Home | History | Annotate | Download | only in Scalar
      1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs loop invariant code motion, attempting to remove as much
     11 // code from the body of a loop as possible.  It does this by either hoisting
     12 // code into the preheader block, or by sinking code to the exit blocks if it is
     13 // safe.  This pass also promotes must-aliased memory locations in the loop to
     14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
     15 //
     16 // This pass uses alias analysis for two purposes:
     17 //
     18 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
     19 //     that a load or call inside of a loop never aliases anything stored to,
     20 //     we can hoist it or sink it like any other instruction.
     21 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
     22 //     the loop, we try to move the store to happen AFTER the loop instead of
     23 //     inside of the loop.  This can only happen if a few conditions are true:
     24 //       A. The pointer stored through is loop invariant
     25 //       B. There are no stores or loads in the loop which _may_ alias the
     26 //          pointer.  There are no calls in the loop which mod/ref the pointer.
     27 //     If these conditions are true, we can promote the loads and stores in the
     28 //     loop of the pointer to use a temporary alloca'd variable.  We then use
     29 //     the SSAUpdater to construct the appropriate SSA form for the value.
     30 //
     31 //===----------------------------------------------------------------------===//
     32 
     33 #define DEBUG_TYPE "licm"
     34 #include "llvm/Transforms/Scalar.h"
     35 #include "llvm/Constants.h"
     36 #include "llvm/DerivedTypes.h"
     37 #include "llvm/IntrinsicInst.h"
     38 #include "llvm/Instructions.h"
     39 #include "llvm/LLVMContext.h"
     40 #include "llvm/Analysis/AliasAnalysis.h"
     41 #include "llvm/Analysis/AliasSetTracker.h"
     42 #include "llvm/Analysis/ConstantFolding.h"
     43 #include "llvm/Analysis/LoopInfo.h"
     44 #include "llvm/Analysis/LoopPass.h"
     45 #include "llvm/Analysis/Dominators.h"
     46 #include "llvm/Transforms/Utils/Local.h"
     47 #include "llvm/Transforms/Utils/SSAUpdater.h"
     48 #include "llvm/Support/CFG.h"
     49 #include "llvm/Support/CommandLine.h"
     50 #include "llvm/Support/raw_ostream.h"
     51 #include "llvm/Support/Debug.h"
     52 #include "llvm/ADT/Statistic.h"
     53 #include <algorithm>
     54 using namespace llvm;
     55 
     56 STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
     57 STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
     58 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
     59 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
     60 STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
     61 
     62 static cl::opt<bool>
     63 DisablePromotion("disable-licm-promotion", cl::Hidden,
     64                  cl::desc("Disable memory promotion in LICM pass"));
     65 
     66 namespace {
     67   struct LICM : public LoopPass {
     68     static char ID; // Pass identification, replacement for typeid
     69     LICM() : LoopPass(ID) {
     70       initializeLICMPass(*PassRegistry::getPassRegistry());
     71     }
     72 
     73     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     74 
     75     /// This transformation requires natural loop information & requires that
     76     /// loop preheaders be inserted into the CFG...
     77     ///
     78     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     79       AU.setPreservesCFG();
     80       AU.addRequired<DominatorTree>();
     81       AU.addRequired<LoopInfo>();
     82       AU.addRequiredID(LoopSimplifyID);
     83       AU.addRequired<AliasAnalysis>();
     84       AU.addPreserved<AliasAnalysis>();
     85       AU.addPreserved("scalar-evolution");
     86       AU.addPreservedID(LoopSimplifyID);
     87     }
     88 
     89     bool doFinalization() {
     90       assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
     91       return false;
     92     }
     93 
     94   private:
     95     AliasAnalysis *AA;       // Current AliasAnalysis information
     96     LoopInfo      *LI;       // Current LoopInfo
     97     DominatorTree *DT;       // Dominator Tree for the current Loop.
     98 
     99     // State that is updated as we process loops.
