Home | History | Annotate | Download | only in Analysis
      1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
     11 // accesses. Currently, it is an (incomplete) implementation of the approach
     12 // described in
     13 //
     14 //            Practical Dependence Testing
     15 //            Goff, Kennedy, Tseng
     16 //            PLDI 1991
     17 //
     18 // There's a single entry point that analyzes the dependence between a pair
     19 // of memory references in a function, returning either NULL, for no dependence,
     20 // or a more-or-less detailed description of the dependence between them.
     21 //
     22 // Currently, the implementation cannot propagate constraints between
     23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
     24 // Both of these are conservative weaknesses;
     25 // that is, not a source of correctness problems.
     26 //
     27 // The implementation depends on the GEP instruction to differentiate
     28 // subscripts. Since Clang linearizes some array subscripts, the dependence
     29 // analysis is using SCEV->delinearize to recover the representation of multiple
     30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
     31 // delinearization is controlled by the flag -da-delinearize.
     32 //
     33 // We should pay some careful attention to the possibility of integer overflow
     34 // in the implementation of the various tests. This could happen with Add,
     35 // Subtract, or Multiply, with both APInt's and SCEV's.
     36 //
     37 // Some non-linear subscript pairs can be handled by the GCD test
     38 // (and perhaps other tests).
     39 // Should explore how often these things occur.
     40 //
     41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
     42 // simplification, especially in the handling of sign and zero extensions.
     43 // It could be useful to spend time exploring these.
     44 //
     45 // Please note that this is work in progress and the interface is subject to
     46 // change.
     47 //
     48 //===----------------------------------------------------------------------===//
     49 //                                                                            //
     50 //                   In memory of Ken Kennedy, 1945 - 2007                    //
     51 //                                                                            //
     52 //===----------------------------------------------------------------------===//
     53 
     54 #include "llvm/Analysis/DependenceAnalysis.h"
     55 #include "llvm/ADT/STLExtras.h"
     56 #include "llvm/ADT/Statistic.h"
     57 #include "llvm/Analysis/AliasAnalysis.h"
     58 #include "llvm/Analysis/LoopInfo.h"
     59 #include "llvm/Analysis/ScalarEvolution.h"
     60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     61 #include "llvm/Analysis/ValueTracking.h"
     62 #include "llvm/IR/InstIterator.h"
     63 #include "llvm/IR/Module.h"
     64 #include "llvm/IR/Operator.h"
     65 #include "llvm/Support/CommandLine.h"
     66 #include "llvm/Support/Debug.h"
     67 #include "llvm/Support/ErrorHandling.h"
     68 #include "llvm/Support/raw_ostream.h"
     69 
     70 using namespace llvm;
     71 
     72 #define DEBUG_TYPE "da"
     73 
     74 //===----------------------------------------------------------------------===//
     75 // statistics
     76 
     77 STATISTIC(TotalArrayPairs, "Array pairs tested");
     78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
     79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
     80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
     81 STATISTIC(ZIVapplications, "ZIV applications");
     82 STATISTIC(ZIVindependence, "ZIV independence");
     83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
     84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
     85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
     86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
     87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
     88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
     89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
     90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
     91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
     92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
     93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
     94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
     95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
     96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
     97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
     98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
     99 STATISTIC(DeltaApplications, "Delta applications");
    100 STATISTIC(DeltaSuccesses, "Delta successes");
    101 STATISTIC(DeltaIndependence, "Delta independence");
    102 STATISTIC(DeltaPropagations, "Delta propagations");
    103 STATISTIC(GCDapplications, "GCD applications");
    104 STATISTIC(GCDsuccesses, "GCD successes");
    105 STATISTIC(GCDindependence, "GCD independence");
    106 STATISTIC(BanerjeeApplications, "Banerjee applications");
    107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
    108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
    109 
    110 static cl::opt<bool>
    111 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
    112             cl::desc("Try to delinearize array references."));
    113 
    114 //===----------------------------------------------------------------------===//
    115 // basics
    116 
    117 DependenceAnalysis::Result
    118 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
    119   auto &AA = FAM.getResult<AAManager>(F);
    120   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
    121   auto &LI = FAM.getResult<LoopAnalysis>(F);
    122   return DependenceInfo(&F, &AA, &SE, &LI);
    123 }
    124 
    125 char DependenceAnalysis::PassID;
    126 
    127 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
    128                       "Dependence Analysis", true, true)
    129 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    130 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
    131 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    132 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
    133                     true, true)
    134 
    135 char DependenceAnalysisWrapperPass::ID = 0;
    136 
    137 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
    138   return new DependenceAnalysisWrapperPass();
    139 }
    140 
    141 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
    142   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    143   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    144   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    145   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
    146   return false;
    147 }
    148 
    149 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
    150 
    151 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
    152 
    153 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    154   AU.setPreservesAll();
    155   AU.addRequiredTransitive<AAResultsWrapperPass>();
    156   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
    157   AU.addRequiredTransitive<LoopInfoWrapperPass>();
    158 }
    159 
    160 
    161 // Used to test the dependence analyzer.
    162 // Looks through the function, noting loads and stores.
    163 // Calls depends() on every possible pair and prints out the result.
    164 // Ignores all other instructions.
    165 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
    166   auto *F = DA->getFunction();
    167   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
    168        ++SrcI) {
    169     if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
    170       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
    171            DstI != DstE; ++DstI) {
    172         if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
    173           OS << "da analyze - ";
    174           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
    175             D->dump(OS);
    176             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
    177               if (D->isSplitable(Level)) {
    178                 OS << "da analyze - split level = " << Level;
    179                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
    180                 OS << "!\n";
    181               }
    182             }
    183           }
    184           else
    185             OS << "none!\n";
    186         }
    187       }
    188     }
    189   }
    190 }
    191 
    192 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
    193                                           const Module *) const {
    194   dumpExampleDependence(OS, info.get());
    195 }
    196 
    197 //===----------------------------------------------------------------------===//
    198 // Dependence methods
    199 
    200 // Returns true if this is an input dependence.
    201 bool Dependence::isInput() const {
    202   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
    203 }
    204 
    205 
    206 // Returns true if this is an output dependence.
    207 bool Dependence::isOutput() const {
    208   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
    209 }
    210 
    211 
    212 // Returns true if this is an flow (aka true)  dependence.
    213 bool Dependence::isFlow() const {
    214   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
    215 }
    216 
    217 
    218 // Returns true if this is an anti dependence.
    219 bool Dependence::isAnti() const {
    220   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
    221 }
    222 
    223 
    224 // Returns true if a particular level is scalar; that is,
    225 // if no subscript in the source or destination mention the induction
    226 // variable associated with the loop at this level.
    227 // Leave this out of line, so it will serve as a virtual method anchor
    228 bool Dependence::isScalar(unsigned level) const {
    229   return false;
    230 }
    231 
    232 
    233 //===----------------------------------------------------------------------===//
    234 // FullDependence methods
    235 
    236 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
    237                                bool PossiblyLoopIndependent,
    238                                unsigned CommonLevels)
    239     : Dependence(Source, Destination), Levels(CommonLevels),
    240       LoopIndependent(PossiblyLoopIndependent) {
    241   Consistent = true;
    242   if (CommonLevels)
    243     DV = make_unique<DVEntry[]>(CommonLevels);
    244 }
    245 
    246 // The rest are simple getters that hide the implementation.
    247 
    248 // getDirection - Returns the direction associated with a particular level.
    249 unsigned FullDependence::getDirection(unsigned Level) const {
    250   assert(0 < Level && Level <= Levels && "Level out of range");
    251   return DV[Level - 1].Direction;
    252 }
    253 
    254 
    255 // Returns the distance (or NULL) associated with a particular level.
    256 const SCEV *FullDependence::getDistance(unsigned Level) const {
    257   assert(0 < Level && Level <= Levels && "Level out of range");
    258   return DV[Level - 1].Distance;
    259 }
    260 
    261 
    262 // Returns true if a particular level is scalar; that is,
    263 // if no subscript in the source or destination mention the induction
    264 // variable associated with the loop at this level.
    265 bool FullDependence::isScalar(unsigned Level) const {
    266   assert(0 < Level && Level <= Levels && "Level out of range");
    267   return DV[Level - 1].Scalar;
    268 }
    269 
    270 
    271 // Returns true if peeling the first iteration from this loop
    272 // will break this dependence.
    273 bool FullDependence::isPeelFirst(unsigned Level) const {
    274   assert(0 < Level && Level <= Levels && "Level out of range");
    275   return DV[Level - 1].PeelFirst;
    276 }
    277 
    278 
    279 // Returns true if peeling the last iteration from this loop
    280 // will break this dependence.
    281 bool FullDependence::isPeelLast(unsigned Level) const {
    282   assert(0 < Level && Level <= Levels && "Level out of range");
    283   return DV[Level - 1].PeelLast;
    284 }
    285 
    286 
    287 // Returns true if splitting this loop will break the dependence.
    288 bool FullDependence::isSplitable(unsigned Level) const {
    289   assert(0 < Level && Level <= Levels && "Level out of range");
    290   return DV[Level - 1].Splitable;
    291 }
    292 
    293 
    294 //===----------------------------------------------------------------------===//
    295 // DependenceInfo::Constraint methods
    296 
    297 // If constraint is a point <X, Y>, returns X.
    298 // Otherwise assert.
    299 const SCEV *DependenceInfo::Constraint::getX() const {
    300   assert(Kind == Point && "Kind should be Point");
    301   return A;
    302 }
    303 
    304 
    305 // If constraint is a point <X, Y>, returns Y.
    306 // Otherwise assert.
    307 const SCEV *DependenceInfo::Constraint::getY() const {
    308   assert(Kind == Point && "Kind should be Point");
    309   return B;
    310 }
    311 
    312 
    313 // If constraint is a line AX + BY = C, returns A.
    314 // Otherwise assert.
    315 const SCEV *DependenceInfo::Constraint::getA() const {
    316   assert((Kind == Line || Kind == Distance) &&
    317          "Kind should be Line (or Distance)");
    318   return A;
    319 }
    320 
    321 
    322 // If constraint is a line AX + BY = C, returns B.
    323 // Otherwise assert.
    324 const SCEV *DependenceInfo::Constraint::getB() const {
    325   assert((Kind == Line || Kind == Distance) &&
    326          "Kind should be Line (or Distance)");
    327   return B;
    328 }
    329 
    330 
    331 // If constraint is a line AX + BY = C, returns C.
    332 // Otherwise assert.
    333 const SCEV *DependenceInfo::Constraint::getC() const {
    334   assert((Kind == Line || Kind == Distance) &&
    335          "Kind should be Line (or Distance)");
    336   return C;
    337 }
    338 
    339 
    340 // If constraint is a distance, returns D.
    341 // Otherwise assert.
    342 const SCEV *DependenceInfo::Constraint::getD() const {
    343   assert(Kind == Distance && "Kind should be Distance");
    344   return SE->getNegativeSCEV(C);
    345 }
    346 
    347 
    348 // Returns the loop associated with this constraint.
    349 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
    350   assert((Kind == Distance || Kind == Line || Kind == Point) &&
    351          "Kind should be Distance, Line, or Point");
    352   return AssociatedLoop;
    353 }
    354 
    355 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
    356                                           const Loop *CurLoop) {
    357   Kind = Point;
    358   A = X;
    359   B = Y;
    360   AssociatedLoop = CurLoop;
    361 }
    362 
    363 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
    364                                          const SCEV *CC, const Loop *CurLoop) {
    365   Kind = Line;
    366   A = AA;
    367   B = BB;
    368   C = CC;
    369   AssociatedLoop = CurLoop;
    370 }
    371 
    372 void DependenceInfo::Constraint::setDistance(const SCEV *D,
    373                                              const Loop *CurLoop) {
    374   Kind = Distance;
    375   A = SE->getOne(D->getType());
    376   B = SE->getNegativeSCEV(A);
    377   C = SE->getNegativeSCEV(D);
    378   AssociatedLoop = CurLoop;
    379 }
    380 
    381 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
    382 
    383 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
    384   SE = NewSE;
    385   Kind = Any;
    386 }
    387 
    388 
    389 // For debugging purposes. Dumps the constraint out to OS.
    390 void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
    391   if (isEmpty())
    392     OS << " Empty\n";
    393   else if (isAny())
    394     OS << " Any\n";
    395   else if (isPoint())
    396     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
    397   else if (isDistance())
    398     OS << " Distance is " << *getD() <<
    399       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
    400   else if (isLine())
    401     OS << " Line is " << *getA() << "*X + " <<
    402       *getB() << "*Y = " << *getC() << "\n";
    403   else
    404     llvm_unreachable("unknown constraint type in Constraint::dump");
    405 }
    406 
    407 
    408 // Updates X with the intersection
    409 // of the Constraints X and Y. Returns true if X has changed.
    410 // Corresponds to Figure 4 from the paper
    411 //
    412 //            Practical Dependence Testing
    413 //            Goff, Kennedy, Tseng
    414 //            PLDI 1991
    415 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
    416   ++DeltaApplications;
    417   DEBUG(dbgs() << "\tintersect constraints\n");
    418   DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
    419   DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
    420   assert(!Y->isPoint() && "Y must not be a Point");
    421   if (X->isAny()) {
    422     if (Y->isAny())
    423       return false;
    424     *X = *Y;
    425     return true;
    426   }
    427   if (X->isEmpty())
    428     return false;
    429   if (Y->isEmpty()) {
    430     X->setEmpty();
    431     return true;
    432   }
    433 
    434   if (X->isDistance() && Y->isDistance()) {
    435     DEBUG(dbgs() << "\t    intersect 2 distances\n");
    436     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
    437       return false;
    438     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
    439       X->setEmpty();
    440       ++DeltaSuccesses;
    441       return true;
    442     }
    443     // Hmmm, interesting situation.
    444     // I guess if either is constant, keep it and ignore the other.
    445     if (isa<SCEVConstant>(Y->getD())) {
    446       *X = *Y;
    447       return true;
    448     }
    449     return false;
    450   }
    451 
    452   // At this point, the pseudo-code in Figure 4 of the paper
    453   // checks if (X->isPoint() && Y->isPoint()).
    454   // This case can't occur in our implementation,
    455   // since a Point can only arise as the result of intersecting
    456   // two Line constraints, and the right-hand value, Y, is never
    457   // the result of an intersection.
    458   assert(!(X->isPoint() && Y->isPoint()) &&
    459          "We shouldn't ever see X->isPoint() && Y->isPoint()");
    460 
    461   if (X->isLine() && Y->isLine()) {
    462     DEBUG(dbgs() << "\t    intersect 2 lines\n");
    463     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
    464     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
    465     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
    466       // slopes are equal, so lines are parallel
    467       DEBUG(dbgs() << "\t\tsame slope\n");
    468       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
    469       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
    470       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
    471         return false;
    472       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
    473         X->setEmpty();
    474         ++DeltaSuccesses;
    475         return true;
    476       }
    477       return false;
    478     }
    479     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
    480       // slopes differ, so lines intersect
    481       DEBUG(dbgs() << "\t\tdifferent slopes\n");
    482       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
    483       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
    484       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
    485       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
    486       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
    487       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
    488       const SCEVConstant *C1A2_C2A1 =
    489         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
    490       const SCEVConstant *C1B2_C2B1 =
    491         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
    492       const SCEVConstant *A1B2_A2B1 =
    493         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
    494       const SCEVConstant *A2B1_A1B2 =
    495         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
    496       if (!C1B2_C2B1 || !C1A2_C2A1 ||
    497           !A1B2_A2B1 || !A2B1_A1B2)
    498         return false;
    499       APInt Xtop = C1B2_C2B1->getAPInt();
    500       APInt Xbot = A1B2_A2B1->getAPInt();
    501       APInt Ytop = C1A2_C2A1->getAPInt();
    502       APInt Ybot = A2B1_A1B2->getAPInt();
    503       DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
    504       DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
    505       DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
    506       DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
    507       APInt Xq = Xtop; // these need to be initialized, even
    508       APInt Xr = Xtop; // though they're just going to be overwritten
    509       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
    510       APInt Yq = Ytop;
    511       APInt Yr = Ytop;
    512       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
    513       if (Xr != 0 || Yr != 0) {
    514         X->setEmpty();
    515         ++DeltaSuccesses;
    516         return true;
    517       }
    518       DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
    519       if (Xq.slt(0) || Yq.slt(0)) {
    520         X->setEmpty();
    521         ++DeltaSuccesses;
    522         return true;
    523       }
    524       if (const SCEVConstant *CUB =
    525           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
    526         const APInt &UpperBound = CUB->getAPInt();
    527         DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
    528         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
    529           X->setEmpty();
    530           ++DeltaSuccesses;
    531           return true;
    532         }
    533       }
    534       X->setPoint(SE->getConstant(Xq),
    535                   SE->getConstant(Yq),
    536                   X->getAssociatedLoop());
    537       ++DeltaSuccesses;
    538       return true;
    539     }
    540     return false;
    541   }
    542 
    543   // if (X->isLine() && Y->isPoint()) This case can't occur.
