1 /** @file 2 IP6 internal functions to process the incoming packets. 3 4 Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR> 5 (C) Copyright 2015 Hewlett-Packard Development Company, L.P.<BR> 6 7 This program and the accompanying materials 8 are licensed and made available under the terms and conditions of the BSD License 9 which accompanies this distribution. The full text of the license may be found at 10 http://opensource.org/licenses/bsd-license.php. 11 12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, 13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. 14 15 **/ 16 17 #include "Ip6Impl.h" 18 19 /** 20 Create an empty assemble entry for the packet identified by 21 (Dst, Src, Id). The default life for the packet is 60 seconds. 22 23 @param[in] Dst The destination address. 24 @param[in] Src The source address. 25 @param[in] Id The ID field in the IP header. 26 27 @return NULL if failed to allocate memory for the entry. Otherwise, 28 the pointer to the just created reassemble entry. 29 30 **/ 31 IP6_ASSEMBLE_ENTRY * 32 Ip6CreateAssembleEntry ( 33 IN EFI_IPv6_ADDRESS *Dst, 34 IN EFI_IPv6_ADDRESS *Src, 35 IN UINT32 Id 36 ) 37 { 38 IP6_ASSEMBLE_ENTRY *Assemble; 39 40 Assemble = AllocatePool (sizeof (IP6_ASSEMBLE_ENTRY)); 41 if (Assemble == NULL) { 42 return NULL; 43 } 44 45 IP6_COPY_ADDRESS (&Assemble->Dst, Dst); 46 IP6_COPY_ADDRESS (&Assemble->Src, Src); 47 InitializeListHead (&Assemble->Fragments); 48 49 Assemble->Id = Id; 50 Assemble->Life = IP6_FRAGMENT_LIFE + 1; 51 52 Assemble->TotalLen = 0; 53 Assemble->CurLen = 0; 54 Assemble->Head = NULL; 55 Assemble->Info = NULL; 56 Assemble->Packet = NULL; 57 58 return Assemble; 59 } 60 61 /** 62 Release all the fragments of a packet, then free the assemble entry. 63 64 @param[in] Assemble The assemble entry to free. 65 66 **/ 67 VOID 68 Ip6FreeAssembleEntry ( 69 IN IP6_ASSEMBLE_ENTRY *Assemble 70 ) 71 { 72 LIST_ENTRY *Entry; 73 LIST_ENTRY *Next; 74 NET_BUF *Fragment; 75 76 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Assemble->Fragments) { 77 Fragment = NET_LIST_USER_STRUCT (Entry, NET_BUF, List); 78 79 RemoveEntryList (Entry); 80 NetbufFree (Fragment); 81 } 82 83 if (Assemble->Packet != NULL) { 84 NetbufFree (Assemble->Packet); 85 } 86 87 FreePool (Assemble); 88 } 89 90 /** 91 Release all the fragments of the packet. This is the callback for 92 the assembled packet's OnFree. It will free the assemble entry, 93 which in turn frees all the fragments of the packet. 94 95 @param[in] Arg The assemble entry to free. 96 97 **/ 98 VOID 99 EFIAPI 100 Ip6OnFreeFragments ( 101 IN VOID *Arg 102 ) 103 { 104 Ip6FreeAssembleEntry ((IP6_ASSEMBLE_ENTRY *) Arg); 105 } 106 107 /** 108 Trim the packet to fit in [Start, End), and update per the 109 packet information. 110 111 @param[in, out] Packet Packet to trim. 112 @param[in] Start The sequence of the first byte to fit in. 113 @param[in] End One beyond the sequence of last byte to fit in. 114 115 **/ 116 VOID 117 Ip6TrimPacket ( 118 IN OUT NET_BUF *Packet, 119 IN INTN Start, 120 IN INTN End 121 ) 122 { 123 IP6_CLIP_INFO *Info; 124 INTN Len; 125 126 Info = IP6_GET_CLIP_INFO (Packet); 127 128 ASSERT (Info->Start + Info->Length == Info->End); 129 ASSERT ((Info->Start < End) && (Start < Info->End)); 130 131 if (Info->Start < Start) { 132 Len = Start - Info->Start; 133 134 NetbufTrim (Packet, (UINT32) Len, NET_BUF_HEAD); 135 Info->Start = (UINT32) Start; 136 Info->Length -= (UINT32) Len; 137 } 138 139 if (End < Info->End) { 140 Len = End - Info->End; 141 142 NetbufTrim (Packet, (UINT32) Len, NET_BUF_TAIL); 143 Info->End = (UINT32) End; 144 Info->Length -= (UINT32) Len; 145 } 146 } 147 148 /** 149 Reassemble the IP fragments. If all the fragments of the packet 150 have been received, it will wrap the packet in a net buffer then 151 return it to caller. If the packet can't be assembled, NULL is 152 returned. 153 154 @param[in, out] Table The assemble table used. A new assemble entry will be created 155 if the Packet is from a new chain of fragments. 156 @param[in] Packet The fragment to assemble. It might be freed if the fragment 157 can't be re-assembled. 158 159 @return NULL if the packet can't be reassembled. The pointer to the just assembled 160 packet if all the fragments of the packet have arrived. 161 162 **/ 163 NET_BUF * 164 Ip6Reassemble ( 165 IN OUT IP6_ASSEMBLE_TABLE *Table, 166 IN NET_BUF *Packet 167 ) 168 { 169 EFI_IP6_HEADER *Head; 170 IP6_CLIP_INFO *This; 171 IP6_CLIP_INFO *Node; 172 IP6_ASSEMBLE_ENTRY *Assemble; 173 IP6_ASSEMBLE_ENTRY *Entry; 174 LIST_ENTRY *ListHead; 175 LIST_ENTRY *Prev; 176 LIST_ENTRY *Cur; 177 NET_BUF *Fragment; 178 NET_BUF *TmpPacket; 179 NET_BUF *NewPacket; 180 NET_BUF *Duplicate; 181 UINT8 *DupHead; 182 INTN Index; 183 UINT16 UnFragmentLen; 184 UINT8 *NextHeader; 185 186 Head = Packet->Ip.Ip6; 187 This = IP6_GET_CLIP_INFO (Packet); 188 189 ASSERT (Head != NULL); 190 191 // 192 // Find the corresponding assemble entry by (Dst, Src, Id) 193 // 194 Assemble = NULL; 195 Index = IP6_ASSEMBLE_HASH (&Head->DestinationAddress, &Head->SourceAddress, This->Id); 196 197 NET_LIST_FOR_EACH (Cur, &Table->Bucket[Index]) { 198 Entry = NET_LIST_USER_STRUCT (Cur, IP6_ASSEMBLE_ENTRY, Link); 199 200 if (Entry->Id == This->Id && 201 EFI_IP6_EQUAL (&Entry->Src, &Head->SourceAddress) && 202 EFI_IP6_EQUAL (&Entry->Dst, &Head->DestinationAddress) 203 ) { 204 Assemble = Entry; 205 break; 206 } 207 } 208 209 // 210 // Create a new entry if can not find an existing one, insert it to assemble table 211 // 212 if (Assemble == NULL) { 213 Assemble = Ip6CreateAssembleEntry ( 214 &Head->DestinationAddress, 215 &Head->SourceAddress, 216 This->Id 217 ); 218 219 if (Assemble == NULL) { 220 goto Error; 221 } 222 223 InsertHeadList (&Table->Bucket[Index], &Assemble->Link); 224 } 225 226 // 227 // Find the point to insert the packet: before the first 228 // fragment with THIS.Start < CUR.Start. the previous one 229 // has PREV.Start <= THIS.Start < CUR.Start. 