    100     bool Changed;            // Set to true when we change anything.
    101     BasicBlock *Preheader;   // The preheader block of the current loop...
    102     Loop *CurLoop;           // The current loop we are working on...
    103     AliasSetTracker *CurAST; // AliasSet information for the current loop...
    104     DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
    105 
    106     /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
    107     void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
    108 
    109     /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
    110     /// set.
    111     void deleteAnalysisValue(Value *V, Loop *L);
    112 
    113     /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
    114     /// dominated by the specified block, and that are in the current loop) in
    115     /// reverse depth first order w.r.t the DominatorTree.  This allows us to
    116     /// visit uses before definitions, allowing us to sink a loop body in one
    117     /// pass without iteration.
    118     ///
    119     void SinkRegion(DomTreeNode *N);
    120 
    121     /// HoistRegion - Walk the specified region of the CFG (defined by all
    122     /// blocks dominated by the specified block, and that are in the current
    123     /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
    124     /// visit definitions before uses, allowing us to hoist a loop body in one
    125     /// pass without iteration.
    126     ///
    127     void HoistRegion(DomTreeNode *N);
    128 
    129     /// inSubLoop - Little predicate that returns true if the specified basic
    130     /// block is in a subloop of the current one, not the current one itself.
    131     ///
    132     bool inSubLoop(BasicBlock *BB) {
    133       assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
    134       return LI->getLoopFor(BB) != CurLoop;
    135     }
    136 
    137     /// sink - When an instruction is found to only be used outside of the loop,
    138     /// this function moves it to the exit blocks and patches up SSA form as
    139     /// needed.
    140     ///
    141     void sink(Instruction &I);
    142 
    143     /// hoist - When an instruction is found to only use loop invariant operands
    144     /// that is safe to hoist, this instruction is called to do the dirty work.
    145     ///
    146     void hoist(Instruction &I);
    147 
    148     /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
    149     /// is not a trapping instruction or if it is a trapping instruction and is
    150     /// guaranteed to execute.
    151     ///
    152     bool isSafeToExecuteUnconditionally(Instruction &I);
    153 
    154     /// isGuaranteedToExecute - Check that the instruction is guaranteed to
    155     /// execute.
    156     ///
    157     bool isGuaranteedToExecute(Instruction &I);
    158 
    159     /// pointerInvalidatedByLoop - Return true if the body of this loop may
    160     /// store into the memory location pointed to by V.
    161     ///
    162     bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
    163                                   const MDNode *TBAAInfo) {
    164       // Check to see if any of the basic blocks in CurLoop invalidate *V.
    165       return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
    166     }
    167 
    168     bool canSinkOrHoistInst(Instruction &I);
    169     bool isNotUsedInLoop(Instruction &I);
    170 
    171     void PromoteAliasSet(AliasSet &AS);
    172   };
    173 }
    174 
    175 char LICM::ID = 0;
    176 INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
    177 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    178 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    179 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    180 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    181 INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
    182 
    183 Pass *llvm::createLICMPass() { return new LICM(); }
    184 
    185 /// Hoist expressions out of the specified loop. Note, alias info for inner
    186 /// loop is not preserved so it is not a good idea to run LICM multiple
    187 /// times on one loop.
    188 ///
    189 bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
    190   Changed = false;
    191 
    192   // Get our Loop and Alias Analysis information...
    193   LI = &getAnalysis<LoopInfo>();
    194   AA = &getAnalysis<AliasAnalysis>();
    195   DT = &getAnalysis<DominatorTree>();
    196 
    197   CurAST = new AliasSetTracker(*AA);
    198   // Collect Alias info from subloops.
    199   for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
    200        LoopItr != LoopItrE; ++LoopItr) {
    201     Loop *InnerL = *LoopItr;
    202     AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
    203     assert(InnerAST && "Where is my AST?");
    204 
    205     // What if InnerLoop was modified by other passes ?