    544   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
    545 
    546   if (X->isPoint() && Y->isLine()) {
    547     DEBUG(dbgs() << "\t    intersect Point and Line\n");
    548     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
    549     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
    550     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
    551     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
    552       return false;
    553     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
    554       X->setEmpty();
    555       ++DeltaSuccesses;
    556       return true;
    557     }
    558     return false;
    559   }
    560 
    561   llvm_unreachable("shouldn't reach the end of Constraint intersection");
    562   return false;
    563 }
    564 
    565 
    566 //===----------------------------------------------------------------------===//
    567 // DependenceInfo methods
    568 
    569 // For debugging purposes. Dumps a dependence to OS.
    570 void Dependence::dump(raw_ostream &OS) const {
    571   bool Splitable = false;
    572   if (isConfused())
    573     OS << "confused";
    574   else {
    575     if (isConsistent())
    576       OS << "consistent ";
    577     if (isFlow())
    578       OS << "flow";
    579     else if (isOutput())
    580       OS << "output";
    581     else if (isAnti())
    582       OS << "anti";
    583     else if (isInput())
    584       OS << "input";
    585     unsigned Levels = getLevels();
    586     OS << " [";
    587     for (unsigned II = 1; II <= Levels; ++II) {
    588       if (isSplitable(II))
    589         Splitable = true;
    590       if (isPeelFirst(II))
    591         OS << 'p';
    592       const SCEV *Distance = getDistance(II);
    593       if (Distance)
    594         OS << *Distance;
    595       else if (isScalar(II))
    596         OS << "S";
    597       else {
    598         unsigned Direction = getDirection(II);
    599         if (Direction == DVEntry::ALL)
    600           OS << "*";
    601         else {
    602           if (Direction & DVEntry::LT)
    603             OS << "<";
    604           if (Direction & DVEntry::EQ)
    605             OS << "=";
    606           if (Direction & DVEntry::GT)
    607             OS << ">";
    608         }
    609       }
    610       if (isPeelLast(II))
    611         OS << 'p';
    612       if (II < Levels)
    613         OS << " ";
    614     }
    615     if (isLoopIndependent())
    616       OS << "|<";
    617     OS << "]";
    618     if (Splitable)
    619       OS << " splitable";
    620   }
    621   OS << "!\n";
    622 }
    623 
    624 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
    625                                           const DataLayout &DL, const Value *A,
    626                                           const Value *B) {
    627   const Value *AObj = GetUnderlyingObject(A, DL);
    628   const Value *BObj = GetUnderlyingObject(B, DL);
    629   return AA->alias(AObj, DL.getTypeStoreSize(AObj->getType()),
    630                    BObj, DL.getTypeStoreSize(BObj->getType()));
    631 }
    632 
    633 
    634 // Returns true if the load or store can be analyzed. Atomic and volatile
    635 // operations have properties which this analysis does not understand.
    636 static
    637 bool isLoadOrStore(const Instruction *I) {
    638   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    639     return LI->isUnordered();
    640   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    641     return SI->isUnordered();
    642   return false;
    643 }
    644 
    645 
    646 static
    647 Value *getPointerOperand(Instruction *I) {
    648   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    649     return LI->getPointerOperand();
    650   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    651     return SI->getPointerOperand();
    652   llvm_unreachable("Value is not load or store instruction");
    653   return nullptr;
    654 }
    655 
    656 
    657 // Examines the loop nesting of the Src and Dst
    658 // instructions and establishes their shared loops. Sets the variables
    659 // CommonLevels, SrcLevels, and MaxLevels.
    660 // The source and destination instructions needn't be contained in the same
    661 // loop. The routine establishNestingLevels finds the level of most deeply
    662 // nested loop that contains them both, CommonLevels. An instruction that's
    663 // not contained in a loop is at level = 0. MaxLevels is equal to the level
    664 // of the source plus the level of the destination, minus CommonLevels.
    665 // This lets us allocate vectors MaxLevels in length, with room for every
    666 // distinct loop referenced in both the source and destination subscripts.
    667 // The variable SrcLevels is the nesting depth of the source instruction.
    668 // It's used to help calculate distinct loops referenced by the destination.
    669 // Here's the map from loops to levels:
    670 //            0 - unused
    671 //            1 - outermost common loop
    672 //          ... - other common loops
    673 // CommonLevels - innermost common loop
    674 //          ... - loops containing Src but not Dst
    675 //    SrcLevels - innermost loop containing Src but not Dst
    676 //          ... - loops containing Dst but not Src
    677 //    MaxLevels - innermost loops containing Dst but not Src
    678 // Consider the follow code fragment:
    679 //   for (a = ...) {
    680 //     for (b = ...) {
    681 //       for (c = ...) {
    682 //         for (d = ...) {
    683 //           A[] = ...;
    684 //         }
    685 //       }
    686 //       for (e = ...) {
    687 //         for (f = ...) {
    688 //           for (g = ...) {
    689 //             ... = A[];
    690 //           }
    691 //         }
    692 //       }
    693 //     }
    694 //   }
    695 // If we're looking at the possibility of a dependence between the store
    696 // to A (the Src) and the load from A (the Dst), we'll note that they
    697 // have 2 loops in common, so CommonLevels will equal 2 and the direction
    698 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
    699 // A map from loop names to loop numbers would look like
    700 //     a - 1
    701 //     b - 2 = CommonLevels
    702 //     c - 3
    703 //     d - 4 = SrcLevels
    704 //     e - 5
    705 //     f - 6
    706 //     g - 7 = MaxLevels
    707 void DependenceInfo::establishNestingLevels(const Instruction *Src,
    708                                             const Instruction *Dst) {
    709   const BasicBlock *SrcBlock = Src->getParent();
    710   const BasicBlock *DstBlock = Dst->getParent();
    711   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
    712   unsigned DstLevel = LI->getLoopDepth(DstBlock);
    713   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
    714   const Loop *DstLoop = LI->getLoopFor(DstBlock);
    715   SrcLevels = SrcLevel;
    716   MaxLevels = SrcLevel + DstLevel;
    717   while (SrcLevel > DstLevel) {
    718     SrcLoop = SrcLoop->getParentLoop();
    719     SrcLevel--;
    720   }
    721   while (DstLevel > SrcLevel) {
    722     DstLoop = DstLoop->getParentLoop();
    723     DstLevel--;
    724   }
    725   while (SrcLoop != DstLoop) {
    726     SrcLoop = SrcLoop->getParentLoop();
    727     DstLoop = DstLoop->getParentLoop();
    728     SrcLevel--;
    729   }
    730   CommonLevels = SrcLevel;
    731   MaxLevels -= CommonLevels;
    732 }
    733 
    734 
    735 // Given one of the loops containing the source, return
    736 // its level index in our numbering scheme.
    737 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
    738   return SrcLoop->getLoopDepth();
    739 }
    740 
    741 
    742 // Given one of the loops containing the destination,
    743 // return its level index in our numbering scheme.
    744 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
    745   unsigned D = DstLoop->getLoopDepth();
    746   if (D > CommonLevels)
    747     return D - CommonLevels + SrcLevels;
    748   else
    749     return D;
    750 }
    751 
    752 
    753 // Returns true if Expression is loop invariant in LoopNest.
    754 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
    755                                      const Loop *LoopNest) const {
    756   if (!LoopNest)
    757     return true;
    758   return SE->isLoopInvariant(Expression, LoopNest) &&
    759     isLoopInvariant(Expression, LoopNest->getParentLoop());
    760 }
    761 
    762 
    763 
    764 // Finds the set of loops from the LoopNest that
    765 // have a level <= CommonLevels and are referred to by the SCEV Expression.
    766 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
    767                                         const Loop *LoopNest,
    768                                         SmallBitVector &Loops) const {
    769   while (LoopNest) {
    770     unsigned Level = LoopNest->getLoopDepth();
    771     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
    772       Loops.set(Level);
    773     LoopNest = LoopNest->getParentLoop();
    774   }
    775 }
    776 
    777 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
    778 
    779   unsigned widestWidthSeen = 0;
    780   Type *widestType;
    781 
    782   // Go through each pair and find the widest bit to which we need
    783   // to extend all of them.
    784   for (Subscript *Pair : Pairs) {
    785     const SCEV *Src = Pair->Src;
    786     const SCEV *Dst = Pair->Dst;
    787     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    788     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    789     if (SrcTy == nullptr || DstTy == nullptr) {
    790       assert(SrcTy == DstTy && "This function only unify integer types and "
    791              "expect Src and Dst share the same type "
    792              "otherwise.");
    793       continue;
    794     }
    795     if (SrcTy->getBitWidth() > widestWidthSeen) {
    796       widestWidthSeen = SrcTy->getBitWidth();
    797       widestType = SrcTy;
    798     }
    799     if (DstTy->getBitWidth() > widestWidthSeen) {
    800       widestWidthSeen = DstTy->getBitWidth();
    801       widestType = DstTy;
    802     }
    803   }
    804 
    805 
    806   assert(widestWidthSeen > 0);
    807 
    808   // Now extend each pair to the widest seen.
    809   for (Subscript *Pair : Pairs) {
    810     const SCEV *Src = Pair->Src;
    811     const SCEV *Dst = Pair->Dst;
    812     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    813     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    814     if (SrcTy == nullptr || DstTy == nullptr) {
    815       assert(SrcTy == DstTy && "This function only unify integer types and "
    816              "expect Src and Dst share the same type "
    817              "otherwise.");
    818       continue;
    819     }
    820     if (SrcTy->getBitWidth() < widestWidthSeen)
    821       // Sign-extend Src to widestType
    822       Pair->Src = SE->getSignExtendExpr(Src, widestType);
    823     if (DstTy->getBitWidth() < widestWidthSeen) {
    824       // Sign-extend Dst to widestType
    825       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
    826     }
    827   }
    828 }
    829 
    830 // removeMatchingExtensions - Examines a subscript pair.
    831 // If the source and destination are identically sign (or zero)
    832 // extended, it strips off the extension in an effect to simplify
    833 // the actual analysis.
    834 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
    835   const SCEV *Src = Pair->Src;
    836   const SCEV *Dst = Pair->Dst;
    837   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
    838       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
    839     const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
    840     const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
    841     const SCEV *SrcCastOp = SrcCast->getOperand();
    842     const SCEV *DstCastOp = DstCast->getOperand();
    843     if (SrcCastOp->getType() == DstCastOp->getType()) {
    844       Pair->Src = SrcCastOp;
    845       Pair->Dst = DstCastOp;
    846     }
    847   }
    848 }
    849 
    850 
    851 // Examine the scev and return true iff it's linear.
    852 // Collect any loops mentioned in the set of "Loops".
    853 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
    854                                        SmallBitVector &Loops) {
    855   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
    856   if (!AddRec)
    857     return isLoopInvariant(Src, LoopNest);
    858   const SCEV *Start = AddRec->getStart();
    859   const SCEV *Step = AddRec->getStepRecurrence(*SE);
    860   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
    861   if (!isa<SCEVCouldNotCompute>(UB)) {
    862     if (SE->getTypeSizeInBits(Start->getType()) <
    863         SE->getTypeSizeInBits(UB->getType())) {
    864       if (!AddRec->getNoWrapFlags())
    865         return false;
    866     }
    867   }
    868   if (!isLoopInvariant(Step, LoopNest))
    869     return false;
    870   Loops.set(mapSrcLoop(AddRec->getLoop()));
    871   return checkSrcSubscript(Start, LoopNest, Loops);
    872 }
    873 
    874 
    875 
    876 // Examine the scev and return true iff it's linear.
    877 // Collect any loops mentioned in the set of "Loops".
    878 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
    879                                        SmallBitVector &Loops) {
    880   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
    881   if (!AddRec)
    882     return isLoopInvariant(Dst, LoopNest);
    883   const SCEV *Start = AddRec->getStart();
    884   const SCEV *Step = AddRec->getStepRecurrence(*SE);
    885   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
    886   if (!isa<SCEVCouldNotCompute>(UB)) {
    887     if (SE->getTypeSizeInBits(Start->getType()) <
    888         SE->getTypeSizeInBits(UB->getType())) {
    889       if (!AddRec->getNoWrapFlags())
    890         return false;
    891     }
    892   }
    893   if (!isLoopInvariant(Step, LoopNest))
    894     return false;
    895   Loops.set(mapDstLoop(AddRec->getLoop()));
    896   return checkDstSubscript(Start, LoopNest, Loops);
    897 }
    898 
    899 
    900 // Examines the subscript pair (the Src and Dst SCEVs)
    901 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
    902 // Collects the associated loops in a set.
    903 DependenceInfo::Subscript::ClassificationKind
    904 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
    905                              const SCEV *Dst, const Loop *DstLoopNest,
    906                              SmallBitVector &Loops) {
    907   SmallBitVector SrcLoops(MaxLevels + 1);
    908   SmallBitVector DstLoops(MaxLevels + 1);
    909   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
    910     return Subscript::NonLinear;
    911   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
    912     return Subscript::NonLinear;
    913   Loops = SrcLoops;
    914   Loops |= DstLoops;
    915   unsigned N = Loops.count();
    916   if (N == 0)
    917     return Subscript::ZIV;
    918   if (N == 1)
    919     return Subscript::SIV;
    920   if (N == 2 && (SrcLoops.count() == 0 ||
    921                  DstLoops.count() == 0 ||
    922                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
    923     return Subscript::RDIV;
    924   return Subscript::MIV;
    925 }
    926 
    927 
    928 // A wrapper around SCEV::isKnownPredicate.
    929 // Looks for cases where we're interested in comparing for equality.
    930 // If both X and Y have been identically sign or zero extended,
    931 // it strips off the (confusing) extensions before invoking
    932 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
    933 // will be similarly updated.
    934 //
    935 // If SCEV::isKnownPredicate can't prove the predicate,
    936 // we try simple subtraction, which seems to help in some cases
    937 // involving symbolics.
    938 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
    939                                       const SCEV *Y) const {
    940   if (Pred == CmpInst::ICMP_EQ ||
    941       Pred == CmpInst::ICMP_NE) {
    942     if ((isa<SCEVSignExtendExpr>(X) &&
    943          isa<SCEVSignExtendExpr>(Y)) ||
    944         (isa<SCEVZeroExtendExpr>(X) &&
    945          isa<SCEVZeroExtendExpr>(Y))) {
    946       const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
    947       const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
    948       const SCEV *Xop = CX->getOperand();
    949       const SCEV *Yop = CY->getOperand();
    950       if (Xop->getType() == Yop->getType()) {
    951         X = Xop;
    952         Y = Yop;
    953       }
    954     }
    955   }
    956   if (SE->isKnownPredicate(Pred, X, Y))
    957     return true;
    958   // If SE->isKnownPredicate can't prove the condition,
    959   // we try the brute-force approach of subtracting
    960   // and testing the difference.
    961   // By testing with SE->isKnownPredicate first, we avoid
    962   // the possibility of overflow when the arguments are constants.
    963   const SCEV *Delta = SE->getMinusSCEV(X, Y);
    964   switch (Pred) {
    965   case CmpInst::ICMP_EQ:
    966     return Delta->isZero();
    967   case CmpInst::ICMP_NE:
    968     return SE->isKnownNonZero(Delta);
    969   case CmpInst::ICMP_SGE:
    970     return SE->isKnownNonNegative(Delta);
    971   case CmpInst::ICMP_SLE:
    972     return SE->isKnownNonPositive(Delta);
    973   case CmpInst::ICMP_SGT:
    974     return SE->isKnownPositive(Delta);
    975   case CmpInst::ICMP_SLT:
    976     return SE->isKnownNegative(Delta);
    977   default:
    978     llvm_unreachable("unexpected predicate in isKnownPredicate");
    979   }
    980 }
    981 
    982 
    983 // All subscripts are all the same type.
    984 // Loop bound may be smaller (e.g., a char).
    985 // Should zero extend loop bound, since it's always >= 0.
    986 // This routine collects upper bound and extends or truncates if needed.
    987 // Truncating is safe when subscripts are known not to wrap. Cases without
    988 // nowrap flags should have been rejected earlier.
    989 // Return null if no bound available.
    990 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
    991   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
    992     const SCEV *UB = SE->getBackedgeTakenCount(L);
    993     return SE->getTruncateOrZeroExtend(UB, T);
    994   }
    995   return nullptr;
    996 }
    997 
    998 
    999 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
   1000 // If the cast fails, returns NULL.
   1001 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
   1002                                                               Type *T) const {
   1003   if (const SCEV *UB = collectUpperBound(L, T))
   1004     return dyn_cast<SCEVConstant>(UB);
   1005   return nullptr;
   1006 }
   1007 
   1008 
   1009 // testZIV -
   1010 // When we have a pair of subscripts of the form [c1] and [c2],
   1011 // where c1 and c2 are both loop invariant, we attack it using
   1012 // the ZIV test. Basically, we test by comparing the two values,
   1013 // but there are actually three possible results:
   1014 // 1) the values are equal, so there's a dependence
   1015 // 2) the values are different, so there's no dependence
   1016 // 3) the values might be equal, so we have to assume a dependence.
   1017 //
   1018 // Return true if dependence disproved.