230 // 231 ListHead = &Assemble->Fragments; 232 233 NET_LIST_FOR_EACH (Cur, ListHead) { 234 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List); 235 236 if (This->Start < IP6_GET_CLIP_INFO (Fragment)->Start) { 237 break; 238 } 239 } 240 241 // 242 // Check whether the current fragment overlaps with the previous one. 243 // It holds that: PREV.Start <= THIS.Start < THIS.End. Only need to 244 // check whether THIS.Start < PREV.End for overlap. If two fragments 245 // overlaps, trim the overlapped part off THIS fragment. 246 // 247 if ((Prev = Cur->BackLink) != ListHead) { 248 Fragment = NET_LIST_USER_STRUCT (Prev, NET_BUF, List); 249 Node = IP6_GET_CLIP_INFO (Fragment); 250 251 if (This->Start < Node->End) { 252 if (This->End <= Node->End) { 253 goto Error; 254 } 255 256 // 257 // Trim the previous fragment from tail. 258 // 259 Ip6TrimPacket (Fragment, Node->Start, This->Start); 260 } 261 } 262 263 // 264 // Insert the fragment into the packet. The fragment may be removed 265 // from the list by the following checks. 266 // 267 NetListInsertBefore (Cur, &Packet->List); 268 269 // 270 // Check the packets after the insert point. It holds that: 271 // THIS.Start <= NODE.Start < NODE.End. The equality holds 272 // if PREV and NEXT are continuous. THIS fragment may fill 273 // several holes. Remove the completely overlapped fragments 274 // 275 while (Cur != ListHead) { 276 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List); 277 Node = IP6_GET_CLIP_INFO (Fragment); 278 279 // 280 // Remove fragments completely overlapped by this fragment 281 // 282 if (Node->End <= This->End) { 283 Cur = Cur->ForwardLink; 284 285 RemoveEntryList (&Fragment->List); 286 Assemble->CurLen -= Node->Length; 287 288 NetbufFree (Fragment); 289 continue; 290 } 291 292 // 293 // The conditions are: THIS.Start <= NODE.Start, and THIS.End < 294 // NODE.End. Two fragments overlaps if NODE.Start < THIS.End. 295 // If two fragments start at the same offset, remove THIS fragment 296 // because ((THIS.Start == NODE.Start) && (THIS.End < NODE.End)). 297 // 298 if (Node->Start < This->End) { 299 if (This->Start == Node->Start) { 300 RemoveEntryList (&Packet->List); 301 goto Error; 302 } 303 304 Ip6TrimPacket (Packet, This->Start, Node->Start); 305 } 306 307 break; 308 } 309 310 // 311 // Update the assemble info: increase the current length. If it is 312 // the frist fragment, update the packet's IP head and per packet 313 // info. If it is the last fragment, update the total length. 314 // 315 Assemble->CurLen += This->Length; 316 317 if (This->Start == 0) { 318 // 319 // Once the first fragment is enqueued, it can't be removed 320 // from the fragment list. So, Assemble->Head always point 321 // to valid memory area. 322 // 323 if ((Assemble->Head != NULL) || (Assemble->Packet != NULL)) { 324 goto Error; 325 } 326 327 // 328 // Backup the first fragment in case the reasembly of that packet fail. 329 // 330 Duplicate = NetbufDuplicate (Packet, NULL, sizeof (EFI_IP6_HEADER)); 331 if (Duplicate == NULL) { 332 goto Error; 333 } 334 335 // 336 // Revert IP head to network order. 337 // 338 DupHead = NetbufGetByte (Duplicate, 0, NULL); 339 ASSERT (DupHead != NULL); 340 Duplicate->Ip.Ip6 = Ip6NtohHead ((EFI_IP6_HEADER *) DupHead); 341 Assemble->Packet = Duplicate; 342 343 // 344 // Adjust the unfragmentable part in first fragment 345 // 346 UnFragmentLen = (UINT16) (This->HeadLen - sizeof (EFI_IP6_HEADER)); 347 if (UnFragmentLen == 0) { 348 // 349 // There is not any unfragmentable extension header. 350 // 351 ASSERT (Head->NextHeader == IP6_FRAGMENT); 352 Head->NextHeader = This->NextHeader; 353 } else { 354 NextHeader = NetbufGetByte ( 355 Packet, 356 This->FormerNextHeader + sizeof (EFI_IP6_HEADER), 357 0 358 ); 359 if (NextHeader == NULL) { 360 goto Error; 361 } 362 363 *NextHeader = This->NextHeader; 364 } 365 366 Assemble->Head = Head; 367 Assemble->Info = IP6_GET_CLIP_INFO (Packet); 368 } 369 370 // 371 // Don't update the length more than once. 372 // 373 if ((This->LastFrag != 0) && (Assemble->TotalLen == 0)) { 374 Assemble->TotalLen = This->End; 375 } 376 377 // 378 // Deliver the whole packet if all the fragments received. 379 // All fragments received if: 380 // 1. received the last one, so, the totoal length is know 381 // 2. received all the data. If the last fragment on the 382 // queue ends at the total length, all data is received. 383 // 384 if ((Assemble->TotalLen != 0) && (Assemble->CurLen >= Assemble->TotalLen)) { 385 386 RemoveEntryList (&Assemble->Link); 387 388 // 389 // If the packet is properly formated, the last fragment's End 390 // equals to the packet's total length. Otherwise, the packet 391 // is a fake, drop it now. 392 // 393 Fragment = NET_LIST_USER_STRUCT (ListHead->BackLink, NET_BUF, List); 394 if (IP6_GET_CLIP_INFO (Fragment)->End != (INTN) Assemble->TotalLen) { 395 Ip6FreeAssembleEntry (Assemble); 396 goto Error; 397 } 398 399 Fragment = NET_LIST_HEAD (ListHead, NET_BUF, List); 400 This = Assemble->Info; 401 402 // 403 // This TmpPacket is used to hold the unfragmentable part, i.e., 404 // the IPv6 header and the unfragmentable extension headers. Be noted that 405 // the Fragment Header is exluded. 406 // 407 TmpPacket = NetbufGetFragment (Fragment, 0, This->HeadLen, 0); 408 ASSERT (TmpPacket != NULL); 409 410 NET_LIST_FOR_EACH (Cur, ListHead) { 411 // 412 // Trim off the unfragment part plus the fragment header from all fragments. 413 // 414 Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List); 415 NetbufTrim (Fragment, This->HeadLen + sizeof (IP6_FRAGMENT_HEADER), TRUE); 416 } 417 418 InsertHeadList (ListHead, &TmpPacket->List); 419 420 // 421 // Wrap the packet in a net buffer then deliver it up 422 // 423 NewPacket = NetbufFromBufList ( 424 &Assemble->Fragments, 425 0, 426 0, 427 Ip6OnFreeFragments, 428 Assemble 429 ); 430 431 if (NewPacket == NULL) { 432 Ip6FreeAssembleEntry (Assemble); 433 goto Error; 434 } 435 436 NewPacket->Ip.Ip6 = Assemble->Head; 437 438 CopyMem (IP6_GET_CLIP_INFO (NewPacket), Assemble->Info, sizeof (IP6_CLIP_INFO)); 439 440 return NewPacket; 441 } 442 443 return NULL; 444 445 Error: 446 NetbufFree (Packet); 447 return NULL; 448 } 449 450 451 /** 452 The callback function for the net buffer that wraps the packet processed by 453 IPsec. It releases the wrap packet and also signals IPsec to free the resources. 