    206     CurAST->add(*InnerAST);
    207 
    208     // Once we've incorporated the inner loop's AST into ours, we don't need the
    209     // subloop's anymore.
    210     delete InnerAST;
    211     LoopToAliasSetMap.erase(InnerL);
    212   }
    213 
    214   CurLoop = L;
    215 
    216   // Get the preheader block to move instructions into...
    217   Preheader = L->getLoopPreheader();
    218 
    219   // Loop over the body of this loop, looking for calls, invokes, and stores.
    220   // Because subloops have already been incorporated into AST, we skip blocks in
    221   // subloops.
    222   //
    223   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    224        I != E; ++I) {
    225     BasicBlock *BB = *I;
    226     if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
    227       CurAST->add(*BB);                 // Incorporate the specified basic block
    228   }
    229 
    230   // We want to visit all of the instructions in this loop... that are not parts
    231   // of our subloops (they have already had their invariants hoisted out of
    232   // their loop, into this loop, so there is no need to process the BODIES of
    233   // the subloops).
    234   //
    235   // Traverse the body of the loop in depth first order on the dominator tree so
    236   // that we are guaranteed to see definitions before we see uses.  This allows
    237   // us to sink instructions in one pass, without iteration.  After sinking
    238   // instructions, we perform another pass to hoist them out of the loop.
    239   //
    240   if (L->hasDedicatedExits())
    241     SinkRegion(DT->getNode(L->getHeader()));
    242   if (Preheader)
    243     HoistRegion(DT->getNode(L->getHeader()));
    244 
    245   // Now that all loop invariants have been removed from the loop, promote any
    246   // memory references to scalars that we can.
    247   if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
    248     // Loop over all of the alias sets in the tracker object.
    249     for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
    250          I != E; ++I)
    251       PromoteAliasSet(*I);
    252   }
    253 
    254   // Clear out loops state information for the next iteration
    255   CurLoop = 0;
    256   Preheader = 0;
    257 
    258   // If this loop is nested inside of another one, save the alias information
    259   // for when we process the outer loop.
    260   if (L->getParentLoop())
    261     LoopToAliasSetMap[L] = CurAST;
    262   else
    263     delete CurAST;
    264   return Changed;
    265 }
    266 
    267 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
    268 /// dominated by the specified block, and that are in the current loop) in
    269 /// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
    270 /// uses before definitions, allowing us to sink a loop body in one pass without
    271 /// iteration.
    272 ///
    273 void LICM::SinkRegion(DomTreeNode *N) {
    274   assert(N != 0 && "Null dominator tree node?");
    275   BasicBlock *BB = N->getBlock();
    276 
    277   // If this subregion is not in the top level loop at all, exit.
    278   if (!CurLoop->contains(BB)) return;
    279 
    280   // We are processing blocks in reverse dfo, so process children first.
    281   const std::vector<DomTreeNode*> &Children = N->getChildren();
    282   for (unsigned i = 0, e = Children.size(); i != e; ++i)
    283     SinkRegion(Children[i]);
    284 
    285   // Only need to process the contents of this block if it is not part of a
    286   // subloop (which would already have been processed).
    287   if (inSubLoop(BB)) return;
    288 
    289   for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
    290     Instruction &I = *--II;
    291 
    292     // If the instruction is dead, we would try to sink it because it isn't used
    293     // in the loop, instead, just delete it.
    294     if (isInstructionTriviallyDead(&I)) {
    295       DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
    296       ++II;
    297       CurAST->deleteValue(&I);
    298       I.eraseFromParent();
    299       Changed = true;
    300       continue;
    301     }
    302 
    303     // Check to see if we can sink this instruction to the exit blocks
    304     // of the loop.  We can do this if the all users of the instruction are
    305     // outside of the loop.  In this case, it doesn't even matter if the
    306     // operands of the instruction are loop invariant.
