GD16: 2986 case R_68K_TLS_GD32: 2987 case R_68K_TLS_LDM8: 2988 case R_68K_TLS_LDM16: 2989 case R_68K_TLS_LDM32: 2990 case R_68K_TLS_IE8: 2991 case R_68K_TLS_IE16: 2992 case R_68K_TLS_IE32: 2993 2994 case R_68K_TLS_TPREL32: 2995 case R_68K_TLS_DTPREL32: 2996 2997 if (got == NULL) 2998 { 2999 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 3000 abfd, MUST_FIND, NULL)->got; 3001 BFD_ASSERT (got != NULL); 3002 } 3003 3004 { 3005 struct elf_m68k_got_entry_key key_; 3006 struct elf_m68k_got_entry **got_entry_ptr; 3007 struct elf_m68k_got_entry *got_entry; 3008 3009 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx, 3010 ELF32_R_TYPE (rel->r_info)); 3011 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_); 3012 3013 got_entry = *got_entry_ptr; 3014 3015 if (got_entry->u.s1.refcount > 0) 3016 { 3017 --got_entry->u.s1.refcount; 3018 3019 if (got_entry->u.s1.refcount == 0) 3020 /* We don't need the .got entry any more. */ 3021 elf_m68k_remove_got_entry (got, got_entry_ptr); 3022 } 3023 } 3024 break; 3025 3026 case R_68K_PLT8: 3027 case R_68K_PLT16: 3028 case R_68K_PLT32: 3029 case R_68K_PLT8O: 3030 case R_68K_PLT16O: 3031 case R_68K_PLT32O: 3032 case R_68K_PC8: 3033 case R_68K_PC16: 3034 case R_68K_PC32: 3035 case R_68K_8: 3036 case R_68K_16: 3037 case R_68K_32: 3038 if (h != NULL) 3039 { 3040 if (h->plt.refcount > 0) 3041 --h->plt.refcount; 3042 } 3043 break; 3044 3045 default: 3046 break; 3047 } 3048 } 3049 3050 return TRUE; 3051 } 3052 3053 /* Return the type of PLT associated with OUTPUT_BFD. */ 3055 3056 static const struct elf_m68k_plt_info * 3057 elf_m68k_get_plt_info (bfd *output_bfd) 3058 { 3059 unsigned int features; 3060 3061 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd)); 3062 if (features & cpu32) 3063 return &elf_cpu32_plt_info; 3064 if (features & mcfisa_b) 3065 return &elf_isab_plt_info; 3066 if (features & mcfisa_c) 3067 return &elf_isac_plt_info; 3068 return &elf_m68k_plt_info; 3069 } 3070 3071 /* This function is called after all the input files have been read, 3072 and the input sections have been assigned to output sections. 3073 It's a convenient place to determine the PLT style. */ 3074 3075 static bfd_boolean 3076 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) 3077 { 3078 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got 3079 sections. */ 3080 if (!elf_m68k_partition_multi_got (info)) 3081 return FALSE; 3082 3083 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd); 3084 return TRUE; 3085 } 3086 3087 /* Adjust a symbol defined by a dynamic object and referenced by a 3088 regular object. The current definition is in some section of the 3089 dynamic object, but we're not including those sections. We have to 3090 change the definition to something the rest of the link can 3091 understand. */ 3092 3093 static bfd_boolean 3094 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info, 3095 struct elf_link_hash_entry *h) 3096 { 3097 struct elf_m68k_link_hash_table *htab; 3098 bfd *dynobj; 3099 asection *s; 3100 3101 htab = elf_m68k_hash_table (info); 3102 dynobj = elf_hash_table (info)->dynobj; 3103 3104 /* Make sure we know what is going on here. */ 3105 BFD_ASSERT (dynobj != NULL 3106 && (h->needs_plt 3107 || h->u.weakdef != NULL 3108 || (h->def_dynamic 3109 && h->ref_regular 3110 && !h->def_regular))); 3111 3112 /* If this is a function, put it in the procedure linkage table. We 3113 will fill in the contents of the procedure linkage table later, 3114 when we know the address of the .got section. */ 3115 if (h->type == STT_FUNC 3116 || h->needs_plt) 3117 { 3118 if ((h->plt.refcount <= 0 3119 || SYMBOL_CALLS_LOCAL (info, h) 3120 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 3121 && h->root.type == bfd_link_hash_undefweak)) 3122 /* We must always create the plt entry if it was referenced 3123 by a PLTxxO relocation. In this case we already recorded 3124 it as a dynamic symbol. */ 3125 && h->dynindx == -1) 3126 { 3127 /* This case can occur if we saw a PLTxx reloc in an input 3128 file, but the symbol was never referred to by a dynamic 3129 object, or if all references were garbage collected. In 3130 such a case, we don't actually need to build a procedure 3131 linkage table, and we can just do a PCxx reloc instead. */ 3132 h->plt.offset = (bfd_vma) -1; 3133 h->needs_plt = 0; 3134 return TRUE; 3135 } 3136 3137 /* Make sure this symbol is output as a dynamic symbol. */ 3138 if (h->dynindx == -1 3139 && !h->forced_local) 3140 { 3141 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 3142 return FALSE; 3143 } 3144 3145 s = bfd_get_linker_section (dynobj, ".plt"); 3146 BFD_ASSERT (s != NULL); 3147 3148 /* If this is the first .plt entry, make room for the special 3149 first entry. */ 3150 if (s->size == 0) 3151 s->size = htab->plt_info->size; 3152 3153 /* If this symbol is not defined in a regular file, and we are 3154 not generating a shared library, then set the symbol to this 3155 location in the .plt. This is required to make function 3156 pointers compare as equal between the normal executable and 3157 the shared library. */ 3158 if (!info->shared 3159 && !h->def_regular) 3160 { 3161 h->root.u.def.section = s; 3162 h->root.u.def.value = s->size; 3163 } 3164 3165 h->plt.offset = s->size; 3166 3167 /* Make room for this entry. */ 3168 s->size += htab->plt_info->size; 3169 3170 /* We also need to make an entry in the .got.plt section, which 3171 will be placed in the .got section by the linker script. */ 3172 s = bfd_get_linker_section (dynobj, ".got.plt"); 3173 BFD_ASSERT (s != NULL); 3174 s->size += 4; 3175 3176 /* We also need to make an entry in the .rela.plt section. */ 3177 s = bfd_get_linker_section (dynobj, ".rela.plt"); 3178 BFD_ASSERT (s != NULL); 3179 s->size += sizeof (Elf32_External_Rela); 3180 3181 return TRUE; 3182 } 3183 3184 /* Reinitialize the plt offset now that it is not used as a reference 3185 count any more. */ 3186 h->plt.offset = (bfd_vma) -1; 3187 3188 /* If this is a weak symbol, and there is a real definition, the 3189 processor independent code will have arranged for us to see the 3190 real definition first, and we can just use the same value. */ 3191 if (h->u.weakdef != NULL) 3192 { 3193 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 3194 || h->u.weakdef->root.type == bfd_link_hash_defweak); 3195 h->root.u.def.section = h->u.weakdef->root.u.def.section; 3196 h->root.u.def.value = h->u.weakdef->root.u.def.value; 3197 return TRUE; 3198 } 3199 3200 /* This is a reference to a symbol defined by a dynamic object which 3201 is not a function. */ 3202 3203 /* If we are creating a shared library, we must presume that the 3204 only references to the symbol are via the global offset table. 