Home | History | Annotate | Download | only in VMCore
      1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines various helper methods and classes used by
     11 // LLVMContextImpl for creating and managing constants.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CONSTANTSCONTEXT_H
     16 #define LLVM_CONSTANTSCONTEXT_H
     17 
     18 #include "llvm/InlineAsm.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Operator.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 #include <map>
     25 
     26 namespace llvm {
     27 template<class ValType>
     28 struct ConstantTraits;
     29 
     30 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
     31 /// behind the scenes to implement unary constant exprs.
     32 class UnaryConstantExpr : public ConstantExpr {
     33   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
     34 public:
     35   // allocate space for exactly one operand
     36   void *operator new(size_t s) {
     37     return User::operator new(s, 1);
     38   }
     39   UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
     40     : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
     41     Op<0>() = C;
     42   }
     43   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
     44 };
     45 
     46 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
     47 /// behind the scenes to implement binary constant exprs.
     48 class BinaryConstantExpr : public ConstantExpr {
     49   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
     50 public:
     51   // allocate space for exactly two operands
     52   void *operator new(size_t s) {
     53     return User::operator new(s, 2);
     54   }
     55   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
     56                      unsigned Flags)
     57     : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
     58     Op<0>() = C1;
     59     Op<1>() = C2;
     60     SubclassOptionalData = Flags;
     61   }
     62   /// Transparently provide more efficient getOperand methods.
     63   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
     64 };
     65 
     66 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
     67 /// behind the scenes to implement select constant exprs.
     68 class SelectConstantExpr : public ConstantExpr {
     69   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
     70 public:
     71   // allocate space for exactly three operands
     72   void *operator new(size_t s) {
     73     return User::operator new(s, 3);
     74   }
     75   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
     76     : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
     77     Op<0>() = C1;
     78     Op<1>() = C2;
     79     Op<2>() = C3;
     80   }
     81   /// Transparently provide more efficient getOperand methods.
     82   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
     83 };
     84 
     85 /// ExtractElementConstantExpr - This class is private to
     86 /// Constants.cpp, and is used behind the scenes to implement
     87 /// extractelement constant exprs.
     88 class ExtractElementConstantExpr : public ConstantExpr {
     89   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
     90 public:
     91   // allocate space for exactly two operands
     92   void *operator new(size_t s) {
     93     return User::operator new(s, 2);
     94   }
     95   ExtractElementConstantExpr(Constant *C1, Constant *C2)
     96     : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
     97                    Instruction::ExtractElement, &Op<0>(), 2) {
     98     Op<0>() = C1;
     99     Op<1>() = C2;
    100   }
    101   /// Transparently provide more efficient getOperand methods.
    102   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    103 };
    104 
    105 /// InsertElementConstantExpr - This class is private to
    106 /// Constants.cpp, and is used behind the scenes to implement
    107 /// insertelement constant exprs.
    108 class InsertElementConstantExpr : public ConstantExpr {
    109   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
    110 public:
    111   // allocate space for exactly three operands
    112   void *operator new(size_t s) {
    113     return User::operator new(s, 3);
    114   }
    115   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    116     : ConstantExpr(C1->getType(), Instruction::InsertElement,
    117                    &Op<0>(), 3) {
    118     Op<0>() = C1;
    119     Op<1>() = C2;
    120     Op<2>() = C3;
    121   }
    122   /// Transparently provide more efficient getOperand methods.
    123   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    124 };
    125 
    126 /// ShuffleVectorConstantExpr - This class is private to
    127 /// Constants.cpp, and is used behind the scenes to implement
    128 /// shufflevector constant exprs.
    129 class ShuffleVectorConstantExpr : public ConstantExpr {
    130   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
    131 public:
    132   // allocate space for exactly three operands
    133   void *operator new(size_t s) {
    134     return User::operator new(s, 3);
    135   }
    136   ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
    137   : ConstantExpr(VectorType::get(
    138                    cast<VectorType>(C1->getType())->getElementType(),
    139                    cast<VectorType>(C3->getType())->getNumElements()),
    140                  Instruction::ShuffleVector,
    141                  &Op<0>(), 3) {
    142     Op<0>() = C1;
    143     Op<1>() = C2;
    144     Op<2>() = C3;
    145   }
    146   /// Transparently provide more efficient getOperand methods.
