Home | History | Annotate | Download | only in bfd
      1 /* BFD back-end for Renesas H8/300 COFF binaries.
      2    Copyright (C) 1990-2016 Free Software Foundation, Inc.
      3    Written by Steve Chamberlain, <sac (at) cygnus.com>.
      4 
      5    This file is part of BFD, the Binary File Descriptor library.
      6 
      7    This program is free software; you can redistribute it and/or modify
      8    it under the terms of the GNU General Public License as published by
      9    the Free Software Foundation; either version 3 of the License, or
     10    (at your option) any later version.
     11 
     12    This program is distributed in the hope that it will be useful,
     13    but WITHOUT ANY WARRANTY; without even the implied warranty of
     14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15    GNU General Public License for more details.
     16 
     17    You should have received a copy of the GNU General Public License
     18    along with this program; if not, write to the Free Software
     19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     20    MA 02110-1301, USA.  */
     21 
     22 #include "sysdep.h"
     23 #include "bfd.h"
     24 #include "libbfd.h"
     25 #include "bfdlink.h"
     26 #include "genlink.h"
     27 #include "coff/h8300.h"
     28 #include "coff/internal.h"
     29 #include "libcoff.h"
     30 #include "libiberty.h"
     31 
     32 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
     33 
     34 /* We derive a hash table from the basic BFD hash table to
     35    hold entries in the function vector.  Aside from the
     36    info stored by the basic hash table, we need the offset
     37    of a particular entry within the hash table as well as
     38    the offset where we'll add the next entry.  */
     39 
     40 struct funcvec_hash_entry
     41   {
     42     /* The basic hash table entry.  */
     43     struct bfd_hash_entry root;
     44 
     45     /* The offset within the vectors section where
     46        this entry lives.  */
     47     bfd_vma offset;
     48   };
     49 
     50 struct funcvec_hash_table
     51   {
     52     /* The basic hash table.  */
     53     struct bfd_hash_table root;
     54 
     55     bfd *abfd;
     56 
     57     /* Offset at which we'll add the next entry.  */
     58     unsigned int offset;
     59   };
     60 
     61 
     62 /* To lookup a value in the function vector hash table.  */
     63 #define funcvec_hash_lookup(table, string, create, copy) \
     64   ((struct funcvec_hash_entry *) \
     65    bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
     66 
     67 /* The derived h8300 COFF linker table.  Note it's derived from
     68    the generic linker hash table, not the COFF backend linker hash
     69    table!  We use this to attach additional data structures we
     70    need while linking on the h8300.  */
     71 struct h8300_coff_link_hash_table {
     72   /* The main hash table.  */
     73   struct generic_link_hash_table root;
     74 
     75   /* Section for the vectors table.  This gets attached to a
     76      random input bfd, we keep it here for easy access.  */
     77   asection *vectors_sec;
     78 
     79   /* Hash table of the functions we need to enter into the function
     80      vector.  */
     81   struct funcvec_hash_table *funcvec_hash_table;
     82 };
     83 
     84 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
     85 
     86 /* Get the H8/300 COFF linker hash table from a link_info structure.  */
     87 
     88 #define h8300_coff_hash_table(p) \
     89   ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
     90 
     91 /* Initialize fields within a funcvec hash table entry.  Called whenever
     92    a new entry is added to the funcvec hash table.  */
     93 
     94 static struct bfd_hash_entry *
     95 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
     96 		      struct bfd_hash_table *gen_table,
     97 		      const char *string)
     98 {
     99   struct funcvec_hash_entry *ret;
    100   struct funcvec_hash_table *table;
    101 
    102   ret = (struct funcvec_hash_entry *) entry;
    103   table = (struct funcvec_hash_table *) gen_table;
    104 
    105   /* Allocate the structure if it has not already been allocated by a
    106      subclass.  */
    107   if (ret == NULL)
    108     ret = ((struct funcvec_hash_entry *)
    109 	   bfd_hash_allocate (gen_table,
    110 			      sizeof (struct funcvec_hash_entry)));
    111   if (ret == NULL)
    112     return NULL;
    113 
    114   /* Call the allocation method of the superclass.  */
    115   ret = ((struct funcvec_hash_entry *)
    116 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
    117 
    118   if (ret == NULL)
    119     return NULL;
    120 
    121   /* Note where this entry will reside in the function vector table.  */
    122   ret->offset = table->offset;
    123 
    124   /* Bump the offset at which we store entries in the function
    125      vector.  We'd like to bump up the size of the vectors section,
    126      but it's not easily available here.  */
    127  switch (bfd_get_mach (table->abfd))
    128    {
    129    case bfd_mach_h8300:
    130    case bfd_mach_h8300hn:
    131    case bfd_mach_h8300sn:
    132      table->offset += 2;
    133      break;
    134    case bfd_mach_h8300h:
    135    case bfd_mach_h8300s:
    136      table->offset += 4;
    137      break;
    138    default:
    139      return NULL;
    140    }
    141 
    142   /* Everything went OK.  */
    143   return (struct bfd_hash_entry *) ret;
    144 }
    145 
    146 /* Initialize the function vector hash table.  */
    147 
    148 static bfd_boolean
    149 funcvec_hash_table_init (struct funcvec_hash_table *table,
    150 			 bfd *abfd,
    151 			 struct bfd_hash_entry *(*newfunc)
    152 			   (struct bfd_hash_entry *,
    153 			    struct bfd_hash_table *,
    154 			    const char *),
    155 			 unsigned int entsize)
    156 {
    157   /* Initialize our local fields, then call the generic initialization
    158      routine.  */
    159   table->offset = 0;
    160   table->abfd = abfd;
    161   return (bfd_hash_table_init (&table->root, newfunc, entsize));
    162 }
    163 
    164 /* Create the derived linker hash table.  We use a derived hash table
    165    basically to hold "static" information during an H8/300 coff link
    166    without using static variables.  */
    167 
    168 static struct bfd_link_hash_table *
    169 h8300_coff_link_hash_table_create (bfd *abfd)
    170 {
    171   struct h8300_coff_link_hash_table *ret;
    172   bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
    173 
    174   ret = (struct h8300_coff_link_hash_table *) bfd_zmalloc (amt);
    175   if (ret == NULL)
    176     return NULL;
    177   if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
    178 				  _bfd_generic_link_hash_newfunc,
    179 				  sizeof (struct generic_link_hash_entry)))
    180     {
    181       free (ret);
    182       return NULL;
    183     }
    184 
    185   return &ret->root.root;
    186 }
    187 
    188 /* Special handling for H8/300 relocs.