3205 For such cases we need not do anything here; the relocations will 3206 be handled correctly by relocate_section. */ 3207 if (info->shared) 3208 return TRUE; 3209 3210 /* If there are no references to this symbol that do not use the 3211 GOT, we don't need to generate a copy reloc. */ 3212 if (!h->non_got_ref) 3213 return TRUE; 3214 3215 /* We must allocate the symbol in our .dynbss section, which will 3216 become part of the .bss section of the executable. There will be 3217 an entry for this symbol in the .dynsym section. The dynamic 3218 object will contain position independent code, so all references 3219 from the dynamic object to this symbol will go through the global 3220 offset table. The dynamic linker will use the .dynsym entry to 3221 determine the address it must put in the global offset table, so 3222 both the dynamic object and the regular object will refer to the 3223 same memory location for the variable. */ 3224 3225 s = bfd_get_linker_section (dynobj, ".dynbss"); 3226 BFD_ASSERT (s != NULL); 3227 3228 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to 3229 copy the initial value out of the dynamic object and into the 3230 runtime process image. We need to remember the offset into the 3231 .rela.bss section we are going to use. */ 3232 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 3233 { 3234 asection *srel; 3235 3236 srel = bfd_get_linker_section (dynobj, ".rela.bss"); 3237 BFD_ASSERT (srel != NULL); 3238 srel->size += sizeof (Elf32_External_Rela); 3239 h->needs_copy = 1; 3240 } 3241 3242 return _bfd_elf_adjust_dynamic_copy (h, s); 3243 } 3244 3245 /* Set the sizes of the dynamic sections. */ 3246 3247 static bfd_boolean 3248 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 3249 struct bfd_link_info *info) 3250 { 3251 bfd *dynobj; 3252 asection *s; 3253 bfd_boolean plt; 3254 bfd_boolean relocs; 3255 3256 dynobj = elf_hash_table (info)->dynobj; 3257 BFD_ASSERT (dynobj != NULL); 3258 3259 if (elf_hash_table (info)->dynamic_sections_created) 3260 { 3261 /* Set the contents of the .interp section to the interpreter. */ 3262 if (info->executable) 3263 { 3264 s = bfd_get_linker_section (dynobj, ".interp"); 3265 BFD_ASSERT (s != NULL); 3266 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 3267 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 3268 } 3269 } 3270 else 3271 { 3272 /* We may have created entries in the .rela.got section. 3273 However, if we are not creating the dynamic sections, we will 3274 not actually use these entries. Reset the size of .rela.got, 3275 which will cause it to get stripped from the output file 3276 below. */ 3277 s = bfd_get_linker_section (dynobj, ".rela.got"); 3278 if (s != NULL) 3279 s->size = 0; 3280 } 3281 3282 /* If this is a -Bsymbolic shared link, then we need to discard all 3283 PC relative relocs against symbols defined in a regular object. 3284 For the normal shared case we discard the PC relative relocs 3285 against symbols that have become local due to visibility changes. 3286 We allocated space for them in the check_relocs routine, but we 3287 will not fill them in in the relocate_section routine. */ 3288 if (info->shared) 3289 elf_link_hash_traverse (elf_hash_table (info), 3290 elf_m68k_discard_copies, 3291 info); 3292 3293 /* The check_relocs and adjust_dynamic_symbol entry points have 3294 determined the sizes of the various dynamic sections. Allocate 3295 memory for them. */ 3296 plt = FALSE; 3297 relocs = FALSE; 3298 for (s = dynobj->sections; s != NULL; s = s->next) 3299 { 3300 const char *name; 3301 3302 if ((s->flags & SEC_LINKER_CREATED) == 0) 3303 continue; 3304 3305 /* It's OK to base decisions on the section name, because none 3306 of the dynobj section names depend upon the input files. */ 3307 name = bfd_get_section_name (dynobj, s); 3308 3309 if (strcmp (name, ".plt") == 0) 3310 { 3311 /* Remember whether there is a PLT. */ 3312 plt = s->size != 0; 3313 } 3314 else if (CONST_STRNEQ (name, ".rela")) 3315 { 3316 if (s->size != 0) 3317 { 3318 relocs = TRUE; 3319 3320 /* We use the reloc_count field as a counter if we need 3321 to copy relocs into the output file. */ 3322 s->reloc_count = 0; 3323 } 3324 } 3325 else if (! CONST_STRNEQ (name, ".got") 3326 && strcmp (name, ".dynbss") != 0) 3327 { 3328 /* It's not one of our sections, so don't allocate space. */ 3329 continue; 3330 } 3331 3332 if (s->size == 0) 3333 { 3334 /* If we don't need this section, strip it from the 3335 output file. This is mostly to handle .rela.bss and 3336 .rela.plt. We must create both sections in 3337 create_dynamic_sections, because they must be created 3338 before the linker maps input sections to output 3339 sections. The linker does that before 3340 adjust_dynamic_symbol is called, and it is that 3341 function which decides whether anything needs to go 3342 into these sections. */ 3343 s->flags |= SEC_EXCLUDE; 3344 continue; 3345 } 3346 3347 if ((s->flags & SEC_HAS_CONTENTS) == 0) 3348 continue; 3349 3350 /* Allocate memory for the section contents. */ 3351 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc. 3352 Unused entries should be reclaimed before the section's contents 3353 are written out, but at the moment this does not happen. Thus in 3354 order to prevent writing out garbage, we initialise the section's 3355 contents to zero. */ 3356 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 3357 if (s->contents == NULL) 3358 return FALSE; 3359 } 3360 3361 if (elf_hash_table (info)->dynamic_sections_created) 3362 { 3363 /* Add some entries to the .dynamic section. We fill in the 3364 values later, in elf_m68k_finish_dynamic_sections, but we 3365 must add the entries now so that we get the correct size for 3366 the .dynamic section. The DT_DEBUG entry is filled in by the 3367 dynamic linker and used by the debugger. */ 3368 #define add_dynamic_entry(TAG, VAL) \ 3369 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 3370 3371 if (info->executable) 3372 { 3373 if (!add_dynamic_entry (DT_DEBUG, 0)) 3374 return FALSE; 3375 } 3376 3377 if (plt) 3378 { 3379 if (!add_dynamic_entry (DT_PLTGOT, 0) 3380 || !add_dynamic_entry (DT_PLTRELSZ, 0) 3381 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 3382 || !add_dynamic_entry (DT_JMPREL, 0)) 3383 return FALSE; 3384 } 3385 3386 if (relocs) 3387 { 3388 if (!add_dynamic_entry (DT_RELA, 0) 3389 || !add_dynamic_entry (DT_RELASZ, 0) 3390 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 3391 return FALSE; 3392 } 3393 3394 if ((info->flags & DF_TEXTREL) != 0) 3395 { 3396 if (!add_dynamic_entry (DT_TEXTREL, 0)) 3397 return FALSE; 3398 } 3399 } 3400 #undef add_dynamic_entry 3401 3402 return TRUE; 3403 } 3404 3405 /* This function is called via elf_link_hash_traverse if we are 3406 creating a shared object. In the -Bsymbolic case it discards the 3407 space allocated to copy PC relative relocs against symbols which 3408 are defined in regular objects. For the normal shared case, it 3409 discards space for pc-relative relocs that have become local due to 3410 symbol visibility changes. We allocated space for them in the 3411 check_relocs routine, but we won't fill them in in the 3412 relocate_section routine. 