    147   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    148 };
    149 
    150 /// ExtractValueConstantExpr - This class is private to
    151 /// Constants.cpp, and is used behind the scenes to implement
    152 /// extractvalue constant exprs.
    153 class ExtractValueConstantExpr : public ConstantExpr {
    154   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
    155 public:
    156   // allocate space for exactly one operand
    157   void *operator new(size_t s) {
    158     return User::operator new(s, 1);
    159   }
    160   ExtractValueConstantExpr(Constant *Agg,
    161                            const SmallVector<unsigned, 4> &IdxList,
    162                            Type *DestTy)
    163     : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
    164       Indices(IdxList) {
    165     Op<0>() = Agg;
    166   }
    167 
    168   /// Indices - These identify which value to extract.
    169   const SmallVector<unsigned, 4> Indices;
    170 
    171   /// Transparently provide more efficient getOperand methods.
    172   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    173 };
    174 
    175 /// InsertValueConstantExpr - This class is private to
    176 /// Constants.cpp, and is used behind the scenes to implement
    177 /// insertvalue constant exprs.
    178 class InsertValueConstantExpr : public ConstantExpr {
    179   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
    180 public:
    181   // allocate space for exactly one operand
    182   void *operator new(size_t s) {
    183     return User::operator new(s, 2);
    184   }
    185   InsertValueConstantExpr(Constant *Agg, Constant *Val,
    186                           const SmallVector<unsigned, 4> &IdxList,
    187                           Type *DestTy)
    188     : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
    189       Indices(IdxList) {
    190     Op<0>() = Agg;
    191     Op<1>() = Val;
    192   }
    193 
    194   /// Indices - These identify the position for the insertion.
    195   const SmallVector<unsigned, 4> Indices;
    196 
    197   /// Transparently provide more efficient getOperand methods.
    198   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    199 };
    200 
    201 
    202 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
    203 /// used behind the scenes to implement getelementpr constant exprs.
    204 class GetElementPtrConstantExpr : public ConstantExpr {
    205   GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
    206                             Type *DestTy);
    207 public:
    208   static GetElementPtrConstantExpr *Create(Constant *C,
    209                                            const std::vector<Constant*>&IdxList,
    210                                            Type *DestTy,
    211                                            unsigned Flags) {
    212     GetElementPtrConstantExpr *Result =
    213       new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
    214     Result->SubclassOptionalData = Flags;
    215     return Result;
    216   }
    217   /// Transparently provide more efficient getOperand methods.
    218   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    219 };
    220 
    221 // CompareConstantExpr - This class is private to Constants.cpp, and is used
    222 // behind the scenes to implement ICmp and FCmp constant expressions. This is
    223 // needed in order to store the predicate value for these instructions.
    224 struct CompareConstantExpr : public ConstantExpr {
    225   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
    226   // allocate space for exactly two operands
    227   void *operator new(size_t s) {
    228     return User::operator new(s, 2);
    229   }
    230   unsigned short predicate;
    231   CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
    232                       unsigned short pred,  Constant* LHS, Constant* RHS)
    233     : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
    234     Op<0>() = LHS;
    235     Op<1>() = RHS;
    236   }
    237   /// Transparently provide more efficient getOperand methods.