    189    We only come here for pcrel stuff and return normally if not an -r link.
    190    When doing -r, we can't do any arithmetic for the pcrel stuff, because
    191    the code in reloc.c assumes that we can manipulate the targets of
    192    the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
    193    which means that the gap after the instruction may not be enough to
    194    contain the offset required for the branch, so we have to use only
    195    the addend until the final link.  */
    196 
    197 static bfd_reloc_status_type
    198 special (bfd *      abfd ATTRIBUTE_UNUSED,
    199 	 arelent *  reloc_entry ATTRIBUTE_UNUSED,
    200 	 asymbol *  symbol ATTRIBUTE_UNUSED,
    201 	 void *     data ATTRIBUTE_UNUSED,
    202 	 asection * input_section ATTRIBUTE_UNUSED,
    203 	 bfd *      output_bfd,
    204 	 char **    error_message ATTRIBUTE_UNUSED)
    205 {
    206   if (output_bfd == (bfd *) NULL)
    207     return bfd_reloc_continue;
    208 
    209   /* Adjust the reloc address to that in the output section.  */
    210   reloc_entry->address += input_section->output_offset;
    211   return bfd_reloc_ok;
    212 }
    213 
    214 static reloc_howto_type howto_table[] =
    215 {
    216   HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
    217   HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    218   HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
    219   HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
    220   HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
    221   HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
    222   HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    223   HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
    224   HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    225   HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
    226   HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
    227   HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
    228   HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
    229   HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    230 
    231   /* An indirect reference to a function.  This causes the function's address
    232      to be added to the function vector in lo-mem and puts the address of
    233      the function vector's entry in the jsr instruction.  */
    234   HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
    235 
    236   /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
    237      branch is turned into an 8-bit pc-relative branch.  */
    238   HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
    239 
    240   HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
    241 
    242   HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
    243 
    244   HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
    245 
    246   HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
    247 };
    248 
    249 /* Turn a howto into a reloc number.  */
    250 
    251 #define SELECT_RELOC(x,howto) \
    252   { x.r_type = select_reloc (howto); }
    253 
    254 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
    255 				   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
    256 #define H8300 1			/* Customize coffcode.h  */
    257 #define __A_MAGIC_SET__
    258 
    259 /* Code to swap in the reloc.  */
    260 #define SWAP_IN_RELOC_OFFSET	H_GET_32
    261 #define SWAP_OUT_RELOC_OFFSET	H_PUT_32
    262 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
    263   dst->r_stuff[0] = 'S'; \
    264   dst->r_stuff[1] = 'C';
    265 
    266 static int
    267 select_reloc (reloc_howto_type *howto)
    268 {
    269   return howto->type;
    270 }
    271 
    272 /* Code to turn a r_type into a howto ptr, uses the above howto table.  */
    273 
    274 static void
    275 rtype2howto (arelent *internal, struct internal_reloc *dst)
    276 {
    277   switch (dst->r_type)
    278     {
    279     case R_RELBYTE:
    280       internal->howto = howto_table + 0;
    281       break;
    282     case R_RELWORD:
    283       internal->howto = howto_table + 1;
    284       break;
    285     case R_RELLONG:
    286       internal->howto = howto_table + 2;
    287       break;
    288     case R_PCRBYTE:
    289       internal->howto = howto_table + 3;
    290       break;
    291     case R_PCRWORD:
    292       internal->howto = howto_table + 4;
    293       break;
    294     case R_PCRLONG:
    295       internal->howto = howto_table + 5;
    296       break;
    297     case R_MOV16B1:
    298       internal->howto = howto_table + 6;
    299       break;
    300     case R_MOV16B2:
    301       internal->howto = howto_table + 7;
    302       break;
    303     case R_JMP1:
    304       internal->howto = howto_table + 8;
    305       break;
    306     case R_JMP2:
    307       internal->howto = howto_table + 9;
    308       break;
    309     case R_JMPL1:
    310       internal->howto = howto_table + 10;
    311       break;
    312     case R_JMPL2:
    313       internal->howto = howto_table + 11;
    314       break;
    315     case R_MOV24B1:
    316       internal->howto = howto_table + 12;
    317       break;
    318     case R_MOV24B2:
    319       internal->howto = howto_table + 13;
    320       break;
    321     case R_MEM_INDIRECT:
    322       internal->howto = howto_table + 14;
    323       break;
    324     case R_PCRWORD_B:
    325       internal->howto = howto_table + 15;
    326       break;
    327     case R_MOVL1:
    328       internal->howto = howto_table + 16;
    329       break;
    330     case R_MOVL2:
    331       internal->howto = howto_table + 17;
    332       break;
    333     case R_BCC_INV:
    334       internal->howto = howto_table + 18;
    335       break;
    336     case R_JMP_DEL:
    337       internal->howto = howto_table + 19;
    338       break;
    339     default:
    340       internal->howto = NULL;
    341       break;
    342     }
    343 }
    344 
    345 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
    346 
    347 /* Perform any necessary magic to the addend in a reloc entry.  */
    348 
    349 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
    350  cache_ptr->addend = ext_reloc.r_offset;
    351 
    352 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
    353  reloc_processing (relent, reloc, symbols, abfd, section)
    354 
    355 static void
    356 reloc_processing (arelent *relent, struct internal_reloc *reloc,
    357 		  asymbol **symbols, bfd *abfd, asection *section)
    358 {
    359   relent->address = reloc->r_vaddr;
    360   rtype2howto (relent, reloc);
    361 
    362   if (((int) reloc->r_symndx) > 0)
    363     relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
    364   else
    365     relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
    366 
    367   relent->addend = reloc->r_offset;
    368   relent->address -= section->vma;
    369 }
    370 
    371 static bfd_boolean
    372 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
    373 {
    374   asymbol **s;
    375 
    376   s = _bfd_generic_link_get_symbols (abfd);
    377   BFD_ASSERT (s != (asymbol **) NULL);
    378 
    379   /* Search all the symbols for one in INPUT_SECTION with
    380      address ADDRESS.  */
    381   while (*s)
    382     {
    383       asymbol *p = *s;
    384 
    385       if (p->section == input_section
    386 	  && (input_section->output_section->vma
    387 	      + input_section->output_offset
    388 	      + p->value) == address)
    389 	return TRUE;
    390       s++;
    391     }
    392   return FALSE;
    393 }
    394 
    395 /* If RELOC represents a relaxable instruction/reloc, change it into
    396    the relaxed reloc, notify the linker that symbol addresses
    397    have changed (bfd_perform_slip) and return how much the current
    398    section has shrunk by.