3413 3414 We also check whether any of the remaining relocations apply 3415 against a readonly section, and set the DF_TEXTREL flag in this 3416 case. */ 3417 3418 static bfd_boolean 3419 elf_m68k_discard_copies (struct elf_link_hash_entry *h, 3420 void * inf) 3421 { 3422 struct bfd_link_info *info = (struct bfd_link_info *) inf; 3423 struct elf_m68k_pcrel_relocs_copied *s; 3424 3425 if (!SYMBOL_CALLS_LOCAL (info, h)) 3426 { 3427 if ((info->flags & DF_TEXTREL) == 0) 3428 { 3429 /* Look for relocations against read-only sections. */ 3430 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; 3431 s != NULL; 3432 s = s->next) 3433 if ((s->section->flags & SEC_READONLY) != 0) 3434 { 3435 info->flags |= DF_TEXTREL; 3436 break; 3437 } 3438 } 3439 3440 /* Make sure undefined weak symbols are output as a dynamic symbol 3441 in PIEs. */ 3442 if (h->non_got_ref 3443 && h->root.type == bfd_link_hash_undefweak 3444 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3445 && h->dynindx == -1 3446 && !h->forced_local) 3447 { 3448 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 3449 return FALSE; 3450 } 3451 3452 return TRUE; 3453 } 3454 3455 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; 3456 s != NULL; 3457 s = s->next) 3458 s->section->size -= s->count * sizeof (Elf32_External_Rela); 3459 3460 return TRUE; 3461 } 3462 3463 3464 /* Install relocation RELA. */ 3465 3466 static void 3467 elf_m68k_install_rela (bfd *output_bfd, 3468 asection *srela, 3469 Elf_Internal_Rela *rela) 3470 { 3471 bfd_byte *loc; 3472 3473 loc = srela->contents; 3474 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela); 3475 bfd_elf32_swap_reloca_out (output_bfd, rela, loc); 3476 } 3477 3478 /* Find the base offsets for thread-local storage in this object, 3479 for GD/LD and IE/LE respectively. */ 3480 3481 #define DTP_OFFSET 0x8000 3482 #define TP_OFFSET 0x7000 3483 3484 static bfd_vma 3485 dtpoff_base (struct bfd_link_info *info) 3486 { 3487 /* If tls_sec is NULL, we should have signalled an error already. */ 3488 if (elf_hash_table (info)->tls_sec == NULL) 3489 return 0; 3490 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 3491 } 3492 3493 static bfd_vma 3494 tpoff_base (struct bfd_link_info *info) 3495 { 3496 /* If tls_sec is NULL, we should have signalled an error already. */ 3497 if (elf_hash_table (info)->tls_sec == NULL) 3498 return 0; 3499 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 3500 } 3501 3502 /* Output necessary relocation to handle a symbol during static link. 3503 This function is called from elf_m68k_relocate_section. */ 3504 3505 static void 3506 elf_m68k_init_got_entry_static (struct bfd_link_info *info, 3507 bfd *output_bfd, 3508 enum elf_m68k_reloc_type r_type, 3509 asection *sgot, 3510 bfd_vma got_entry_offset, 3511 bfd_vma relocation) 3512 { 3513 switch (elf_m68k_reloc_got_type (r_type)) 3514 { 3515 case R_68K_GOT32O: 3516 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset); 3517 break; 3518 3519 case R_68K_TLS_GD32: 3520 /* We know the offset within the module, 3521 put it into the second GOT slot. */ 3522 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 3523 sgot->contents + got_entry_offset + 4); 3524 /* FALLTHRU */ 3525 3526 case R_68K_TLS_LDM32: 3527 /* Mark it as belonging to module 1, the executable. */ 3528 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset); 3529 break; 3530 3531 case R_68K_TLS_IE32: 3532 bfd_put_32 (output_bfd, relocation - tpoff_base (info), 3533 sgot->contents + got_entry_offset); 3534 break; 3535 3536 default: 3537 BFD_ASSERT (FALSE); 3538 } 3539 } 3540 3541 /* Output necessary relocation to handle a local symbol 3542 during dynamic link. 3543 This function is called either from elf_m68k_relocate_section 3544 or from elf_m68k_finish_dynamic_symbol. */ 3545 3546 static void 3547 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info, 3548 bfd *output_bfd, 3549 enum elf_m68k_reloc_type r_type, 3550 asection *sgot, 3551 bfd_vma got_entry_offset, 3552 bfd_vma relocation, 3553 asection *srela) 3554 { 3555 Elf_Internal_Rela outrel; 3556 3557 switch (elf_m68k_reloc_got_type (r_type)) 3558 { 3559 case R_68K_GOT32O: 3560 /* Emit RELATIVE relocation to initialize GOT slot 3561 at run-time. */ 3562 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 3563 outrel.r_addend = relocation; 3564 break; 3565 3566 case R_68K_TLS_GD32: 3567 /* We know the offset within the module, 3568 put it into the second GOT slot. */ 3569 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 3570 sgot->contents + got_entry_offset + 4); 3571 /* FALLTHRU */ 3572 3573 case R_68K_TLS_LDM32: 3574 /* We don't know the module number, 3575 create a relocation for it. */ 3576 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32); 3577 outrel.r_addend = 0; 3578 break; 3579 3580 case R_68K_TLS_IE32: 3581 /* Emit TPREL relocation to initialize GOT slot 3582 at run-time. */ 3583 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32); 3584 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma; 3585 break; 3586 3587 default: 3588 BFD_ASSERT (FALSE); 3589 } 3590 3591 /* Offset of the GOT entry. */ 3592 outrel.r_offset = (sgot->output_section->vma 3593 + sgot->output_offset 3594 + got_entry_offset); 3595 3596 /* Install one of the above relocations. */ 3597 elf_m68k_install_rela (output_bfd, srela, &outrel); 3598 3599 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset); 3600 } 3601 3602 /* Relocate an M68K ELF section. */ 3603 3604 static bfd_boolean 3605 elf_m68k_relocate_section (bfd *output_bfd, 3606 struct bfd_link_info *info, 3607 bfd *input_bfd, 3608 asection *input_section, 3609 bfd_byte *contents, 3610 Elf_Internal_Rela *relocs, 3611 Elf_Internal_Sym *local_syms, 3612 asection **local_sections) 3613 { 3614 bfd *dynobj; 3615 Elf_Internal_Shdr *symtab_hdr; 3616 struct elf_link_hash_entry **sym_hashes; 3617 asection *sgot; 3618 asection *splt; 3619 asection *sreloc; 3620 asection *srela; 3621 struct elf_m68k_got *got; 3622 Elf_Internal_Rela *rel; 3623 Elf_Internal_Rela *relend; 3624 3625 dynobj = elf_hash_table (info)->dynobj; 3626 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3627 sym_hashes = elf_sym_hashes (input_bfd); 3628 3629 sgot = NULL; 3630 splt = NULL; 3631 sreloc = NULL; 3632 srela = NULL; 3633 3634 got = NULL; 3635 3636 rel = relocs; 3637 relend = relocs + input_section->reloc_count; 3638 for (; rel < relend; rel++) 3639 { 3640 int r_type; 3641 reloc_howto_type *howto; 3642 unsigned long r_symndx; 3643 struct elf_link_hash_entry *h; 3644 Elf_Internal_Sym *sym; 3645 asection *sec; 3646 bfd_vma relocation; 3647 bfd_boolean unresolved_reloc; 3648 bfd_reloc_status_type r; 3649 3650 r_type = ELF32_R_TYPE (rel->r_info); 3651 if (r_type < 0 || r_type >= (int) R_68K_max) 3652 { 3653 bfd_set_error (bfd_error_bad_value); 3654 return FALSE; 3655 } 3656 howto = howto_table + r_type; 3657 3658 r_symndx = ELF32_R_SYM (rel->r_info); 3659 3660 h = NULL; 3661 sym = NULL; 3662 sec = NULL; 3663 unresolved_reloc = FALSE; 3664 3665 if (r_symndx < symtab_hdr->sh_info) 3666 { 3667 sym = local_syms + r_symndx; 3668 sec = local_sections[r_symndx]; 