   1019 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
   1020                              FullDependence &Result) const {
   1021   DEBUG(dbgs() << "    src = " << *Src << "\n");
   1022   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   1023   ++ZIVapplications;
   1024   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
   1025     DEBUG(dbgs() << "    provably dependent\n");
   1026     return false; // provably dependent
   1027   }
   1028   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
   1029     DEBUG(dbgs() << "    provably independent\n");
   1030     ++ZIVindependence;
   1031     return true; // provably independent
   1032   }
   1033   DEBUG(dbgs() << "    possibly dependent\n");
   1034   Result.Consistent = false;
   1035   return false; // possibly dependent
   1036 }
   1037 
   1038 
   1039 // strongSIVtest -
   1040 // From the paper, Practical Dependence Testing, Section 4.2.1
   1041 //
   1042 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
   1043 // where i is an induction variable, c1 and c2 are loop invariant,
   1044 //  and a is a constant, we can solve it exactly using the Strong SIV test.
   1045 //
   1046 // Can prove independence. Failing that, can compute distance (and direction).
   1047 // In the presence of symbolic terms, we can sometimes make progress.
   1048 //
   1049 // If there's a dependence,
   1050 //
   1051 //    c1 + a*i = c2 + a*i'
   1052 //
   1053 // The dependence distance is
   1054 //
   1055 //    d = i' - i = (c1 - c2)/a
   1056 //
   1057 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
   1058 // loop's upper bound. If a dependence exists, the dependence direction is
   1059 // defined as
   1060 //
   1061 //                { < if d > 0
   1062 //    direction = { = if d = 0
   1063 //                { > if d < 0
   1064 //
   1065 // Return true if dependence disproved.
   1066 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
   1067                                    const SCEV *DstConst, const Loop *CurLoop,
   1068                                    unsigned Level, FullDependence &Result,
   1069                                    Constraint &NewConstraint) const {
   1070   DEBUG(dbgs() << "\tStrong SIV test\n");
   1071   DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
   1072   DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
   1073   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
   1074   DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
   1075   DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
   1076   DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
   1077   ++StrongSIVapplications;
   1078   assert(0 < Level && Level <= CommonLevels && "level out of range");
   1079   Level--;
   1080 
   1081   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
   1082   DEBUG(dbgs() << "\t    Delta = " << *Delta);
   1083   DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
   1084 
   1085   // check that |Delta| < iteration count
   1086   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1087     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
   1088     DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
   1089     const SCEV *AbsDelta =
   1090       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
   1091     const SCEV *AbsCoeff =
   1092       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
   1093     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
   1094     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
   1095       // Distance greater than trip count - no dependence
   1096       ++StrongSIVindependence;
   1097       ++StrongSIVsuccesses;
   1098       return true;
   1099     }
   1100   }
   1101 
   1102   // Can we compute distance?
   1103   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
   1104     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
   1105     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
   1106     APInt Distance  = ConstDelta; // these need to be initialized
   1107     APInt Remainder = ConstDelta;
   1108     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
   1109     DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
   1110     DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1111     // Make sure Coeff divides Delta exactly
   1112     if (Remainder != 0) {
   1113       // Coeff doesn't divide Distance, no dependence
   1114       ++StrongSIVindependence;
   1115       ++StrongSIVsuccesses;
   1116       return true;
   1117     }
   1118     Result.DV[Level].Distance = SE->getConstant(Distance);
   1119     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
   1120     if (Distance.sgt(0))
   1121       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
   1122     else if (Distance.slt(0))
   1123       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
   1124     else
   1125       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
   1126     ++StrongSIVsuccesses;
   1127   }
   1128   else if (Delta->isZero()) {
   1129     // since 0/X == 0
   1130     Result.DV[Level].Distance = Delta;
   1131     NewConstraint.setDistance(Delta, CurLoop);
   1132     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
   1133     ++StrongSIVsuccesses;
   1134   }
   1135   else {
   1136     if (Coeff->isOne()) {
   1137       DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
   1138       Result.DV[Level].Distance = Delta; // since X/1 == X
   1139       NewConstraint.setDistance(Delta, CurLoop);
   1140     }
   1141     else {
   1142       Result.Consistent = false;
   1143       NewConstraint.setLine(Coeff,
   1144                             SE->getNegativeSCEV(Coeff),
   1145                             SE->getNegativeSCEV(Delta), CurLoop);
   1146     }
   1147 
   1148     // maybe we can get a useful direction
   1149     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
   1150     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
   1151     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
   1152     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
   1153     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
   1154     // The double negatives above are confusing.
   1155     // It helps to read !SE->isKnownNonZero(Delta)
   1156     // as "Delta might be Zero"
   1157     unsigned NewDirection = Dependence::DVEntry::NONE;
   1158     if ((DeltaMaybePositive && CoeffMaybePositive) ||
   1159         (DeltaMaybeNegative && CoeffMaybeNegative))
   1160       NewDirection = Dependence::DVEntry::LT;
   1161     if (DeltaMaybeZero)
   1162       NewDirection |= Dependence::DVEntry::EQ;
   1163     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
   1164         (DeltaMaybePositive && CoeffMaybeNegative))
   1165       NewDirection |= Dependence::DVEntry::GT;
   1166     if (NewDirection < Result.DV[Level].Direction)
   1167       ++StrongSIVsuccesses;
   1168     Result.DV[Level].Direction &= NewDirection;
   1169   }
   1170   return false;
   1171 }
   1172 
   1173 
   1174 // weakCrossingSIVtest -
   1175 // From the paper, Practical Dependence Testing, Section 4.2.2
   1176 //
   1177 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
   1178 // where i is an induction variable, c1 and c2 are loop invariant,
   1179 // and a is a constant, we can solve it exactly using the
   1180 // Weak-Crossing SIV test.
   1181 //
   1182 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
   1183 // the two lines, where i = i', yielding
   1184 //
   1185 //    c1 + a*i = c2 - a*i
   1186 //    2a*i = c2 - c1
   1187 //    i = (c2 - c1)/2a
   1188 //
   1189 // If i < 0, there is no dependence.
   1190 // If i > upperbound, there is no dependence.
   1191 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
   1192 // If i = upperbound, there's a dependence with distance = 0.
   1193 // If i is integral, there's a dependence (all directions).
   1194 // If the non-integer part = 1/2, there's a dependence (<> directions).
   1195 // Otherwise, there's no dependence.
   1196 //
   1197 // Can prove independence. Failing that,
   1198 // can sometimes refine the directions.
   1199 // Can determine iteration for splitting.
   1200 //
   1201 // Return true if dependence disproved.
   1202 bool DependenceInfo::weakCrossingSIVtest(
   1203     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
   1204     const Loop *CurLoop, unsigned Level, FullDependence &Result,
   1205     Constraint &NewConstraint, const SCEV *&SplitIter) const {
   1206   DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
   1207   DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
   1208   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1209   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1210   ++WeakCrossingSIVapplications;
   1211   assert(0 < Level && Level <= CommonLevels && "Level out of range");
   1212   Level--;
   1213   Result.Consistent = false;
   1214   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1215   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1216   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
   1217   if (Delta->isZero()) {
   1218     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
   1219     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
   1220     ++WeakCrossingSIVsuccesses;
   1221     if (!Result.DV[Level].Direction) {
   1222       ++WeakCrossingSIVindependence;
   1223       return true;
   1224     }
   1225     Result.DV[Level].Distance = Delta; // = 0
   1226     return false;
   1227   }
   1228   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
   1229   if (!ConstCoeff)
   1230     return false;
   1231 
   1232   Result.DV[Level].Splitable = true;
   1233   if (SE->isKnownNegative(ConstCoeff)) {
   1234     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
   1235     assert(ConstCoeff &&
   1236            "dynamic cast of negative of ConstCoeff should yield constant");
   1237     Delta = SE->getNegativeSCEV(Delta);
   1238   }
   1239   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
   1240 
   1241   // compute SplitIter for use by DependenceInfo::getSplitIteration()
   1242   SplitIter = SE->getUDivExpr(
   1243       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
   1244       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
   1245   DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
   1246 
   1247   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1248   if (!ConstDelta)
   1249     return false;
   1250 
   1251   // We're certain that ConstCoeff > 0; therefore,
   1252   // if Delta < 0, then no dependence.
   1253   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1254   DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
   1255   if (SE->isKnownNegative(Delta)) {
   1256     // No dependence, Delta < 0
   1257     ++WeakCrossingSIVindependence;
   1258     ++WeakCrossingSIVsuccesses;
   1259     return true;
   1260   }
   1261 
   1262   // We're certain that Delta > 0 and ConstCoeff > 0.
   1263   // Check Delta/(2*ConstCoeff) against upper loop bound
   1264   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1265     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1266     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
   1267     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
   1268                                     ConstantTwo);
   1269     DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
   1270     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
   1271       // Delta too big, no dependence
   1272       ++WeakCrossingSIVindependence;
   1273       ++WeakCrossingSIVsuccesses;
   1274       return true;
   1275     }
   1276     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
   1277       // i = i' = UB
   1278       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
   1279       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
   1280       ++WeakCrossingSIVsuccesses;
   1281       if (!Result.DV[Level].Direction) {
   1282         ++WeakCrossingSIVindependence;
   1283         return true;
   1284       }
   1285       Result.DV[Level].Splitable = false;
   1286       Result.DV[Level].Distance = SE->getZero(Delta->getType());
   1287       return false;
   1288     }
   1289   }
   1290 
   1291   // check that Coeff divides Delta
   1292   APInt APDelta = ConstDelta->getAPInt();
   1293   APInt APCoeff = ConstCoeff->getAPInt();
   1294   APInt Distance = APDelta; // these need to be initialzed
   1295   APInt Remainder = APDelta;
   1296   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
   1297   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1298   if (Remainder != 0) {
   1299     // Coeff doesn't divide Delta, no dependence
   1300     ++WeakCrossingSIVindependence;
   1301     ++WeakCrossingSIVsuccesses;
   1302     return true;
   1303   }
   1304   DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
   1305 
   1306   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
   1307   APInt Two = APInt(Distance.getBitWidth(), 2, true);
   1308   Remainder = Distance.srem(Two);
   1309   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1310   if (Remainder != 0) {
   1311     // Equal direction isn't possible
   1312     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
   1313     ++WeakCrossingSIVsuccesses;
   1314   }
   1315   return false;
   1316 }
   1317 
   1318 
   1319 // Kirch's algorithm, from
   1320 //
   1321 //        Optimizing Supercompilers for Supercomputers
   1322 //        Michael Wolfe
   1323 //        MIT Press, 1989
   1324 //
   1325 // Program 2.1, page 29.
   1326 // Computes the GCD of AM and BM.
   1327 // Also finds a solution to the equation ax - by = gcd(a, b).
   1328 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
   1329 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
   1330                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
   1331   APInt A0(Bits, 1, true), A1(Bits, 0, true);
   1332   APInt B0(Bits, 0, true), B1(Bits, 1, true);
   1333   APInt G0 = AM.abs();
   1334   APInt G1 = BM.abs();
   1335   APInt Q = G0; // these need to be initialized
   1336   APInt R = G0;
   1337   APInt::sdivrem(G0, G1, Q, R);
   1338   while (R != 0) {
   1339     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
   1340     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
   1341     G0 = G1; G1 = R;
   1342     APInt::sdivrem(G0, G1, Q, R);
   1343   }
   1344   G = G1;
   1345   DEBUG(dbgs() << "\t    GCD = " << G << "\n");
   1346   X = AM.slt(0) ? -A1 : A1;
   1347   Y = BM.slt(0) ? B1 : -B1;
   1348 
   1349   // make sure gcd divides Delta
   1350   R = Delta.srem(G);
   1351   if (R != 0)
   1352     return true; // gcd doesn't divide Delta, no dependence
   1353   Q = Delta.sdiv(G);
   1354   X *= Q;
   1355   Y *= Q;
   1356   return false;
   1357 }
   1358 
   1359 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
   1360   APInt Q = A; // these need to be initialized
   1361   APInt R = A;
   1362   APInt::sdivrem(A, B, Q, R);
   1363   if (R == 0)
   1364     return Q;
   1365   if ((A.sgt(0) && B.sgt(0)) ||
   1366       (A.slt(0) && B.slt(0)))
   1367     return Q;
   1368   else
   1369     return Q - 1;
   1370 }
   1371 
   1372 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
   1373   APInt Q = A; // these need to be initialized
   1374   APInt R = A;
   1375   APInt::sdivrem(A, B, Q, R);
   1376   if (R == 0)
   1377     return Q;
   1378   if ((A.sgt(0) && B.sgt(0)) ||
   1379       (A.slt(0) && B.slt(0)))
   1380     return Q + 1;
   1381   else
   1382     return Q;
   1383 }
   1384 
   1385 
   1386 static
   1387 APInt maxAPInt(APInt A, APInt B) {
   1388   return A.sgt(B) ? A : B;
   1389 }
   1390 
   1391 
   1392 static
   1393 APInt minAPInt(APInt A, APInt B) {
   1394   return A.slt(B) ? A : B;
   1395 }
   1396 
   1397 
   1398 // exactSIVtest -
   1399 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
   1400 // where i is an induction variable, c1 and c2 are loop invariant, and a1
   1401 // and a2 are constant, we can solve it exactly using an algorithm developed
   1402 // by Banerjee and Wolfe. See Section 2.5.3 in
   1403 //
   1404 //        Optimizing Supercompilers for Supercomputers
   1405 //        Michael Wolfe
   1406 //        MIT Press, 1989
   1407 //
   1408 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
   1409 // so use them if possible. They're also a bit better with symbolics and,
   1410 // in the case of the strong SIV test, can compute Distances.
   1411 //
   1412 // Return true if dependence disproved.
   1413 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   1414                                   const SCEV *SrcConst, const SCEV *DstConst,
   1415                                   const Loop *CurLoop, unsigned Level,
   1416                                   FullDependence &Result,
   1417                                   Constraint &NewConstraint) const {
   1418   DEBUG(dbgs() << "\tExact SIV test\n");
   1419   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
   1420   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
   1421   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1422   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1423   ++ExactSIVapplications;
   1424   assert(0 < Level && Level <= CommonLevels && "Level out of range");
   1425   Level--;
   1426   Result.Consistent = false;
   1427   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1428   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1429   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
   1430                         Delta, CurLoop);
   1431   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1432   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1433   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1434   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
   1435     return false;
   1436 
   1437   // find gcd
   1438   APInt G, X, Y;
   1439   APInt AM = ConstSrcCoeff->getAPInt();
   1440   APInt BM = ConstDstCoeff->getAPInt();
   1441   unsigned Bits = AM.getBitWidth();
   1442   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
   1443     // gcd doesn't divide Delta, no dependence
   1444     ++ExactSIVindependence;
   1445     ++ExactSIVsuccesses;
   1446     return true;
   1447   }
   1448 
   1449   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
   1450 
   1451   // since SCEV construction normalizes, LM = 0
   1452   APInt UM(Bits, 1, true);
   1453   bool UMvalid = false;
   1454   // UM is perhaps unavailable, let's check
   1455   if (const SCEVConstant *CUB =
   1456       collectConstantUpperBound(CurLoop, Delta->getType())) {
   1457     UM = CUB->getAPInt();
   1458     DEBUG(dbgs() << "\t    UM = " << UM << "\n");
   1459     UMvalid = true;
   1460   }
   1461 
   1462   APInt TU(APInt::getSignedMaxValue(Bits));
   1463   APInt TL(APInt::getSignedMinValue(Bits));
   1464 
   1465   // test(BM/G, LM-X) and test(-BM/G, X-UM)
   1466   APInt TMUL = BM.sdiv(G);
   1467   if (TMUL.sgt(0)) {
   1468     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
   1469     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1470     if (UMvalid) {
   1471       TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
   1472       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1473     }
   1474   }
   1475   else {
   1476     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
   1477     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1478     if (UMvalid) {
   1479       TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
   1480       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1481     }
   1482   }
   1483 
   1484   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
   1485   TMUL = AM.sdiv(G);
   1486   if (TMUL.sgt(0)) {
   1487     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
   1488     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1489     if (UMvalid) {
   1490       TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
   1491       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1492     }
   1493   }
   1494   else {
   1495     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
   1496     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1497     if (UMvalid) {
   1498       TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
   1499       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1500     }
   1501   }
   1502   if (TL.sgt(TU)) {
   1503     ++ExactSIVindependence;
   1504     ++ExactSIVsuccesses;
   1505     return true;
   1506   }
   1507 
   1508   // explore directions
   1509   unsigned NewDirection = Dependence::DVEntry::NONE;
   1510 
   1511   // less than
   1512   APInt SaveTU(TU); // save these
   1513   APInt SaveTL(TL);
   1514   DEBUG(dbgs() << "\t    exploring LT direction\n");
   1515   TMUL = AM - BM;
   1516   if (TMUL.sgt(0)) {
   1517     TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
   1518     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1519   }
   1520   else {
   1521     TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
   1522     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1523   }
   1524   if (TL.sle(TU)) {
   1525     NewDirection |= Dependence::DVEntry::LT;
   1526     ++ExactSIVsuccesses;
   1527   }
   1528 
   1529   // equal
   1530   TU = SaveTU; // restore
   1531   TL = SaveTL;
   1532   DEBUG(dbgs() << "\t    exploring EQ direction\n");
   1533   if (TMUL.sgt(0)) {
   1534     TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
   1535     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1536   }
   1537   else {
   1538     TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
   1539     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1540   }
   1541   TMUL = BM - AM;
   1542   if (TMUL.sgt(0)) {
   1543     TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
   1544     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1545   }
   1546   else {
   1547     TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
   1548     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1549   }
   1550   if (TL.sle(TU)) {
   1551     NewDirection |= Dependence::DVEntry::EQ;
   1552     ++ExactSIVsuccesses;
   1553   }
   1554 
   1555   // greater than
   1556   TU = SaveTU; // restore
   1557   TL = SaveTL;
   1558   DEBUG(dbgs() << "\t    exploring GT direction\n");
   1559   if (TMUL.sgt(0)) {
   1560     TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
   1561     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1562   }
   1563   else {
   1564     TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
   1565     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1566   }
   1567   if (TL.sle(TU)) {
   1568     NewDirection |= Dependence::DVEntry::GT;
   1569     ++ExactSIVsuccesses;
   1570   }
   1571 
   1572   // finished
   1573   Result.DV[Level].Direction &= NewDirection;
   1574   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
   1575     ++ExactSIVindependence;
   1576   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
   1577 }
   1578 
   1579 
   1580 
   1581 // Return true if the divisor evenly divides the dividend.