    399 
    400    FIXME: Much of this code has knowledge of the ordering of entries
    401    in the howto table.  This needs to be fixed.  */
    402 
    403 static int
    404 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
    405 			unsigned int shrink, struct bfd_link_info *link_info)
    406 {
    407   bfd_vma value;
    408   bfd_vma dot;
    409   bfd_vma gap;
    410   static asection *last_input_section = NULL;
    411   static arelent *last_reloc = NULL;
    412 
    413   /* The address of the thing to be relocated will have moved back by
    414      the size of the shrink - but we don't change reloc->address here,
    415      since we need it to know where the relocation lives in the source
    416      uncooked section.  */
    417   bfd_vma address = reloc->address - shrink;
    418 
    419   if (input_section != last_input_section)
    420     last_reloc = NULL;
    421 
    422   /* Only examine the relocs which might be relaxable.  */
    423   switch (reloc->howto->type)
    424     {
    425       /* This is the 16-/24-bit absolute branch which could become an
    426 	 8-bit pc-relative branch.  */
    427     case R_JMP1:
    428     case R_JMPL1:
    429       /* Get the address of the target of this branch.  */
    430       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    431 
    432       /* Get the address of the next instruction (not the reloc).  */
    433       dot = (input_section->output_section->vma
    434 	     + input_section->output_offset + address);
    435 
    436       /* Adjust for R_JMP1 vs R_JMPL1.  */
    437       dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
    438 
    439       /* Compute the distance from this insn to the branch target.  */
    440       gap = value - dot;
    441 
    442       /* If the distance is within -128..+128 inclusive, then we can relax
    443 	 this jump.  +128 is valid since the target will move two bytes
    444 	 closer if we do relax this branch.  */
    445       if ((int) gap >= -128 && (int) gap <= 128)
    446 	{
    447 	  bfd_byte code;
    448 
    449 	  if (!bfd_get_section_contents (abfd, input_section, & code,
    450 					 reloc->address, 1))
    451 	    break;
    452 	  code = bfd_get_8 (abfd, & code);
    453 
    454 	  /* It's possible we may be able to eliminate this branch entirely;
    455 	     if the previous instruction is a branch around this instruction,
    456 	     and there's no label at this instruction, then we can reverse
    457 	     the condition on the previous branch and eliminate this jump.
    458 
    459 	       original:			new:
    460 		 bCC lab1			bCC' lab2
    461 		 jmp lab2
    462 		lab1:				lab1:
    463 
    464 	     This saves 4 bytes instead of two, and should be relatively
    465 	     common.
    466 
    467 	     Only perform this optimisation for jumps (code 0x5a) not
    468 	     subroutine calls, as otherwise it could transform:
    469 
    470 			     mov.w   r0,r0
    471 			     beq     .L1
    472 			     jsr     @_bar
    473 		      .L1:   rts
    474 		      _bar:  rts
    475 	     into:
    476 			     mov.w   r0,r0
    477 			     bne     _bar
    478 			     rts
    479 		      _bar:  rts
    480 
    481 	     which changes the call (jsr) into a branch (bne).  */
    482 	  if (code == 0x5a
    483 	      && gap <= 126
    484 	      && last_reloc
    485 	      && last_reloc->howto->type == R_PCRBYTE)
    486 	    {
    487 	      bfd_vma last_value;
    488 	      last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
    489 						       input_section) + 1;
    490 
    491 	      if (last_value == dot + 2
    492 		  && last_reloc->address + 1 == reloc->address
    493 		  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
    494 		{
    495 		  reloc->howto = howto_table + 19;
    496 		  last_reloc->howto = howto_table + 18;
    497 		  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
    498 		  last_reloc->addend = reloc->addend;
    499 		  shrink += 4;
    500 		  bfd_perform_slip (abfd, 4, input_section, address);
    501 		  break;
    502 		}
    503 	    }
    504 
    505 	  /* Change the reloc type.  */
    506 	  reloc->howto = reloc->howto + 1;
    507 
    508 	  /* This shrinks this section by two bytes.  */
    509 	  shrink += 2;
    510 	  bfd_perform_slip (abfd, 2, input_section, address);
    511 	}
    512       break;
    513 
    514     /* This is the 16-bit pc-relative branch which could become an 8-bit
    515        pc-relative branch.  */
    516     case R_PCRWORD:
    517       /* Get the address of the target of this branch, add one to the value
    518 	 because the addend field in PCrel jumps is off by -1.  */
    519       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
    520 
    521       /* Get the address of the next instruction if we were to relax.  */
    522       dot = input_section->output_section->vma +
    523 	input_section->output_offset + address;
    524 
    525       /* Compute the distance from this insn to the branch target.  */
    526       gap = value - dot;
    527 
    528       /* If the distance is within -128..+128 inclusive, then we can relax
    529 	 this jump.  +128 is valid since the target will move two bytes
    530 	 closer if we do relax this branch.  */
    531       if ((int) gap >= -128 && (int) gap <= 128)
    532 	{
    533 	  /* Change the reloc type.  */
    534 	  reloc->howto = howto_table + 15;
    535 
    536 	  /* This shrinks this section by two bytes.  */
    537 	  shrink += 2;
    538 	  bfd_perform_slip (abfd, 2, input_section, address);
    539 	}
    540       break;
    541 
    542     /* This is a 16-bit absolute address in a mov.b insn, which can
    543        become an 8-bit absolute address if it's in the right range.  */
    544     case R_MOV16B1:
    545       /* Get the address of the data referenced by this mov.b insn.  */
    546       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    547       value = bfd_h8300_pad_address (abfd, value);
    548 
    549       /* If the address is in the top 256 bytes of the address space
    550 	 then we can relax this instruction.  */