3669 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 3670 } 3671 else 3672 { 3673 bfd_boolean warned, ignored; 3674 3675 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 3676 r_symndx, symtab_hdr, sym_hashes, 3677 h, sec, relocation, 3678 unresolved_reloc, warned, ignored); 3679 } 3680 3681 if (sec != NULL && discarded_section (sec)) 3682 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 3683 rel, 1, relend, howto, 0, contents); 3684 3685 if (info->relocatable) 3686 continue; 3687 3688 switch (r_type) 3689 { 3690 case R_68K_GOT8: 3691 case R_68K_GOT16: 3692 case R_68K_GOT32: 3693 /* Relocation is to the address of the entry for this symbol 3694 in the global offset table. */ 3695 if (h != NULL 3696 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 3697 { 3698 if (elf_m68k_hash_table (info)->local_gp_p) 3699 { 3700 bfd_vma sgot_output_offset; 3701 bfd_vma got_offset; 3702 3703 if (sgot == NULL) 3704 { 3705 sgot = bfd_get_linker_section (dynobj, ".got"); 3706 3707 if (sgot != NULL) 3708 sgot_output_offset = sgot->output_offset; 3709 else 3710 /* In this case we have a reference to 3711 _GLOBAL_OFFSET_TABLE_, but the GOT itself is 3712 empty. 3713 ??? Issue a warning? */ 3714 sgot_output_offset = 0; 3715 } 3716 else 3717 sgot_output_offset = sgot->output_offset; 3718 3719 if (got == NULL) 3720 { 3721 struct elf_m68k_bfd2got_entry *bfd2got_entry; 3722 3723 bfd2got_entry 3724 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 3725 input_bfd, SEARCH, NULL); 3726 3727 if (bfd2got_entry != NULL) 3728 { 3729 got = bfd2got_entry->got; 3730 BFD_ASSERT (got != NULL); 3731 3732 got_offset = got->offset; 3733 } 3734 else 3735 /* In this case we have a reference to 3736 _GLOBAL_OFFSET_TABLE_, but no other references 3737 accessing any GOT entries. 3738 ??? Issue a warning? */ 3739 got_offset = 0; 3740 } 3741 else 3742 got_offset = got->offset; 3743 3744 /* Adjust GOT pointer to point to the GOT 3745 assigned to input_bfd. */ 3746 rel->r_addend += sgot_output_offset + got_offset; 3747 } 3748 else 3749 BFD_ASSERT (got == NULL || got->offset == 0); 3750 3751 break; 3752 } 3753 /* Fall through. */ 3754 case R_68K_GOT8O: 3755 case R_68K_GOT16O: 3756 case R_68K_GOT32O: 3757 3758 case R_68K_TLS_LDM32: 3759 case R_68K_TLS_LDM16: 3760 case R_68K_TLS_LDM8: 3761 3762 case R_68K_TLS_GD8: 3763 case R_68K_TLS_GD16: 3764 case R_68K_TLS_GD32: 3765 3766 case R_68K_TLS_IE8: 3767 case R_68K_TLS_IE16: 3768 case R_68K_TLS_IE32: 3769 3770 /* Relocation is the offset of the entry for this symbol in 3771 the global offset table. */ 3772 3773 { 3774 struct elf_m68k_got_entry_key key_; 3775 bfd_vma *off_ptr; 3776 bfd_vma off; 3777 3778 if (sgot == NULL) 3779 { 3780 sgot = bfd_get_linker_section (dynobj, ".got"); 3781 BFD_ASSERT (sgot != NULL); 3782 } 3783 3784 if (got == NULL) 3785 { 3786 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 3787 input_bfd, MUST_FIND, 3788 NULL)->got; 3789 BFD_ASSERT (got != NULL); 3790 } 3791 3792 /* Get GOT offset for this symbol. */ 3793 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx, 3794 r_type); 3795 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND, 3796 NULL)->u.s2.offset; 3797 off = *off_ptr; 3798 3799 /* The offset must always be a multiple of 4. We use 3800 the least significant bit to record whether we have 3801 already generated the necessary reloc. */ 3802 if ((off & 1) != 0) 3803 off &= ~1; 3804 else 3805 { 3806 if (h != NULL 3807 /* @TLSLDM relocations are bounded to the module, in 3808 which the symbol is defined -- not to the symbol 3809 itself. */ 3810 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32) 3811 { 3812 bfd_boolean dyn; 3813 3814 dyn = elf_hash_table (info)->dynamic_sections_created; 3815 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 3816 || (info->shared 3817 && SYMBOL_REFERENCES_LOCAL (info, h)) 3818 || (ELF_ST_VISIBILITY (h->other) 3819 && h->root.type == bfd_link_hash_undefweak)) 3820 { 3821 /* This is actually a static link, or it is a 3822 -Bsymbolic link and the symbol is defined 3823 locally, or the symbol was forced to be local 3824 because of a version file. We must initialize 3825 this entry in the global offset table. Since 3826 the offset must always be a multiple of 4, we 3827 use the least significant bit to record whether 3828 we have initialized it already. 3829 3830 When doing a dynamic link, we create a .rela.got 3831 relocation entry to initialize the value. This 3832 is done in the finish_dynamic_symbol routine. */ 3833 3834 elf_m68k_init_got_entry_static (info, 3835 output_bfd, 3836 r_type, 3837 sgot, 3838 off, 3839 relocation); 3840 3841 *off_ptr |= 1; 3842 } 3843 else 3844 unresolved_reloc = FALSE; 3845 } 3846 else if (info->shared) /* && h == NULL */ 3847 /* Process local symbol during dynamic link. */ 3848 { 3849 if (srela == NULL) 3850 { 3851 srela = bfd_get_linker_section (dynobj, ".rela.got"); 3852 BFD_ASSERT (srela != NULL); 3853 } 3854 3855 elf_m68k_init_got_entry_local_shared (info, 3856 output_bfd, 3857 r_type, 3858 sgot, 3859 off, 3860 relocation, 3861 srela); 3862 3863 *off_ptr |= 1; 3864 } 3865 else /* h == NULL && !info->shared */ 3866 { 3867 elf_m68k_init_got_entry_static (info, 3868 output_bfd, 3869 r_type, 3870 sgot, 3871 off, 3872 relocation); 3873 3874 *off_ptr |= 1; 3875 } 3876 } 3877 3878 /* We don't use elf_m68k_reloc_got_type in the condition below 3879 because this is the only place where difference between 3880 R_68K_GOTx and R_68K_GOTxO relocations matters. */ 3881 if (r_type == R_68K_GOT32O 3882 || r_type == R_68K_GOT16O 3883 || r_type == R_68K_GOT8O 3884 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32 3885 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32 3886 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32) 3887 { 3888 /* GOT pointer is adjusted to point to the start/middle 3889 of local GOT. Adjust the offset accordingly. */ 3890 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p 3891 || off >= got->offset); 3892 3893 if (elf_m68k_hash_table (info)->local_gp_p) 3894 relocation = off - got->offset; 3895 else 3896 { 3897 BFD_ASSERT (got->offset == 0); 3898 relocation = sgot->output_offset + off; 3899 } 3900 3901 /* This relocation does not use the addend. */ 3902 rel->r_addend = 0; 3903 } 3904 else 3905 relocation = (sgot->output_section->vma + sgot->output_offset 3906 + off); 3907 } 3908 break; 3909 3910 case R_68K_TLS_LDO32: 3911 case R_68K_TLS_LDO16: 3912 case R_68K_TLS_LDO8: 3913 relocation -= dtpoff_base (info); 3914 break; 3915 3916 case R_68K_TLS_LE32: 3917 case R_68K_TLS_LE16: 3918 case R_68K_TLS_LE8: 3919 if (info->shared && !info->pie) 3920 { 3921 (*_bfd_error_handler) 3922 (_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted " 3923 "in shared object"), 3924 input_bfd, input_section, (long) rel->r_offset, howto->name); 3925 3926 return FALSE; 3927 } 3928 else 3929 relocation -= tpoff_base (info); 3930 3931 break; 3932 3933 case R_68K_PLT8: 3934 case R_68K_PLT16: 3935 case R_68K_PLT32: 