   1582 static
   1583 bool isRemainderZero(const SCEVConstant *Dividend,
   1584                      const SCEVConstant *Divisor) {
   1585   const APInt &ConstDividend = Dividend->getAPInt();
   1586   const APInt &ConstDivisor = Divisor->getAPInt();
   1587   return ConstDividend.srem(ConstDivisor) == 0;
   1588 }
   1589 
   1590 
   1591 // weakZeroSrcSIVtest -
   1592 // From the paper, Practical Dependence Testing, Section 4.2.2
   1593 //
   1594 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
   1595 // where i is an induction variable, c1 and c2 are loop invariant,
   1596 // and a is a constant, we can solve it exactly using the
   1597 // Weak-Zero SIV test.
   1598 //
   1599 // Given
   1600 //
   1601 //    c1 = c2 + a*i
   1602 //
   1603 // we get
   1604 //
   1605 //    (c1 - c2)/a = i
   1606 //
   1607 // If i is not an integer, there's no dependence.
   1608 // If i < 0 or > UB, there's no dependence.
   1609 // If i = 0, the direction is <= and peeling the
   1610 // 1st iteration will break the dependence.
   1611 // If i = UB, the direction is >= and peeling the
   1612 // last iteration will break the dependence.
   1613 // Otherwise, the direction is *.
   1614 //
   1615 // Can prove independence. Failing that, we can sometimes refine
   1616 // the directions. Can sometimes show that first or last
   1617 // iteration carries all the dependences (so worth peeling).
   1618 //
   1619 // (see also weakZeroDstSIVtest)
   1620 //
   1621 // Return true if dependence disproved.
   1622 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
   1623                                         const SCEV *SrcConst,
   1624                                         const SCEV *DstConst,
   1625                                         const Loop *CurLoop, unsigned Level,
   1626                                         FullDependence &Result,
   1627                                         Constraint &NewConstraint) const {
   1628   // For the WeakSIV test, it's possible the loop isn't common to
   1629   // the Src and Dst loops. If it isn't, then there's no need to
   1630   // record a direction.
   1631   DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
   1632   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
   1633   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1634   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1635   ++WeakZeroSIVapplications;
   1636   assert(0 < Level && Level <= MaxLevels && "Level out of range");
   1637   Level--;
   1638   Result.Consistent = false;
   1639   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
   1640   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
   1641                         CurLoop);
   1642   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1643   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
   1644     if (Level < CommonLevels) {
   1645       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
   1646       Result.DV[Level].PeelFirst = true;
   1647       ++WeakZeroSIVsuccesses;
   1648     }
   1649     return false; // dependences caused by first iteration
   1650   }
   1651   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1652   if (!ConstCoeff)
   1653     return false;
   1654   const SCEV *AbsCoeff =
   1655     SE->isKnownNegative(ConstCoeff) ?
   1656     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
   1657   const SCEV *NewDelta =
   1658     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
   1659 
   1660   // check that Delta/SrcCoeff < iteration count
   1661   // really check NewDelta < count*AbsCoeff
   1662   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1663     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1664     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
   1665     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
   1666       ++WeakZeroSIVindependence;
   1667       ++WeakZeroSIVsuccesses;
   1668       return true;
   1669     }
   1670     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
   1671       // dependences caused by last iteration
   1672       if (Level < CommonLevels) {
   1673         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
   1674         Result.DV[Level].PeelLast = true;
   1675         ++WeakZeroSIVsuccesses;
   1676       }
   1677       return false;
   1678     }
   1679   }
   1680 
   1681   // check that Delta/SrcCoeff >= 0
   1682   // really check that NewDelta >= 0
   1683   if (SE->isKnownNegative(NewDelta)) {
   1684     // No dependence, newDelta < 0
   1685     ++WeakZeroSIVindependence;
   1686     ++WeakZeroSIVsuccesses;
   1687     return true;
   1688   }
   1689 
   1690   // if SrcCoeff doesn't divide Delta, then no dependence
   1691   if (isa<SCEVConstant>(Delta) &&
   1692       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
   1693     ++WeakZeroSIVindependence;
   1694     ++WeakZeroSIVsuccesses;
   1695     return true;
   1696   }
   1697   return false;
   1698 }
   1699 
   1700 
   1701 // weakZeroDstSIVtest -
   1702 // From the paper, Practical Dependence Testing, Section 4.2.2
   1703 //
   1704 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
   1705 // where i is an induction variable, c1 and c2 are loop invariant,
   1706 // and a is a constant, we can solve it exactly using the
   1707 // Weak-Zero SIV test.
   1708 //
   1709 // Given
   1710 //
   1711 //    c1 + a*i = c2
   1712 //
   1713 // we get
   1714 //
   1715 //    i = (c2 - c1)/a
   1716 //
   1717 // If i is not an integer, there's no dependence.
   1718 // If i < 0 or > UB, there's no dependence.
   1719 // If i = 0, the direction is <= and peeling the
   1720 // 1st iteration will break the dependence.
   1721 // If i = UB, the direction is >= and peeling the
   1722 // last iteration will break the dependence.
   1723 // Otherwise, the direction is *.
   1724 //
   1725 // Can prove independence. Failing that, we can sometimes refine
   1726 // the directions. Can sometimes show that first or last
   1727 // iteration carries all the dependences (so worth peeling).
   1728 //
   1729 // (see also weakZeroSrcSIVtest)
   1730 //
   1731 // Return true if dependence disproved.
   1732 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
   1733                                         const SCEV *SrcConst,
   1734                                         const SCEV *DstConst,
   1735                                         const Loop *CurLoop, unsigned Level,
   1736                                         FullDependence &Result,
   1737                                         Constraint &NewConstraint) const {
   1738   // For the WeakSIV test, it's possible the loop isn't common to the
   1739   // Src and Dst loops. If it isn't, then there's no need to record a direction.
   1740   DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
   1741   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
   1742   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1743   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1744   ++WeakZeroSIVapplications;
   1745   assert(0 < Level && Level <= SrcLevels && "Level out of range");
   1746   Level--;
   1747   Result.Consistent = false;
   1748   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1749   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
   1750                         CurLoop);
   1751   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1752   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
   1753     if (Level < CommonLevels) {
   1754       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
   1755       Result.DV[Level].PeelFirst = true;
   1756       ++WeakZeroSIVsuccesses;
   1757     }
   1758     return false; // dependences caused by first iteration
   1759   }
   1760   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1761   if (!ConstCoeff)
   1762     return false;
   1763   const SCEV *AbsCoeff =
   1764     SE->isKnownNegative(ConstCoeff) ?
   1765     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
   1766   const SCEV *NewDelta =
   1767     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
   1768 
   1769   // check that Delta/SrcCoeff < iteration count
   1770   // really check NewDelta < count*AbsCoeff
   1771   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1772     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1773     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
   1774     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
   1775       ++WeakZeroSIVindependence;
   1776       ++WeakZeroSIVsuccesses;
   1777       return true;
   1778     }
   1779     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
   1780       // dependences caused by last iteration
   1781       if (Level < CommonLevels) {
   1782         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
   1783         Result.DV[Level].PeelLast = true;
   1784         ++WeakZeroSIVsuccesses;
   1785       }
   1786       return false;
   1787     }
   1788   }
   1789 
   1790   // check that Delta/SrcCoeff >= 0
   1791   // really check that NewDelta >= 0
   1792   if (SE->isKnownNegative(NewDelta)) {
   1793     // No dependence, newDelta < 0
   1794     ++WeakZeroSIVindependence;
   1795     ++WeakZeroSIVsuccesses;
   1796     return true;
   1797   }
   1798 
   1799   // if SrcCoeff doesn't divide Delta, then no dependence
   1800   if (isa<SCEVConstant>(Delta) &&
   1801       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
   1802     ++WeakZeroSIVindependence;
   1803     ++WeakZeroSIVsuccesses;
   1804     return true;
   1805   }
   1806   return false;
   1807 }
   1808 
   1809 
   1810 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
   1811 // Things of the form [c1 + a*i] and [c2 + b*j],
   1812 // where i and j are induction variable, c1 and c2 are loop invariant,
   1813 // and a and b are constants.
   1814 // Returns true if any possible dependence is disproved.
   1815 // Marks the result as inconsistent.
   1816 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
   1817 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   1818                                    const SCEV *SrcConst, const SCEV *DstConst,
   1819                                    const Loop *SrcLoop, const Loop *DstLoop,
   1820                                    FullDependence &Result) const {
   1821   DEBUG(dbgs() << "\tExact RDIV test\n");
   1822   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
   1823   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
   1824   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1825   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1826   ++ExactRDIVapplications;
   1827   Result.Consistent = false;
   1828   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1829   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1830   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1831   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1832   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1833   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
   1834     return false;
   1835 
   1836   // find gcd
   1837   APInt G, X, Y;
   1838   APInt AM = ConstSrcCoeff->getAPInt();
   1839   APInt BM = ConstDstCoeff->getAPInt();
   1840   unsigned Bits = AM.getBitWidth();
   1841   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
   1842     // gcd doesn't divide Delta, no dependence
   1843     ++ExactRDIVindependence;
   1844     return true;
   1845   }
   1846 
   1847   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
   1848 
   1849   // since SCEV construction seems to normalize, LM = 0
   1850   APInt SrcUM(Bits, 1, true);
   1851   bool SrcUMvalid = false;
   1852   // SrcUM is perhaps unavailable, let's check
   1853   if (const SCEVConstant *UpperBound =
   1854       collectConstantUpperBound(SrcLoop, Delta->getType())) {
   1855     SrcUM = UpperBound->getAPInt();
   1856     DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
   1857     SrcUMvalid = true;
   1858   }
   1859 
   1860   APInt DstUM(Bits, 1, true);
   1861   bool DstUMvalid = false;
   1862   // UM is perhaps unavailable, let's check
   1863   if (const SCEVConstant *UpperBound =
   1864       collectConstantUpperBound(DstLoop, Delta->getType())) {
   1865     DstUM = UpperBound->getAPInt();
   1866     DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
   1867     DstUMvalid = true;
   1868   }
   1869 
   1870   APInt TU(APInt::getSignedMaxValue(Bits));
   1871   APInt TL(APInt::getSignedMinValue(Bits));
   1872 
   1873   // test(BM/G, LM-X) and test(-BM/G, X-UM)
   1874   APInt TMUL = BM.sdiv(G);
   1875   if (TMUL.sgt(0)) {
   1876     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
   1877     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1878     if (SrcUMvalid) {
   1879       TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
   1880       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1881     }
   1882   }
   1883   else {
   1884     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
   1885     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1886     if (SrcUMvalid) {
   1887       TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
   1888       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1889     }
   1890   }
   1891 
   1892   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
   1893   TMUL = AM.sdiv(G);
   1894   if (TMUL.sgt(0)) {
   1895     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
   1896     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1897     if (DstUMvalid) {
   1898       TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
   1899       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1900     }
   1901   }
   1902   else {
   1903     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
   1904     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1905     if (DstUMvalid) {
   1906       TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
   1907       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1908     }
   1909   }
   1910   if (TL.sgt(TU))
   1911     ++ExactRDIVindependence;
   1912   return TL.sgt(TU);
   1913 }
   1914 
   1915 
   1916 // symbolicRDIVtest -
   1917 // In Section 4.5 of the Practical Dependence Testing paper,the authors
   1918 // introduce a special case of Banerjee's Inequalities (also called the
   1919 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
   1920 // particularly cases with symbolics. Since it's only able to disprove
   1921 // dependence (not compute distances or directions), we'll use it as a
   1922 // fall back for the other tests.
   1923 //
   1924 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
   1925 // where i and j are induction variables and c1 and c2 are loop invariants,
   1926 // we can use the symbolic tests to disprove some dependences, serving as a
   1927 // backup for the RDIV test. Note that i and j can be the same variable,
   1928 // letting this test serve as a backup for the various SIV tests.
   1929 //
   1930 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
   1931 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
   1932 // loop bounds for the i and j loops, respectively. So, ...
   1933 //
   1934 // c1 + a1*i = c2 + a2*j
   1935 // a1*i - a2*j = c2 - c1
   1936 //
   1937 // To test for a dependence, we compute c2 - c1 and make sure it's in the
   1938 // range of the maximum and minimum possible values of a1*i - a2*j.
   1939 // Considering the signs of a1 and a2, we have 4 possible cases:
   1940 //
   1941 // 1) If a1 >= 0 and a2 >= 0, then
   1942 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
   1943 //              -a2*N2 <= c2 - c1 <= a1*N1
   1944 //
   1945 // 2) If a1 >= 0 and a2 <= 0, then
   1946 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
   1947 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
   1948 //
   1949 // 3) If a1 <= 0 and a2 >= 0, then
   1950 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
   1951 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
   1952 //
   1953 // 4) If a1 <= 0 and a2 <= 0, then
   1954 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
   1955 //        a1*N1         <= c2 - c1 <=       -a2*N2
   1956 //
   1957 // return true if dependence disproved
   1958 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
   1959                                       const SCEV *C1, const SCEV *C2,
   1960                                       const Loop *Loop1,
   1961                                       const Loop *Loop2) const {
   1962   ++SymbolicRDIVapplications;
   1963   DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
   1964   DEBUG(dbgs() << "\t    A1 = " << *A1);
   1965   DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
   1966   DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
   1967   DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
   1968   DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
   1969   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
   1970   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
   1971   DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
   1972   DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
   1973   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
   1974   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
   1975   DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
   1976   DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
   1977   if (SE->isKnownNonNegative(A1)) {
   1978     if (SE->isKnownNonNegative(A2)) {
   1979       // A1 >= 0 && A2 >= 0
   1980       if (N1) {
   1981         // make sure that c2 - c1 <= a1*N1
   1982         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   1983         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
   1984         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
   1985           ++SymbolicRDIVindependence;
   1986           return true;
   1987         }
   1988       }
   1989       if (N2) {
   1990         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
   1991         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   1992         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
   1993         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
   1994           ++SymbolicRDIVindependence;
   1995           return true;
   1996         }
   1997       }
   1998     }
   1999     else if (SE->isKnownNonPositive(A2)) {
   2000       // a1 >= 0 && a2 <= 0
   2001       if (N1 && N2) {
   2002         // make sure that c2 - c1 <= a1*N1 - a2*N2
   2003         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2004         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2005         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
   2006         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
   2007         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
   2008           ++SymbolicRDIVindependence;
   2009           return true;
   2010         }
   2011       }
   2012       // make sure that 0 <= c2 - c1
   2013       if (SE->isKnownNegative(C2_C1)) {
   2014         ++SymbolicRDIVindependence;
   2015         return true;
   2016       }
   2017     }
   2018   }
   2019   else if (SE->isKnownNonPositive(A1)) {
   2020     if (SE->isKnownNonNegative(A2)) {
   2021       // a1 <= 0 && a2 >= 0
   2022       if (N1 && N2) {
   2023         // make sure that a1*N1 - a2*N2 <= c2 - c1
   2024         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2025         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2026         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
   2027         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
   2028         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
   2029           ++SymbolicRDIVindependence;
   2030           return true;
   2031         }
   2032       }
   2033       // make sure that c2 - c1 <= 0
   2034       if (SE->isKnownPositive(C2_C1)) {
   2035         ++SymbolicRDIVindependence;
   2036         return true;
   2037       }
   2038     }
   2039     else if (SE->isKnownNonPositive(A2)) {
   2040       // a1 <= 0 && a2 <= 0
   2041       if (N1) {
   2042         // make sure that a1*N1 <= c2 - c1
   2043         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2044         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
   2045         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
   2046           ++SymbolicRDIVindependence;
   2047           return true;
   2048         }
   2049       }
   2050       if (N2) {
   2051         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
   2052         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2053         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
   2054         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
   2055           ++SymbolicRDIVindependence;
   2056           return true;
   2057         }
   2058       }
   2059     }
   2060   }
   2061   return false;
   2062 }
   2063 
   2064 
   2065 // testSIV -
   2066 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
   2067 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
   2068 // a2 are constant, we attack it with an SIV test. While they can all be
   2069 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
   2070 // they apply; they're cheaper and sometimes more precise.