    238   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    239 };
    240 
    241 template <>
    242 struct OperandTraits<UnaryConstantExpr> :
    243   public FixedNumOperandTraits<UnaryConstantExpr, 1> {
    244 };
    245 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
    246 
    247 template <>
    248 struct OperandTraits<BinaryConstantExpr> :
    249   public FixedNumOperandTraits<BinaryConstantExpr, 2> {
    250 };
    251 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
    252 
    253 template <>
    254 struct OperandTraits<SelectConstantExpr> :
    255   public FixedNumOperandTraits<SelectConstantExpr, 3> {
    256 };
    257 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
    258 
    259 template <>
    260 struct OperandTraits<ExtractElementConstantExpr> :
    261   public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
    262 };
    263 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
    264 
    265 template <>
    266 struct OperandTraits<InsertElementConstantExpr> :
    267   public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
    268 };
    269 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
    270 
    271 template <>
    272 struct OperandTraits<ShuffleVectorConstantExpr> :
    273     public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
    274 };
    275 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
    276 
    277 template <>
    278 struct OperandTraits<ExtractValueConstantExpr> :
    279   public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
    280 };
    281 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
    282 
    283 template <>
    284 struct OperandTraits<InsertValueConstantExpr> :
    285   public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
    286 };
    287 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
    288 
    289 template <>
    290 struct OperandTraits<GetElementPtrConstantExpr> :
    291   public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
    292 };
    293 
    294 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
    295 
    296 
    297 template <>
    298 struct OperandTraits<CompareConstantExpr> :
    299   public FixedNumOperandTraits<CompareConstantExpr, 2> {
    300 };
    301 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
    302 
    303 struct ExprMapKeyType {
    304   ExprMapKeyType(unsigned opc,
    305       ArrayRef<Constant*> ops,
    306       unsigned short flags = 0,
    307       unsigned short optionalflags = 0,
    308       ArrayRef<unsigned> inds = ArrayRef<unsigned>())
    309         : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
    310         operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
    311   uint8_t opcode;
    312   uint8_t subclassoptionaldata;
    313   uint16_t subclassdata;
    314   std::vector<Constant*> operands;
    315   SmallVector<unsigned, 4> indices;
    316   bool operator==(const ExprMapKeyType& that) const {
    317     return this->opcode == that.opcode &&
    318            this->subclassdata == that.subclassdata &&
    319            this->subclassoptionaldata == that.subclassoptionaldata &&
    320            this->operands == that.operands &&
    321            this->indices == that.indices;
    322   }
    323   bool operator<(const ExprMapKeyType & that) const {
    324     if (this->opcode != that.opcode) return this->opcode < that.opcode;
    325     if (this->operands != that.operands) return this->operands < that.operands;
    326     if (this->subclassdata != that.subclassdata)
    327       return this->subclassdata < that.subclassdata;
    328     if (this->subclassoptionaldata != that.subclassoptionaldata)
    329       return this->subclassoptionaldata < that.subclassoptionaldata;
    330     if (this->indices != that.indices) return this->indices < that.indices;
    331     return false;
    332   }
    333 
    334   bool operator!=(const ExprMapKeyType& that) const {
    335     return !(*this == that);
    336   }
    337 };
    338 
    339 struct InlineAsmKeyType {
    340   InlineAsmKeyType(StringRef AsmString,
    341                    StringRef Constraints, bool hasSideEffects,
    342                    bool isAlignStack)
    343     : asm_string(AsmString), constraints(Constraints),
    344       has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {}
    345   std::string asm_string;
    346   std::string constraints;
    347   bool has_side_effects;
    348   bool is_align_stack;
    349   bool operator==(const InlineAsmKeyType& that) const {
    350     return this->asm_string == that.asm_string &&
    351            this->constraints == that.constraints &&
    352            this->has_side_effects == that.has_side_effects &&
    353            this->is_align_stack == that.is_align_stack;
    354   }
    355   bool operator<(const InlineAsmKeyType& that) const {
    356     if (this->asm_string != that.asm_string)
    357       return this->asm_string < that.asm_string;
    358     if (this->constraints != that.constraints)
    359       return this->constraints < that.constraints;
    360     if (this->has_side_effects != that.has_side_effects)
    361       return this->has_side_effects < that.has_side_effects;
    362     if (this->is_align_stack != that.is_align_stack)
    363       return this->is_align_stack < that.is_align_stack;
    364     return false;
    365   }
    366 
    367   bool operator!=(const InlineAsmKeyType& that) const {
    368     return !(*this == that);
    369   }
    370 };
    371 
    372 // The number of operands for each ConstantCreator::create method is
    373 // determined by the ConstantTraits template.