454 455 @param[in] Arg The wrap context. 456 457 **/ 458 VOID 459 EFIAPI 460 Ip6IpSecFree ( 461 IN VOID *Arg 462 ) 463 { 464 IP6_IPSEC_WRAP *Wrap; 465 466 Wrap = (IP6_IPSEC_WRAP *) Arg; 467 468 if (Wrap->IpSecRecycleSignal != NULL) { 469 gBS->SignalEvent (Wrap->IpSecRecycleSignal); 470 } 471 472 NetbufFree (Wrap->Packet); 473 474 FreePool (Wrap); 475 476 return; 477 } 478 479 /** 480 The work function to locate the IPsec protocol to process the inbound or 481 outbound IP packets. The process routine handles the packet with the following 482 actions: bypass the packet, discard the packet, or protect the packet. 483 484 @param[in] IpSb The IP6 service instance. 485 @param[in, out] Head The caller-supplied IP6 header. 486 @param[in, out] LastHead The next header field of last IP header. 487 @param[in, out] Netbuf The IP6 packet to be processed by IPsec. 488 @param[in, out] ExtHdrs The caller-supplied options. 489 @param[in, out] ExtHdrsLen The length of the option. 490 @param[in] Direction The directionality in an SPD entry, 491 EfiIPsecInBound, or EfiIPsecOutBound. 492 @param[in] Context The token's wrap. 493 494 @retval EFI_SUCCESS The IPsec protocol is not available or disabled. 495 @retval EFI_SUCCESS The packet was bypassed, and all buffers remain the same. 496 @retval EFI_SUCCESS The packet was protected. 497 @retval EFI_ACCESS_DENIED The packet was discarded. 498 @retval EFI_OUT_OF_RESOURCES There are not suffcient resources to complete the operation. 499 @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than the 500 number of input data blocks when building a fragment table. 501 502 **/ 503 EFI_STATUS 504 Ip6IpSecProcessPacket ( 505 IN IP6_SERVICE *IpSb, 506 IN OUT EFI_IP6_HEADER **Head, 507 IN OUT UINT8 *LastHead, 508 IN OUT NET_BUF **Netbuf, 509 IN OUT UINT8 **ExtHdrs, 510 IN OUT UINT32 *ExtHdrsLen, 511 IN EFI_IPSEC_TRAFFIC_DIR Direction, 512 IN VOID *Context 513 ) 514 { 515 NET_FRAGMENT *FragmentTable; 516 NET_FRAGMENT *OriginalFragmentTable; 517 UINT32 FragmentCount; 518 UINT32 OriginalFragmentCount; 519 EFI_EVENT RecycleEvent; 520 NET_BUF *Packet; 521 IP6_TXTOKEN_WRAP *TxWrap; 522 IP6_IPSEC_WRAP *IpSecWrap; 523 EFI_STATUS Status; 524 EFI_IP6_HEADER *PacketHead; 525 UINT8 *Buf; 526 EFI_IP6_HEADER ZeroHead; 527 528 Status = EFI_SUCCESS; 529 530 if (!mIpSec2Installed) { 531 goto ON_EXIT; 532 } 533 534 Packet = *Netbuf; 535 RecycleEvent = NULL; 536 IpSecWrap = NULL; 537 FragmentTable = NULL; 538 PacketHead = NULL; 539 Buf = NULL; 540 TxWrap = (IP6_TXTOKEN_WRAP *) Context; 541 FragmentCount = Packet->BlockOpNum; 542 ZeroMem (&ZeroHead, sizeof (EFI_IP6_HEADER)); 543 544 if (mIpSec == NULL) { 545 gBS->LocateProtocol (&gEfiIpSec2ProtocolGuid, NULL, (VOID **) &mIpSec); 546 547 // 548 // Check whether the ipsec protocol is available. 549 // 550 if (mIpSec == NULL) { 551 goto ON_EXIT; 552 } 553 } 554 555 // 556 // Check whether the ipsec enable variable is set. 557 // 558 if (mIpSec->DisabledFlag) { 559 // 560 // If IPsec is disabled, restore the original MTU 561 // 562 IpSb->MaxPacketSize = IpSb->OldMaxPacketSize; 563 goto ON_EXIT; 564 } else { 565 // 566 // If IPsec is enabled, use the MTU which reduce the IPsec header length. 567 // 568 IpSb->MaxPacketSize = IpSb->OldMaxPacketSize - IP6_MAX_IPSEC_HEADLEN; 569 } 570 571 572 // 573 // Bypass all multicast inbound or outbound traffic. 574 // 575 if (IP6_IS_MULTICAST (&(*Head)->DestinationAddress) || IP6_IS_MULTICAST (&(*Head)->SourceAddress)) { 576 goto ON_EXIT; 577 } 578 579 // 580 // Rebuild fragment table from netbuf to ease ipsec process. 581 // 582 FragmentTable = AllocateZeroPool (FragmentCount * sizeof (NET_FRAGMENT)); 583 584 if (FragmentTable == NULL) { 585 Status = EFI_OUT_OF_RESOURCES; 586 goto ON_EXIT; 587 } 588 589 Status = NetbufBuildExt (Packet, FragmentTable, &FragmentCount); 590 OriginalFragmentTable = FragmentTable; 591 OriginalFragmentCount = FragmentCount; 592 593 if (EFI_ERROR(Status)) { 594 FreePool (FragmentTable); 595 goto ON_EXIT; 596 } 597 598 // 599 // Convert host byte order to network byte order 600 // 601 Ip6NtohHead (*Head); 602 603 Status = mIpSec->ProcessExt ( 604 mIpSec, 605 IpSb->Controller, 606 IP_VERSION_6, 607 (VOID *) (*Head), 608 LastHead, 609 (VOID **) ExtHdrs, 610 ExtHdrsLen, 611 (EFI_IPSEC_FRAGMENT_DATA **) (&FragmentTable), 612 &FragmentCount, 613 Direction, 614 &RecycleEvent 615 ); 616 // 617 // Convert back to host byte order 618 // 619 Ip6NtohHead (*Head); 620 621 if (EFI_ERROR (Status)) { 622 FreePool (OriginalFragmentTable); 623 goto ON_EXIT; 624 } 625 626 if (OriginalFragmentCount == FragmentCount && OriginalFragmentTable == FragmentTable) { 627 // 628 // For ByPass Packet 629 // 630 FreePool (FragmentTable); 631 goto ON_EXIT; 632 } else { 633 // 634 // Free the FragmentTable which allocated before calling the IPsec. 635 // 636 FreePool (OriginalFragmentTable); 637 } 638 639 if (Direction == EfiIPsecOutBound && TxWrap != NULL) { 640 TxWrap->IpSecRecycleSignal = RecycleEvent; 641 TxWrap->Packet = NetbufFromExt ( 642 FragmentTable, 643 FragmentCount, 644 IP6_MAX_HEADLEN, 645 0, 646 Ip6FreeTxToken, 647 TxWrap 648 ); 649 if (TxWrap->Packet == NULL) { 650 TxWrap->Packet = *Netbuf; 651 Status = EFI_OUT_OF_RESOURCES; 652 goto ON_EXIT; 653 } 654 655 CopyMem ( 656 IP6_GET_CLIP_INFO (TxWrap->Packet), 657 IP6_GET_CLIP_INFO (Packet), 658 sizeof (IP6_CLIP_INFO) 659 ); 660 661 NetIpSecNetbufFree(Packet); 662 *Netbuf = TxWrap->Packet; 663 664 } else { 665 666 IpSecWrap = AllocateZeroPool (sizeof (IP6_IPSEC_WRAP)); 667 668 if (IpSecWrap == NULL) { 669 Status = EFI_OUT_OF_RESOURCES; 670 gBS->SignalEvent (RecycleEvent); 671 goto ON_EXIT; 672 } 673 674 IpSecWrap->IpSecRecycleSignal = RecycleEvent; 675 IpSecWrap->Packet = Packet; 676 Packet = NetbufFromExt ( 677 FragmentTable, 678 FragmentCount, 679 IP6_MAX_HEADLEN, 680 0, 681 Ip6IpSecFree, 682 IpSecWrap 683 ); 684 685 if (Packet == NULL) { 686 Packet = IpSecWrap->Packet; 687 gBS->SignalEvent (RecycleEvent); 688 FreePool (IpSecWrap); 689 Status = EFI_OUT_OF_RESOURCES; 690 goto ON_EXIT; 