    307     //
    308     if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
    309       ++II;
    310       sink(I);
    311     }
    312   }
    313 }
    314 
    315 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
    316 /// dominated by the specified block, and that are in the current loop) in depth
    317 /// first order w.r.t the DominatorTree.  This allows us to visit definitions
    318 /// before uses, allowing us to hoist a loop body in one pass without iteration.
    319 ///
    320 void LICM::HoistRegion(DomTreeNode *N) {
    321   assert(N != 0 && "Null dominator tree node?");
    322   BasicBlock *BB = N->getBlock();
    323 
    324   // If this subregion is not in the top level loop at all, exit.
    325   if (!CurLoop->contains(BB)) return;
    326 
    327   // Only need to process the contents of this block if it is not part of a
    328   // subloop (which would already have been processed).
    329   if (!inSubLoop(BB))
    330     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
    331       Instruction &I = *II++;
    332 
    333       // Try constant folding this instruction.  If all the operands are
    334       // constants, it is technically hoistable, but it would be better to just
    335       // fold it.
    336       if (Constant *C = ConstantFoldInstruction(&I)) {
    337         DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
    338         CurAST->copyValue(&I, C);
    339         CurAST->deleteValue(&I);
    340         I.replaceAllUsesWith(C);
    341         I.eraseFromParent();
    342         continue;
    343       }
    344 
    345       // Try hoisting the instruction out to the preheader.  We can only do this
    346       // if all of the operands of the instruction are loop invariant and if it
    347       // is safe to hoist the instruction.
    348       //
    349       if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
    350           isSafeToExecuteUnconditionally(I))
    351         hoist(I);
    352     }
    353 
    354   const std::vector<DomTreeNode*> &Children = N->getChildren();
    355   for (unsigned i = 0, e = Children.size(); i != e; ++i)
    356     HoistRegion(Children[i]);
    357 }
    358 
    359 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
    360 /// instruction.
    361 ///
    362 bool LICM::canSinkOrHoistInst(Instruction &I) {
    363   // Loads have extra constraints we have to verify before we can hoist them.
    364   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    365     if (!LI->isUnordered())
    366       return false;        // Don't hoist volatile/atomic loads!
    367 
    368     // Loads from constant memory are always safe to move, even if they end up
    369     // in the same alias set as something that ends up being modified.
    370     if (AA->pointsToConstantMemory(LI->getOperand(0)))
    371       return true;
    372 
    373     // Don't hoist loads which have may-aliased stores in loop.
    374     uint64_t Size = 0;
    375     if (LI->getType()->isSized())
    376       Size = AA->getTypeStoreSize(LI->getType());
    377     return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
    378                                      LI->getMetadata(LLVMContext::MD_tbaa));
    379   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
    380     // Don't sink or hoist dbg info; it's legal, but not useful.
    381     if (isa<DbgInfoIntrinsic>(I))
    382       return false;
    383 
    384     // Handle simple cases by querying alias analysis.
    385     AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
    386     if (Behavior == AliasAnalysis::DoesNotAccessMemory)
    387       return true;
    388     if (AliasAnalysis::onlyReadsMemory(Behavior)) {
    389       // If this call only reads from memory and there are no writes to memory
    390       // in the loop, we can hoist or sink the call as appropriate.
    391       bool FoundMod = false;
    392       for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
    393            I != E; ++I) {
    394         AliasSet &AS = *I;
    395         if (!AS.isForwardingAliasSet() && AS.isMod()) {
    396           FoundMod = true;
    397           break;
    398         }
    399       }
    400       if (!FoundMod) return true;
    401     }
    402 
    403     // FIXME: This should use mod/ref information to see if we can hoist or sink
    404     // the call.
    405 
    406     return false;
    407   }
    408 
    409   // Otherwise these instructions are hoistable/sinkable
    410   return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
    411          isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
    412          isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
    413          isa<ShuffleVectorInst>(I);
    414 }
    415 
    416 /// isNotUsedInLoop - Return true if the only users of this instruction are
    417 /// outside of the loop.  If this is true, we can sink the instruction to the
    418 /// exit blocks of the loop.