    551       if (value >= 0xffffff00u)
    552 	{
    553 	  /* Change the reloc type.  */
    554 	  reloc->howto = reloc->howto + 1;
    555 
    556 	  /* This shrinks this section by two bytes.  */
    557 	  shrink += 2;
    558 	  bfd_perform_slip (abfd, 2, input_section, address);
    559 	}
    560       break;
    561 
    562     /* Similarly for a 24-bit absolute address in a mov.b.  Note that
    563        if we can't relax this into an 8-bit absolute, we'll fall through
    564        and try to relax it into a 16-bit absolute.  */
    565     case R_MOV24B1:
    566       /* Get the address of the data referenced by this mov.b insn.  */
    567       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    568       value = bfd_h8300_pad_address (abfd, value);
    569 
    570       if (value >= 0xffffff00u)
    571 	{
    572 	  /* Change the reloc type.  */
    573 	  reloc->howto = reloc->howto + 1;
    574 
    575 	  /* This shrinks this section by four bytes.  */
    576 	  shrink += 4;
    577 	  bfd_perform_slip (abfd, 4, input_section, address);
    578 
    579 	  /* Done with this reloc.  */
    580 	  break;
    581 	}
    582 
    583       /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
    584 	 reloc.  */
    585 
    586     /* This is a 24-/32-bit absolute address in a mov insn, which can
    587        become an 16-bit absolute address if it's in the right range.  */
    588     case R_MOVL1:
    589       /* Get the address of the data referenced by this mov insn.  */
    590       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    591       value = bfd_h8300_pad_address (abfd, value);
    592 
    593       /* If the address is a sign-extended 16-bit value then we can
    594          relax this instruction.  */
    595       if (value <= 0x7fff || value >= 0xffff8000u)
    596 	{
    597 	  /* Change the reloc type.  */
    598 	  reloc->howto = howto_table + 17;
    599 
    600 	  /* This shrinks this section by two bytes.  */
    601 	  shrink += 2;
    602 	  bfd_perform_slip (abfd, 2, input_section, address);
    603 	}
    604       break;
    605 
    606       /* No other reloc types represent relaxing opportunities.  */
    607     default:
    608       break;
    609     }
    610 
    611   last_reloc = reloc;
    612   last_input_section = input_section;
    613   return shrink;
    614 }
    615 
    616 /* Handle relocations for the H8/300, including relocs for relaxed
    617    instructions.
    618 
    619    FIXME: Not all relocations check for overflow!  */
    620 
    621 static void
    622 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
    623 			   struct bfd_link_order *link_order, arelent *reloc,
    624 			   bfd_byte *data, unsigned int *src_ptr,
    625 			   unsigned int *dst_ptr)
    626 {
    627   unsigned int src_address = *src_ptr;
    628   unsigned int dst_address = *dst_ptr;
    629   asection *input_section = link_order->u.indirect.section;
    630   bfd_vma value;
    631   bfd_vma dot;
    632   int gap, tmp;
    633   unsigned char temp_code;
    634 
    635   switch (reloc->howto->type)
    636     {
    637     /* Generic 8-bit pc-relative relocation.  */
    638     case R_PCRBYTE:
    639       /* Get the address of the target of this branch.  */
    640       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    641 
    642       dot = (input_section->output_offset
    643 	     + dst_address
    644 	     + link_order->u.indirect.section->output_section->vma);
    645 
    646       gap = value - dot;
    647 
    648       /* Sanity check.  */
    649       if (gap < -128 || gap > 126)
    650 	(*link_info->callbacks->reloc_overflow)
    651 	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
    652 	   reloc->howto->name, reloc->addend, input_section->owner,
    653 	   input_section, reloc->address);
    654 
    655       /* Everything looks OK.  Apply the relocation and update the
    656 	 src/dst address appropriately.  */
    657       bfd_put_8 (abfd, gap, data + dst_address);
    658       dst_address++;
    659       src_address++;
    660 
    661       /* All done.  */
    662       break;
    663 
    664     /* Generic 16-bit pc-relative relocation.  */
    665     case R_PCRWORD:
    666       /* Get the address of the target of this branch.  */
    667       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    668 
    669       /* Get the address of the instruction (not the reloc).  */
    670       dot = (input_section->output_offset
    671 	     + dst_address
    672 	     + link_order->u.indirect.section->output_section->vma + 1);
    673 
    674       gap = value - dot;
    675 
    676       /* Sanity check.  */
    677       if (gap > 32766 || gap < -32768)
    678 	(*link_info->callbacks->reloc_overflow)
    679 	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
    680 	   reloc->howto->name, reloc->addend, input_section->owner,
    681 	   input_section, reloc->address);
    682 
    683       /* Everything looks OK.  Apply the relocation and update the
    684 	 src/dst address appropriately.  */
    685       bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
    686       dst_address += 2;
    687       src_address += 2;
    688 
    689       /* All done.  */
    690       break;
    691 
    692     /* Generic 8-bit absolute relocation.  */
    693     case R_RELBYTE:
    694       /* Get the address of the object referenced by this insn.  */
    695       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    696 
    697       bfd_put_8 (abfd, value & 0xff, data + dst_address);
    698       dst_address += 1;
    699       src_address += 1;
    700 
    701       /* All done.  */
    702       break;
    703 
    704     /* Various simple 16-bit absolute relocations.  */
    705     case R_MOV16B1:
    706     case R_JMP1:
    707     case R_RELWORD:
    708       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    709       bfd_put_16 (abfd, value, data + dst_address);
    710       dst_address += 2;
    711       src_address += 2;
    712       break;
    713 
    714     /* Various simple 24-/32-bit absolute relocations.  */