691 } 692 693 if (Direction == EfiIPsecInBound && 0 != CompareMem (&ZeroHead, *Head, sizeof (EFI_IP6_HEADER))) { 694 695 PacketHead = (EFI_IP6_HEADER *) NetbufAllocSpace ( 696 Packet, 697 sizeof (EFI_IP6_HEADER) + *ExtHdrsLen, 698 NET_BUF_HEAD 699 ); 700 if (PacketHead == NULL) { 701 *Netbuf = Packet; 702 Status = EFI_OUT_OF_RESOURCES; 703 goto ON_EXIT; 704 } 705 706 CopyMem (PacketHead, *Head, sizeof (EFI_IP6_HEADER)); 707 *Head = PacketHead; 708 Packet->Ip.Ip6 = PacketHead; 709 710 if (*ExtHdrs != NULL) { 711 Buf = (UINT8 *) (PacketHead + 1); 712 CopyMem (Buf, *ExtHdrs, *ExtHdrsLen); 713 } 714 715 NetbufTrim (Packet, sizeof (EFI_IP6_HEADER) + *ExtHdrsLen, TRUE); 716 CopyMem ( 717 IP6_GET_CLIP_INFO (Packet), 718 IP6_GET_CLIP_INFO (IpSecWrap->Packet), 719 sizeof (IP6_CLIP_INFO) 720 ); 721 } 722 *Netbuf = Packet; 723 } 724 725 ON_EXIT: 726 return Status; 727 } 728 729 /** 730 Pre-process the IPv6 packet. First validates the IPv6 packet, and 731 then reassembles packet if it is necessary. 732 733 @param[in] IpSb The IP6 service instance. 734 @param[in, out] Packet The received IP6 packet to be processed. 735 @param[in] Flag The link layer flag for the packet received, such 736 as multicast. 737 @param[out] Payload The pointer to the payload of the recieved packet. 738 it starts from the first byte of the extension header. 739 @param[out] LastHead The pointer of NextHeader of the last extension 740 header processed by IP6. 741 @param[out] ExtHdrsLen The length of the whole option. 742 @param[out] UnFragmentLen The length of unfragmented length of extension headers. 743 @param[out] Fragmented Indicate whether the packet is fragmented. 744 @param[out] Head The pointer to the EFI_IP6_Header. 745 746 @retval EFI_SUCCESS The received packet is well format. 747 @retval EFI_INVALID_PARAMETER The received packet is malformed. 748 749 **/ 750 EFI_STATUS 751 Ip6PreProcessPacket ( 752 IN IP6_SERVICE *IpSb, 753 IN OUT NET_BUF **Packet, 754 IN UINT32 Flag, 755 OUT UINT8 **Payload, 756 OUT UINT8 **LastHead, 757 OUT UINT32 *ExtHdrsLen, 758 OUT UINT32 *UnFragmentLen, 759 OUT BOOLEAN *Fragmented, 760 OUT EFI_IP6_HEADER **Head 761 ) 762 { 763 UINT16 PayloadLen; 764 UINT16 TotalLen; 765 UINT32 FormerHeadOffset; 766 UINT32 HeadLen; 767 IP6_FRAGMENT_HEADER *FragmentHead; 768 UINT16 FragmentOffset; 769 IP6_CLIP_INFO *Info; 770 EFI_IPv6_ADDRESS Loopback; 771 772 HeadLen = 0; 773 PayloadLen = 0; 774 // 775 // Check whether the input packet is a valid packet 776 // 777 if ((*Packet)->TotalSize < IP6_MIN_HEADLEN) { 778 return EFI_INVALID_PARAMETER; 779 } 780 781 // 782 // Get header information of the packet. 783 // 784 *Head = (EFI_IP6_HEADER *) NetbufGetByte (*Packet, 0, NULL); 785 if (*Head == NULL) { 786 return EFI_INVALID_PARAMETER; 787 } 788 789 // 790 // Multicast addresses must not be used as source addresses in IPv6 packets. 791 // 792 if (((*Head)->Version != 6) || (IP6_IS_MULTICAST (&(*Head)->SourceAddress))) { 793 return EFI_INVALID_PARAMETER; 794 } 795 796 // 797 // A packet with a destination address of loopback ::1/128 or unspecified must be dropped. 798 // 799 ZeroMem (&Loopback, sizeof (EFI_IPv6_ADDRESS)); 800 Loopback.Addr[15] = 0x1; 801 if ((CompareMem (&Loopback, &(*Head)->DestinationAddress, sizeof (EFI_IPv6_ADDRESS)) == 0) || 802 (NetIp6IsUnspecifiedAddr (&(*Head)->DestinationAddress))) { 803 return EFI_INVALID_PARAMETER; 804 } 805 806 // 807 // Convert the IP header to host byte order. 808 // 809 (*Packet)->Ip.Ip6 = Ip6NtohHead (*Head); 810 811 // 812 // Get the per packet info. 813 // 814 Info = IP6_GET_CLIP_INFO (*Packet); 815 Info->LinkFlag = Flag; 816 Info->CastType = 0; 817 818 if (IpSb->MnpConfigData.EnablePromiscuousReceive) { 819 Info->CastType = Ip6Promiscuous; 820 } 821 822 if (Ip6IsOneOfSetAddress (IpSb, &(*Head)->DestinationAddress, NULL, NULL)) { 823 Info->CastType = Ip6Unicast; 824 } else if (IP6_IS_MULTICAST (&(*Head)->DestinationAddress)) { 825 if (Ip6FindMldEntry (IpSb, &(*Head)->DestinationAddress) != NULL) { 826 Info->CastType = Ip6Multicast; 827 } 828 } 829 830 // 831 // Drop the packet that is not delivered to us. 832 // 833 if (Info->CastType == 0) { 834 return EFI_INVALID_PARAMETER; 835 } 836 837 838 PayloadLen = (*Head)->PayloadLength; 839 840 Info->Start = 0; 841 Info->Length = PayloadLen; 842 Info->End = Info->Start + Info->Length; 843 Info->HeadLen = (UINT16) sizeof (EFI_IP6_HEADER); 844 Info->Status = EFI_SUCCESS; 845 Info->LastFrag = FALSE; 846 847 TotalLen = (UINT16) (PayloadLen + sizeof (EFI_IP6_HEADER)); 848 849 // 850 // Mnp may deliver frame trailer sequence up, trim it off. 851 // 852 if (TotalLen < (*Packet)->TotalSize) { 853 NetbufTrim (*Packet, (*Packet)->TotalSize - TotalLen, FALSE); 854 } 855 856 if (TotalLen != (*Packet)->TotalSize) { 857 return EFI_INVALID_PARAMETER; 858 } 859 860 // 861 // Check the extension headers, if exist validate them 862 // 863 if (PayloadLen != 0) { 864 *Payload = AllocatePool ((UINTN) PayloadLen); 865 if (*Payload == NULL) { 866 return EFI_INVALID_PARAMETER; 867 } 868 869 NetbufCopy (*Packet, sizeof (EFI_IP6_HEADER), PayloadLen, *Payload); 870 } 871 872 if (!Ip6IsExtsValid ( 873 IpSb, 874 *Packet, 875 &(*Head)->NextHeader, 876 *Payload, 877 (UINT32) PayloadLen, 878 TRUE, 879 &FormerHeadOffset, 880 LastHead, 881 ExtHdrsLen, 882 UnFragmentLen, 883 Fragmented 884 )) { 885 return EFI_INVALID_PARAMETER; 886 } 887 888 HeadLen = sizeof (EFI_IP6_HEADER) + *UnFragmentLen; 889 890 if (*Fragmented) { 891 // 892 // Get the fragment offset from the Fragment header 893 // 894 FragmentHead = (IP6_FRAGMENT_HEADER *) NetbufGetByte (*Packet, HeadLen, NULL); 895 if (FragmentHead == NULL) { 896 return EFI_INVALID_PARAMETER; 897 } 898 899 FragmentOffset = NTOHS (FragmentHead->FragmentOffset); 900 901 if ((FragmentOffset & 0x1) == 0) { 902 Info->LastFrag = TRUE; 903 } 904 905 FragmentOffset &= (~0x1); 906 907 // 908 // This is the first fragment of the packet 909 // 910 if (FragmentOffset == 0) { 911 Info->NextHeader = FragmentHead->NextHeader; 912 } 913 914 Info->HeadLen = (UINT16) HeadLen; 915 HeadLen += sizeof (IP6_FRAGMENT_HEADER); 916 Info->Start = FragmentOffset; 917 Info->Length = TotalLen - (UINT16) HeadLen; 918 Info->End = Info->Start + Info->Length; 919 Info->Id = FragmentHead->Identification; 920 Info->FormerNextHeader = FormerHeadOffset; 921 922 // 923 // Fragments should in the unit of 8 octets long except the last one. 924 // 925 if ((Info->LastFrag == 0) && (Info->Length % 8 != 0)) { 926 return EFI_INVALID_PARAMETER; 927 } 928 929 // 930 // Reassemble the packet. 