Home | History | Annotate | Download | only in Scalar
      1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
     10 // three disjoint ranges.  It does that in a way such that the loop running in
     11 // the middle loop provably does not need range checks. As an example, it will
     12 // convert
     13 //
     14 //   len = < known positive >
     15 //   for (i = 0; i < n; i++) {
     16 //     if (0 <= i && i < len) {
     17 //       do_something();
     18 //     } else {
     19 //       throw_out_of_bounds();
     20 //     }
     21 //   }
     22 //
     23 // to
     24 //
     25 //   len = < known positive >
     26 //   limit = smin(n, len)
     27 //   // no first segment
     28 //   for (i = 0; i < limit; i++) {
     29 //     if (0 <= i && i < len) { // this check is fully redundant
     30 //       do_something();
     31 //     } else {
     32 //       throw_out_of_bounds();
     33 //     }
     34 //   }
     35 //   for (i = limit; i < n; i++) {
     36 //     if (0 <= i && i < len) {
     37 //       do_something();
     38 //     } else {
     39 //       throw_out_of_bounds();
     40 //     }
     41 //   }
     42 //===----------------------------------------------------------------------===//
     43 
     44 #include "llvm/ADT/Optional.h"
     45 #include "llvm/Analysis/BranchProbabilityInfo.h"
     46 #include "llvm/Analysis/InstructionSimplify.h"
     47 #include "llvm/Analysis/LoopInfo.h"
     48 #include "llvm/Analysis/LoopPass.h"
     49 #include "llvm/Analysis/ScalarEvolution.h"
     50 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     51 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     52 #include "llvm/Analysis/ValueTracking.h"
     53 #include "llvm/IR/Dominators.h"
     54 #include "llvm/IR/Function.h"
     55 #include "llvm/IR/IRBuilder.h"
     56 #include "llvm/IR/Instructions.h"
     57 #include "llvm/IR/Module.h"
     58 #include "llvm/IR/PatternMatch.h"
     59 #include "llvm/IR/ValueHandle.h"
     60 #include "llvm/IR/Verifier.h"
     61 #include "llvm/Pass.h"
     62 #include "llvm/Support/Debug.h"
     63 #include "llvm/Support/raw_ostream.h"
     64 #include "llvm/Transforms/Scalar.h"
     65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     66 #include "llvm/Transforms/Utils/Cloning.h"
     67 #include "llvm/Transforms/Utils/LoopUtils.h"
     68 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     69 #include "llvm/Transforms/Utils/UnrollLoop.h"
     70 
     71 using namespace llvm;
     72 
     73 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
     74                                         cl::init(64));
     75 
     76 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
     77                                        cl::init(false));
     78 
     79 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
     80                                       cl::init(false));
     81 
     82 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
     83                                           cl::Hidden, cl::init(10));
     84 
     85 #define DEBUG_TYPE "irce"
     86 
     87 namespace {
     88 
     89 /// An inductive range check is conditional branch in a loop with
     90 ///
     91 ///  1. a very cold successor (i.e. the branch jumps to that successor very
     92 ///     rarely)
     93 ///
     94 ///  and
     95 ///
     96 ///  2. a condition that is provably true for some contiguous range of values
     97 ///     taken by the containing loop's induction variable.
     98 ///
     99 class InductiveRangeCheck {
    100   // Classifies a range check
    101   enum RangeCheckKind : unsigned {
    102     // Range check of the form "0 <= I".
    103     RANGE_CHECK_LOWER = 1,
    104 
    105     // Range check of the form "I < L" where L is known positive.
    106     RANGE_CHECK_UPPER = 2,
    107 
    108     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
    109     // conditions.
    110     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
    111 
    112     // Unrecognized range check condition.