    715     case R_MOV24B1:
    716     case R_MOVL1:
    717     case R_RELLONG:
    718       /* Get the address of the target of this branch.  */
    719       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    720       bfd_put_32 (abfd, value, data + dst_address);
    721       dst_address += 4;
    722       src_address += 4;
    723       break;
    724 
    725     /* Another 24-/32-bit absolute relocation.  */
    726     case R_JMPL1:
    727       /* Get the address of the target of this branch.  */
    728       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    729 
    730       value = ((value & 0x00ffffff)
    731 	       | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
    732       bfd_put_32 (abfd, value, data + dst_address);
    733       dst_address += 4;
    734       src_address += 4;
    735       break;
    736 
    737       /* This is a 24-/32-bit absolute address in one of the following
    738 	 instructions:
    739 
    740 	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
    741 	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
    742 	   "stc.w" and "mov.[bwl]"
    743 
    744 	 We may relax this into an 16-bit absolute address if it's in
    745 	 the right range.  */
    746     case R_MOVL2:
    747       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    748       value = bfd_h8300_pad_address (abfd, value);
    749 
    750       /* Sanity check.  */
    751       if (value <= 0x7fff || value >= 0xffff8000u)
    752 	{
    753 	  /* Insert the 16-bit value into the proper location.  */
    754 	  bfd_put_16 (abfd, value, data + dst_address);
    755 
    756 	  /* Fix the opcode.  For all the instructions that belong to
    757 	     this relaxation, we simply need to turn off bit 0x20 in
    758 	     the previous byte.  */
    759 	  data[dst_address - 1] &= ~0x20;
    760 	  dst_address += 2;
    761 	  src_address += 4;
    762 	}
    763       else
    764 	(*link_info->callbacks->reloc_overflow)
    765 	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
    766 	   reloc->howto->name, reloc->addend, input_section->owner,
    767 	   input_section, reloc->address);
    768       break;
    769 
    770     /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
    771     case R_JMP2:
    772       /* Get the address of the target of this branch.  */
    773       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    774 
    775       /* Get the address of the next instruction.  */
    776       dot = (input_section->output_offset
    777 	     + dst_address
    778 	     + link_order->u.indirect.section->output_section->vma + 1);
    779 
    780       gap = value - dot;
    781 
    782       /* Sanity check.  */
    783       if (gap < -128 || gap > 126)
    784 	(*link_info->callbacks->reloc_overflow)
    785 	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
    786 	   reloc->howto->name, reloc->addend, input_section->owner,
    787 	   input_section, reloc->address);
    788 
    789       /* Now fix the instruction itself.  */
    790       switch (data[dst_address - 1])
    791 	{
    792 	case 0x5e:
    793 	  /* jsr -> bsr */
    794 	  bfd_put_8 (abfd, 0x55, data + dst_address - 1);
    795 	  break;
    796 	case 0x5a:
    797 	  /* jmp -> bra */
    798 	  bfd_put_8 (abfd, 0x40, data + dst_address - 1);
    799 	  break;
    800 
    801 	default:
    802 	  abort ();
    803 	}
    804 
    805       /* Write out the 8-bit value.  */
    806       bfd_put_8 (abfd, gap, data + dst_address);
    807 
    808       dst_address += 1;
    809       src_address += 3;
    810 
    811       break;
    812 
    813     /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
    814     case R_PCRWORD_B:
    815       /* Get the address of the target of this branch.  */
    816       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    817 
    818       /* Get the address of the instruction (not the reloc).  */
    819       dot = (input_section->output_offset
    820 	     + dst_address
    821 	     + link_order->u.indirect.section->output_section->vma - 1);
    822 
    823       gap = value - dot;
    824 
    825       /* Sanity check.  */
    826       if (gap < -128 || gap > 126)
    827 	(*link_info->callbacks->reloc_overflow)
    828 	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
    829 	   reloc->howto->name, reloc->addend, input_section->owner,
    830 	   input_section, reloc->address);
    831 
    832       /* Now fix the instruction.  */
    833       switch (data[dst_address - 2])
    834 	{
    835 	case 0x58:
    836 	  /* bCC:16 -> bCC:8 */
    837 	  /* Get the second byte of the original insn, which contains
    838 	     the condition code.  */
    839 	  tmp = data[dst_address - 1];
    840 
    841 	  /* Compute the fisrt byte of the relaxed instruction.  The
    842 	     original sequence 0x58 0xX0 is relaxed to 0x4X, where X
    843 	     represents the condition code.  */
    844 	  tmp &= 0xf0;
    845 	  tmp >>= 4;
    846 	  tmp |= 0x40;
    847 
    848 	  /* Write it.  */
    849 	  bfd_put_8 (abfd, tmp, data + dst_address - 2);
    850 	  break;
    851 
    852 	case 0x5c:
    853 	  /* bsr:16 -> bsr:8 */
    854 	  bfd_put_8 (abfd, 0x55, data + dst_address - 2);
    855 	  break;
    856 
    857 	default:
    858 	  abort ();
    859 	}
    860 
    861       /* Output the target.  */
    862       bfd_put_8 (abfd, gap, data + dst_address - 1);
    863 
    864       /* We don't advance dst_address -- the 8-bit reloc is applied at
    865 	 dst_address - 1, so the next insn should begin at dst_address.  */
    866       src_address += 2;
    867 
    868       break;
    869 
    870     /* Similarly for a 24-bit absolute that is now 8 bits.  */
    871     case R_JMPL2:
    872       /* Get the address of the target of this branch.  */
    873       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    874 
    875       /* Get the address of the instruction (not the reloc).  */
    876       dot = (input_section->output_offset
    877 	     + dst_address
    878 	     + link_order->u.indirect.section->output_section->vma + 2);