931 // 932 *Packet = Ip6Reassemble (&IpSb->Assemble, *Packet); 933 if (*Packet == NULL) { 934 return EFI_INVALID_PARAMETER; 935 } 936 937 // 938 // Re-check the assembled packet to get the right values. 939 // 940 *Head = (*Packet)->Ip.Ip6; 941 PayloadLen = (*Head)->PayloadLength; 942 if (PayloadLen != 0) { 943 if (*Payload != NULL) { 944 FreePool (*Payload); 945 } 946 947 *Payload = AllocatePool ((UINTN) PayloadLen); 948 if (*Payload == NULL) { 949 return EFI_INVALID_PARAMETER; 950 } 951 952 NetbufCopy (*Packet, sizeof (EFI_IP6_HEADER), PayloadLen, *Payload); 953 } 954 955 if (!Ip6IsExtsValid ( 956 IpSb, 957 *Packet, 958 &(*Head)->NextHeader, 959 *Payload, 960 (UINT32) PayloadLen, 961 TRUE, 962 NULL, 963 LastHead, 964 ExtHdrsLen, 965 UnFragmentLen, 966 Fragmented 967 )) { 968 return EFI_INVALID_PARAMETER; 969 } 970 } 971 972 // 973 // Trim the head off, after this point, the packet is headless. 974 // and Packet->TotalLen == Info->Length. 975 // 976 NetbufTrim (*Packet, sizeof (EFI_IP6_HEADER) + *ExtHdrsLen, TRUE); 977 978 return EFI_SUCCESS; 979 } 980 981 /** 982 The IP6 input routine. It is called by the IP6_INTERFACE when an 983 IP6 fragment is received from MNP. 984 985 @param[in] Packet The IP6 packet received. 986 @param[in] IoStatus The return status of receive request. 987 @param[in] Flag The link layer flag for the packet received, such 988 as multicast. 989 @param[in] Context The IP6 service instance that owns the MNP. 990 991 **/ 992 VOID 993 Ip6AcceptFrame ( 994 IN NET_BUF *Packet, 995 IN EFI_STATUS IoStatus, 996 IN UINT32 Flag, 997 IN VOID *Context 998 ) 999 { 1000 IP6_SERVICE *IpSb; 1001 EFI_IP6_HEADER *Head; 1002 UINT8 *Payload; 1003 UINT8 *LastHead; 1004 UINT32 UnFragmentLen; 1005 UINT32 ExtHdrsLen; 1006 BOOLEAN Fragmented; 1007 EFI_STATUS Status; 1008 EFI_IP6_HEADER ZeroHead; 1009 1010 IpSb = (IP6_SERVICE *) Context; 1011 NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE); 1012 1013 Payload = NULL; 1014 LastHead = NULL; 1015 1016 // 1017 // Check input parameters 1018 // 1019 if (EFI_ERROR (IoStatus) || (IpSb->State == IP6_SERVICE_DESTROY)) { 1020 goto Drop; 1021 } 1022 1023 // 1024 // Pre-Process the Ipv6 Packet and then reassemble if it is necessary. 1025 // 1026 Status = Ip6PreProcessPacket ( 1027 IpSb, 1028 &Packet, 1029 Flag, 1030 &Payload, 1031 &LastHead, 1032 &ExtHdrsLen, 1033 &UnFragmentLen, 1034 &Fragmented, 1035 &Head 1036 ); 1037 if (EFI_ERROR (Status)) { 1038 goto Restart; 1039 } 1040 // 1041 // After trim off, the packet is a esp/ah/udp/tcp/icmp6 net buffer, 1042 // and no need consider any other ahead ext headers. 1043 // 1044 Status = Ip6IpSecProcessPacket ( 1045 IpSb, 1046 &Head, 1047 LastHead, // need get the lasthead value for input 1048 &Packet, 1049 &Payload, 1050 &ExtHdrsLen, 1051 EfiIPsecInBound, 1052 NULL 1053 ); 1054 1055 if (EFI_ERROR (Status)) { 1056 goto Restart; 1057 } 1058 1059 // 1060 // If the packet is protected by IPsec Tunnel Mode, Check the Inner Ip Packet. 1061 // 1062 ZeroMem (&ZeroHead, sizeof (EFI_IP6_HEADER)); 1063 if (0 == CompareMem (Head, &ZeroHead, sizeof (EFI_IP6_HEADER))) { 1064 Status = Ip6PreProcessPacket ( 1065 IpSb, 1066 &Packet, 1067 Flag, 1068 &Payload, 1069 &LastHead, 1070 &ExtHdrsLen, 1071 &UnFragmentLen, 1072 &Fragmented, 1073 &Head 1074 ); 1075 if (EFI_ERROR (Status)) { 1076 goto Restart; 1077 } 1078 } 1079 1080 // 1081 // Check the Packet again. 1082 // 1083 if (Packet == NULL) { 1084 goto Restart; 1085 } 1086 1087 // 1088 // Packet may have been changed. The ownership of the packet 1089 // is transfered to the packet process logic. 1090 // 1091 Head = Packet->Ip.Ip6; 1092 IP6_GET_CLIP_INFO (Packet)->Status = EFI_SUCCESS; 1093 1094 switch (*LastHead) { 1095 case IP6_ICMP: 1096 Ip6IcmpHandle (IpSb, Head, Packet); 1097 break; 1098 default: 1099 Ip6Demultiplex (IpSb, Head, Packet); 1100 } 1101 1102 Packet = NULL; 1103 1104 // 1105 // Dispatch the DPCs queued by the NotifyFunction of the rx token's events 1106 // which are signaled with received data. 1107 // 1108 DispatchDpc (); 1109 1110 Restart: 1111 if (Payload != NULL) { 1112 FreePool (Payload); 1113 } 1114 1115 Ip6ReceiveFrame (Ip6AcceptFrame, IpSb); 1116 1117 Drop: 1118 if (Packet != NULL) { 1119 NetbufFree (Packet); 1120 } 1121 1122 return ; 1123 } 1124 1125 /** 1126 Initialize an already allocated assemble table. This is generally 1127 the assemble table embedded in the IP6 service instance. 1128 1129 @param[in, out] Table The assemble table to initialize. 1130 1131 **/ 1132 VOID 1133 Ip6CreateAssembleTable ( 1134 IN OUT IP6_ASSEMBLE_TABLE *Table 1135 ) 1136 { 1137 UINT32 Index; 1138 1139 for (Index = 0; Index < IP6_ASSEMLE_HASH_SIZE; Index++) { 1140 InitializeListHead (&Table->Bucket[Index]); 1141 } 1142 } 1143 1144 /** 1145 Clean up the assemble table by removing all of the fragments 1146 and assemble entries. 1147 1148 @param[in, out] Table The assemble table to clean up. 1149 1150 **/ 1151 VOID 1152 Ip6CleanAssembleTable ( 1153 IN OUT IP6_ASSEMBLE_TABLE *Table 1154 ) 1155 { 1156 LIST_ENTRY *Entry; 1157 LIST_ENTRY *Next; 1158 IP6_ASSEMBLE_ENTRY *Assemble; 1159 UINT32 Index; 1160 1161 for (Index = 0; Index < IP6_ASSEMLE_HASH_SIZE; Index++) { 1162 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Table->Bucket[Index]) { 1163 Assemble = NET_LIST_USER_STRUCT (Entry, IP6_ASSEMBLE_ENTRY, Link); 1164 1165 RemoveEntryList (Entry); 1166 Ip6FreeAssembleEntry (Assemble); 1167 } 1168 } 1169 } 1170 1171 1172 /** 1173 The signal handle of IP6's recycle event. It is called back 1174 when the upper layer releases the packet. 1175 1176 @param[in] Event The IP6's recycle event. 