   2071 //
   2072 // Return true if dependence disproved.
   2073 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
   2074                              FullDependence &Result, Constraint &NewConstraint,
   2075                              const SCEV *&SplitIter) const {
   2076   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2077   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2078   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
   2079   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
   2080   if (SrcAddRec && DstAddRec) {
   2081     const SCEV *SrcConst = SrcAddRec->getStart();
   2082     const SCEV *DstConst = DstAddRec->getStart();
   2083     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2084     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2085     const Loop *CurLoop = SrcAddRec->getLoop();
   2086     assert(CurLoop == DstAddRec->getLoop() &&
   2087            "both loops in SIV should be same");
   2088     Level = mapSrcLoop(CurLoop);
   2089     bool disproven;
   2090     if (SrcCoeff == DstCoeff)
   2091       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2092                                 Level, Result, NewConstraint);
   2093     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
   2094       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2095                                       Level, Result, NewConstraint, SplitIter);
   2096     else
   2097       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
   2098                                Level, Result, NewConstraint);
   2099     return disproven ||
   2100       gcdMIVtest(Src, Dst, Result) ||
   2101       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
   2102   }
   2103   if (SrcAddRec) {
   2104     const SCEV *SrcConst = SrcAddRec->getStart();
   2105     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2106     const SCEV *DstConst = Dst;
   2107     const Loop *CurLoop = SrcAddRec->getLoop();
   2108     Level = mapSrcLoop(CurLoop);
   2109     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2110                               Level, Result, NewConstraint) ||
   2111       gcdMIVtest(Src, Dst, Result);
   2112   }
   2113   if (DstAddRec) {
   2114     const SCEV *DstConst = DstAddRec->getStart();
   2115     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2116     const SCEV *SrcConst = Src;
   2117     const Loop *CurLoop = DstAddRec->getLoop();
   2118     Level = mapDstLoop(CurLoop);
   2119     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
   2120                               CurLoop, Level, Result, NewConstraint) ||
   2121       gcdMIVtest(Src, Dst, Result);
   2122   }
   2123   llvm_unreachable("SIV test expected at least one AddRec");
   2124   return false;
   2125 }
   2126 
   2127 
   2128 // testRDIV -
   2129 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
   2130 // where i and j are induction variables, c1 and c2 are loop invariant,
   2131 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
   2132 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
   2133 // It doesn't make sense to talk about distance or direction in this case,
   2134 // so there's no point in making special versions of the Strong SIV test or
   2135 // the Weak-crossing SIV test.
   2136 //
   2137 // With minor algebra, this test can also be used for things like
   2138 // [c1 + a1*i + a2*j][c2].
   2139 //
   2140 // Return true if dependence disproved.
   2141 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
   2142                               FullDependence &Result) const {
   2143   // we have 3 possible situations here:
   2144   //   1) [a*i + b] and [c*j + d]
   2145   //   2) [a*i + c*j + b] and [d]
   2146   //   3) [b] and [a*i + c*j + d]
   2147   // We need to find what we've got and get organized
   2148 
   2149   const SCEV *SrcConst, *DstConst;
   2150   const SCEV *SrcCoeff, *DstCoeff;
   2151   const Loop *SrcLoop, *DstLoop;
   2152 
   2153   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2154   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2155   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
   2156   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
   2157   if (SrcAddRec && DstAddRec) {
   2158     SrcConst = SrcAddRec->getStart();
   2159     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2160     SrcLoop = SrcAddRec->getLoop();
   2161     DstConst = DstAddRec->getStart();
   2162     DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2163     DstLoop = DstAddRec->getLoop();
   2164   }
   2165   else if (SrcAddRec) {
   2166     if (const SCEVAddRecExpr *tmpAddRec =
   2167         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
   2168       SrcConst = tmpAddRec->getStart();
   2169       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
   2170       SrcLoop = tmpAddRec->getLoop();
   2171       DstConst = Dst;
   2172       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
   2173       DstLoop = SrcAddRec->getLoop();
   2174     }
   2175     else
   2176       llvm_unreachable("RDIV reached by surprising SCEVs");
   2177   }
   2178   else if (DstAddRec) {
   2179     if (const SCEVAddRecExpr *tmpAddRec =
   2180         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
   2181       DstConst = tmpAddRec->getStart();
   2182       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
   2183       DstLoop = tmpAddRec->getLoop();
   2184       SrcConst = Src;
   2185       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
   2186       SrcLoop = DstAddRec->getLoop();
   2187     }
   2188     else
   2189       llvm_unreachable("RDIV reached by surprising SCEVs");
   2190   }
   2191   else
   2192     llvm_unreachable("RDIV expected at least one AddRec");
   2193   return exactRDIVtest(SrcCoeff, DstCoeff,
   2194                        SrcConst, DstConst,
   2195                        SrcLoop, DstLoop,
   2196                        Result) ||
   2197     gcdMIVtest(Src, Dst, Result) ||
   2198     symbolicRDIVtest(SrcCoeff, DstCoeff,
   2199                      SrcConst, DstConst,
   2200                      SrcLoop, DstLoop);
   2201 }
   2202 
   2203 
   2204 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
   2205 // Return true if dependence disproved.
   2206 // Can sometimes refine direction vectors.
   2207 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
   2208                              const SmallBitVector &Loops,
   2209                              FullDependence &Result) const {
   2210   DEBUG(dbgs() << "    src = " << *Src << "\n");
   2211   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2212   Result.Consistent = false;
   2213   return gcdMIVtest(Src, Dst, Result) ||
   2214     banerjeeMIVtest(Src, Dst, Loops, Result);
   2215 }
   2216 
   2217 
   2218 // Given a product, e.g., 10*X*Y, returns the first constant operand,
   2219 // in this case 10. If there is no constant part, returns NULL.
   2220 static
   2221 const SCEVConstant *getConstantPart(const SCEV *Expr) {
   2222   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
   2223     return Constant;
   2224   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
   2225     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
   2226       return Constant;
   2227   return nullptr;
   2228 }
   2229 
   2230 
   2231 //===----------------------------------------------------------------------===//
   2232 // gcdMIVtest -
   2233 // Tests an MIV subscript pair for dependence.
   2234 // Returns true if any possible dependence is disproved.
   2235 // Marks the result as inconsistent.
   2236 // Can sometimes disprove the equal direction for 1 or more loops,
   2237 // as discussed in Michael Wolfe's book,
   2238 // High Performance Compilers for Parallel Computing, page 235.
   2239 //
   2240 // We spend some effort (code!) to handle cases like
   2241 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
   2242 // but M and N are just loop-invariant variables.
   2243 // This should help us handle linearized subscripts;
   2244 // also makes this test a useful backup to the various SIV tests.
   2245 //
   2246 // It occurs to me that the presence of loop-invariant variables
   2247 // changes the nature of the test from "greatest common divisor"
   2248 // to "a common divisor".
   2249 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
   2250                                 FullDependence &Result) const {
   2251   DEBUG(dbgs() << "starting gcd\n");
   2252   ++GCDapplications;
   2253   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
   2254   APInt RunningGCD = APInt::getNullValue(BitWidth);
   2255 
   2256   // Examine Src coefficients.
   2257   // Compute running GCD and record source constant.
   2258   // Because we're looking for the constant at the end of the chain,
   2259   // we can't quit the loop just because the GCD == 1.
   2260   const SCEV *Coefficients = Src;
   2261   while (const SCEVAddRecExpr *AddRec =
   2262          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2263     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2264     // If the coefficient is the product of a constant and other stuff,
   2265     // we can use the constant in the GCD computation.
   2266     const auto *Constant = getConstantPart(Coeff);
   2267     if (!Constant)
   2268       return false;
   2269     APInt ConstCoeff = Constant->getAPInt();
   2270     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2271     Coefficients = AddRec->getStart();
   2272   }
   2273   const SCEV *SrcConst = Coefficients;
   2274 
   2275   // Examine Dst coefficients.
   2276   // Compute running GCD and record destination constant.
   2277   // Because we're looking for the constant at the end of the chain,
   2278   // we can't quit the loop just because the GCD == 1.
   2279   Coefficients = Dst;
   2280   while (const SCEVAddRecExpr *AddRec =
   2281          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2282     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2283     // If the coefficient is the product of a constant and other stuff,
   2284     // we can use the constant in the GCD computation.
   2285     const auto *Constant = getConstantPart(Coeff);
   2286     if (!Constant)
   2287       return false;
   2288     APInt ConstCoeff = Constant->getAPInt();
   2289     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2290     Coefficients = AddRec->getStart();
   2291   }
   2292   const SCEV *DstConst = Coefficients;
   2293 
   2294   APInt ExtraGCD = APInt::getNullValue(BitWidth);
   2295   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   2296   DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
   2297   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
   2298   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
   2299     // If Delta is a sum of products, we may be able to make further progress.
   2300     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
   2301       const SCEV *Operand = Sum->getOperand(Op);
   2302       if (isa<SCEVConstant>(Operand)) {
   2303         assert(!Constant && "Surprised to find multiple constants");
   2304         Constant = cast<SCEVConstant>(Operand);
   2305       }
   2306       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
   2307         // Search for constant operand to participate in GCD;
   2308         // If none found; return false.
   2309         const SCEVConstant *ConstOp = getConstantPart(Product);
   2310         if (!ConstOp)
   2311           return false;
   2312         APInt ConstOpValue = ConstOp->getAPInt();
   2313         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
   2314                                                    ConstOpValue.abs());
   2315       }
   2316       else
   2317         return false;
   2318     }
   2319   }
   2320   if (!Constant)
   2321     return false;
   2322   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
   2323   DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
   2324   if (ConstDelta == 0)
   2325     return false;
   2326   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
   2327   DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
   2328   APInt Remainder = ConstDelta.srem(RunningGCD);
   2329   if (Remainder != 0) {
   2330     ++GCDindependence;
   2331     return true;
   2332   }
   2333 
   2334   // Try to disprove equal directions.
   2335   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
   2336   // the code above can't disprove the dependence because the GCD = 1.
   2337   // So we consider what happen if i = i' and what happens if j = j'.
   2338   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
   2339   // which is infeasible, so we can disallow the = direction for the i level.
   2340   // Setting j = j' doesn't help matters, so we end up with a direction vector
   2341   // of [<>, *]
   2342   //
   2343   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
   2344   // we need to remember that the constant part is 5 and the RunningGCD should
   2345   // be initialized to ExtraGCD = 30.
   2346   DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
   2347 
   2348   bool Improved = false;
   2349   Coefficients = Src;
   2350   while (const SCEVAddRecExpr *AddRec =
   2351          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2352     Coefficients = AddRec->getStart();
   2353     const Loop *CurLoop = AddRec->getLoop();
   2354     RunningGCD = ExtraGCD;
   2355     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
   2356     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
   2357     const SCEV *Inner = Src;
   2358     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
   2359       AddRec = cast<SCEVAddRecExpr>(Inner);
   2360       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2361       if (CurLoop == AddRec->getLoop())
   2362         ; // SrcCoeff == Coeff
   2363       else {
   2364         // If the coefficient is the product of a constant and other stuff,
   2365         // we can use the constant in the GCD computation.
   2366         Constant = getConstantPart(Coeff);
   2367         if (!Constant)
   2368           return false;
   2369         APInt ConstCoeff = Constant->getAPInt();
   2370         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2371       }
   2372       Inner = AddRec->getStart();
   2373     }
   2374     Inner = Dst;
   2375     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
   2376       AddRec = cast<SCEVAddRecExpr>(Inner);
   2377       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2378       if (CurLoop == AddRec->getLoop())
   2379         DstCoeff = Coeff;
   2380       else {
   2381         // If the coefficient is the product of a constant and other stuff,
   2382         // we can use the constant in the GCD computation.
   2383         Constant = getConstantPart(Coeff);
   2384         if (!Constant)
   2385           return false;
   2386         APInt ConstCoeff = Constant->getAPInt();
   2387         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2388       }
   2389       Inner = AddRec->getStart();
   2390     }
   2391     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
   2392     // If the coefficient is the product of a constant and other stuff,
   2393     // we can use the constant in the GCD computation.
   2394     Constant = getConstantPart(Delta);
   2395     if (!Constant)
   2396       // The difference of the two coefficients might not be a product
   2397       // or constant, in which case we give up on this direction.
   2398       continue;
   2399     APInt ConstCoeff = Constant->getAPInt();
   2400     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2401     DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
   2402     if (RunningGCD != 0) {
   2403       Remainder = ConstDelta.srem(RunningGCD);
   2404       DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
   2405       if (Remainder != 0) {
   2406         unsigned Level = mapSrcLoop(CurLoop);
   2407         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
   2408         Improved = true;
   2409       }
   2410     }
   2411   }
   2412   if (Improved)
   2413     ++GCDsuccesses;
   2414   DEBUG(dbgs() << "all done\n");
   2415   return false;
   2416 }
   2417 
   2418 
   2419 //===----------------------------------------------------------------------===//
   2420 // banerjeeMIVtest -
   2421 // Use Banerjee's Inequalities to test an MIV subscript pair.
   2422 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
   2423 // Generally follows the discussion in Section 2.5.2 of
   2424 //
   2425 //    Optimizing Supercompilers for Supercomputers
   2426 //    Michael Wolfe
   2427 //
   2428 // The inequalities given on page 25 are simplified in that loops are
   2429 // normalized so that the lower bound is always 0 and the stride is always 1.
   2430 // For example, Wolfe gives
   2431 //
   2432 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2433 //
   2434 // where A_k is the coefficient of the kth index in the source subscript,
   2435 // B_k is the coefficient of the kth index in the destination subscript,
   2436 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
   2437 // index, and N_k is the stride of the kth index. Since all loops are normalized
   2438 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
   2439 // equation to
   2440 //
   2441 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
   2442 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
   2443 //
   2444 // Similar simplifications are possible for the other equations.
   2445 //
   2446 // When we can't determine the number of iterations for a loop,
   2447 // we use NULL as an indicator for the worst case, infinity.
   2448 // When computing the upper bound, NULL denotes +inf;
   2449 // for the lower bound, NULL denotes -inf.
   2450 //
   2451 // Return true if dependence disproved.
   2452 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
   2453                                      const SmallBitVector &Loops,
   2454                                      FullDependence &Result) const {
   2455   DEBUG(dbgs() << "starting Banerjee\n");
   2456   ++BanerjeeApplications;
   2457   DEBUG(dbgs() << "    Src = " << *Src << '\n');
   2458   const SCEV *A0;
   2459   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
   2460   DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
   2461   const SCEV *B0;
   2462   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
   2463   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
   2464   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
   2465   DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
   2466 
   2467   // Compute bounds for all the * directions.
   2468   DEBUG(dbgs() << "\tBounds[*]\n");
   2469   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2470     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
   2471     Bound[K].Direction = Dependence::DVEntry::ALL;
   2472     Bound[K].DirSet = Dependence::DVEntry::NONE;
   2473     findBoundsALL(A, B, Bound, K);
   2474 #ifndef NDEBUG
   2475     DEBUG(dbgs() << "\t    " << K << '\t');
   2476     if (Bound[K].Lower[Dependence::DVEntry::ALL])
   2477       DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
   2478     else
   2479       DEBUG(dbgs() << "-inf\t");
   2480     if (Bound[K].Upper[Dependence::DVEntry::ALL])
   2481       DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
   2482     else
   2483       DEBUG(dbgs() << "+inf\n");
   2484 #endif
   2485   }
   2486 
   2487   // Test the *, *, *, ... case.
   2488   bool Disproved = false;
   2489   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
   2490     // Explore the direction vector hierarchy.
   2491     unsigned DepthExpanded = 0;
   2492     unsigned NewDeps = exploreDirections(1, A, B, Bound,
   2493                                          Loops, DepthExpanded, Delta);
   2494     if (NewDeps > 0) {
   2495       bool Improved = false;
   2496       for (unsigned K = 1; K <= CommonLevels; ++K) {
   2497         if (Loops[K]) {
   2498           unsigned Old = Result.DV[K - 1].Direction;
   2499           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
   2500           Improved |= Old != Result.DV[K - 1].Direction;
   2501           if (!Result.DV[K - 1].Direction) {
   2502             Improved = false;
   2503             Disproved = true;
   2504             break;
   2505           }
   2506         }
   2507       }
   2508       if (Improved)
   2509         ++BanerjeeSuccesses;
   2510     }
   2511     else {
   2512       ++BanerjeeIndependence;
   2513       Disproved = true;
   2514     }
   2515   }
   2516   else {
   2517     ++BanerjeeIndependence;
   2518     Disproved = true;
   2519   }
   2520   delete [] Bound;
   2521   delete [] A;
   2522   delete [] B;
   2523   return Disproved;
   2524 }
   2525 
   2526 
   2527 // Hierarchically expands the direction vector
   2528 // search space, combining the directions of discovered dependences
   2529 // in the DirSet field of Bound. Returns the number of distinct
   2530 // dependences discovered. If the dependence is disproved,
   2531 // it will return 0.