3936 /* Relocation is to the entry for this symbol in the 3937 procedure linkage table. */ 3938 3939 /* Resolve a PLTxx reloc against a local symbol directly, 3940 without using the procedure linkage table. */ 3941 if (h == NULL) 3942 break; 3943 3944 if (h->plt.offset == (bfd_vma) -1 3945 || !elf_hash_table (info)->dynamic_sections_created) 3946 { 3947 /* We didn't make a PLT entry for this symbol. This 3948 happens when statically linking PIC code, or when 3949 using -Bsymbolic. */ 3950 break; 3951 } 3952 3953 if (splt == NULL) 3954 { 3955 splt = bfd_get_linker_section (dynobj, ".plt"); 3956 BFD_ASSERT (splt != NULL); 3957 } 3958 3959 relocation = (splt->output_section->vma 3960 + splt->output_offset 3961 + h->plt.offset); 3962 unresolved_reloc = FALSE; 3963 break; 3964 3965 case R_68K_PLT8O: 3966 case R_68K_PLT16O: 3967 case R_68K_PLT32O: 3968 /* Relocation is the offset of the entry for this symbol in 3969 the procedure linkage table. */ 3970 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1); 3971 3972 if (splt == NULL) 3973 { 3974 splt = bfd_get_linker_section (dynobj, ".plt"); 3975 BFD_ASSERT (splt != NULL); 3976 } 3977 3978 relocation = h->plt.offset; 3979 unresolved_reloc = FALSE; 3980 3981 /* This relocation does not use the addend. */ 3982 rel->r_addend = 0; 3983 3984 break; 3985 3986 case R_68K_8: 3987 case R_68K_16: 3988 case R_68K_32: 3989 case R_68K_PC8: 3990 case R_68K_PC16: 3991 case R_68K_PC32: 3992 if (info->shared 3993 && r_symndx != STN_UNDEF 3994 && (input_section->flags & SEC_ALLOC) != 0 3995 && (h == NULL 3996 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3997 || h->root.type != bfd_link_hash_undefweak) 3998 && ((r_type != R_68K_PC8 3999 && r_type != R_68K_PC16 4000 && r_type != R_68K_PC32) 4001 || !SYMBOL_CALLS_LOCAL (info, h))) 4002 { 4003 Elf_Internal_Rela outrel; 4004 bfd_byte *loc; 4005 bfd_boolean skip, relocate; 4006 4007 /* When generating a shared object, these relocations 4008 are copied into the output file to be resolved at run 4009 time. */ 4010 4011 skip = FALSE; 4012 relocate = FALSE; 4013 4014 outrel.r_offset = 4015 _bfd_elf_section_offset (output_bfd, info, input_section, 4016 rel->r_offset); 4017 if (outrel.r_offset == (bfd_vma) -1) 4018 skip = TRUE; 4019 else if (outrel.r_offset == (bfd_vma) -2) 4020 skip = TRUE, relocate = TRUE; 4021 outrel.r_offset += (input_section->output_section->vma 4022 + input_section->output_offset); 4023 4024 if (skip) 4025 memset (&outrel, 0, sizeof outrel); 4026 else if (h != NULL 4027 && h->dynindx != -1 4028 && (r_type == R_68K_PC8 4029 || r_type == R_68K_PC16 4030 || r_type == R_68K_PC32 4031 || !info->shared 4032 || !info->symbolic 4033 || !h->def_regular)) 4034 { 4035 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); 4036 outrel.r_addend = rel->r_addend; 4037 } 4038 else 4039 { 4040 /* This symbol is local, or marked to become local. */ 4041 outrel.r_addend = relocation + rel->r_addend; 4042 4043 if (r_type == R_68K_32) 4044 { 4045 relocate = TRUE; 4046 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 4047 } 4048 else 4049 { 4050 long indx; 4051 4052 if (bfd_is_abs_section (sec)) 4053 indx = 0; 4054 else if (sec == NULL || sec->owner == NULL) 4055 { 4056 bfd_set_error (bfd_error_bad_value); 4057 return FALSE; 4058 } 4059 else 4060 { 4061 asection *osec; 4062 4063 /* We are turning this relocation into one 4064 against a section symbol. It would be 4065 proper to subtract the symbol's value, 4066 osec->vma, from the emitted reloc addend, 4067 but ld.so expects buggy relocs. */ 4068 osec = sec->output_section; 4069 indx = elf_section_data (osec)->dynindx; 4070 if (indx == 0) 4071 { 4072 struct elf_link_hash_table *htab; 4073 htab = elf_hash_table (info); 4074 osec = htab->text_index_section; 4075 indx = elf_section_data (osec)->dynindx; 4076 } 4077 BFD_ASSERT (indx != 0); 4078 } 4079 4080 outrel.r_info = ELF32_R_INFO (indx, r_type); 4081 } 4082 } 4083 4084 sreloc = elf_section_data (input_section)->sreloc; 4085 if (sreloc == NULL) 4086 abort (); 4087 4088 loc = sreloc->contents; 4089 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); 4090 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4091 4092 /* This reloc will be computed at runtime, so there's no 4093 need to do anything now, except for R_68K_32 4094 relocations that have been turned into 4095 R_68K_RELATIVE. */ 4096 if (!relocate) 4097 continue; 4098 } 4099 4100 break; 4101 4102 case R_68K_GNU_VTINHERIT: 4103 case R_68K_GNU_VTENTRY: 4104 /* These are no-ops in the end. */ 4105 continue; 4106 4107 default: 4108 break; 4109 } 4110 4111 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 4112 because such sections are not SEC_ALLOC and thus ld.so will 4113 not process them. */ 4114 if (unresolved_reloc 4115 && !((input_section->flags & SEC_DEBUGGING) != 0 4116 && h->def_dynamic) 4117 && _bfd_elf_section_offset (output_bfd, info, input_section, 4118 rel->r_offset) != (bfd_vma) -1) 4119 { 4120 (*_bfd_error_handler) 4121 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 4122 input_bfd, 4123 input_section, 4124 (long) rel->r_offset, 4125 howto->name, 4126 h->root.root.string); 4127 return FALSE; 4128 } 4129 4130 if (r_symndx != STN_UNDEF 4131 && r_type != R_68K_NONE 4132 && (h == NULL 4133 || h->root.type == bfd_link_hash_defined 4134 || h->root.type == bfd_link_hash_defweak)) 4135 { 4136 char sym_type; 4137 4138 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type; 4139 4140 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS)) 4141 { 4142 const char *name; 4143 4144 if (h != NULL) 4145 name = h->root.root.string; 4146 else 4147 { 4148 name = (bfd_elf_string_from_elf_section 4149 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 4150 if (name == NULL || *name == '\0') 4151 name = bfd_section_name (input_bfd, sec); 4152 } 4153 4154 (*_bfd_error_handler) 4155 ((sym_type == STT_TLS 4156 ? _("%B(%A+0x%lx): %s used with TLS symbol %s") 4157 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), 4158 input_bfd, 4159 input_section, 4160 (long) rel->r_offset, 4161 howto->name, 4162 name); 4163 } 4164 } 4165 4166 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 4167 contents, rel->r_offset, 4168 relocation, rel->r_addend); 4169 4170 if (r != bfd_reloc_ok) 4171 { 4172 const char *name; 4173 4174 if (h != NULL) 4175 name = h->root.root.string; 4176 else 4177 { 4178 name = bfd_elf_string_from_elf_section (input_bfd, 4179 symtab_hdr->sh_link, 4180 sym->st_name); 4181 if (name == NULL) 4182 return FALSE; 4183 if (*name == '\0') 4184 name = bfd_section_name (input_bfd, sec); 4185 } 4186 4187 if (r == bfd_reloc_overflow) 4188 { 4189 if (!