1177 @param[in] Context The context of the handle, which is a IP6_RXDATA_WRAP. 1178 1179 **/ 1180 VOID 1181 EFIAPI 1182 Ip6OnRecyclePacket ( 1183 IN EFI_EVENT Event, 1184 IN VOID *Context 1185 ) 1186 { 1187 IP6_RXDATA_WRAP *Wrap; 1188 1189 Wrap = (IP6_RXDATA_WRAP *) Context; 1190 1191 EfiAcquireLockOrFail (&Wrap->IpInstance->RecycleLock); 1192 RemoveEntryList (&Wrap->Link); 1193 EfiReleaseLock (&Wrap->IpInstance->RecycleLock); 1194 1195 ASSERT (!NET_BUF_SHARED (Wrap->Packet)); 1196 NetbufFree (Wrap->Packet); 1197 1198 gBS->CloseEvent (Wrap->RxData.RecycleSignal); 1199 FreePool (Wrap); 1200 } 1201 1202 /** 1203 Wrap the received packet to a IP6_RXDATA_WRAP, which will be 1204 delivered to the upper layer. Each IP6 child that accepts the 1205 packet will get a not-shared copy of the packet which is wrapped 1206 in the IP6_RXDATA_WRAP. The IP6_RXDATA_WRAP->RxData is passed 1207 to the upper layer. The upper layer will signal the recycle event in 1208 it when it is done with the packet. 1209 1210 @param[in] IpInstance The IP6 child to receive the packet. 1211 @param[in] Packet The packet to deliver up. 1212 1213 @return NULL if it failed to wrap the packet; otherwise, the wrapper. 1214 1215 **/ 1216 IP6_RXDATA_WRAP * 1217 Ip6WrapRxData ( 1218 IN IP6_PROTOCOL *IpInstance, 1219 IN NET_BUF *Packet 1220 ) 1221 { 1222 IP6_RXDATA_WRAP *Wrap; 1223 EFI_IP6_RECEIVE_DATA *RxData; 1224 EFI_STATUS Status; 1225 1226 Wrap = AllocatePool (IP6_RXDATA_WRAP_SIZE (Packet->BlockOpNum)); 1227 1228 if (Wrap == NULL) { 1229 return NULL; 1230 } 1231 1232 InitializeListHead (&Wrap->Link); 1233 1234 Wrap->IpInstance = IpInstance; 1235 Wrap->Packet = Packet; 1236 RxData = &Wrap->RxData; 1237 1238 ZeroMem (&RxData->TimeStamp, sizeof (EFI_TIME)); 1239 1240 Status = gBS->CreateEvent ( 1241 EVT_NOTIFY_SIGNAL, 1242 TPL_NOTIFY, 1243 Ip6OnRecyclePacket, 1244 Wrap, 1245 &RxData->RecycleSignal 1246 ); 1247 1248 if (EFI_ERROR (Status)) { 1249 FreePool (Wrap); 1250 return NULL; 1251 } 1252 1253 ASSERT (Packet->Ip.Ip6 != NULL); 1254 1255 // 1256 // The application expects a network byte order header. 1257 // 1258 RxData->HeaderLength = sizeof (EFI_IP6_HEADER); 1259 RxData->Header = (EFI_IP6_HEADER *) Ip6NtohHead (Packet->Ip.Ip6); 1260 RxData->DataLength = Packet->TotalSize; 1261 1262 // 1263 // Build the fragment table to be delivered up. 1264 // 1265 RxData->FragmentCount = Packet->BlockOpNum; 1266 NetbufBuildExt (Packet, (NET_FRAGMENT *) RxData->FragmentTable, &RxData->FragmentCount); 1267 1268 return Wrap; 1269 } 1270 1271 /** 1272 Check whether this IP child accepts the packet. 1273 1274 @param[in] IpInstance The IP child to check. 1275 @param[in] Head The IP header of the packet. 1276 @param[in] Packet The data of the packet. 1277 1278 @retval TRUE The child wants to receive the packet. 1279 @retval FALSE The child does not want to receive the packet. 1280 1281 **/ 1282 BOOLEAN 1283 Ip6InstanceFrameAcceptable ( 1284 IN IP6_PROTOCOL *IpInstance, 1285 IN EFI_IP6_HEADER *Head, 1286 IN NET_BUF *Packet 1287 ) 1288 { 1289 IP6_ICMP_ERROR_HEAD Icmp; 1290 EFI_IP6_CONFIG_DATA *Config; 1291 IP6_CLIP_INFO *Info; 1292 UINT8 *Proto; 1293 UINT32 Index; 1294 UINT8 *ExtHdrs; 1295 UINT16 ErrMsgPayloadLen; 1296 UINT8 *ErrMsgPayload; 1297 1298 Config = &IpInstance->ConfigData; 1299 Proto = NULL; 1300 1301 // 1302 // Dirty trick for the Tiano UEFI network stack implmentation. If 1303 // ReceiveTimeout == -1, the receive of the packet for this instance 1304 // is disabled. The UEFI spec don't have such captibility. We add 1305 // this to improve the performance because IP will make a copy of 1306 // the received packet for each accepting instance. Some IP instances 1307 // used by UDP/TCP only send packets, they don't wants to receive. 1308 // 1309 if (Config->ReceiveTimeout == (UINT32)(-1)) { 1310 return FALSE; 1311 } 1312 1313 if (Config->AcceptPromiscuous) { 1314 return TRUE; 1315 } 1316 1317 // 1318 // Check whether the protocol is acceptable. 1319 // 1320 ExtHdrs = NetbufGetByte (Packet, 0, NULL); 1321 1322 if (!Ip6IsExtsValid ( 1323 IpInstance->Service, 1324 Packet, 1325 &Head->NextHeader, 1326 ExtHdrs, 1327 (UINT32) Head->PayloadLength, 1328 TRUE, 1329 NULL, 1330 &Proto, 1331 NULL, 1332 NULL, 1333 NULL 1334 )) { 1335 return FALSE; 1336 } 1337 1338 // 1339 // The upper layer driver may want to receive the ICMPv6 error packet 1340 // invoked by its packet, like UDP. 1341 // 1342 if ((*Proto == IP6_ICMP) && (!Config->AcceptAnyProtocol) && (*Proto != Config->DefaultProtocol)) { 1343 NetbufCopy (Packet, 0, sizeof (Icmp), (UINT8 *) &Icmp); 1344 1345 if (Icmp.Head.Type <= ICMP_V6_ERROR_MAX) { 1346 if (!Config->AcceptIcmpErrors) { 1347 return FALSE; 1348 } 1349 1350 // 1351 // Get the protocol of the invoking packet of ICMPv6 error packet. 1352 // 1353 ErrMsgPayloadLen = NTOHS (Icmp.IpHead.PayloadLength); 1354 ErrMsgPayload = NetbufGetByte (Packet, sizeof (Icmp), NULL); 1355 1356 if (!Ip6IsExtsValid ( 1357 NULL, 1358 NULL, 1359 &Icmp.IpHead.NextHeader, 1360 ErrMsgPayload, 1361 ErrMsgPayloadLen, 1362 TRUE, 1363 NULL, 1364 &Proto, 1365 NULL, 1366 NULL, 1367 NULL 1368 )) { 1369 return FALSE; 1370 } 1371 } 1372 } 1373 1374 // 1375 // Match the protocol 1376 // 1377 if (!Config->AcceptAnyProtocol && (*Proto != Config->DefaultProtocol)) { 1378 return FALSE; 1379 } 1380 1381 // 1382 // Check for broadcast, the caller has computed the packet's 1383 // cast type for this child's interface. 1384 // 1385 Info = IP6_GET_CLIP_INFO (Packet); 1386 1387 // 1388 // If it is a multicast packet, check whether we are in the group. 1389 // 1390 if (Info->CastType == Ip6Multicast) { 1391 // 1392 // Receive the multicast if the instance wants to receive all packets. 1393 // 1394 if (NetIp6IsUnspecifiedAddr (&IpInstance->ConfigData.StationAddress)) { 1395 return TRUE; 1396 } 1397 1398 for (Index = 0; Index < IpInstance->GroupCount; Index++) { 1399 if (EFI_IP6_EQUAL (IpInstance->GroupList + Index, &Head->DestinationAddress)) { 1400 break; 1401 } 1402 } 1403 1404 return (BOOLEAN)(Index < IpInstance->GroupCount); 1405 } 1406 1407 return TRUE; 1408 } 1409 1410 /** 1411 Enqueue a shared copy of the packet to the IP6 child if the 1412 packet is acceptable to it. Here the data of the packet is 1413 shared, but the net buffer isn't. 1414 1415 @param IpInstance The IP6 child to enqueue the packet to. 1416 @param Head The IP header of the received packet. 