    879 
    880       gap = value - dot;
    881 
    882       /* Fix the instruction.  */
    883       switch (data[src_address])
    884 	{
    885 	case 0x5e:
    886 	  /* jsr -> bsr */
    887 	  bfd_put_8 (abfd, 0x55, data + dst_address);
    888 	  break;
    889 	case 0x5a:
    890 	  /* jmp ->bra */
    891 	  bfd_put_8 (abfd, 0x40, data + dst_address);
    892 	  break;
    893 	default:
    894 	  abort ();
    895 	}
    896 
    897       bfd_put_8 (abfd, gap, data + dst_address + 1);
    898       dst_address += 2;
    899       src_address += 4;
    900 
    901       break;
    902 
    903       /* This is a 16-bit absolute address in one of the following
    904 	 instructions:
    905 
    906 	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
    907 	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
    908 	   "mov.b"
    909 
    910 	 We may relax this into an 8-bit absolute address if it's in
    911 	 the right range.  */
    912     case R_MOV16B2:
    913       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    914 
    915       /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
    916       if (data[dst_address - 2] != 0x6a)
    917 	abort ();
    918 
    919       temp_code = data[src_address - 1];
    920 
    921       /* If this is a mov.b instruction, clear the lower nibble, which
    922 	 contains the source/destination register number.  */
    923       if ((temp_code & 0x10) != 0x10)
    924 	temp_code &= 0xf0;
    925 
    926       /* Fix up the opcode.  */
    927       switch (temp_code)
    928 	{
    929 	case 0x00:
    930 	  /* This is mov.b @aa:16,Rd.  */
    931 	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
    932 	  break;
    933 	case 0x80:
    934 	  /* This is mov.b Rs,@aa:16.  */
    935 	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
    936 	  break;
    937 	case 0x18:
    938 	  /* This is a bit-maniputation instruction that stores one
    939 	     bit into memory, one of "bclr", "bist", "bnot", "bset",
    940 	     and "bst".  */
    941 	  data[dst_address - 2] = 0x7f;
    942 	  break;
    943 	case 0x10:
    944 	  /* This is a bit-maniputation instruction that loads one bit
    945 	     from memory, one of "band", "biand", "bild", "bior",
    946 	     "bixor", "bld", "bor", "btst", and "bxor".  */
    947 	  data[dst_address - 2] = 0x7e;
    948 	  break;
    949 	default:
    950 	  abort ();
    951 	}
    952 
    953       bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
    954       src_address += 2;
    955       break;
    956 
    957       /* This is a 24-bit absolute address in one of the following
    958 	 instructions:
    959 
    960 	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
    961 	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
    962 	   "mov.b"
    963 
    964 	 We may relax this into an 8-bit absolute address if it's in
    965 	 the right range.  */
    966     case R_MOV24B2:
    967       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
    968 
    969       /* All instructions with R_MOV24B2 start with 0x6a.  */
    970       if (data[dst_address - 2] != 0x6a)
    971 	abort ();
    972 
    973       temp_code = data[src_address - 1];
    974 
    975       /* If this is a mov.b instruction, clear the lower nibble, which
    976 	 contains the source/destination register number.  */
    977       if ((temp_code & 0x30) != 0x30)
    978 	temp_code &= 0xf0;
    979 
    980       /* Fix up the opcode.  */
    981       switch (temp_code)
    982 	{
    983 	case 0x20:
    984 	  /* This is mov.b @aa:24/32,Rd.  */
    985 	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
    986 	  break;
    987 	case 0xa0:
    988 	  /* This is mov.b Rs,@aa:24/32.  */
    989 	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
    990 	  break;
    991 	case 0x38:
    992 	  /* This is a bit-maniputation instruction that stores one
    993 	     bit into memory, one of "bclr", "bist", "bnot", "bset",
    994 	     and "bst".  */
    995 	  data[dst_address - 2] = 0x7f;
    996 	  break;
    997 	case 0x30:
    998 	  /* This is a bit-maniputation instruction that loads one bit
    999 	     from memory, one of "band", "biand", "bild", "bior",
   1000 	     "bixor", "bld", "bor", "btst", and "bxor".  */
   1001 	  data[dst_address - 2] = 0x7e;
   1002 	  break;
   1003 	default:
   1004 	  abort ();
   1005 	}
   1006 
   1007       bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
   1008       src_address += 4;
   1009       break;
   1010 
   1011     case R_BCC_INV:
   1012       /* Get the address of the target of this branch.  */
   1013       value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
   1014 
   1015       dot = (input_section->output_offset
   1016 	     + dst_address
   1017 	     + link_order->u.indirect.section->output_section->vma) + 1;
   1018 
   1019       gap = value - dot;
   1020 
   1021       /* Sanity check.  */
   1022       if (gap < -128 || gap > 126)
   1023 	(*link_info->callbacks->reloc_overflow)
   1024 	  (link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
   1025 	   reloc->howto->name, reloc->addend, input_section->owner,
   1026 	   input_section, reloc->address);
   1027 
   1028       /* Everything looks OK.  Fix the condition in the instruction, apply
   1029 	 the relocation, and update the src/dst address appropriately.  */
   1030 
   1031       bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
   1032 		 data + dst_address - 1);
   1033       bfd_put_8 (abfd, gap, data + dst_address);
   1034       dst_address++;
   1035       src_address++;
   1036 
   1037       /* All done.  */
   1038       break;
   1039 
   1040     case R_JMP_DEL:
   1041       src_address += 4;
   1042       break;
   1043 
   1044     /* An 8-bit memory indirect instruction (jmp/jsr).
   1045 
   1046        There's several things that need to be done to handle
   1047        this relocation.
   1048 
   1049        If this is a reloc against the absolute symbol, then
   1050        we should handle it just R_RELBYTE.  Likewise if it's
   1051        for a symbol with a value ge 0 and le 0xff.