    419 ///
    420 bool LICM::isNotUsedInLoop(Instruction &I) {
    421   for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
    422     Instruction *User = cast<Instruction>(*UI);
    423     if (PHINode *PN = dyn_cast<PHINode>(User)) {
    424       // PHI node uses occur in predecessor blocks!
    425       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    426         if (PN->getIncomingValue(i) == &I)
    427           if (CurLoop->contains(PN->getIncomingBlock(i)))
    428             return false;
    429     } else if (CurLoop->contains(User)) {
    430       return false;
    431     }
    432   }
    433   return true;
    434 }
    435 
    436 
    437 /// sink - When an instruction is found to only be used outside of the loop,
    438 /// this function moves it to the exit blocks and patches up SSA form as needed.
    439 /// This method is guaranteed to remove the original instruction from its
    440 /// position, and may either delete it or move it to outside of the loop.
    441 ///
    442 void LICM::sink(Instruction &I) {
    443   DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
    444 
    445   SmallVector<BasicBlock*, 8> ExitBlocks;
    446   CurLoop->getUniqueExitBlocks(ExitBlocks);
    447 
    448   if (isa<LoadInst>(I)) ++NumMovedLoads;
    449   else if (isa<CallInst>(I)) ++NumMovedCalls;
    450   ++NumSunk;
    451   Changed = true;
    452 
    453   // The case where there is only a single exit node of this loop is common
    454   // enough that we handle it as a special (more efficient) case.  It is more
    455   // efficient to handle because there are no PHI nodes that need to be placed.
    456   if (ExitBlocks.size() == 1) {
    457     if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
    458       // Instruction is not used, just delete it.
    459       CurAST->deleteValue(&I);
    460       // If I has users in unreachable blocks, eliminate.
    461       // If I is not void type then replaceAllUsesWith undef.
    462       // This allows ValueHandlers and custom metadata to adjust itself.
    463       if (!I.use_empty())
    464         I.replaceAllUsesWith(UndefValue::get(I.getType()));
    465       I.eraseFromParent();
    466     } else {
    467       // Move the instruction to the start of the exit block, after any PHI
    468       // nodes in it.
    469       I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
    470 
    471       // This instruction is no longer in the AST for the current loop, because
    472       // we just sunk it out of the loop.  If we just sunk it into an outer
    473       // loop, we will rediscover the operation when we process it.
    474       CurAST->deleteValue(&I);
    475     }
    476     return;
    477   }
    478 
    479   if (ExitBlocks.empty()) {
    480     // The instruction is actually dead if there ARE NO exit blocks.
    481     CurAST->deleteValue(&I);
    482     // If I has users in unreachable blocks, eliminate.
    483     // If I is not void type then replaceAllUsesWith undef.
    484     // This allows ValueHandlers and custom metadata to adjust itself.
    485     if (!I.use_empty())
    486       I.replaceAllUsesWith(UndefValue::get(I.getType()));
    487     I.eraseFromParent();
    488     return;
    489   }
    490 
    491   // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
    492   // hard work of inserting PHI nodes as necessary.
    493   SmallVector<PHINode*, 8> NewPHIs;
    494   SSAUpdater SSA(&NewPHIs);
    495 
    496   if (!I.use_empty())
    497     SSA.Initialize(I.getType(), I.getName());
    498 
    499   // Insert a copy of the instruction in each exit block of the loop that is
    500   // dominated by the instruction.  Each exit block is known to only be in the
    501   // ExitBlocks list once.
    502   BasicBlock *InstOrigBB = I.getParent();
    503   unsigned NumInserted = 0;
    504 
    505   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    506     BasicBlock *ExitBlock = ExitBlocks[i];
    507 
    508     if (!DT->dominates(InstOrigBB, ExitBlock))
    509       continue;
    510 
    511     // Insert the code after the last PHI node.