    374 // ConstantCreator - A class that is used to create constants by
    375 // ConstantUniqueMap*.  This class should be partially specialized if there is
    376 // something strange that needs to be done to interface to the ctor for the
    377 // constant.
    378 //
    379 template<typename T, typename Alloc>
    380 struct ConstantTraits< std::vector<T, Alloc> > {
    381   static unsigned uses(const std::vector<T, Alloc>& v) {
    382     return v.size();
    383   }
    384 };
    385 
    386 template<>
    387 struct ConstantTraits<Constant *> {
    388   static unsigned uses(Constant * const & v) {
    389     return 1;
    390   }
    391 };
    392 
    393 template<class ConstantClass, class TypeClass, class ValType>
    394 struct ConstantCreator {
    395   static ConstantClass *create(TypeClass *Ty, const ValType &V) {
    396     return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
    397   }
    398 };
    399 
    400 template<class ConstantClass>
    401 struct ConstantKeyData {
    402   typedef void ValType;
    403   static ValType getValType(ConstantClass *C) {
    404     llvm_unreachable("Unknown Constant type!");
    405   }
    406 };
    407 
    408 template<>
    409 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
    410   static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
    411       unsigned short pred = 0) {
    412     if (Instruction::isCast(V.opcode))
    413       return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
    414     if ((V.opcode >= Instruction::BinaryOpsBegin &&
    415          V.opcode < Instruction::BinaryOpsEnd))
    416       return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
    417                                     V.subclassoptionaldata);
    418     if (V.opcode == Instruction::Select)
    419       return new SelectConstantExpr(V.operands[0], V.operands[1],
    420                                     V.operands[2]);
    421     if (V.opcode == Instruction::ExtractElement)
    422       return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
    423     if (V.opcode == Instruction::InsertElement)
    424       return new InsertElementConstantExpr(V.operands[0], V.operands[1],
    425                                            V.operands[2]);
    426     if (V.opcode == Instruction::ShuffleVector)
    427       return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
    428                                            V.operands[2]);
    429     if (V.opcode == Instruction::InsertValue)
    430       return new InsertValueConstantExpr(V.operands[0], V.operands[1],
    431                                          V.indices, Ty);
    432     if (V.opcode == Instruction::ExtractValue)
    433       return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
    434     if (V.opcode == Instruction::GetElementPtr) {
    435       std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
    436       return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
    437                                                V.subclassoptionaldata);
    438     }
    439 
    440     // The compare instructions are weird. We have to encode the predicate
    441     // value and it is combined with the instruction opcode by multiplying
    442     // the opcode by one hundred. We must decode this to get the predicate.
    443     if (V.opcode == Instruction::ICmp)
    444       return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
    445                                      V.operands[0], V.operands[1]);
    446     if (V.opcode == Instruction::FCmp)
    447       return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
    448                                      V.operands[0], V.operands[1]);
    449     llvm_unreachable("Invalid ConstantExpr!");
    450     return 0;
    451   }
    452 };
    453 
    454 template<>
    455 struct ConstantKeyData<ConstantExpr> {
    456   typedef ExprMapKeyType ValType;
    457   static ValType getValType(ConstantExpr *CE) {
    458     std::vector<Constant*> Operands;
    459     Operands.reserve(CE->getNumOperands());
    460     for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
    461       Operands.push_back(cast<Constant>(CE->getOperand(i)));
    462     return ExprMapKeyType(CE->getOpcode(), Operands,
    463         CE->isCompare() ? CE->getPredicate() : 0,
    464         CE->getRawSubclassOptionalData(),
    465         CE->hasIndices() ?
    466           CE->getIndices() : ArrayRef<unsigned>());
    467   }
    468 };
    469 
    470 // ConstantAggregateZero does not take extra "value" argument...