(info->callbacks->reloc_overflow 4190 (info, (h ? &h->root : NULL), name, howto->name, 4191 (bfd_vma) 0, input_bfd, input_section, 4192 rel->r_offset))) 4193 return FALSE; 4194 } 4195 else 4196 { 4197 (*_bfd_error_handler) 4198 (_("%B(%A+0x%lx): reloc against `%s': error %d"), 4199 input_bfd, input_section, 4200 (long) rel->r_offset, name, (int) r); 4201 return FALSE; 4202 } 4203 } 4204 } 4205 4206 return TRUE; 4207 } 4208 4209 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET 4210 into section SEC. */ 4211 4212 static void 4213 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value) 4214 { 4215 /* Make VALUE PC-relative. */ 4216 value -= sec->output_section->vma + offset; 4217 4218 /* Apply any in-place addend. */ 4219 value += bfd_get_32 (sec->owner, sec->contents + offset); 4220 4221 bfd_put_32 (sec->owner, value, sec->contents + offset); 4222 } 4223 4224 /* Finish up dynamic symbol handling. We set the contents of various 4225 dynamic sections here. */ 4226 4227 static bfd_boolean 4228 elf_m68k_finish_dynamic_symbol (bfd *output_bfd, 4229 struct bfd_link_info *info, 4230 struct elf_link_hash_entry *h, 4231 Elf_Internal_Sym *sym) 4232 { 4233 bfd *dynobj; 4234 4235 dynobj = elf_hash_table (info)->dynobj; 4236 4237 if (h->plt.offset != (bfd_vma) -1) 4238 { 4239 const struct elf_m68k_plt_info *plt_info; 4240 asection *splt; 4241 asection *sgot; 4242 asection *srela; 4243 bfd_vma plt_index; 4244 bfd_vma got_offset; 4245 Elf_Internal_Rela rela; 4246 bfd_byte *loc; 4247 4248 /* This symbol has an entry in the procedure linkage table. Set 4249 it up. */ 4250 4251 BFD_ASSERT (h->dynindx != -1); 4252 4253 plt_info = elf_m68k_hash_table (info)->plt_info; 4254 splt = bfd_get_linker_section (dynobj, ".plt"); 4255 sgot = bfd_get_linker_section (dynobj, ".got.plt"); 4256 srela = bfd_get_linker_section (dynobj, ".rela.plt"); 4257 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); 4258 4259 /* Get the index in the procedure linkage table which 4260 corresponds to this symbol. This is the index of this symbol 4261 in all the symbols for which we are making plt entries. The 4262 first entry in the procedure linkage table is reserved. */ 4263 plt_index = (h->plt.offset / plt_info->size) - 1; 4264 4265 /* Get the offset into the .got table of the entry that 4266 corresponds to this function. Each .got entry is 4 bytes. 4267 The first three are reserved. */ 4268 got_offset = (plt_index + 3) * 4; 4269 4270 memcpy (splt->contents + h->plt.offset, 4271 plt_info->symbol_entry, 4272 plt_info->size); 4273 4274 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got, 4275 (sgot->output_section->vma 4276 + sgot->output_offset 4277 + got_offset)); 4278 4279 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), 4280 splt->contents 4281 + h->plt.offset 4282 + plt_info->symbol_resolve_entry + 2); 4283 4284 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt, 4285 splt->output_section->vma); 4286 4287 /* Fill in the entry in the global offset table. */ 4288 bfd_put_32 (output_bfd, 4289 (splt->output_section->vma 4290 + splt->output_offset 4291 + h->plt.offset 4292 + plt_info->symbol_resolve_entry), 4293 sgot->contents + got_offset); 4294 4295 /* Fill in the entry in the .rela.plt section. */ 4296 rela.r_offset = (sgot->output_section->vma 4297 + sgot->output_offset 4298 + got_offset); 4299 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT); 4300 rela.r_addend = 0; 4301 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela); 4302 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4303 4304 if (!h->def_regular) 4305 { 4306 /* Mark the symbol as undefined, rather than as defined in 4307 the .plt section. Leave the value alone. */ 4308 sym->st_shndx = SHN_UNDEF; 4309 } 4310 } 4311 4312 if (elf_m68k_hash_entry (h)->glist != NULL) 4313 { 4314 asection *sgot; 4315 asection *srela; 4316 struct elf_m68k_got_entry *got_entry; 4317 4318 /* This symbol has an entry in the global offset table. Set it 4319 up. */ 4320 4321 sgot = bfd_get_linker_section (dynobj, ".got"); 4322 srela = bfd_get_linker_section (dynobj, ".rela.got"); 4323 BFD_ASSERT (sgot != NULL && srela != NULL); 4324 4325 got_entry = elf_m68k_hash_entry (h)->glist; 4326 4327 while (got_entry != NULL) 4328 { 4329 enum elf_m68k_reloc_type r_type; 4330 bfd_vma got_entry_offset; 4331 4332 r_type = got_entry->key_.type; 4333 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1; 4334 4335 /* If this is a -Bsymbolic link, and the symbol is defined 4336 locally, we just want to emit a RELATIVE reloc. Likewise if 4337 the symbol was forced to be local because of a version file. 4338 The entry in the global offset table already have been 4339 initialized in the relocate_section function. */ 4340 if (info->shared 4341 && SYMBOL_REFERENCES_LOCAL (info, h)) 4342 { 4343 bfd_vma relocation; 4344 4345 relocation = bfd_get_signed_32 (output_bfd, 4346 (sgot->contents 4347 + got_entry_offset)); 4348 4349 /* Undo TP bias. */ 4350 switch (elf_m68k_reloc_got_type (r_type)) 4351 { 4352 case R_68K_GOT32O: 4353 case R_68K_TLS_LDM32: 4354 break; 4355 4356 case R_68K_TLS_GD32: 4357 /* The value for this relocation is actually put in 4358 the second GOT slot. */ 4359 relocation = bfd_get_signed_32 (output_bfd, 4360 (sgot->contents 4361 + got_entry_offset + 4)); 4362 relocation += dtpoff_base (info); 4363 break; 4364 4365 case R_68K_TLS_IE32: 4366 relocation += tpoff_base (info); 4367 break; 4368 4369 default: 4370 BFD_ASSERT (FALSE); 4371 } 4372 4373 elf_m68k_init_got_entry_local_shared (info, 4374 output_bfd, 4375 r_type, 4376 sgot, 4377 got_entry_offset, 4378 relocation, 4379 srela); 4380 } 4381 else 4382 { 4383 Elf_Internal_Rela rela; 4384 4385 /* Put zeros to GOT slots that will be initialized 4386 at run-time. */ 4387 { 4388 bfd_vma n_slots; 4389 4390 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type); 4391 while (n_slots--) 4392 bfd_put_32 (output_bfd, (bfd_vma) 0, 4393 (sgot->contents + got_entry_offset 4394 + 4 * n_slots)); 4395 } 4396 4397 rela.r_addend = 0; 4398 rela.r_offset = (sgot->output_section->vma 4399 + sgot->output_offset 4400 + got_entry_offset); 4401 4402 switch (elf_m68k_reloc_got_type (r_type)) 4403 { 4404 case R_68K_GOT32O: 4405 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT); 4406 elf_m68k_install_rela (output_bfd, srela, &rela); 4407 break; 4408 4409 case R_68K_TLS_GD32: 4410 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32); 4411 elf_m68k_install_rela (output_bfd, srela, &rela); 4412 4413 rela.r_offset += 4; 4414 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32); 4415 elf_m68k_install_rela (output_bfd, srela, &rela); 4416 break; 4417 4418 case R_68K_TLS_IE32: 4419 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32); 4420 elf_m68k_install_rela (output_bfd, srela, &rela); 4421 break; 4422 4423 default: 4424 BFD_ASSERT (FALSE); 4425 break; 4426 } 4427 } 4428 4429 got_entry = got_entry->u.s2.next; 4430 } 4431 } 4432 4433 if (h->needs_copy) 4434 { 4435 asection *s; 4436 Elf_Internal_Rela rela; 4437 bfd_byte *loc; 4438 4439 /* This symbol needs a copy reloc. Set it up. */ 4440 4441 BFD_ASSERT (h->dynindx != -1 4442 && (h->root.type == bfd_link_hash_defined 4443 || h->root.type == bfd_link_hash_defweak)); 4444 4445 s = bfd_get_linker_section (dynobj, ".rela.bss"); 4446 BFD_ASSERT (s != NULL); 4447 4448 rela.r_offset = (h->root.u.def.value 