    512     BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
    513 
    514     // If this is the first exit block processed, just move the original
    515     // instruction, otherwise clone the original instruction and insert
    516     // the copy.
    517     Instruction *New;
    518     if (NumInserted++ == 0) {
    519       I.moveBefore(InsertPt);
    520       New = &I;
    521     } else {
    522       New = I.clone();
    523       if (!I.getName().empty())
    524         New->setName(I.getName()+".le");
    525       ExitBlock->getInstList().insert(InsertPt, New);
    526     }
    527 
    528     // Now that we have inserted the instruction, inform SSAUpdater.
    529     if (!I.use_empty())
    530       SSA.AddAvailableValue(ExitBlock, New);
    531   }
    532 
    533   // If the instruction doesn't dominate any exit blocks, it must be dead.
    534   if (NumInserted == 0) {
    535     CurAST->deleteValue(&I);
    536     if (!I.use_empty())
    537       I.replaceAllUsesWith(UndefValue::get(I.getType()));
    538     I.eraseFromParent();
    539     return;
    540   }
    541 
    542   // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
    543   for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
    544     // Grab the use before incrementing the iterator.
    545     Use &U = UI.getUse();
    546     // Increment the iterator before removing the use from the list.
    547     ++UI;
    548     SSA.RewriteUseAfterInsertions(U);
    549   }
    550 
    551   // Update CurAST for NewPHIs if I had pointer type.
    552   if (I.getType()->isPointerTy())
    553     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
    554       CurAST->copyValue(&I, NewPHIs[i]);
    555 
    556   // Finally, remove the instruction from CurAST.  It is no longer in the loop.
    557   CurAST->deleteValue(&I);
    558 }
    559 
    560 /// hoist - When an instruction is found to only use loop invariant operands
    561 /// that is safe to hoist, this instruction is called to do the dirty work.
    562 ///
    563 void LICM::hoist(Instruction &I) {
    564   DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
    565         << I << "\n");
    566 
    567   // Move the new node to the Preheader, before its terminator.
    568   I.moveBefore(Preheader->getTerminator());
    569 
    570   if (isa<LoadInst>(I)) ++NumMovedLoads;
    571   else if (isa<CallInst>(I)) ++NumMovedCalls;
    572   ++NumHoisted;
    573   Changed = true;
    574 }
    575 
    576 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
    577 /// not a trapping instruction or if it is a trapping instruction and is
    578 /// guaranteed to execute.
    579 ///
    580 bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
    581   // If it is not a trapping instruction, it is always safe to hoist.
    582   if (Inst.isSafeToSpeculativelyExecute())
    583     return true;
    584 
    585   return isGuaranteedToExecute(Inst);
    586 }
    587 
    588 bool LICM::isGuaranteedToExecute(Instruction &Inst) {
    589   // Otherwise we have to check to make sure that the instruction dominates all
    590   // of the exit blocks.  If it doesn't, then there is a path out of the loop
    591   // which does not execute this instruction, so we can't hoist it.
    592 
    593   // If the instruction is in the header block for the loop (which is very
    594   // common), it is always guaranteed to dominate the exit blocks.  Since this
    595   // is a common case, and can save some work, check it now.
    596   if (Inst.getParent() == CurLoop->getHeader())
    597     return true;
    598 
    599   // Get the exit blocks for the current loop.
    600   SmallVector<BasicBlock*, 8> ExitBlocks;
    601   CurLoop->getExitBlocks(ExitBlocks);
    602 
    603   // Verify that the block dominates each of the exit blocks of the loop.