    471 template<class ValType>
    472 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
    473   static ConstantAggregateZero *create(Type *Ty, const ValType &V){
    474     return new ConstantAggregateZero(Ty);
    475   }
    476 };
    477 
    478 template<>
    479 struct ConstantKeyData<ConstantVector> {
    480   typedef std::vector<Constant*> ValType;
    481   static ValType getValType(ConstantVector *CP) {
    482     std::vector<Constant*> Elements;
    483     Elements.reserve(CP->getNumOperands());
    484     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
    485       Elements.push_back(CP->getOperand(i));
    486     return Elements;
    487   }
    488 };
    489 
    490 template<>
    491 struct ConstantKeyData<ConstantAggregateZero> {
    492   typedef char ValType;
    493   static ValType getValType(ConstantAggregateZero *C) {
    494     return 0;
    495   }
    496 };
    497 
    498 template<>
    499 struct ConstantKeyData<ConstantArray> {
    500   typedef std::vector<Constant*> ValType;
    501   static ValType getValType(ConstantArray *CA) {
    502     std::vector<Constant*> Elements;
    503     Elements.reserve(CA->getNumOperands());
    504     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    505       Elements.push_back(cast<Constant>(CA->getOperand(i)));
    506     return Elements;
    507   }
    508 };
    509 
    510 template<>
    511 struct ConstantKeyData<ConstantStruct> {
    512   typedef std::vector<Constant*> ValType;
    513   static ValType getValType(ConstantStruct *CS) {
    514     std::vector<Constant*> Elements;
    515     Elements.reserve(CS->getNumOperands());
    516     for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
    517       Elements.push_back(cast<Constant>(CS->getOperand(i)));
    518     return Elements;
    519   }
    520 };
    521 
    522 // ConstantPointerNull does not take extra "value" argument...
    523 template<class ValType>
    524 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
    525   static ConstantPointerNull *create(PointerType *Ty, const ValType &V){
    526     return new ConstantPointerNull(Ty);
    527   }
    528 };
    529 
    530 template<>
    531 struct ConstantKeyData<ConstantPointerNull> {
    532   typedef char ValType;
    533   static ValType getValType(ConstantPointerNull *C) {
    534     return 0;
    535   }
    536 };
    537 
    538 // UndefValue does not take extra "value" argument...
    539 template<class ValType>
    540 struct ConstantCreator<UndefValue, Type, ValType> {
    541   static UndefValue *create(Type *Ty, const ValType &V) {
    542     return new UndefValue(Ty);
    543   }
    544 };
    545 
    546 template<>
    547 struct ConstantKeyData<UndefValue> {
    548   typedef char ValType;
    549   static ValType getValType(UndefValue *C) {
    550     return 0;
    551   }
    552 };
    553 
    554 template<>
    555 struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
    556   static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
    557     return new InlineAsm(Ty, Key.asm_string, Key.constraints,
    558                          Key.has_side_effects, Key.is_align_stack);
    559   }
    560 };
    561 
    562 template<>
    563 struct ConstantKeyData<InlineAsm> {
    564   typedef InlineAsmKeyType ValType;
    565   static ValType getValType(InlineAsm *Asm) {
    566     return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
    567                             Asm->hasSideEffects(), Asm->isAlignStack());
    568   }
    569 };
    570 
    571 template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
    572          bool HasLargeKey = false /*true for arrays and structs*/ >
    573 class ConstantUniqueMap {
    574 public:
    575   typedef std::pair<TypeClass*, ValType> MapKey;
    576   typedef std::map<MapKey, ConstantClass *> MapTy;
    577   typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
    578 private:
    579   /// Map - This is the main map from the element descriptor to the Constants.
    580   /// This is the primary way we avoid creating two of the same shape
    581   /// constant.
    582   MapTy Map;
    583 
    584   /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
    585   /// from the constants to their element in Map.  This is important for
    586   /// removal of constants from the array, which would otherwise have to scan
    587   /// through the map with very large keys.