   2532 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
   2533                                            CoefficientInfo *B, BoundInfo *Bound,
   2534                                            const SmallBitVector &Loops,
   2535                                            unsigned &DepthExpanded,
   2536                                            const SCEV *Delta) const {
   2537   if (Level > CommonLevels) {
   2538     // record result
   2539     DEBUG(dbgs() << "\t[");
   2540     for (unsigned K = 1; K <= CommonLevels; ++K) {
   2541       if (Loops[K]) {
   2542         Bound[K].DirSet |= Bound[K].Direction;
   2543 #ifndef NDEBUG
   2544         switch (Bound[K].Direction) {
   2545         case Dependence::DVEntry::LT:
   2546           DEBUG(dbgs() << " <");
   2547           break;
   2548         case Dependence::DVEntry::EQ:
   2549           DEBUG(dbgs() << " =");
   2550           break;
   2551         case Dependence::DVEntry::GT:
   2552           DEBUG(dbgs() << " >");
   2553           break;
   2554         case Dependence::DVEntry::ALL:
   2555           DEBUG(dbgs() << " *");
   2556           break;
   2557         default:
   2558           llvm_unreachable("unexpected Bound[K].Direction");
   2559         }
   2560 #endif
   2561       }
   2562     }
   2563     DEBUG(dbgs() << " ]\n");
   2564     return 1;
   2565   }
   2566   if (Loops[Level]) {
   2567     if (Level > DepthExpanded) {
   2568       DepthExpanded = Level;
   2569       // compute bounds for <, =, > at current level
   2570       findBoundsLT(A, B, Bound, Level);
   2571       findBoundsGT(A, B, Bound, Level);
   2572       findBoundsEQ(A, B, Bound, Level);
   2573 #ifndef NDEBUG
   2574       DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
   2575       DEBUG(dbgs() << "\t    <\t");
   2576       if (Bound[Level].Lower[Dependence::DVEntry::LT])
   2577         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
   2578       else
   2579         DEBUG(dbgs() << "-inf\t");
   2580       if (Bound[Level].Upper[Dependence::DVEntry::LT])
   2581         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
   2582       else
   2583         DEBUG(dbgs() << "+inf\n");
   2584       DEBUG(dbgs() << "\t    =\t");
   2585       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
   2586         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
   2587       else
   2588         DEBUG(dbgs() << "-inf\t");
   2589       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
   2590         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
   2591       else
   2592         DEBUG(dbgs() << "+inf\n");
   2593       DEBUG(dbgs() << "\t    >\t");
   2594       if (Bound[Level].Lower[Dependence::DVEntry::GT])
   2595         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
   2596       else
   2597         DEBUG(dbgs() << "-inf\t");
   2598       if (Bound[Level].Upper[Dependence::DVEntry::GT])
   2599         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
   2600       else
   2601         DEBUG(dbgs() << "+inf\n");
   2602 #endif
   2603     }
   2604 
   2605     unsigned NewDeps = 0;
   2606 
   2607     // test bounds for <, *, *, ...
   2608     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
   2609       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2610                                    Loops, DepthExpanded, Delta);
   2611 
   2612     // Test bounds for =, *, *, ...
   2613     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
   2614       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2615                                    Loops, DepthExpanded, Delta);
   2616 
   2617     // test bounds for >, *, *, ...
   2618     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
   2619       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2620                                    Loops, DepthExpanded, Delta);
   2621 
   2622     Bound[Level].Direction = Dependence::DVEntry::ALL;
   2623     return NewDeps;
   2624   }
   2625   else
   2626     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
   2627 }
   2628 
   2629 
   2630 // Returns true iff the current bounds are plausible.
   2631 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
   2632                                 BoundInfo *Bound, const SCEV *Delta) const {
   2633   Bound[Level].Direction = DirKind;
   2634   if (const SCEV *LowerBound = getLowerBound(Bound))
   2635     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
   2636       return false;
   2637   if (const SCEV *UpperBound = getUpperBound(Bound))
   2638     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
   2639       return false;
   2640   return true;
   2641 }
   2642 
   2643 
   2644 // Computes the upper and lower bounds for level K
   2645 // using the * direction. Records them in Bound.
   2646 // Wolfe gives the equations
   2647 //
   2648 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
   2649 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
   2650 //
   2651 // Since we normalize loops, we can simplify these equations to
   2652 //
   2653 //    LB^*_k = (A^-_k - B^+_k)U_k
   2654 //    UB^*_k = (A^+_k - B^-_k)U_k
   2655 //
   2656 // We must be careful to handle the case where the upper bound is unknown.
   2657 // Note that the lower bound is always <= 0
   2658 // and the upper bound is always >= 0.
   2659 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
   2660                                    BoundInfo *Bound, unsigned K) const {
   2661   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
   2662   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
   2663   if (Bound[K].Iterations) {
   2664     Bound[K].Lower[Dependence::DVEntry::ALL] =
   2665       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
   2666                      Bound[K].Iterations);
   2667     Bound[K].Upper[Dependence::DVEntry::ALL] =
   2668       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
   2669                      Bound[K].Iterations);
   2670   }
   2671   else {
   2672     // If the difference is 0, we won't need to know the number of iterations.
   2673     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
   2674       Bound[K].Lower[Dependence::DVEntry::ALL] =
   2675           SE->getZero(A[K].Coeff->getType());
   2676     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
   2677       Bound[K].Upper[Dependence::DVEntry::ALL] =
   2678           SE->getZero(A[K].Coeff->getType());
   2679   }
   2680 }
   2681 
   2682 
   2683 // Computes the upper and lower bounds for level K
   2684 // using the = direction. Records them in Bound.
   2685 // Wolfe gives the equations
   2686 //
   2687 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
   2688 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
   2689 //
   2690 // Since we normalize loops, we can simplify these equations to
   2691 //
   2692 //    LB^=_k = (A_k - B_k)^- U_k
   2693 //    UB^=_k = (A_k - B_k)^+ U_k
   2694 //
   2695 // We must be careful to handle the case where the upper bound is unknown.
   2696 // Note that the lower bound is always <= 0
   2697 // and the upper bound is always >= 0.
   2698 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
   2699                                   BoundInfo *Bound, unsigned K) const {
   2700   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
   2701   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
   2702   if (Bound[K].Iterations) {
   2703     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
   2704     const SCEV *NegativePart = getNegativePart(Delta);
   2705     Bound[K].Lower[Dependence::DVEntry::EQ] =
   2706       SE->getMulExpr(NegativePart, Bound[K].Iterations);
   2707     const SCEV *PositivePart = getPositivePart(Delta);
   2708     Bound[K].Upper[Dependence::DVEntry::EQ] =
   2709       SE->getMulExpr(PositivePart, Bound[K].Iterations);
   2710   }
   2711   else {
   2712     // If the positive/negative part of the difference is 0,
   2713     // we won't need to know the number of iterations.
   2714     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
   2715     const SCEV *NegativePart = getNegativePart(Delta);
   2716     if (NegativePart->isZero())
   2717       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
   2718     const SCEV *PositivePart = getPositivePart(Delta);
   2719     if (PositivePart->isZero())
   2720       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
   2721   }
   2722 }
   2723 
   2724 
   2725 // Computes the upper and lower bounds for level K
   2726 // using the < direction. Records them in Bound.
   2727 // Wolfe gives the equations
   2728 //
   2729 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2730 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2731 //
   2732 // Since we normalize loops, we can simplify these equations to
   2733 //
   2734 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
   2735 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
   2736 //
   2737 // We must be careful to handle the case where the upper bound is unknown.
   2738 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
   2739                                   BoundInfo *Bound, unsigned K) const {
   2740   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
   2741   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
   2742   if (Bound[K].Iterations) {
   2743     const SCEV *Iter_1 = SE->getMinusSCEV(
   2744         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
   2745     const SCEV *NegPart =
   2746       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
   2747     Bound[K].Lower[Dependence::DVEntry::LT] =
   2748       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
   2749     const SCEV *PosPart =
   2750       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
   2751     Bound[K].Upper[Dependence::DVEntry::LT] =
   2752       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
   2753   }
   2754   else {
   2755     // If the positive/negative part of the difference is 0,
   2756     // we won't need to know the number of iterations.
   2757     const SCEV *NegPart =
   2758       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
   2759     if (NegPart->isZero())
   2760       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   2761     const SCEV *PosPart =
   2762       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
   2763     if (PosPart->isZero())
   2764       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   2765   }
   2766 }
   2767 
   2768 
   2769 // Computes the upper and lower bounds for level K
   2770 // using the > direction. Records them in Bound.
   2771 // Wolfe gives the equations
   2772 //
   2773 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
   2774 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
   2775 //
   2776 // Since we normalize loops, we can simplify these equations to
   2777 //
   2778 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
   2779 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
   2780 //
   2781 // We must be careful to handle the case where the upper bound is unknown.
   2782 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
   2783                                   BoundInfo *Bound, unsigned K) const {
   2784   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
   2785   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
   2786   if (Bound[K].Iterations) {
   2787     const SCEV *Iter_1 = SE->getMinusSCEV(
   2788         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
   2789     const SCEV *NegPart =
   2790       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
   2791     Bound[K].Lower[Dependence::DVEntry::GT] =
   2792       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
   2793     const SCEV *PosPart =
   2794       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
   2795     Bound[K].Upper[Dependence::DVEntry::GT] =
   2796       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
   2797   }
   2798   else {
   2799     // If the positive/negative part of the difference is 0,
   2800     // we won't need to know the number of iterations.
   2801     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
   2802     if (NegPart->isZero())
   2803       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
   2804     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
   2805     if (PosPart->isZero())
   2806       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
   2807   }
   2808 }
   2809 
   2810 
   2811 // X^+ = max(X, 0)
   2812 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
   2813   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
   2814 }
   2815 
   2816 
   2817 // X^- = min(X, 0)
   2818 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
   2819   return SE->getSMinExpr(X, SE->getZero(X->getType()));
   2820 }
   2821 
   2822 
   2823 // Walks through the subscript,
   2824 // collecting each coefficient, the associated loop bounds,
   2825 // and recording its positive and negative parts for later use.
   2826 DependenceInfo::CoefficientInfo *
   2827 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
   2828                                  const SCEV *&Constant) const {
   2829   const SCEV *Zero = SE->getZero(Subscript->getType());
   2830   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
   2831   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2832     CI[K].Coeff = Zero;
   2833     CI[K].PosPart = Zero;
   2834     CI[K].NegPart = Zero;
   2835     CI[K].Iterations = nullptr;
   2836   }
   2837   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
   2838     const Loop *L = AddRec->getLoop();
   2839     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
   2840     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
   2841     CI[K].PosPart = getPositivePart(CI[K].Coeff);
   2842     CI[K].NegPart = getNegativePart(CI[K].Coeff);
   2843     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
   2844     Subscript = AddRec->getStart();
   2845   }
   2846   Constant = Subscript;
   2847 #ifndef NDEBUG
   2848   DEBUG(dbgs() << "\tCoefficient Info\n");
   2849   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2850     DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
   2851     DEBUG(dbgs() << "\tPos Part = ");
   2852     DEBUG(dbgs() << *CI[K].PosPart);
   2853     DEBUG(dbgs() << "\tNeg Part = ");
   2854     DEBUG(dbgs() << *CI[K].NegPart);
   2855     DEBUG(dbgs() << "\tUpper Bound = ");
   2856     if (CI[K].Iterations)
   2857       DEBUG(dbgs() << *CI[K].Iterations);
   2858     else
   2859       DEBUG(dbgs() << "+inf");
   2860     DEBUG(dbgs() << '\n');
   2861   }
   2862   DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
   2863 #endif
   2864   return CI;
   2865 }
   2866 
   2867 
   2868 // Looks through all the bounds info and
   2869 // computes the lower bound given the current direction settings
   2870 // at each level. If the lower bound for any level is -inf,
   2871 // the result is -inf.
   2872 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
   2873   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
   2874   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
   2875     if (Bound[K].Lower[Bound[K].Direction])
   2876       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
   2877     else
   2878       Sum = nullptr;
   2879   }
   2880   return Sum;
   2881 }
   2882 
   2883 
   2884 // Looks through all the bounds info and
   2885 // computes the upper bound given the current direction settings
   2886 // at each level. If the upper bound at any level is +inf,
   2887 // the result is +inf.
   2888 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
   2889   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
   2890   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
   2891     if (Bound[K].Upper[Bound[K].Direction])
   2892       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
   2893     else
   2894       Sum = nullptr;
   2895   }
   2896   return Sum;
   2897 }
   2898 
   2899 
   2900 //===----------------------------------------------------------------------===//
   2901 // Constraint manipulation for Delta test.
   2902 
   2903 // Given a linear SCEV,
   2904 // return the coefficient (the step)
   2905 // corresponding to the specified loop.
   2906 // If there isn't one, return 0.
   2907 // For example, given a*i + b*j + c*k, finding the coefficient
   2908 // corresponding to the j loop would yield b.
   2909 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
   2910                                             const Loop *TargetLoop) const {
   2911   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2912   if (!AddRec)
   2913     return SE->getZero(Expr->getType());
   2914   if (AddRec->getLoop() == TargetLoop)
   2915     return AddRec->getStepRecurrence(*SE);
   2916   return findCoefficient(AddRec->getStart(), TargetLoop);
   2917 }
   2918 
   2919 
   2920 // Given a linear SCEV,
   2921 // return the SCEV given by zeroing out the coefficient
   2922 // corresponding to the specified loop.
   2923 // For example, given a*i + b*j + c*k, zeroing the coefficient
   2924 // corresponding to the j loop would yield a*i + c*k.
   2925 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
   2926                                             const Loop *TargetLoop) const {
   2927   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2928   if (!AddRec)
   2929     return Expr; // ignore
   2930   if (AddRec->getLoop() == TargetLoop)
   2931     return AddRec->getStart();
   2932   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
   2933                            AddRec->getStepRecurrence(*SE),
   2934                            AddRec->getLoop(),
   2935                            AddRec->getNoWrapFlags());
   2936 }
   2937 
   2938 
   2939 // Given a linear SCEV Expr,
   2940 // return the SCEV given by adding some Value to the
   2941 // coefficient corresponding to the specified TargetLoop.
   2942 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
   2943 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
   2944 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
   2945                                              const Loop *TargetLoop,
   2946                                              const SCEV *Value) const {
   2947   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2948   if (!AddRec) // create a new addRec
   2949     return SE->getAddRecExpr(Expr,
   2950                              Value,
   2951                              TargetLoop,
   2952                              SCEV::FlagAnyWrap); // Worst case, with no info.
   2953   if (AddRec->getLoop() == TargetLoop) {
   2954     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
   2955     if (Sum->isZero())
   2956       return AddRec->getStart();
   2957     return SE->getAddRecExpr(AddRec->getStart(),
   2958                              Sum,
   2959                              AddRec->getLoop(),
   2960                              AddRec->getNoWrapFlags());
   2961   }
   2962   if (SE->isLoopInvariant(AddRec, TargetLoop))
   2963     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
   2964   return SE->getAddRecExpr(
   2965       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
   2966       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
   2967       AddRec->getNoWrapFlags());
   2968 }
   2969 
   2970 
   2971 // Review the constraints, looking for opportunities
   2972 // to simplify a subscript pair (Src and Dst).
   2973 // Return true if some simplification occurs.
   2974 // If the simplification isn't exact (that is, if it is conservative
   2975 // in terms of dependence), set consistent to false.
   2976 // Corresponds to Figure 5 from the paper
   2977 //
   2978 //            Practical Dependence Testing
   2979 //            Goff, Kennedy, Tseng
   2980 //            PLDI 1991
   2981 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
   2982                                SmallBitVector &Loops,
   2983                                SmallVectorImpl<Constraint> &Constraints,
   2984                                bool &Consistent) {
   2985   bool Result = false;
   2986   for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
   2987     DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
   2988     DEBUG(Constraints[LI].dump(dbgs()));
   2989     if (Constraints[LI].isDistance())
   2990       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
   2991     else if (Constraints[LI].isLine())
   2992       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
   2993     else if (Constraints[LI].isPoint())
   2994       Result |= propagatePoint(Src, Dst, Constraints[LI]);
   2995   }
   2996   return Result;
   2997 }
   2998 
   2999 
   3000 // Attempt to propagate a distance
   3001 // constraint into a subscript pair (Src and Dst).
   3002 // Return true if some simplification occurs.
   3003 // If the simplification isn't exact (that is, if it is conservative
   3004 // in terms of dependence), set consistent to false.
   3005 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
   3006                                        Constraint &CurConstraint,
   3007                                        bool &Consistent) {
   3008   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3009   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
   3010   const SCEV *A_K = findCoefficient(Src, CurLoop);
   3011   if (A_K->isZero())
   3012     return false;
   3013   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
   3014   Src = SE->getMinusSCEV(Src, DA_K);
   3015   Src = zeroCoefficient(Src, CurLoop);
   3016   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
   3017   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
   3018   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
   3019   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
   3020   if (!findCoefficient(Dst, CurLoop)->isZero())
   3021     Consistent = false;
   3022   return true;
   3023 }
   3024 
   3025 
   3026 // Attempt to propagate a line
   3027 // constraint into a subscript pair (Src and Dst).
   3028 // Return true if some simplification occurs.