   1052 
   1053        Otherwise it's a jump/call through the function vector,
   1054        and the linker is expected to set up the function vector
   1055        and put the right value into the jump/call instruction.  */
   1056     case R_MEM_INDIRECT:
   1057       {
   1058 	/* We need to find the symbol so we can determine it's
   1059 	   address in the function vector table.  */
   1060 	asymbol *symbol;
   1061 	const char *name;
   1062 	struct funcvec_hash_table *ftab;
   1063 	struct funcvec_hash_entry *h;
   1064 	struct h8300_coff_link_hash_table *htab;
   1065 	asection *vectors_sec;
   1066 
   1067 	if (link_info->output_bfd->xvec != abfd->xvec)
   1068 	  {
   1069 	    (*_bfd_error_handler)
   1070 	      (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
   1071 	       link_info->output_bfd->xvec->name);
   1072 
   1073 	    /* What else can we do?  This function doesn't allow return
   1074 	       of an error, and we don't want to call abort as that
   1075 	       indicates an internal error.  */
   1076 #ifndef EXIT_FAILURE
   1077 #define EXIT_FAILURE 1
   1078 #endif
   1079 	    xexit (EXIT_FAILURE);
   1080 	  }
   1081 	htab = h8300_coff_hash_table (link_info);
   1082 	vectors_sec = htab->vectors_sec;
   1083 
   1084 	/* First see if this is a reloc against the absolute symbol
   1085 	   or against a symbol with a nonnegative value <= 0xff.  */
   1086 	symbol = *(reloc->sym_ptr_ptr);
   1087 	value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
   1088 	if (symbol == bfd_abs_section_ptr->symbol
   1089 	    || value <= 0xff)
   1090 	  {
   1091 	    /* This should be handled in a manner very similar to
   1092 	       R_RELBYTES.   If the value is in range, then just slam
   1093 	       the value into the right location.  Else trigger a
   1094 	       reloc overflow callback.  */
   1095 	    if (value <= 0xff)
   1096 	      {
   1097 		bfd_put_8 (abfd, value, data + dst_address);
   1098 		dst_address += 1;
   1099 		src_address += 1;
   1100 	      }
   1101 	    else
   1102 	      (*link_info->callbacks->reloc_overflow)
   1103 		(link_info, NULL, bfd_asymbol_name (*reloc->sym_ptr_ptr),
   1104 		 reloc->howto->name, reloc->addend, input_section->owner,
   1105 		 input_section, reloc->address);
   1106 	    break;
   1107 	  }
   1108 
   1109 	/* This is a jump/call through a function vector, and we're
   1110 	   expected to create the function vector ourselves.
   1111 
   1112 	   First look up this symbol in the linker hash table -- we need
   1113 	   the derived linker symbol which holds this symbol's index
   1114 	   in the function vector.  */
   1115 	name = symbol->name;
   1116 	if (symbol->flags & BSF_LOCAL)
   1117 	  {
   1118 	    char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
   1119 
   1120 	    if (new_name == NULL)
   1121 	      abort ();
   1122 
   1123 	    sprintf (new_name, "%s_%08x", name, symbol->section->id);
   1124 	    name = new_name;
   1125 	  }
   1126 
   1127 	ftab = htab->funcvec_hash_table;
   1128 	h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
   1129 
   1130 	/* This shouldn't ever happen.  If it does that means we've got
   1131 	   data corruption of some kind.  Aborting seems like a reasonable
   1132 	   thing to do here.  */
   1133 	if (h == NULL || vectors_sec == NULL)
   1134 	  abort ();
   1135 
   1136 	/* Place the address of the function vector entry into the
   1137 	   reloc's address.  */
   1138 	bfd_put_8 (abfd,
   1139 		   vectors_sec->output_offset + h->offset,
   1140 		   data + dst_address);
   1141 
   1142 	dst_address++;
   1143 	src_address++;
   1144 
   1145 	/* Now create an entry in the function vector itself.  */
   1146 	switch (bfd_get_mach (input_section->owner))
   1147 	  {
   1148 	  case bfd_mach_h8300:
   1149 	  case bfd_mach_h8300hn:
   1150 	  case bfd_mach_h8300sn:
   1151 	    bfd_put_16 (abfd,
   1152 			bfd_coff_reloc16_get_value (reloc,
   1153 						    link_info,
   1154 						    input_section),
   1155 			vectors_sec->contents + h->offset);
   1156 	    break;
   1157 	  case bfd_mach_h8300h:
   1158 	  case bfd_mach_h8300s:
   1159 	    bfd_put_32 (abfd,
   1160 			bfd_coff_reloc16_get_value (reloc,
   1161 						    link_info,
   1162 						    input_section),
   1163 			vectors_sec->contents + h->offset);
   1164 	    break;
   1165 	  default:
   1166 	    abort ();
   1167 	  }
   1168 
   1169 	/* Gross.  We've already written the contents of the vector section
   1170 	   before we get here...  So we write it again with the new data.  */
   1171 	bfd_set_section_contents (vectors_sec->output_section->owner,
   1172 				  vectors_sec->output_section,
   1173 				  vectors_sec->contents,
   1174 				  (file_ptr) vectors_sec->output_offset,
   1175 				  vectors_sec->size);
   1176 	break;
   1177       }
   1178 
   1179     default:
   1180       abort ();
   1181       break;
   1182 
   1183     }
   1184 
   1185   *src_ptr = src_address;
   1186   *dst_ptr = dst_address;
   1187 }
   1188 
   1189 /* Routine for the h8300 linker.
   1190 
   1191    This routine is necessary to handle the special R_MEM_INDIRECT
   1192    relocs on the h8300.  It's responsible for generating a vectors
   1193    section and attaching it to an input bfd as well as sizing
   1194    the vectors section.  It also creates our vectors hash table.