1417 @param Packet The data of the received packet. 1418 1419 @retval EFI_NOT_STARTED The IP child hasn't been configured. 1420 @retval EFI_INVALID_PARAMETER The child doesn't want to receive the packet. 1421 @retval EFI_OUT_OF_RESOURCES Failed to allocate some resources 1422 @retval EFI_SUCCESS A shared copy the packet is enqueued to the child. 1423 1424 **/ 1425 EFI_STATUS 1426 Ip6InstanceEnquePacket ( 1427 IN IP6_PROTOCOL *IpInstance, 1428 IN EFI_IP6_HEADER *Head, 1429 IN NET_BUF *Packet 1430 ) 1431 { 1432 IP6_CLIP_INFO *Info; 1433 NET_BUF *Clone; 1434 1435 // 1436 // Check whether the packet is acceptable to this instance. 1437 // 1438 if (IpInstance->State != IP6_STATE_CONFIGED) { 1439 return EFI_NOT_STARTED; 1440 } 1441 1442 if (!Ip6InstanceFrameAcceptable (IpInstance, Head, Packet)) { 1443 return EFI_INVALID_PARAMETER; 1444 } 1445 1446 // 1447 // Enque a shared copy of the packet. 1448 // 1449 Clone = NetbufClone (Packet); 1450 1451 if (Clone == NULL) { 1452 return EFI_OUT_OF_RESOURCES; 1453 } 1454 1455 // 1456 // Set the receive time out for the assembled packet. If it expires, 1457 // packet will be removed from the queue. 1458 // 1459 Info = IP6_GET_CLIP_INFO (Clone); 1460 Info->Life = IP6_US_TO_SEC (IpInstance->ConfigData.ReceiveTimeout); 1461 1462 InsertTailList (&IpInstance->Received, &Clone->List); 1463 return EFI_SUCCESS; 1464 } 1465 1466 /** 1467 Deliver the received packets to the upper layer if there are both received 1468 requests and enqueued packets. If the enqueued packet is shared, it will 1469 duplicate it to a non-shared packet, release the shared packet, then 1470 deliver the non-shared packet up. 1471 1472 @param[in] IpInstance The IP child to deliver the packet up. 1473 1474 @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to deliver the 1475 packets. 1476 @retval EFI_SUCCESS All the enqueued packets that can be delivered 1477 are delivered up. 1478 1479 **/ 1480 EFI_STATUS 1481 Ip6InstanceDeliverPacket ( 1482 IN IP6_PROTOCOL *IpInstance 1483 ) 1484 { 1485 EFI_IP6_COMPLETION_TOKEN *Token; 1486 IP6_RXDATA_WRAP *Wrap; 1487 NET_BUF *Packet; 1488 NET_BUF *Dup; 1489 UINT8 *Head; 1490 1491 // 1492 // Deliver a packet if there are both a packet and a receive token. 1493 // 1494 while (!IsListEmpty (&IpInstance->Received) && !NetMapIsEmpty (&IpInstance->RxTokens)) { 1495 1496 Packet = NET_LIST_HEAD (&IpInstance->Received, NET_BUF, List); 1497 1498 if (!NET_BUF_SHARED (Packet)) { 1499 // 1500 // If this is the only instance that wants the packet, wrap it up. 1501 // 1502 Wrap = Ip6WrapRxData (IpInstance, Packet); 1503 1504 if (Wrap == NULL) { 1505 return EFI_OUT_OF_RESOURCES; 1506 } 1507 1508 RemoveEntryList (&Packet->List); 1509 1510 } else { 1511 // 1512 // Create a duplicated packet if this packet is shared 1513 // 1514 Dup = NetbufDuplicate (Packet, NULL, sizeof (EFI_IP6_HEADER)); 1515 1516 if (Dup == NULL) { 1517 return EFI_OUT_OF_RESOURCES; 1518 } 1519 1520 // 1521 // Copy the IP head over. The packet to deliver up is 1522 // headless. Trim the head off after copy. The IP head 1523 // may be not continuous before the data. 1524 // 1525 Head = NetbufAllocSpace (Dup, sizeof (EFI_IP6_HEADER), NET_BUF_HEAD); 1526 ASSERT (Head != NULL); 1527 Dup->Ip.Ip6 = (EFI_IP6_HEADER *) Head; 1528 1529 CopyMem (Head, Packet->Ip.Ip6, sizeof (EFI_IP6_HEADER)); 1530 NetbufTrim (Dup, sizeof (EFI_IP6_HEADER), TRUE); 1531 1532 Wrap = Ip6WrapRxData (IpInstance, Dup); 1533 1534 if (Wrap == NULL) { 1535 NetbufFree (Dup); 1536 return EFI_OUT_OF_RESOURCES; 1537 } 1538 1539 RemoveEntryList (&Packet->List); 1540 NetbufFree (Packet); 1541 1542 Packet = Dup; 1543 } 1544 1545 // 1546 // Insert it into the delivered packet, then get a user's 1547 // receive token, pass the wrapped packet up. 1548 // 1549 EfiAcquireLockOrFail (&IpInstance->RecycleLock); 1550 InsertHeadList (&IpInstance->Delivered, &Wrap->Link); 1551 EfiReleaseLock (&IpInstance->RecycleLock); 1552 1553 Token = NetMapRemoveHead (&IpInstance->RxTokens, NULL); 1554 Token->Status = IP6_GET_CLIP_INFO (Packet)->Status; 1555 Token->Packet.RxData = &Wrap->RxData; 1556 1557 gBS->SignalEvent (Token->Event); 1558 } 1559 1560 return EFI_SUCCESS; 1561 } 1562 1563 /** 1564 Enqueue a received packet to all the IP children that share 1565 the same interface. 1566 1567 @param[in] IpSb The IP6 service instance that receive the packet. 1568 @param[in] Head The header of the received packet. 1569 @param[in] Packet The data of the received packet. 1570 @param[in] IpIf The interface to enqueue the packet to. 1571 1572 @return The number of the IP6 children that accepts the packet. 1573 1574 **/ 1575 INTN 1576 Ip6InterfaceEnquePacket ( 1577 IN IP6_SERVICE *IpSb, 1578 IN EFI_IP6_HEADER *Head, 1579 IN NET_BUF *Packet, 1580 IN IP6_INTERFACE *IpIf 1581 ) 1582 { 1583 IP6_PROTOCOL *IpInstance; 1584 IP6_CLIP_INFO *Info; 1585 LIST_ENTRY *Entry; 1586 INTN Enqueued; 1587 INTN LocalType; 1588 INTN SavedType; 1589 1590 // 1591 // First, check that the packet is acceptable to this interface 1592 // and find the local cast type for the interface. 1593 // 1594 LocalType = 0; 1595 Info = IP6_GET_CLIP_INFO (Packet); 1596 1597 if (IpIf->PromiscRecv) { 1598 LocalType = Ip6Promiscuous; 1599 } else { 1600 LocalType = Info->CastType; 1601 } 1602 1603 // 1604 // Iterate through the ip instances on the interface, enqueue 1605 // the packet if filter passed. Save the original cast type, 1606 // and pass the local cast type to the IP children on the 1607 // interface. The global cast type will be restored later. 1608 // 1609 SavedType = Info->CastType; 1610 Info->CastType = (UINT32) LocalType; 1611 1612 Enqueued = 0; 1613 1614 NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) { 1615 IpInstance = NET_LIST_USER_STRUCT (Entry, IP6_PROTOCOL, AddrLink); 1616 NET_CHECK_SIGNATURE (IpInstance, IP6_PROTOCOL_SIGNATURE); 1617 1618 if (Ip6InstanceEnquePacket (IpInstance, Head, Packet) == EFI_SUCCESS) { 1619 Enqueued++; 1620 } 1621 } 1622 1623 Info->CastType = (UINT32) SavedType; 1624 return Enqueued; 1625 } 1626 1627 /** 1628 Deliver the packet for each IP6 child on the interface. 