   3029 // If the simplification isn't exact (that is, if it is conservative
   3030 // in terms of dependence), set consistent to false.
   3031 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
   3032                                    Constraint &CurConstraint,
   3033                                    bool &Consistent) {
   3034   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3035   const SCEV *A = CurConstraint.getA();
   3036   const SCEV *B = CurConstraint.getB();
   3037   const SCEV *C = CurConstraint.getC();
   3038   DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
   3039   DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
   3040   DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
   3041   if (A->isZero()) {
   3042     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
   3043     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3044     if (!Bconst || !Cconst) return false;
   3045     APInt Beta = Bconst->getAPInt();
   3046     APInt Charlie = Cconst->getAPInt();
   3047     APInt CdivB = Charlie.sdiv(Beta);
   3048     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
   3049     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
   3050     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
   3051     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
   3052     Dst = zeroCoefficient(Dst, CurLoop);
   3053     if (!findCoefficient(Src, CurLoop)->isZero())
   3054       Consistent = false;
   3055   }
   3056   else if (B->isZero()) {
   3057     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
   3058     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3059     if (!Aconst || !Cconst) return false;
   3060     APInt Alpha = Aconst->getAPInt();
   3061     APInt Charlie = Cconst->getAPInt();
   3062     APInt CdivA = Charlie.sdiv(Alpha);
   3063     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
   3064     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3065     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
   3066     Src = zeroCoefficient(Src, CurLoop);
   3067     if (!findCoefficient(Dst, CurLoop)->isZero())
   3068       Consistent = false;
   3069   }
   3070   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
   3071     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
   3072     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3073     if (!Aconst || !Cconst) return false;
   3074     APInt Alpha = Aconst->getAPInt();
   3075     APInt Charlie = Cconst->getAPInt();
   3076     APInt CdivA = Charlie.sdiv(Alpha);
   3077     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
   3078     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3079     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
   3080     Src = zeroCoefficient(Src, CurLoop);
   3081     Dst = addToCoefficient(Dst, CurLoop, A_K);
   3082     if (!findCoefficient(Dst, CurLoop)->isZero())
   3083       Consistent = false;
   3084   }
   3085   else {
   3086     // paper is incorrect here, or perhaps just misleading
   3087     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3088     Src = SE->getMulExpr(Src, A);
   3089     Dst = SE->getMulExpr(Dst, A);
   3090     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
   3091     Src = zeroCoefficient(Src, CurLoop);
   3092     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
   3093     if (!findCoefficient(Dst, CurLoop)->isZero())
   3094       Consistent = false;
   3095   }
   3096   DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
   3097   DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
   3098   return true;
   3099 }
   3100 
   3101 
   3102 // Attempt to propagate a point
   3103 // constraint into a subscript pair (Src and Dst).
   3104 // Return true if some simplification occurs.
   3105 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
   3106                                     Constraint &CurConstraint) {
   3107   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3108   const SCEV *A_K = findCoefficient(Src, CurLoop);
   3109   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
   3110   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
   3111   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
   3112   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
   3113   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
   3114   Src = zeroCoefficient(Src, CurLoop);
   3115   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
   3116   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
   3117   Dst = zeroCoefficient(Dst, CurLoop);
   3118   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
   3119   return true;
   3120 }
   3121 
   3122 
   3123 // Update direction vector entry based on the current constraint.
   3124 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
   3125                                      const Constraint &CurConstraint) const {
   3126   DEBUG(dbgs() << "\tUpdate direction, constraint =");
   3127   DEBUG(CurConstraint.dump(dbgs()));
   3128   if (CurConstraint.isAny())
   3129     ; // use defaults
   3130   else if (CurConstraint.isDistance()) {
   3131     // this one is consistent, the others aren't
   3132     Level.Scalar = false;
   3133     Level.Distance = CurConstraint.getD();
   3134     unsigned NewDirection = Dependence::DVEntry::NONE;
   3135     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
   3136       NewDirection = Dependence::DVEntry::EQ;
   3137     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
   3138       NewDirection |= Dependence::DVEntry::LT;
   3139     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
   3140       NewDirection |= Dependence::DVEntry::GT;
   3141     Level.Direction &= NewDirection;
   3142   }
   3143   else if (CurConstraint.isLine()) {
   3144     Level.Scalar = false;
   3145     Level.Distance = nullptr;
   3146     // direction should be accurate
   3147   }
   3148   else if (CurConstraint.isPoint()) {
   3149     Level.Scalar = false;
   3150     Level.Distance = nullptr;
   3151     unsigned NewDirection = Dependence::DVEntry::NONE;
   3152     if (!isKnownPredicate(CmpInst::ICMP_NE,
   3153                           CurConstraint.getY(),
   3154                           CurConstraint.getX()))
   3155       // if X may be = Y
   3156       NewDirection |= Dependence::DVEntry::EQ;
   3157     if (!isKnownPredicate(CmpInst::ICMP_SLE,
   3158                           CurConstraint.getY(),
   3159                           CurConstraint.getX()))
   3160       // if Y may be > X
   3161       NewDirection |= Dependence::DVEntry::LT;
   3162     if (!isKnownPredicate(CmpInst::ICMP_SGE,
   3163                           CurConstraint.getY(),
   3164                           CurConstraint.getX()))
   3165       // if Y may be < X
   3166       NewDirection |= Dependence::DVEntry::GT;
   3167     Level.Direction &= NewDirection;
   3168   }
   3169   else
   3170     llvm_unreachable("constraint has unexpected kind");
   3171 }
   3172 
   3173 /// Check if we can delinearize the subscripts. If the SCEVs representing the
   3174 /// source and destination array references are recurrences on a nested loop,
   3175 /// this function flattens the nested recurrences into separate recurrences
   3176 /// for each loop level.
   3177 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
   3178                                     SmallVectorImpl<Subscript> &Pair) {
   3179   Value *SrcPtr = getPointerOperand(Src);
   3180   Value *DstPtr = getPointerOperand(Dst);
   3181 
   3182   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
   3183   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
   3184 
   3185   // Below code mimics the code in Delinearization.cpp
   3186   const SCEV *SrcAccessFn =
   3187     SE->getSCEVAtScope(SrcPtr, SrcLoop);
   3188   const SCEV *DstAccessFn =
   3189     SE->getSCEVAtScope(DstPtr, DstLoop);
   3190 
   3191   const SCEVUnknown *SrcBase =
   3192       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
   3193   const SCEVUnknown *DstBase =
   3194       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
   3195 
   3196   if (!SrcBase || !DstBase || SrcBase != DstBase)
   3197     return false;
   3198 
   3199   const SCEV *ElementSize = SE->getElementSize(Src);
   3200   if (ElementSize != SE->getElementSize(Dst))
   3201     return false;
   3202 
   3203   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
   3204   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
   3205 
   3206   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
   3207   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
   3208   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
   3209     return false;
   3210 
   3211   // First step: collect parametric terms in both array references.
   3212   SmallVector<const SCEV *, 4> Terms;
   3213   SE->collectParametricTerms(SrcAR, Terms);
   3214   SE->collectParametricTerms(DstAR, Terms);
   3215 
   3216   // Second step: find subscript sizes.
   3217   SmallVector<const SCEV *, 4> Sizes;
   3218   SE->findArrayDimensions(Terms, Sizes, ElementSize);
   3219 
   3220   // Third step: compute the access functions for each subscript.
   3221   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
   3222   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
   3223   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
   3224 
   3225   // Fail when there is only a subscript: that's a linearized access function.
   3226   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
   3227       SrcSubscripts.size() != DstSubscripts.size())
   3228     return false;
   3229 
   3230   int size = SrcSubscripts.size();
   3231 
   3232   DEBUG({
   3233       dbgs() << "\nSrcSubscripts: ";
   3234     for (int i = 0; i < size; i++)
   3235       dbgs() << *SrcSubscripts[i];
   3236     dbgs() << "\nDstSubscripts: ";
   3237     for (int i = 0; i < size; i++)
   3238       dbgs() << *DstSubscripts[i];
   3239     });
   3240 
   3241   // The delinearization transforms a single-subscript MIV dependence test into
   3242   // a multi-subscript SIV dependence test that is easier to compute. So we
   3243   // resize Pair to contain as many pairs of subscripts as the delinearization
   3244   // has found, and then initialize the pairs following the delinearization.
   3245   Pair.resize(size);
   3246   for (int i = 0; i < size; ++i) {
   3247     Pair[i].Src = SrcSubscripts[i];
   3248     Pair[i].Dst = DstSubscripts[i];
   3249     unifySubscriptType(&Pair[i]);
   3250 
   3251     // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
   3252     // delinearization has found, and add these constraints to the dependence
   3253     // check to avoid memory accesses overflow from one dimension into another.
   3254     // This is related to the problem of determining the existence of data
   3255     // dependences in array accesses using a different number of subscripts: in
   3256     // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
   3257   }
   3258 
   3259   return true;
   3260 }
   3261 
   3262 //===----------------------------------------------------------------------===//
   3263 
   3264 #ifndef NDEBUG
   3265 // For debugging purposes, dump a small bit vector to dbgs().
   3266 static void dumpSmallBitVector(SmallBitVector &BV) {
   3267   dbgs() << "{";
   3268   for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
   3269     dbgs() << VI;
   3270     if (BV.find_next(VI) >= 0)
   3271       dbgs() << ' ';
   3272   }
   3273   dbgs() << "}\n";
   3274 }
   3275 #endif
   3276 
   3277 // depends -
   3278 // Returns NULL if there is no dependence.
   3279 // Otherwise, return a Dependence with as many details as possible.
   3280 // Corresponds to Section 3.1 in the paper
   3281 //
   3282 //            Practical Dependence Testing
   3283 //            Goff, Kennedy, Tseng
   3284 //            PLDI 1991
   3285 //
   3286 // Care is required to keep the routine below, getSplitIteration(),
   3287 // up to date with respect to this routine.
   3288 std::unique_ptr<Dependence>
   3289 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
   3290                         bool PossiblyLoopIndependent) {
   3291   if (Src == Dst)
   3292     PossiblyLoopIndependent = false;
   3293 
   3294   if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
   3295       (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
   3296     // if both instructions don't reference memory, there's no dependence
   3297     return nullptr;
   3298 
   3299   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
   3300     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
   3301     DEBUG(dbgs() << "can only handle simple loads and stores\n");
   3302     return make_unique<Dependence>(Src, Dst);
   3303   }
   3304 
   3305   Value *SrcPtr = getPointerOperand(Src);
   3306   Value *DstPtr = getPointerOperand(Dst);
   3307 
   3308   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
   3309                                  SrcPtr)) {
   3310   case MayAlias:
   3311   case PartialAlias:
   3312     // cannot analyse objects if we don't understand their aliasing.
   3313     DEBUG(dbgs() << "can't analyze may or partial alias\n");
   3314     return make_unique<Dependence>(Src, Dst);
   3315   case NoAlias:
   3316     // If the objects noalias, they are distinct, accesses are independent.
   3317     DEBUG(dbgs() << "no alias\n");
   3318     return nullptr;
   3319   case MustAlias:
   3320     break; // The underlying objects alias; test accesses for dependence.
   3321   }
   3322 
   3323   // establish loop nesting levels
   3324   establishNestingLevels(Src, Dst);
   3325   DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
   3326   DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
   3327 
   3328   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
   3329   ++TotalArrayPairs;
   3330 
   3331   // See if there are GEPs we can use.
   3332   bool UsefulGEP = false;
   3333   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
   3334   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
   3335   if (SrcGEP && DstGEP &&
   3336       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
   3337     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
   3338     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
   3339     DEBUG(dbgs() << "    SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
   3340     DEBUG(dbgs() << "    DstPtrSCEV = " << *DstPtrSCEV << "\n");
   3341 
   3342     UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
   3343                 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
   3344                 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
   3345   }
   3346   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
   3347   SmallVector<Subscript, 4> Pair(Pairs);
   3348   if (UsefulGEP) {
   3349     DEBUG(dbgs() << "    using GEPs\n");
   3350     unsigned P = 0;
   3351     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
   3352            SrcEnd = SrcGEP->idx_end(),
   3353            DstIdx = DstGEP->idx_begin();
   3354          SrcIdx != SrcEnd;
   3355          ++SrcIdx, ++DstIdx, ++P) {
   3356       Pair[P].Src = SE->getSCEV(*SrcIdx);
   3357       Pair[P].Dst = SE->getSCEV(*DstIdx);
   3358       unifySubscriptType(&Pair[P]);
   3359     }
   3360   }
   3361   else {
   3362     DEBUG(dbgs() << "    ignoring GEPs\n");
   3363     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
   3364     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
   3365     DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
   3366     DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
   3367     Pair[0].Src = SrcSCEV;
   3368     Pair[0].Dst = DstSCEV;
   3369   }
   3370 
   3371   if (Delinearize && CommonLevels > 1) {
   3372     if (tryDelinearize(Src, Dst, Pair)) {
   3373       DEBUG(dbgs() << "    delinerized GEP\n");
   3374       Pairs = Pair.size();
   3375     }
   3376   }
   3377 
   3378   for (unsigned P = 0; P < Pairs; ++P) {
   3379     Pair[P].Loops.resize(MaxLevels + 1);
   3380     Pair[P].GroupLoops.resize(MaxLevels + 1);
   3381     Pair[P].Group.resize(Pairs);
   3382     removeMatchingExtensions(&Pair[P]);
   3383     Pair[P].Classification =
   3384       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
   3385                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
   3386                    Pair[P].Loops);
   3387     Pair[P].GroupLoops = Pair[P].Loops;
   3388     Pair[P].Group.set(P);
   3389     DEBUG(dbgs() << "    subscript " << P << "\n");
   3390     DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
   3391     DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
   3392     DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
   3393     DEBUG(dbgs() << "\tloops = ");
   3394     DEBUG(dumpSmallBitVector(Pair[P].Loops));
   3395   }
   3396 
   3397   SmallBitVector Separable(Pairs);
   3398   SmallBitVector Coupled(Pairs);
   3399 
   3400   // Partition subscripts into separable and minimally-coupled groups
   3401   // Algorithm in paper is algorithmically better;
   3402   // this may be faster in practice. Check someday.
   3403   //
   3404   // Here's an example of how it works. Consider this code:
   3405   //
   3406   //   for (i = ...) {
   3407   //     for (j = ...) {
   3408   //       for (k = ...) {
   3409   //         for (l = ...) {
   3410   //           for (m = ...) {
   3411   //             A[i][j][k][m] = ...;
   3412   //             ... = A[0][j][l][i + j];
   3413   //           }
   3414   //         }
   3415   //       }
   3416   //     }
   3417   //   }
   3418   //
   3419   // There are 4 subscripts here:
   3420   //    0 [i] and [0]
   3421   //    1 [j] and [j]
   3422   //    2 [k] and [l]
   3423   //    3 [m] and [i + j]
   3424   //
   3425   // We've already classified each subscript pair as ZIV, SIV, etc.,
   3426   // and collected all the loops mentioned by pair P in Pair[P].Loops.
   3427   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
   3428   // and set Pair[P].Group = {P}.
   3429   //
   3430   //      Src Dst    Classification Loops  GroupLoops Group
   3431   //    0 [i] [0]         SIV       {1}      {1}        {0}
   3432   //    1 [j] [j]         SIV       {2}      {2}        {1}
   3433   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
   3434   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
   3435   //
   3436   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
   3437   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
   3438   //
   3439   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
   3440   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
   3441   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
   3442   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
   3443   // to either Separable or Coupled).
   3444   //
   3445   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
   3446   // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
   3447   // so Pair[3].Group = {0, 1, 3} and Done = false.
   3448   //
   3449   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
   3450   // Since Done remains true, we add 2 to the set of Separable pairs.
   3451   //
   3452   // Finally, we consider 3. There's nothing to compare it with,
   3453   // so Done remains true and we add it to the Coupled set.
   3454   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
   3455   //
   3456   // In the end, we've got 1 separable subscript and 1 coupled group.
