Home | History | Annotate | Download | only in src
      1 /* -----------------------------------------------------------------------------
      2 Software License for The Fraunhofer FDK AAC Codec Library for Android
      3 
      4  Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Frderung der angewandten
      5 Forschung e.V. All rights reserved.
      6 
      7  1.    INTRODUCTION
      8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
      9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
     10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
     11 a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
     14 general perceptual audio codecs. AAC-ELD is considered the best-performing
     15 full-bandwidth communications codec by independent studies and is widely
     16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
     17 specifications.
     18 
     19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
     20 those of Fraunhofer) may be obtained through Via Licensing
     21 (www.vialicensing.com) or through the respective patent owners individually for
     22 the purpose of encoding or decoding bit streams in products that are compliant
     23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
     24 Android devices already license these patent claims through Via Licensing or
     25 directly from the patent owners, and therefore FDK AAC Codec software may
     26 already be covered under those patent licenses when it is used for those
     27 licensed purposes only.
     28 
     29 Commercially-licensed AAC software libraries, including floating-point versions
     30 with enhanced sound quality, are also available from Fraunhofer. Users are
     31 encouraged to check the Fraunhofer website for additional applications
     32 information and documentation.
     33 
     34 2.    COPYRIGHT LICENSE
     35 
     36 Redistribution and use in source and binary forms, with or without modification,
     37 are permitted without payment of copyright license fees provided that you
     38 satisfy the following conditions:
     39 
     40 You must retain the complete text of this software license in redistributions of
     41 the FDK AAC Codec or your modifications thereto in source code form.
     42 
     43 You must retain the complete text of this software license in the documentation
     44 and/or other materials provided with redistributions of the FDK AAC Codec or
     45 your modifications thereto in binary form. You must make available free of
     46 charge copies of the complete source code of the FDK AAC Codec and your
     47 modifications thereto to recipients of copies in binary form.
     48 
     49 The name of Fraunhofer may not be used to endorse or promote products derived
     50 from this library without prior written permission.
     51 
     52 You may not charge copyright license fees for anyone to use, copy or distribute
     53 the FDK AAC Codec software or your modifications thereto.
     54 
     55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
     56 that you changed the software and the date of any change. For modified versions
     57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
     58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
     59 AAC Codec Library for Android."
     60 
     61 3.    NO PATENT LICENSE
     62 
     63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
     64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
     65 Fraunhofer provides no warranty of patent non-infringement with respect to this
     66 software.
     67 
     68 You may use this FDK AAC Codec software or modifications thereto only for
     69 purposes that are authorized by appropriate patent licenses.
     70 
     71 4.    DISCLAIMER
     72 
     73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
     74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
     75 including but not limited to the implied warranties of merchantability and
     76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
     78 or consequential damages, including but not limited to procurement of substitute
     79 goods or services; loss of use, data, or profits, or business interruption,
     80 however caused and on any theory of liability, whether in contract, strict
     81 liability, or tort (including negligence), arising in any way out of the use of
     82 this software, even if advised of the possibility of such damage.
     83 
     84 5.    CONTACT INFORMATION
     85 
     86 Fraunhofer Institute for Integrated Circuits IIS
     87 Attention: Audio and Multimedia Departments - FDK AAC LL
     88 Am Wolfsmantel 33
     89 91058 Erlangen, Germany
     90 
     91 www.iis.fraunhofer.de/amm
     92 amm-info (at) iis.fraunhofer.de
     93 ----------------------------------------------------------------------------- */
     94 
     95 /**************************** AAC decoder library ******************************
     96 
     97    Author(s):   Josef Hoepfl
     98 
     99    Description: temporal noise shaping tool
    100 
    101 *******************************************************************************/
    102 
    103 #include "aacdec_tns.h"
    104 #include "aac_rom.h"
    105 #include "FDK_bitstream.h"
    106 #include "channelinfo.h"
    107 
    108 #include "FDK_lpc.h"
    109 
    110 #define TNS_MAXIMUM_ORDER_AAC 12
    111 
    112 /*!
    113   \brief Reset tns data
    114 
    115   The function resets the tns data
    116 
    117   \return  none
    118 */
    119 void CTns_Reset(CTnsData *pTnsData) {
    120   /* Note: the following FDKmemclear should not be required. */
    121   FDKmemclear(pTnsData->Filter,
    122               TNS_MAX_WINDOWS * TNS_MAXIMUM_FILTERS * sizeof(CFilter));
    123   FDKmemclear(pTnsData->NumberOfFilters, TNS_MAX_WINDOWS * sizeof(UCHAR));
    124   pTnsData->DataPresent = 0;
    125   pTnsData->Active = 0;
    126 }
    127 
    128 void CTns_ReadDataPresentFlag(
    129     HANDLE_FDK_BITSTREAM bs, /*!< pointer to bitstream */
    130     CTnsData *pTnsData)      /*!< pointer to aac decoder channel info */
    131 {
    132   pTnsData->DataPresent = (UCHAR)FDKreadBits(bs, 1);
    133 }
    134 
    135 /*!