4449 + h->root.u.def.section->output_section->vma 4450 + h->root.u.def.section->output_offset); 4451 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY); 4452 rela.r_addend = 0; 4453 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 4454 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4455 } 4456 4457 return TRUE; 4458 } 4459 4460 /* Finish up the dynamic sections. */ 4461 4462 static bfd_boolean 4463 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) 4464 { 4465 bfd *dynobj; 4466 asection *sgot; 4467 asection *sdyn; 4468 4469 dynobj = elf_hash_table (info)->dynobj; 4470 4471 sgot = bfd_get_linker_section (dynobj, ".got.plt"); 4472 BFD_ASSERT (sgot != NULL); 4473 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 4474 4475 if (elf_hash_table (info)->dynamic_sections_created) 4476 { 4477 asection *splt; 4478 Elf32_External_Dyn *dyncon, *dynconend; 4479 4480 splt = bfd_get_linker_section (dynobj, ".plt"); 4481 BFD_ASSERT (splt != NULL && sdyn != NULL); 4482 4483 dyncon = (Elf32_External_Dyn *) sdyn->contents; 4484 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 4485 for (; dyncon < dynconend; dyncon++) 4486 { 4487 Elf_Internal_Dyn dyn; 4488 const char *name; 4489 asection *s; 4490 4491 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 4492 4493 switch (dyn.d_tag) 4494 { 4495 default: 4496 break; 4497 4498 case DT_PLTGOT: 4499 name = ".got"; 4500 goto get_vma; 4501 case DT_JMPREL: 4502 name = ".rela.plt"; 4503 get_vma: 4504 s = bfd_get_section_by_name (output_bfd, name); 4505 BFD_ASSERT (s != NULL); 4506 dyn.d_un.d_ptr = s->vma; 4507 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4508 break; 4509 4510 case DT_PLTRELSZ: 4511 s = bfd_get_section_by_name (output_bfd, ".rela.plt"); 4512 BFD_ASSERT (s != NULL); 4513 dyn.d_un.d_val = s->size; 4514 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4515 break; 4516 4517 case DT_RELASZ: 4518 /* The procedure linkage table relocs (DT_JMPREL) should 4519 not be included in the overall relocs (DT_RELA). 4520 Therefore, we override the DT_RELASZ entry here to 4521 make it not include the JMPREL relocs. Since the 4522 linker script arranges for .rela.plt to follow all 4523 other relocation sections, we don't have to worry 4524 about changing the DT_RELA entry. */ 4525 s = bfd_get_section_by_name (output_bfd, ".rela.plt"); 4526 if (s != NULL) 4527 dyn.d_un.d_val -= s->size; 4528 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4529 break; 4530 } 4531 } 4532 4533 /* Fill in the first entry in the procedure linkage table. */ 4534 if (splt->size > 0) 4535 { 4536 const struct elf_m68k_plt_info *plt_info; 4537 4538 plt_info = elf_m68k_hash_table (info)->plt_info; 4539 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size); 4540 4541 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4, 4542 (sgot->output_section->vma 4543 + sgot->output_offset 4544 + 4)); 4545 4546 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8, 4547 (sgot->output_section->vma 4548 + sgot->output_offset 4549 + 8)); 4550 4551 elf_section_data (splt->output_section)->this_hdr.sh_entsize 4552 = plt_info->size; 4553 } 4554 } 4555 4556 /* Fill in the first three entries in the global offset table. */ 4557 if (sgot->size > 0) 4558 { 4559 if (sdyn == NULL) 4560 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 4561 else 4562 bfd_put_32 (output_bfd, 4563 sdyn->output_section->vma + sdyn->output_offset, 4564 sgot->contents); 4565 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 4566 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 4567 } 4568 4569 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 4570 4571 return TRUE; 4572 } 4573 4574 /* Given a .data section and a .emreloc in-memory section, store 4575 relocation information into the .emreloc section which can be 4576 used at runtime to relocate the section. This is called by the 4577 linker when the --embedded-relocs switch is used. This is called 4578 after the add_symbols entry point has been called for all the 4579 objects, and before the final_link entry point is called. */ 4580 4581 bfd_boolean 4582 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg) 4583 bfd *abfd; 4584 struct bfd_link_info *info; 4585 asection *datasec; 4586 asection *relsec; 4587 char **errmsg; 4588 { 4589 Elf_Internal_Shdr *symtab_hdr; 4590 Elf_Internal_Sym *isymbuf = NULL; 4591 Elf_Internal_Rela *internal_relocs = NULL; 4592 Elf_Internal_Rela *irel, *irelend; 4593 bfd_byte *p; 4594 bfd_size_type amt; 4595 4596 BFD_ASSERT (! info->relocatable); 4597 4598 *errmsg = NULL; 4599 4600 if (datasec->reloc_count == 0) 4601 return TRUE; 4602 4603 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 4604 4605 /* Get a copy of the native relocations. */ 4606 internal_relocs = (_bfd_elf_link_read_relocs 4607 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL, 4608 info->keep_memory)); 4609 if (internal_relocs == NULL) 4610 goto error_return; 4611 4612 amt = (bfd_size_type) datasec->reloc_count * 12; 4613 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt); 4614 if (relsec->contents == NULL) 4615 goto error_return; 4616 4617 p = relsec->contents; 4618 4619 irelend = internal_relocs + datasec->reloc_count; 4620 for (irel = internal_relocs; irel < irelend; irel++, p += 12) 4621 { 4622 asection *targetsec; 4623 4624 /* We are going to write a four byte longword into the runtime 4625 reloc section. The longword will be the address in the data 4626 section which must be relocated. It is followed by the name 4627 of the target section NUL-padded or truncated to 8 4628 characters. */ 4629 4630 /* We can only relocate absolute longword relocs at run time. */ 4631 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32) 4632 { 4633 *errmsg = _("unsupported reloc type"); 4634 bfd_set_error (bfd_error_bad_value); 4635 goto error_return; 4636 } 4637 4638 /* Get the target section referred to by the reloc. */ 4639 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) 4640 { 4641 /* A local symbol. */ 4642 Elf_Internal_Sym *isym; 4643 4644 /* Read this BFD's local symbols if we haven't done so already. */ 4645 if (isymbuf == NULL) 4646 { 4647 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 4648 if (isymbuf == NULL) 4649 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 4650 symtab_hdr->sh_info, 0, 4651 NULL, NULL, NULL); 4652 if (isymbuf == NULL) 4653 goto error_return; 4654 } 4655 4656 isym = isymbuf + ELF32_R_SYM (irel->r_info); 4657 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx); 4658 } 4659 else 4660 { 4661 unsigned long indx; 4662 struct elf_link_hash_entry *h; 4663 4664 /* An external symbol. */ 4665 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; 4666 h = elf_sym_hashes (abfd)[indx]; 4667 BFD_ASSERT (h != NULL); 4668 if (h->root.type == bfd_link_hash_defined 4669 || h->root.type == bfd_link_hash_defweak) 4670 targetsec = h->root.u.def.section; 4671 else 4672 targetsec = NULL; 4673 } 4674 4675 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p); 