    588   InverseMapTy InverseMap;
    589 
    590 public:
    591   typename MapTy::iterator map_begin() { return Map.begin(); }
    592   typename MapTy::iterator map_end() { return Map.end(); }
    593 
    594   void freeConstants() {
    595     for (typename MapTy::iterator I=Map.begin(), E=Map.end();
    596          I != E; ++I) {
    597       // Asserts that use_empty().
    598       delete I->second;
    599     }
    600   }
    601 
    602   /// InsertOrGetItem - Return an iterator for the specified element.
    603   /// If the element exists in the map, the returned iterator points to the
    604   /// entry and Exists=true.  If not, the iterator points to the newly
    605   /// inserted entry and returns Exists=false.  Newly inserted entries have
    606   /// I->second == 0, and should be filled in.
    607   typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
    608                                  &InsertVal,
    609                                  bool &Exists) {
    610     std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
    611     Exists = !IP.second;
    612     return IP.first;
    613   }
    614 
    615 private:
    616   typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
    617     if (HasLargeKey) {
    618       typename InverseMapTy::iterator IMI = InverseMap.find(CP);
    619       assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
    620              IMI->second->second == CP &&
    621              "InverseMap corrupt!");
    622       return IMI->second;
    623     }
    624 
    625     typename MapTy::iterator I =
    626       Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
    627                       ConstantKeyData<ConstantClass>::getValType(CP)));
    628     if (I == Map.end() || I->second != CP) {
    629       // FIXME: This should not use a linear scan.  If this gets to be a
    630       // performance problem, someone should look at this.
    631       for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
    632         /* empty */;
    633     }
    634     return I;
    635   }
    636 
    637   ConstantClass *Create(TypeClass *Ty, ValRefType V,
    638                         typename MapTy::iterator I) {
    639     ConstantClass* Result =
    640       ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
    641 
    642     assert(Result->getType() == Ty && "Type specified is not correct!");
    643     I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
    644 
    645     if (HasLargeKey)  // Remember the reverse mapping if needed.
    646       InverseMap.insert(std::make_pair(Result, I));
    647 
    648     return Result;
    649   }
    650 public:
    651 
    652   /// getOrCreate - Return the specified constant from the map, creating it if
    653   /// necessary.
    654   ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
    655     MapKey Lookup(Ty, V);
    656     ConstantClass* Result = 0;
    657 
    658     typename MapTy::iterator I = Map.find(Lookup);
    659     // Is it in the map?
    660     if (I != Map.end())
    661       Result = I->second;
    662 
    663     if (!Result) {
    664       // If no preexisting value, create one now...
    665       Result = Create(Ty, V, I);
    666     }
    667 
    668     return Result;
    669   }
    670 
    671   void remove(ConstantClass *CP) {
    672     typename MapTy::iterator I = FindExistingElement(CP);
    673     assert(I != Map.end() && "Constant not found in constant table!");
    674     assert(I->second == CP && "Didn't find correct element?");
    675 
    676     if (HasLargeKey)  // Remember the reverse mapping if needed.
    677       InverseMap.erase(CP);
    678 
    679     Map.erase(I);
    680   }
    681 
    682   /// MoveConstantToNewSlot - If we are about to change C to be the element
    683   /// specified by I, update our internal data structures to reflect this
    684   /// fact.
    685   void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
    686     // First, remove the old location of the specified constant in the map.
    687     typename MapTy::iterator OldI = FindExistingElement(C);
    688     assert(OldI != Map.end() && "Constant not found in constant table!");
    689     assert(OldI->second == C && "Didn't find correct element?");
    690 
    691      // Remove the old entry from the map.
    692     Map.erase(OldI);
    693 
    694     // Update the inverse map so that we know that this constant is now
    695     // located at descriptor I.
    696     if (HasLargeKey) {
    697       assert(I->second == C && "Bad inversemap entry!");
    698       InverseMap[C] = I;
    699     }
    700   }
    701 
    702   void dump() const {
    703     DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
    704   }
    705 };
    706 
    707 }
    708 
    709 #endif
    710