   1195 
   1196    It uses the generic linker routines to actually add the symbols.
   1197    from this BFD to the bfd linker hash table.  It may add a few
   1198    selected static symbols to the bfd linker hash table.  */
   1199 
   1200 static bfd_boolean
   1201 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
   1202 {
   1203   asection *sec;
   1204   struct funcvec_hash_table *funcvec_hash_table;
   1205   bfd_size_type amt;
   1206   struct h8300_coff_link_hash_table *htab;
   1207 
   1208   /* Add the symbols using the generic code.  */
   1209   _bfd_generic_link_add_symbols (abfd, info);
   1210 
   1211   if (info->output_bfd->xvec != abfd->xvec)
   1212     return TRUE;
   1213 
   1214   htab = h8300_coff_hash_table (info);
   1215 
   1216   /* If we haven't created a vectors section, do so now.  */
   1217   if (!htab->vectors_sec)
   1218     {
   1219       flagword flags;
   1220 
   1221       /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
   1222       flags = (SEC_ALLOC | SEC_LOAD
   1223 	       | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
   1224       htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
   1225 						       flags);
   1226 
   1227       /* If the section wasn't created, or we couldn't set the flags,
   1228 	 quit quickly now, rather than dying a painful death later.  */
   1229       if (!htab->vectors_sec)
   1230 	return FALSE;
   1231 
   1232       /* Also create the vector hash table.  */
   1233       amt = sizeof (struct funcvec_hash_table);
   1234       funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
   1235 
   1236       if (!funcvec_hash_table)
   1237 	return FALSE;
   1238 
   1239       /* And initialize the funcvec hash table.  */
   1240       if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
   1241 				    funcvec_hash_newfunc,
   1242 				    sizeof (struct funcvec_hash_entry)))
   1243 	{
   1244 	  bfd_release (abfd, funcvec_hash_table);
   1245 	  return FALSE;
   1246 	}
   1247 
   1248       /* Store away a pointer to the funcvec hash table.  */
   1249       htab->funcvec_hash_table = funcvec_hash_table;
   1250     }
   1251 
   1252   /* Load up the function vector hash table.  */
   1253   funcvec_hash_table = htab->funcvec_hash_table;
   1254 
   1255   /* Now scan the relocs for all the sections in this bfd; create
   1256      additional space in the .vectors section as needed.  */
   1257   for (sec = abfd->sections; sec; sec = sec->next)
   1258     {
   1259       long reloc_size, reloc_count, i;
   1260       asymbol **symbols;
   1261       arelent **relocs;
   1262 
   1263       /* Suck in the relocs, symbols & canonicalize them.  */
   1264       reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
   1265       if (reloc_size <= 0)
   1266 	continue;
   1267 
   1268       relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
   1269       if (!relocs)
   1270 	return FALSE;
   1271 
   1272       /* The symbols should have been read in by _bfd_generic link_add_symbols
   1273 	 call abovec, so we can cheat and use the pointer to them that was
   1274 	 saved in the above call.  */
   1275       symbols = _bfd_generic_link_get_symbols(abfd);
   1276       reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
   1277       if (reloc_count <= 0)
   1278 	{
   1279 	  free (relocs);
   1280 	  continue;
   1281 	}
   1282 
   1283       /* Now walk through all the relocations in this section.  */
   1284       for (i = 0; i < reloc_count; i++)
   1285 	{
   1286 	  arelent *reloc = relocs[i];
   1287 	  asymbol *symbol = *(reloc->sym_ptr_ptr);
   1288 	  const char *name;
   1289 
   1290 	  /* We've got an indirect reloc.  See if we need to add it
   1291 	     to the function vector table.   At this point, we have
   1292 	     to add a new entry for each unique symbol referenced
   1293 	     by an R_MEM_INDIRECT relocation except for a reloc
   1294 	     against the absolute section symbol.  */
   1295 	  if (reloc->howto->type == R_MEM_INDIRECT
   1296 	      && symbol != bfd_abs_section_ptr->symbol)
   1297 
   1298 	    {
   1299 	      struct funcvec_hash_table *ftab;
   1300 	      struct funcvec_hash_entry *h;
   1301 
   1302 	      name = symbol->name;
   1303 	      if (symbol->flags & BSF_LOCAL)
   1304 		{
   1305 		  char *new_name;
   1306 
   1307 		  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
   1308 		  if (new_name == NULL)
   1309 		    abort ();
   1310 
   1311 		  sprintf (new_name, "%s_%08x", name, symbol->section->id);
   1312 		  name = new_name;
   1313 		}
   1314 
   1315 	      /* Look this symbol up in the function vector hash table.  */
   1316 	      ftab = htab->funcvec_hash_table;
   1317 	      h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
   1318 
   1319 	      /* If this symbol isn't already in the hash table, add
   1320 		 it and bump up the size of the hash table.  */
   1321 	      if (h == NULL)
   1322 		{
   1323 		  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
   1324 		  if (h == NULL)
   1325 		    {
   1326 		      free (relocs);
   1327 		      return FALSE;
   1328 		    }
   1329 
   1330 		  /* Bump the size of the vectors section.  Each vector
   1331 		     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
   1332 		  switch (bfd_get_mach (abfd))
   1333 		    {
   1334 		    case bfd_mach_h8300:
   1335 		    case bfd_mach_h8300hn:
   1336 		    case bfd_mach_h8300sn:
   1337 		      htab->vectors_sec->size += 2;
   1338 		      break;
   1339 		    case bfd_mach_h8300h:
   1340 		    case bfd_mach_h8300s:
   1341 		      htab->vectors_sec->size += 4;
   1342 		      break;
   1343 		    default:
   1344 		      abort ();
   1345 		    }
   1346 		}
   1347 	    }
   1348 	}
   1349 
   1350       /* We're done with the relocations, release them.  */
   1351       free (relocs);
   1352     }
   1353 
   1354   /* Now actually allocate some space for the function vector.  It's
   1355      wasteful to do this more than once, but this is easier.  */
   1356   sec = htab->vectors_sec;
   1357   if (sec->size != 0)
   1358     {
   1359       /* Free the old contents.  */
   1360       if (sec->contents)
   1361 	free (sec->contents);
   1362 
   1363       /* Allocate new contents.  */
   1364       sec->contents = bfd_malloc (sec->size);
   1365     }
   1366 
   1367   return TRUE;
   1368 }
   1369 
   1370 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
   1371 #define coff_reloc16_estimate h8300_reloc16_estimate
   1372 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
   1373 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
   1374 
   1375 #define COFF_LONG_FILENAMES
   1376 
   1377 #ifndef bfd_pe_print_pdata
   1378 #define bfd_pe_print_pdata	NULL
   1379 #endif
   1380 
   1381 #include "coffcode.h"
   1382 
   1383 #undef coff_bfd_get_relocated_section_contents
   1384 #undef coff_bfd_relax_section
   1385 #define coff_bfd_get_relocated_section_contents \
   1386   bfd_coff_reloc16_get_relocated_section_contents
   1387 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
   1388 
   1389 CREATE_BIG_COFF_TARGET_VEC (h8300_coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
   1390