   3457   for (unsigned SI = 0; SI < Pairs; ++SI) {
   3458     if (Pair[SI].Classification == Subscript::NonLinear) {
   3459       // ignore these, but collect loops for later
   3460       ++NonlinearSubscriptPairs;
   3461       collectCommonLoops(Pair[SI].Src,
   3462                          LI->getLoopFor(Src->getParent()),
   3463                          Pair[SI].Loops);
   3464       collectCommonLoops(Pair[SI].Dst,
   3465                          LI->getLoopFor(Dst->getParent()),
   3466                          Pair[SI].Loops);
   3467       Result.Consistent = false;
   3468     } else if (Pair[SI].Classification == Subscript::ZIV) {
   3469       // always separable
   3470       Separable.set(SI);
   3471     }
   3472     else {
   3473       // SIV, RDIV, or MIV, so check for coupled group
   3474       bool Done = true;
   3475       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
   3476         SmallBitVector Intersection = Pair[SI].GroupLoops;
   3477         Intersection &= Pair[SJ].GroupLoops;
   3478         if (Intersection.any()) {
   3479           // accumulate set of all the loops in group
   3480           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
   3481           // accumulate set of all subscripts in group
   3482           Pair[SJ].Group |= Pair[SI].Group;
   3483           Done = false;
   3484         }
   3485       }
   3486       if (Done) {
   3487         if (Pair[SI].Group.count() == 1) {
   3488           Separable.set(SI);
   3489           ++SeparableSubscriptPairs;
   3490         }
   3491         else {
   3492           Coupled.set(SI);
   3493           ++CoupledSubscriptPairs;
   3494         }
   3495       }
   3496     }
   3497   }
   3498 
   3499   DEBUG(dbgs() << "    Separable = ");
   3500   DEBUG(dumpSmallBitVector(Separable));
   3501   DEBUG(dbgs() << "    Coupled = ");
   3502   DEBUG(dumpSmallBitVector(Coupled));
   3503 
   3504   Constraint NewConstraint;
   3505   NewConstraint.setAny(SE);
   3506 
   3507   // test separable subscripts
   3508   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
   3509     DEBUG(dbgs() << "testing subscript " << SI);
   3510     switch (Pair[SI].Classification) {
   3511     case Subscript::ZIV:
   3512       DEBUG(dbgs() << ", ZIV\n");
   3513       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
   3514         return nullptr;
   3515       break;
   3516     case Subscript::SIV: {
   3517       DEBUG(dbgs() << ", SIV\n");
   3518       unsigned Level;
   3519       const SCEV *SplitIter = nullptr;
   3520       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
   3521                   SplitIter))
   3522         return nullptr;
   3523       break;
   3524     }
   3525     case Subscript::RDIV:
   3526       DEBUG(dbgs() << ", RDIV\n");
   3527       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
   3528         return nullptr;
   3529       break;
   3530     case Subscript::MIV:
   3531       DEBUG(dbgs() << ", MIV\n");
   3532       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
   3533         return nullptr;
   3534       break;
   3535     default:
   3536       llvm_unreachable("subscript has unexpected classification");
   3537     }
   3538   }
   3539 
   3540   if (Coupled.count()) {
   3541     // test coupled subscript groups
   3542     DEBUG(dbgs() << "starting on coupled subscripts\n");
   3543     DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
   3544     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
   3545     for (unsigned II = 0; II <= MaxLevels; ++II)
   3546       Constraints[II].setAny(SE);
   3547     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
   3548       DEBUG(dbgs() << "testing subscript group " << SI << " { ");
   3549       SmallBitVector Group(Pair[SI].Group);
   3550       SmallBitVector Sivs(Pairs);
   3551       SmallBitVector Mivs(Pairs);
   3552       SmallBitVector ConstrainedLevels(MaxLevels + 1);
   3553       SmallVector<Subscript *, 4> PairsInGroup;
   3554       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
   3555         DEBUG(dbgs() << SJ << " ");
   3556         if (Pair[SJ].Classification == Subscript::SIV)
   3557           Sivs.set(SJ);
   3558         else
   3559           Mivs.set(SJ);
   3560         PairsInGroup.push_back(&Pair[SJ]);
   3561       }
   3562       unifySubscriptType(PairsInGroup);
   3563       DEBUG(dbgs() << "}\n");
   3564       while (Sivs.any()) {
   3565         bool Changed = false;
   3566         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
   3567           DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
   3568           // SJ is an SIV subscript that's part of the current coupled group
   3569           unsigned Level;
   3570           const SCEV *SplitIter = nullptr;
   3571           DEBUG(dbgs() << "SIV\n");
   3572           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
   3573                       SplitIter))
   3574             return nullptr;
   3575           ConstrainedLevels.set(Level);
   3576           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
   3577             if (Constraints[Level].isEmpty()) {
   3578               ++DeltaIndependence;
   3579               return nullptr;
   3580             }
   3581             Changed = true;
   3582           }
   3583           Sivs.reset(SJ);
   3584         }
   3585         if (Changed) {
   3586           // propagate, possibly creating new SIVs and ZIVs
   3587           DEBUG(dbgs() << "    propagating\n");
   3588           DEBUG(dbgs() << "\tMivs = ");
   3589           DEBUG(dumpSmallBitVector(Mivs));
   3590           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3591             // SJ is an MIV subscript that's part of the current coupled group
   3592             DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
   3593             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
   3594                           Constraints, Result.Consistent)) {
   3595               DEBUG(dbgs() << "\t    Changed\n");
   3596               ++DeltaPropagations;
   3597               Pair[SJ].Classification =
   3598                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
   3599                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
   3600                              Pair[SJ].Loops);
   3601               switch (Pair[SJ].Classification) {
   3602               case Subscript::ZIV:
   3603                 DEBUG(dbgs() << "ZIV\n");
   3604                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
   3605                   return nullptr;
   3606                 Mivs.reset(SJ);
   3607                 break;
   3608               case Subscript::SIV:
   3609                 Sivs.set(SJ);
   3610                 Mivs.reset(SJ);
   3611                 break;
   3612               case Subscript::RDIV:
   3613               case Subscript::MIV:
   3614                 break;
   3615               default:
   3616                 llvm_unreachable("bad subscript classification");
   3617               }
   3618             }
   3619           }
   3620         }
   3621       }
   3622 
   3623       // test & propagate remaining RDIVs
   3624       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3625         if (Pair[SJ].Classification == Subscript::RDIV) {
   3626           DEBUG(dbgs() << "RDIV test\n");
   3627           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
   3628             return nullptr;
   3629           // I don't yet understand how to propagate RDIV results
   3630           Mivs.reset(SJ);
   3631         }
   3632       }
   3633 
   3634       // test remaining MIVs
   3635       // This code is temporary.
   3636       // Better to somehow test all remaining subscripts simultaneously.
   3637       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3638         if (Pair[SJ].Classification == Subscript::MIV) {
   3639           DEBUG(dbgs() << "MIV test\n");
   3640           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
   3641             return nullptr;
   3642         }
   3643         else
   3644           llvm_unreachable("expected only MIV subscripts at this point");
   3645       }
   3646 
   3647       // update Result.DV from constraint vector
   3648       DEBUG(dbgs() << "    updating\n");
   3649       for (int SJ = ConstrainedLevels.find_first(); SJ >= 0;
   3650            SJ = ConstrainedLevels.find_next(SJ)) {
   3651         if (SJ > (int)CommonLevels)
   3652           break;
   3653         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
   3654         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
   3655           return nullptr;
   3656       }
   3657     }
   3658   }
   3659 
   3660   // Make sure the Scalar flags are set correctly.
   3661   SmallBitVector CompleteLoops(MaxLevels + 1);
   3662   for (unsigned SI = 0; SI < Pairs; ++SI)
   3663     CompleteLoops |= Pair[SI].Loops;
   3664   for (unsigned II = 1; II <= CommonLevels; ++II)
   3665     if (CompleteLoops[II])
   3666       Result.DV[II - 1].Scalar = false;
   3667 
   3668   if (PossiblyLoopIndependent) {
   3669     // Make sure the LoopIndependent flag is set correctly.
   3670     // All directions must include equal, otherwise no
   3671     // loop-independent dependence is possible.
   3672     for (unsigned II = 1; II <= CommonLevels; ++II) {
   3673       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
   3674         Result.LoopIndependent = false;
   3675         break;
   3676       }
   3677     }
   3678   }
   3679   else {
   3680     // On the other hand, if all directions are equal and there's no
   3681     // loop-independent dependence possible, then no dependence exists.
   3682     bool AllEqual = true;
   3683     for (unsigned II = 1; II <= CommonLevels; ++II) {
   3684       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
   3685         AllEqual = false;
   3686         break;
   3687       }
   3688     }
   3689     if (AllEqual)
   3690       return nullptr;
   3691   }
   3692 
   3693   return make_unique<FullDependence>(std::move(Result));
   3694 }
   3695 
   3696 
   3697 
   3698 //===----------------------------------------------------------------------===//
   3699 // getSplitIteration -
   3700 // Rather than spend rarely-used space recording the splitting iteration
   3701 // during the Weak-Crossing SIV test, we re-compute it on demand.
   3702 // The re-computation is basically a repeat of the entire dependence test,
   3703 // though simplified since we know that the dependence exists.
   3704 // It's tedious, since we must go through all propagations, etc.
   3705 //
   3706 // Care is required to keep this code up to date with respect to the routine
   3707 // above, depends().
   3708 //
   3709 // Generally, the dependence analyzer will be used to build
   3710 // a dependence graph for a function (basically a map from instructions
   3711 // to dependences). Looking for cycles in the graph shows us loops
   3712 // that cannot be trivially vectorized/parallelized.
   3713 //
   3714 // We can try to improve the situation by examining all the dependences
   3715 // that make up the cycle, looking for ones we can break.
   3716 // Sometimes, peeling the first or last iteration of a loop will break
   3717 // dependences, and we've got flags for those possibilities.
   3718 // Sometimes, splitting a loop at some other iteration will do the trick,
   3719 // and we've got a flag for that case. Rather than waste the space to
   3720 // record the exact iteration (since we rarely know), we provide
   3721 // a method that calculates the iteration. It's a drag that it must work
   3722 // from scratch, but wonderful in that it's possible.
   3723 //
   3724 // Here's an example:
   3725 //
   3726 //    for (i = 0; i < 10; i++)
   3727 //        A[i] = ...
   3728 //        ... = A[11 - i]
   3729 //
   3730 // There's a loop-carried flow dependence from the store to the load,
   3731 // found by the weak-crossing SIV test. The dependence will have a flag,
   3732 // indicating that the dependence can be broken by splitting the loop.
   3733 // Calling getSplitIteration will return 5.
   3734 // Splitting the loop breaks the dependence, like so:
   3735 //
   3736 //    for (i = 0; i <= 5; i++)
   3737 //        A[i] = ...
   3738 //        ... = A[11 - i]
   3739 //    for (i = 6; i < 10; i++)
   3740 //        A[i] = ...
   3741 //        ... = A[11 - i]
   3742 //
   3743 // breaks the dependence and allows us to vectorize/parallelize
   3744 // both loops.
   3745 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
   3746                                               unsigned SplitLevel) {
   3747   assert(Dep.isSplitable(SplitLevel) &&
   3748          "Dep should be splitable at SplitLevel");
   3749   Instruction *Src = Dep.getSrc();
   3750   Instruction *Dst = Dep.getDst();
   3751   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
   3752   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
   3753   assert(isLoadOrStore(Src));
   3754   assert(isLoadOrStore(Dst));
   3755   Value *SrcPtr = getPointerOperand(Src);
   3756   Value *DstPtr = getPointerOperand(Dst);
   3757   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
   3758                                 SrcPtr) == MustAlias);
   3759 
   3760   // establish loop nesting levels
   3761   establishNestingLevels(Src, Dst);
   3762 
   3763   FullDependence Result(Src, Dst, false, CommonLevels);
   3764 
   3765   // See if there are GEPs we can use.
   3766   bool UsefulGEP = false;
   3767   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
   3768   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
   3769   if (SrcGEP && DstGEP &&
   3770       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
   3771     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
   3772     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
   3773     UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
   3774                 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
   3775                 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
   3776   }
   3777   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
   3778   SmallVector<Subscript, 4> Pair(Pairs);
   3779   if (UsefulGEP) {
   3780     unsigned P = 0;
   3781     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
   3782            SrcEnd = SrcGEP->idx_end(),
   3783            DstIdx = DstGEP->idx_begin();
   3784          SrcIdx != SrcEnd;
   3785          ++SrcIdx, ++DstIdx, ++P) {
   3786       Pair[P].Src = SE->getSCEV(*SrcIdx);
   3787       Pair[P].Dst = SE->getSCEV(*DstIdx);
   3788     }
   3789   }
   3790   else {
   3791     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
   3792     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
   3793     Pair[0].Src = SrcSCEV;
   3794     Pair[0].Dst = DstSCEV;
   3795   }
   3796 
   3797   if (Delinearize && CommonLevels > 1) {
   3798     if (tryDelinearize(Src, Dst, Pair)) {
   3799       DEBUG(dbgs() << "    delinerized GEP\n");
   3800       Pairs = Pair.size();
   3801     }
   3802   }
   3803 
   3804   for (unsigned P = 0; P < Pairs; ++P) {
   3805     Pair[P].Loops.resize(MaxLevels + 1);
   3806     Pair[P].GroupLoops.resize(MaxLevels + 1);
   3807     Pair[P].Group.resize(Pairs);
   3808     removeMatchingExtensions(&Pair[P]);
   3809     Pair[P].Classification =
   3810       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
   3811                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
   3812                    Pair[P].Loops);
   3813     Pair[P].GroupLoops = Pair[P].Loops;
   3814     Pair[P].Group.set(P);
   3815   }
   3816 
   3817   SmallBitVector Separable(Pairs);
   3818   SmallBitVector Coupled(Pairs);
   3819 
   3820   // partition subscripts into separable and minimally-coupled groups
   3821   for (unsigned SI = 0; SI < Pairs; ++SI) {
   3822     if (Pair[SI].Classification == Subscript::NonLinear) {
   3823       // ignore these, but collect loops for later
   3824       collectCommonLoops(Pair[SI].Src,
   3825                          LI->getLoopFor(Src->getParent()),
   3826                          Pair[SI].Loops);
   3827       collectCommonLoops(Pair[SI].Dst,
   3828                          LI->getLoopFor(Dst->getParent()),
   3829                          Pair[SI].Loops);
   3830       Result.Consistent = false;
   3831     }
   3832     else if (Pair[SI].Classification == Subscript::ZIV)
   3833       Separable.set(SI);
   3834     else {
   3835       // SIV, RDIV, or MIV, so check for coupled group
   3836       bool Done = true;
   3837       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
   3838         SmallBitVector Intersection = Pair[SI].GroupLoops;
   3839         Intersection &= Pair[SJ].GroupLoops;
   3840         if (Intersection.any()) {
   3841           // accumulate set of all the loops in group
   3842           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
   3843           // accumulate set of all subscripts in group
   3844           Pair[SJ].Group |= Pair[SI].Group;
   3845           Done = false;
   3846         }
   3847       }
   3848       if (Done) {
   3849         if (Pair[SI].Group.count() == 1)
   3850           Separable.set(SI);
   3851         else
   3852           Coupled.set(SI);
   3853       }
   3854     }
   3855   }
   3856 
   3857   Constraint NewConstraint;
   3858   NewConstraint.setAny(SE);
   3859 
   3860   // test separable subscripts
   3861   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
   3862     switch (Pair[SI].Classification) {
   3863     case Subscript::SIV: {
   3864       unsigned Level;
   3865       const SCEV *SplitIter = nullptr;
   3866       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
   3867                      Result, NewConstraint, SplitIter);
   3868       if (Level == SplitLevel) {
   3869         assert(SplitIter != nullptr);
   3870         return SplitIter;
   3871       }
   3872       break;
   3873     }
   3874     case Subscript::ZIV:
   3875     case Subscript::RDIV:
   3876     case Subscript::MIV:
   3877       break;
   3878     default:
   3879       llvm_unreachable("subscript has unexpected classification");
   3880     }
   3881   }
   3882 
   3883   if (Coupled.count()) {
   3884     // test coupled subscript groups
   3885     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
   3886     for (unsigned II = 0; II <= MaxLevels; ++II)
   3887       Constraints[II].setAny(SE);
   3888     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
   3889       SmallBitVector Group(Pair[SI].Group);
   3890       SmallBitVector Sivs(Pairs);
   3891       SmallBitVector Mivs(Pairs);
   3892       SmallBitVector ConstrainedLevels(MaxLevels + 1);
   3893       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
   3894         if (Pair[SJ].Classification == Subscript::SIV)
   3895           Sivs.set(SJ);
   3896         else
   3897           Mivs.set(SJ);
   3898       }
   3899       while (Sivs.any()) {
   3900         bool Changed = false;
   3901         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
   3902           // SJ is an SIV subscript that's part of the current coupled group
   3903           unsigned Level;
   3904           const SCEV *SplitIter = nullptr;
   3905           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
   3906                          Result, NewConstraint, SplitIter);
   3907           if (Level == SplitLevel && SplitIter)
   3908             return SplitIter;
   3909           ConstrainedLevels.set(Level);
   3910           if (intersectConstraints(&Constraints[Level], &NewConstraint))
   3911             Changed = true;
   3912           Sivs.reset(SJ);
   3913         }
   3914         if (Changed) {
   3915           // propagate, possibly creating new SIVs and ZIVs
   3916           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
   3917             // SJ is an MIV subscript that's part of the current coupled group
   3918             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
   3919                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
   3920               Pair[SJ].Classification =
   3921                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
   3922                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
   3923                              Pair[SJ].Loops);
   3924               switch (Pair[SJ].Classification) {
   3925               case Subscript::ZIV:
   3926                 Mivs.reset(SJ);
   3927                 break;
   3928               case Subscript::SIV:
   3929                 Sivs.set(SJ);
   3930                 Mivs.reset(SJ);
   3931                 break;
   3932               case Subscript::RDIV:
   3933               case Subscript::MIV:
   3934                 break;
   3935               default:
   3936                 llvm_unreachable("bad subscript classification");
   3937               }
   3938             }
   3939           }
   3940         }
   3941       }
   3942     }
   3943   }
   3944   llvm_unreachable("somehow reached end of routine");
   3945   return nullptr;
   3946 }
   3947