    136   \brief Read tns data from bitstream
    137 
    138   The function reads the elements for tns from
    139   the bitstream.
    140 
    141   \return  none
    142 */
    143 AAC_DECODER_ERROR CTns_Read(HANDLE_FDK_BITSTREAM bs, CTnsData *pTnsData,
    144                             const CIcsInfo *pIcsInfo, const UINT flags) {
    145   UCHAR n_filt, order;
    146   UCHAR length, coef_res, coef_compress;
    147   UCHAR window;
    148   UCHAR wins_per_frame;
    149   UCHAR isLongFlag;
    150   UCHAR start_window;
    151   AAC_DECODER_ERROR ErrorStatus = AAC_DEC_OK;
    152 
    153   if (!pTnsData->DataPresent) {
    154     return ErrorStatus;
    155   }
    156 
    157   {
    158     start_window = 0;
    159     wins_per_frame = GetWindowsPerFrame(pIcsInfo);
    160     isLongFlag = IsLongBlock(pIcsInfo);
    161   }
    162 
    163   pTnsData->GainLd = 0;
    164 
    165   for (window = start_window; window < wins_per_frame; window++) {
    166     pTnsData->NumberOfFilters[window] = n_filt =
    167         (UCHAR)FDKreadBits(bs, isLongFlag ? 2 : 1);
    168 
    169     if (n_filt) {
    170       int index;
    171       UCHAR nextstopband;
    172 
    173       coef_res = (UCHAR)FDKreadBits(bs, 1);
    174 
    175       nextstopband = GetScaleFactorBandsTotal(pIcsInfo);
    176 
    177       for (index = 0; index < n_filt; index++) {
    178         CFilter *filter = &pTnsData->Filter[window][index];
    179 
    180         length = (UCHAR)FDKreadBits(bs, isLongFlag ? 6 : 4);
    181 
    182         if (length > nextstopband) {
    183           length = nextstopband;
    184         }
    185 
    186         filter->StartBand = nextstopband - length;
    187         filter->StopBand = nextstopband;
    188         nextstopband = filter->StartBand;
    189 
    190         if (flags & (AC_USAC | AC_RSVD50 | AC_RSV603DA)) {
    191           /* max(Order) = 15 (long), 7 (short) */
    192           filter->Order = order = (UCHAR)FDKreadBits(bs, isLongFlag ? 4 : 3);
    193         } else {
    194           filter->Order = order = (UCHAR)FDKreadBits(bs, isLongFlag ? 5 : 3);
    195 
    196           if (filter->Order > TNS_MAXIMUM_ORDER) {
    197             ErrorStatus = AAC_DEC_TNS_READ_ERROR;
    198             return ErrorStatus;
    199           }
    200         }
    201 
    202         FDK_ASSERT(order <=
    203                    TNS_MAXIMUM_ORDER); /* avoid illegal memory access */
    204         if (order) {
    205           UCHAR coef, s_mask;
    206           UCHAR i;
    207           SCHAR n_mask;
    208 
    209           static const UCHAR sgn_mask[] = {0x2, 0x4, 0x8};
    210           static const SCHAR neg_mask[] = {~0x3, ~0x7, ~0xF};
    211 
    212           filter->Direction = FDKreadBits(bs, 1) ? -1 : 1;
    213 
    214           coef_compress = (UCHAR)FDKreadBits(bs, 1);
    215 
    216           filter->Resolution = coef_res + 3;
    217 
    218           s_mask = sgn_mask[coef_res + 1 - coef_compress];
    219           n_mask = neg_mask[coef_res + 1 - coef_compress];
    220 
    221           for (i = 0; i < order; i++) {
    222             coef = (UCHAR)FDKreadBits(bs, filter->Resolution - coef_compress);
    223             filter->Coeff[i] = (coef & s_mask) ? (coef | n_mask) : coef;
    224           }
    225           pTnsData->GainLd = 4;
    226         }
    227       }
    228     }
    229   }
    230 
    231   pTnsData->Active = 1;
    232 
    233   return ErrorStatus;
    234 }
    235 
    236 void CTns_ReadDataPresentUsac(HANDLE_FDK_BITSTREAM hBs, CTnsData *pTnsData0,
    237                               CTnsData *pTnsData1, UCHAR *ptns_on_lr,
    238                               const CIcsInfo *pIcsInfo, const UINT flags,
    239                               const UINT elFlags, const int fCommonWindow) {
    240   int common_tns = 0;
    241 
    242   if (fCommonWindow) {
    243     common_tns = FDKreadBit(hBs);
    244   }
    245   { *ptns_on_lr = FDKreadBit(hBs); }
    246   if (common_tns) {
    247     pTnsData0->DataPresent = 1;
    248     CTns_Read(hBs, pTnsData0, pIcsInfo, flags);
    249 
    250     pTnsData0->DataPresent = 0;
    251     pTnsData0->Active = 1;
    252     *pTnsData1 = *pTnsData0;
    253   } else {
    254     int tns_present_both;
    255 
    256     tns_present_both = FDKreadBit(hBs);
    257     if (tns_present_both) {
    258       pTnsData0->DataPresent = 1;
    259       pTnsData1->DataPresent = 1;
    260     } else {
    261       pTnsData1->DataPresent = FDKreadBit(hBs);
    262       pTnsData0->DataPresent = !pTnsData1->DataPresent;
    263     }
    264   }
    265 }
    266 
    267 /*!