    604   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    605     if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
    606       return false;
    607 
    608   return true;
    609 }
    610 
    611 namespace {
    612   class LoopPromoter : public LoadAndStorePromoter {
    613     Value *SomePtr;  // Designated pointer to store to.
    614     SmallPtrSet<Value*, 4> &PointerMustAliases;
    615     SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
    616     AliasSetTracker &AST;
    617     DebugLoc DL;
    618     int Alignment;
    619   public:
    620     LoopPromoter(Value *SP,
    621                  const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
    622                  SmallPtrSet<Value*, 4> &PMA,
    623                  SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast,
    624                  DebugLoc dl, int alignment)
    625       : LoadAndStorePromoter(Insts, S), SomePtr(SP),
    626         PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl),
    627         Alignment(alignment) {}
    628 
    629     virtual bool isInstInList(Instruction *I,
    630                               const SmallVectorImpl<Instruction*> &) const {
    631       Value *Ptr;
    632       if (LoadInst *LI = dyn_cast<LoadInst>(I))
    633         Ptr = LI->getOperand(0);
    634       else
    635         Ptr = cast<StoreInst>(I)->getPointerOperand();
    636       return PointerMustAliases.count(Ptr);
    637     }
    638 
    639     virtual void doExtraRewritesBeforeFinalDeletion() const {
    640       // Insert stores after in the loop exit blocks.  Each exit block gets a
    641       // store of the live-out values that feed them.  Since we've already told
    642       // the SSA updater about the defs in the loop and the preheader
    643       // definition, it is all set and we can start using it.
    644       for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
    645         BasicBlock *ExitBlock = LoopExitBlocks[i];
    646         Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
    647         Instruction *InsertPos = ExitBlock->getFirstInsertionPt();
    648         StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
    649         NewSI->setAlignment(Alignment);
    650         NewSI->setDebugLoc(DL);
    651       }
    652     }
    653 
    654     virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
    655       // Update alias analysis.
    656       AST.copyValue(LI, V);
    657     }
    658     virtual void instructionDeleted(Instruction *I) const {
    659       AST.deleteValue(I);
    660     }
    661   };
    662 } // end anon namespace
    663 
    664 /// PromoteAliasSet - Try to promote memory values to scalars by sinking
    665 /// stores out of the loop and moving loads to before the loop.  We do this by
    666 /// looping over the stores in the loop, looking for stores to Must pointers
    667 /// which are loop invariant.
    668 ///
    669 void LICM::PromoteAliasSet(AliasSet &AS) {
    670   // We can promote this alias set if it has a store, if it is a "Must" alias
    671   // set, if the pointer is loop invariant, and if we are not eliminating any
    672   // volatile loads or stores.
    673   if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
    674       AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
    675     return;
    676 
    677   assert(!AS.empty() &&
    678          "Must alias set should have at least one pointer element in it!");
    679   Value *SomePtr = AS.begin()->getValue();
    680 
    681   // It isn't safe to promote a load/store from the loop if the load/store is
    682   // conditional.  For example, turning:
    683   //
    684   //    for () { if (c) *P += 1; }
    685   //
    686   // into:
    687   //
    688   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
    689   //
    690   // is not safe, because *P may only be valid to access if 'c' is true.
    691   //
    692   // It is safe to promote P if all uses are direct load/stores and if at
    693   // least one is guaranteed to be executed.
    694   bool GuaranteedToExecute = false;
    695 
    696   SmallVector<Instruction*, 64> LoopUses;
    697   SmallPtrSet<Value*, 4> PointerMustAliases;
    698 
    699   // We start with an alignment of one and try to find instructions that allow
    700   // us to prove better alignment.
    701   unsigned Alignment = 1;
    702 
    703   // Check that all of the pointers in the alias set have the same type.  We
    704   // cannot (yet) promote a memory location that is loaded and stored in
    705   // different sizes.
    706   for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
    707     Value *ASIV = ASI->getValue();
    708     PointerMustAliases.insert(ASIV);
    709 
    710     // Check that all of the pointers in the alias set have the same type.  We
    711     // cannot (yet) promote a memory location that is loaded and stored in
    712     // different sizes.
    713     if (SomePtr->getType() != ASIV->getType())
    714       return;
    715 
    716     for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
    717          UI != UE; ++UI) {
    718       // Ignore instructions that are outside the loop.