4676 memset (p + 4, 0, 8); 4677 if (targetsec != NULL) 4678 strncpy ((char *) p + 4, targetsec->output_section->name, 8); 4679 } 4680 4681 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) 4682 free (isymbuf); 4683 if (internal_relocs != NULL 4684 && elf_section_data (datasec)->relocs != internal_relocs) 4685 free (internal_relocs); 4686 return TRUE; 4687 4688 error_return: 4689 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) 4690 free (isymbuf); 4691 if (internal_relocs != NULL 4692 && elf_section_data (datasec)->relocs != internal_relocs) 4693 free (internal_relocs); 4694 return FALSE; 4695 } 4696 4697 /* Set target options. */ 4698 4699 void 4700 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling) 4701 { 4702 struct elf_m68k_link_hash_table *htab; 4703 bfd_boolean use_neg_got_offsets_p; 4704 bfd_boolean allow_multigot_p; 4705 bfd_boolean local_gp_p; 4706 4707 switch (got_handling) 4708 { 4709 case 0: 4710 /* --got=single. */ 4711 local_gp_p = FALSE; 4712 use_neg_got_offsets_p = FALSE; 4713 allow_multigot_p = FALSE; 4714 break; 4715 4716 case 1: 4717 /* --got=negative. */ 4718 local_gp_p = TRUE; 4719 use_neg_got_offsets_p = TRUE; 4720 allow_multigot_p = FALSE; 4721 break; 4722 4723 case 2: 4724 /* --got=multigot. */ 4725 local_gp_p = TRUE; 4726 use_neg_got_offsets_p = TRUE; 4727 allow_multigot_p = TRUE; 4728 break; 4729 4730 default: 4731 BFD_ASSERT (FALSE); 4732 return; 4733 } 4734 4735 htab = elf_m68k_hash_table (info); 4736 if (htab != NULL) 4737 { 4738 htab->local_gp_p = local_gp_p; 4739 htab->use_neg_got_offsets_p = use_neg_got_offsets_p; 4740 htab->allow_multigot_p = allow_multigot_p; 4741 } 4742 } 4743 4744 static enum elf_reloc_type_class 4745 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 4746 const asection *rel_sec ATTRIBUTE_UNUSED, 4747 const Elf_Internal_Rela *rela) 4748 { 4749 switch ((int) ELF32_R_TYPE (rela->r_info)) 4750 { 4751 case R_68K_RELATIVE: 4752 return reloc_class_relative; 4753 case R_68K_JMP_SLOT: 4754 return reloc_class_plt; 4755 case R_68K_COPY: 4756 return reloc_class_copy; 4757 default: 4758 return reloc_class_normal; 4759 } 4760 } 4761 4762 /* Return address for Ith PLT stub in section PLT, for relocation REL 4763 or (bfd_vma) -1 if it should not be included. */ 4764 4765 static bfd_vma 4766 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt, 4767 const arelent *rel ATTRIBUTE_UNUSED) 4768 { 4769 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size; 4770 } 4771 4772 /* Support for core dump NOTE sections. */ 4773 4774 static bfd_boolean 4775 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 4776 { 4777 int offset; 4778 size_t size; 4779 4780 switch (note->descsz) 4781 { 4782 default: 4783 return FALSE; 4784 4785 case 154: /* Linux/m68k */ 4786 /* pr_cursig */ 4787 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 4788 4789 /* pr_pid */ 4790 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22); 4791 4792 /* pr_reg */ 4793 offset = 70; 4794 size = 80; 4795 4796 break; 4797 } 4798 4799 /* Make a ".reg/999" section. */ 4800 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 4801 size, note->descpos + offset); 4802 } 4803 4804 static bfd_boolean 4805 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 4806 { 4807 switch (note->descsz) 4808 { 4809 default: 4810 return FALSE; 4811 4812 case 124: /* Linux/m68k elf_prpsinfo. */ 4813 elf_tdata (abfd)->core->pid 4814 = bfd_get_32 (abfd, note->descdata + 12); 4815 elf_tdata (abfd)->core->program 4816 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 4817 elf_tdata (abfd)->core->command 4818 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 4819 } 4820 4821 /* Note that for some reason, a spurious space is tacked 4822 onto the end of the args in some (at least one anyway) 4823 implementations, so strip it off if it exists. */ 4824 { 4825 char *command = elf_tdata (abfd)->core->command; 4826 int n = strlen (command); 4827 4828 if (n > 0 && command[n - 1] == ' ') 4829 command[n - 1] = '\0'; 4830 } 4831 4832 return TRUE; 4833 } 4834 4835 /* Hook called by the linker routine which adds symbols from an object 4836 file. */ 4837 4838 static bfd_boolean 4839 elf_m68k_add_symbol_hook (bfd *abfd, 4840 struct bfd_link_info *info, 4841 Elf_Internal_Sym *sym, 4842 const char **namep ATTRIBUTE_UNUSED, 4843 flagword *flagsp ATTRIBUTE_UNUSED, 4844 asection **secp ATTRIBUTE_UNUSED, 4845 bfd_vma *valp ATTRIBUTE_UNUSED) 4846 { 4847 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC 4848 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE) 4849 && (abfd->flags & DYNAMIC) == 0 4850 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour) 4851 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE; 4852 4853 return TRUE; 4854 } 4855 4856 #define TARGET_BIG_SYM m68k_elf32_vec 4857 #define TARGET_BIG_NAME "elf32-m68k" 4858 #define ELF_MACHINE_CODE EM_68K 4859 #define ELF_MAXPAGESIZE 0x2000 4860 #define elf_backend_create_dynamic_sections \ 4861 _bfd_elf_create_dynamic_sections 4862 #define bfd_elf32_bfd_link_hash_table_create \ 4863 elf_m68k_link_hash_table_create 4864 #define bfd_elf32_bfd_final_link bfd_elf_final_link 4865 4866 #define elf_backend_check_relocs elf_m68k_check_relocs 4867 #define elf_backend_always_size_sections \ 4868 elf_m68k_always_size_sections 4869 #define elf_backend_adjust_dynamic_symbol \ 4870 elf_m68k_adjust_dynamic_symbol 4871 #define elf_backend_size_dynamic_sections \ 4872 elf_m68k_size_dynamic_sections 4873 #define elf_backend_final_write_processing elf_m68k_final_write_processing 4874 #define elf_backend_init_index_section _bfd_elf_init_1_index_section 4875 #define elf_backend_relocate_section elf_m68k_relocate_section 4876 #define elf_backend_finish_dynamic_symbol \ 4877 elf_m68k_finish_dynamic_symbol 4878 #define elf_backend_finish_dynamic_sections \ 4879 elf_m68k_finish_dynamic_sections 4880 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook 4881 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook 4882 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol 4883 #define bfd_elf32_bfd_merge_private_bfd_data \ 4884 elf32_m68k_merge_private_bfd_data 4885 #define bfd_elf32_bfd_set_private_flags \ 4886 elf32_m68k_set_private_flags 4887 #define bfd_elf32_bfd_print_private_bfd_data \ 4888 elf32_m68k_print_private_bfd_data 4889 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class 4890 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val 4891 #define elf_backend_object_p elf32_m68k_object_p 4892 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus 4893 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo 4894 #define elf_backend_add_symbol_hook elf_m68k_add_symbol_hook 4895 4896 #define elf_backend_can_gc_sections 1 4897 #define elf_backend_can_refcount 1 4898 #define elf_backend_want_got_plt 1 4899 #define elf_backend_plt_readonly 1 4900 #define elf_backend_want_plt_sym 0 4901 #define elf_backend_got_header_size 12 4902 #define elf_backend_rela_normal 1 4903 4904 #include "elf32-target.h" 4905