    268   \brief Apply tns to spectral lines
    269 
    270   The function applies the tns to the spectrum,
    271 
    272   \return  none
    273 */
    274 void CTns_Apply(CTnsData *RESTRICT pTnsData, /*!< pointer to aac decoder info */
    275                 const CIcsInfo *pIcsInfo, SPECTRAL_PTR pSpectralCoefficient,
    276                 const SamplingRateInfo *pSamplingRateInfo,
    277                 const INT granuleLength, const UCHAR nbands,
    278                 const UCHAR igf_active, const UINT flags) {
    279   int window, index, start, stop, size, start_window, wins_per_frame;
    280 
    281   if (pTnsData->Active) {
    282     C_AALLOC_SCRATCH_START(coeff, FIXP_TCC, TNS_MAXIMUM_ORDER)
    283 
    284     {
    285       start_window = 0;
    286       wins_per_frame = GetWindowsPerFrame(pIcsInfo);
    287     }
    288 
    289     for (window = start_window; window < wins_per_frame; window++) {
    290       FIXP_DBL *pSpectrum;
    291 
    292       { pSpectrum = SPEC(pSpectralCoefficient, window, granuleLength); }
    293 
    294       for (index = 0; index < pTnsData->NumberOfFilters[window]; index++) {
    295         CFilter *filter = &pTnsData->Filter[window][index];
    296 
    297         if (filter->Order > 0) {
    298           FIXP_TCC *pCoeff;
    299           UCHAR tns_max_bands;
    300 
    301           pCoeff = coeff;
    302           if (filter->Resolution == 3) {
    303             int i;
    304             for (i = 0; i < filter->Order; i++)
    305               *pCoeff++ = FDKaacDec_tnsCoeff3[filter->Coeff[i] + 4];
    306           } else {
    307             int i;
    308             for (i = 0; i < filter->Order; i++)
    309               *pCoeff++ = FDKaacDec_tnsCoeff4[filter->Coeff[i] + 8];
    310           }
    311 
    312           switch (granuleLength) {
    313             case 480:
    314               tns_max_bands =
    315                   tns_max_bands_tbl_480[pSamplingRateInfo->samplingRateIndex];
    316               break;
    317             case 512:
    318               tns_max_bands =
    319                   tns_max_bands_tbl_512[pSamplingRateInfo->samplingRateIndex];
    320               break;
    321             default:
    322               tns_max_bands = GetMaximumTnsBands(
    323                   pIcsInfo, pSamplingRateInfo->samplingRateIndex);
    324               /* See redefinition of TNS_MAX_BANDS table */
    325               if ((flags & (AC_USAC | AC_RSVD50 | AC_RSV603DA)) &&
    326                   (pSamplingRateInfo->samplingRateIndex > 5)) {
    327                 tns_max_bands += 1;
    328               }
    329               break;
    330           }
    331 
    332           start = fixMin(fixMin(filter->StartBand, tns_max_bands), nbands);
    333 
    334           start = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo)[start];
    335 
    336           if (igf_active) {
    337             stop = fixMin(filter->StopBand, nbands);
    338           } else {
    339             stop = fixMin(fixMin(filter->StopBand, tns_max_bands), nbands);
    340           }
    341 
    342           stop = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo)[stop];
    343 
    344           size = stop - start;
    345 
    346           if (size) {
    347             C_ALLOC_SCRATCH_START(state, FIXP_DBL, TNS_MAXIMUM_ORDER)
    348 
    349             FDKmemclear(state, TNS_MAXIMUM_ORDER * sizeof(FIXP_DBL));
    350             CLpc_SynthesisLattice(pSpectrum + start, size, 0, 0,
    351                                   filter->Direction, coeff, filter->Order,
    352                                   state);
    353 
    354             C_ALLOC_SCRATCH_END(state, FIXP_DBL, TNS_MAXIMUM_ORDER)
    355           }
    356         }
    357       }
    358     }
    359     C_AALLOC_SCRATCH_END(coeff, FIXP_TCC, TNS_MAXIMUM_ORDER)
    360   }
    361 }
    362