    719       Instruction *Use = dyn_cast<Instruction>(*UI);
    720       if (!Use || !CurLoop->contains(Use))
    721         continue;
    722 
    723       // If there is an non-load/store instruction in the loop, we can't promote
    724       // it.
    725       if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
    726         assert(!load->isVolatile() && "AST broken");
    727         if (!load->isSimple())
    728           return;
    729       } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
    730         // Stores *of* the pointer are not interesting, only stores *to* the
    731         // pointer.
    732         if (Use->getOperand(1) != ASIV)
    733           continue;
    734         assert(!store->isVolatile() && "AST broken");
    735         if (!store->isSimple())
    736           return;
    737 
    738         // Note that we only check GuaranteedToExecute inside the store case
    739         // so that we do not introduce stores where they did not exist before
    740         // (which would break the LLVM concurrency model).
    741 
    742         // If the alignment of this instruction allows us to specify a more
    743         // restrictive (and performant) alignment and if we are sure this
    744         // instruction will be executed, update the alignment.
    745         // Larger is better, with the exception of 0 being the best alignment.
    746         unsigned InstAlignment = store->getAlignment();
    747         if ((InstAlignment > Alignment || InstAlignment == 0)
    748             && (Alignment != 0))
    749           if (isGuaranteedToExecute(*Use)) {
    750             GuaranteedToExecute = true;
    751             Alignment = InstAlignment;
    752           }
    753 
    754         if (!GuaranteedToExecute)
    755           GuaranteedToExecute = isGuaranteedToExecute(*Use);
    756 
    757       } else
    758         return; // Not a load or store.
    759 
    760       LoopUses.push_back(Use);
    761     }
    762   }
    763 
    764   // If there isn't a guaranteed-to-execute instruction, we can't promote.
    765   if (!GuaranteedToExecute)
    766     return;
    767 
    768   // Otherwise, this is safe to promote, lets do it!
    769   DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
    770   Changed = true;
    771   ++NumPromoted;
    772 
    773   // Grab a debug location for the inserted loads/stores; given that the
    774   // inserted loads/stores have little relation to the original loads/stores,
    775   // this code just arbitrarily picks a location from one, since any debug
    776   // location is better than none.
    777   DebugLoc DL = LoopUses[0]->getDebugLoc();
    778 
    779   SmallVector<BasicBlock*, 8> ExitBlocks;
    780   CurLoop->getUniqueExitBlocks(ExitBlocks);
    781 
    782   // We use the SSAUpdater interface to insert phi nodes as required.
    783   SmallVector<PHINode*, 16> NewPHIs;
    784   SSAUpdater SSA(&NewPHIs);
    785   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
    786                         *CurAST, DL, Alignment);
    787 
    788   // Set up the preheader to have a definition of the value.  It is the live-out
    789   // value from the preheader that uses in the loop will use.
    790   LoadInst *PreheaderLoad =
    791     new LoadInst(SomePtr, SomePtr->getName()+".promoted",
    792                  Preheader->getTerminator());
    793   PreheaderLoad->setAlignment(Alignment);
    794   PreheaderLoad->setDebugLoc(DL);
    795   SSA.AddAvailableValue(Preheader, PreheaderLoad);
    796 
    797   // Rewrite all the loads in the loop and remember all the definitions from
    798   // stores in the loop.
    799   Promoter.run(LoopUses);
    800 
    801   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
    802   if (PreheaderLoad->use_empty())
    803     PreheaderLoad->eraseFromParent();
    804 }
    805 
    806 
    807 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
    808 void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
    809   AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
    810   if (!AST)
    811     return;
    812 
    813   AST->copyValue(From, To);
    814 }
    815 
    816 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
    817 /// set.
    818 void LICM::deleteAnalysisValue(Value *V, Loop *L) {
    819   AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
    820   if (!AST)
    821     return;
    822 
    823   AST->deleteValue(V);
    824 }
    825