1629 1630 @param[in] IpSb The IP6 service instance that received the packet. 1631 @param[in] IpIf The IP6 interface to deliver the packet. 1632 1633 **/ 1634 VOID 1635 Ip6InterfaceDeliverPacket ( 1636 IN IP6_SERVICE *IpSb, 1637 IN IP6_INTERFACE *IpIf 1638 ) 1639 { 1640 IP6_PROTOCOL *IpInstance; 1641 LIST_ENTRY *Entry; 1642 1643 NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) { 1644 IpInstance = NET_LIST_USER_STRUCT (Entry, IP6_PROTOCOL, AddrLink); 1645 Ip6InstanceDeliverPacket (IpInstance); 1646 } 1647 } 1648 1649 /** 1650 De-multiplex the packet. the packet delivery is processed in two 1651 passes. The first pass will enqueue a shared copy of the packet 1652 to each IP6 child that accepts the packet. The second pass will 1653 deliver a non-shared copy of the packet to each IP6 child that 1654 has pending receive requests. Data is copied if more than one 1655 child wants to consume the packet, because each IP child needs 1656 its own copy of the packet to make changes. 1657 1658 @param[in] IpSb The IP6 service instance that received the packet. 1659 @param[in] Head The header of the received packet. 1660 @param[in] Packet The data of the received packet. 1661 1662 @retval EFI_NOT_FOUND No IP child accepts the packet. 1663 @retval EFI_SUCCESS The packet is enqueued or delivered to some IP 1664 children. 1665 1666 **/ 1667 EFI_STATUS 1668 Ip6Demultiplex ( 1669 IN IP6_SERVICE *IpSb, 1670 IN EFI_IP6_HEADER *Head, 1671 IN NET_BUF *Packet 1672 ) 1673 { 1674 1675 LIST_ENTRY *Entry; 1676 IP6_INTERFACE *IpIf; 1677 INTN Enqueued; 1678 1679 // 1680 // Two pass delivery: first, enque a shared copy of the packet 1681 // to each instance that accept the packet. 1682 // 1683 Enqueued = 0; 1684 1685 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) { 1686 IpIf = NET_LIST_USER_STRUCT (Entry, IP6_INTERFACE, Link); 1687 1688 if (IpIf->Configured) { 1689 Enqueued += Ip6InterfaceEnquePacket (IpSb, Head, Packet, IpIf); 1690 } 1691 } 1692 1693 // 1694 // Second: deliver a duplicate of the packet to each instance. 1695 // Release the local reference first, so that the last instance 1696 // getting the packet will not copy the data. 1697 // 1698 NetbufFree (Packet); 1699 Packet = NULL; 1700 1701 if (Enqueued == 0) { 1702 return EFI_NOT_FOUND; 1703 } 1704 1705 NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) { 1706 IpIf = NET_LIST_USER_STRUCT (Entry, IP6_INTERFACE, Link); 1707 1708 if (IpIf->Configured) { 1709 Ip6InterfaceDeliverPacket (IpSb, IpIf); 1710 } 1711 } 1712 1713 return EFI_SUCCESS; 1714 } 1715 1716 /** 1717 Decrease the life of the transmitted packets. If it is 1718 decreased to zero, cancel the packet. This function is 1719 called by Ip6packetTimerTicking that provides timeout for both the 1720 received-but-not-delivered and transmitted-but-not-recycle 1721 packets. 1722 1723 @param[in] Map The IP6 child's transmit map. 1724 @param[in] Item Current transmitted packet. 1725 @param[in] Context Not used. 1726 1727 @retval EFI_SUCCESS Always returns EFI_SUCCESS. 1728 1729 **/ 1730 EFI_STATUS 1731 EFIAPI 1732 Ip6SentPacketTicking ( 1733 IN NET_MAP *Map, 1734 IN NET_MAP_ITEM *Item, 1735 IN VOID *Context 1736 ) 1737 { 1738 IP6_TXTOKEN_WRAP *Wrap; 1739 1740 Wrap = (IP6_TXTOKEN_WRAP *) Item->Value; 1741 ASSERT (Wrap != NULL); 1742 1743 if ((Wrap->Life > 0) && (--Wrap->Life == 0)) { 1744 Ip6CancelPacket (Wrap->IpInstance->Interface, Wrap->Packet, EFI_ABORTED); 1745 } 1746 1747 return EFI_SUCCESS; 1748 } 1749 1750 /** 1751 Timeout the fragments, and the enqueued, and transmitted packets. 1752 1753 @param[in] IpSb The IP6 service instance to timeout. 1754 1755 **/ 1756 VOID 1757 Ip6PacketTimerTicking ( 1758 IN IP6_SERVICE *IpSb 1759 ) 1760 { 1761 LIST_ENTRY *InstanceEntry; 1762 LIST_ENTRY *Entry; 1763 LIST_ENTRY *Next; 1764 IP6_PROTOCOL *IpInstance; 1765 IP6_ASSEMBLE_ENTRY *Assemble; 1766 NET_BUF *Packet; 1767 IP6_CLIP_INFO *Info; 1768 UINT32 Index; 1769 1770 // 1771 // First, time out the fragments. The packet's life is counting down 1772 // once the first-arriving fragment of that packet was received. 1773 // 1774 for (Index = 0; Index < IP6_ASSEMLE_HASH_SIZE; Index++) { 1775 NET_LIST_FOR_EACH_SAFE (Entry, Next, &(IpSb->Assemble.Bucket[Index])) { 1776 Assemble = NET_LIST_USER_STRUCT (Entry, IP6_ASSEMBLE_ENTRY, Link); 1777 1778 if ((Assemble->Life > 0) && (--Assemble->Life == 0)) { 1779 // 1780 // If the first fragment (the one with a Fragment Offset of zero) 1781 // has been received, an ICMP Time Exceeded - Fragment Reassembly 1782 // Time Exceeded message should be sent to the source of that fragment. 1783 // 1784 if ((Assemble->Packet != NULL) && 1785 !IP6_IS_MULTICAST (&Assemble->Head->DestinationAddress)) { 1786 Ip6SendIcmpError ( 1787 IpSb, 1788 Assemble->Packet, 1789 NULL, 1790 &Assemble->Head->SourceAddress, 1791 ICMP_V6_TIME_EXCEEDED, 1792 ICMP_V6_TIMEOUT_REASSEMBLE, 1793 NULL 1794 ); 1795 } 1796 1797 // 1798 // If reassembly of a packet is not completed within 60 seconds of 1799 // the reception of the first-arriving fragment of that packet, the 1800 // reassembly must be abandoned and all the fragments that have been 1801 // received for that packet must be discarded. 1802 // 1803 RemoveEntryList (Entry); 1804 Ip6FreeAssembleEntry (Assemble); 1805 } 1806 } 1807 } 1808 1809 NET_LIST_FOR_EACH (InstanceEntry, &IpSb->Children) { 1810 IpInstance = NET_LIST_USER_STRUCT (InstanceEntry, IP6_PROTOCOL, Link); 1811 1812 // 1813 // Second, time out the assembled packets enqueued on each IP child. 1814 // 1815 NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpInstance->Received) { 1816 Packet = NET_LIST_USER_STRUCT (Entry, NET_BUF, List); 1817 Info = IP6_GET_CLIP_INFO (Packet); 1818 1819 if ((Info->Life > 0) && (--Info->Life == 0)) { 1820 RemoveEntryList (Entry); 1821 NetbufFree (Packet); 1822 } 1823 } 1824 1825 // 1826 // Third: time out the transmitted packets. 1827 // 1828 NetMapIterate (&IpInstance->TxTokens, Ip6SentPacketTicking, NULL); 1829 } 1830 } 1831 1832