    113     RANGE_CHECK_UNKNOWN = (unsigned)-1
    114   };
    115 
    116   static StringRef rangeCheckKindToStr(RangeCheckKind);
    117 
    118   const SCEV *Offset = nullptr;
    119   const SCEV *Scale = nullptr;
    120   Value *Length = nullptr;
    121   Use *CheckUse = nullptr;
    122   RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
    123 
    124   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
    125                                             ScalarEvolution &SE, Value *&Index,
    126                                             Value *&Length);
    127 
    128   static void
    129   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
    130                              SmallVectorImpl<InductiveRangeCheck> &Checks,
    131                              SmallPtrSetImpl<Value *> &Visited);
    132 
    133 public:
    134   const SCEV *getOffset() const { return Offset; }
    135   const SCEV *getScale() const { return Scale; }
    136   Value *getLength() const { return Length; }
    137 
    138   void print(raw_ostream &OS) const {
    139     OS << "InductiveRangeCheck:\n";
    140     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
    141     OS << "  Offset: ";
    142     Offset->print(OS);
    143     OS << "  Scale: ";
    144     Scale->print(OS);
    145     OS << "  Length: ";
    146     if (Length)
    147       Length->print(OS);
    148     else
    149       OS << "(null)";
    150     OS << "\n  CheckUse: ";
    151     getCheckUse()->getUser()->print(OS);
    152     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
    153   }
    154 
    155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    156   void dump() {
    157     print(dbgs());
    158   }
    159 #endif
    160 
    161   Use *getCheckUse() const { return CheckUse; }
    162 
    163   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
    164   /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
    165 
    166   class Range {
    167     const SCEV *Begin;
    168     const SCEV *End;
    169 
    170   public:
    171     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
    172       assert(Begin->getType() == End->getType() && "ill-typed range!");
    173     }
    174 
    175     Type *getType() const { return Begin->getType(); }
    176     const SCEV *getBegin() const { return Begin; }
    177     const SCEV *getEnd() const { return End; }
    178   };
    179 
    180   /// This is the value the condition of the branch needs to evaluate to for the
    181   /// branch to take the hot successor (see (1) above).
    182   bool getPassingDirection() { return true; }
    183 
    184   /// Computes a range for the induction variable (IndVar) in which the range
    185   /// check is redundant and can be constant-folded away.  The induction
    186   /// variable is not required to be the canonical {0,+,1} induction variable.
    187   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
    188                                             const SCEVAddRecExpr *IndVar) const;
    189 
    190   /// Parse out a set of inductive range checks from \p BI and append them to \p
    191   /// Checks.
    192   ///
    193   /// NB! There may be conditions feeding into \p BI that aren't inductive range
    194   /// checks, and hence don't end up in \p Checks.
    195   static void
    196   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
    197                                BranchProbabilityInfo &BPI,
    198                                SmallVectorImpl<InductiveRangeCheck> &Checks);
    199 };
    200 
    201 class InductiveRangeCheckElimination : public LoopPass {
    202 public:
    203   static char ID;
    204   InductiveRangeCheckElimination() : LoopPass(ID) {
    205     initializeInductiveRangeCheckEliminationPass(
    206         *PassRegistry::getPassRegistry());
    207   }
    208 
    209   void getAnalysisUsage(AnalysisUsage &AU) const override {
    210     AU.addRequired<BranchProbabilityInfoWrapperPass>();
    211     getLoopAnalysisUsage(AU);
    212   }
    213 
    214   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    215 };
    216 
    217 char InductiveRangeCheckElimination::ID = 0;
    218 }
    219 
    220 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
    221                       "Inductive range check elimination", false, false)
    222 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
    223 INITIALIZE_PASS_DEPENDENCY(LoopPass)
    224 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
    225                     "Inductive range check elimination", false, false)
    226 
    227 StringRef InductiveRangeCheck::rangeCheckKindToStr(
    228     InductiveRangeCheck::RangeCheckKind RCK) {
    229   switch (RCK) {
    230   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
    231     return "RANGE_CHECK_UNKNOWN";
    232 
    233   case InductiveRangeCheck::RANGE_CHECK_UPPER:
    234     return "RANGE_CHECK_UPPER";
    235 
    236   case InductiveRangeCheck::RANGE_CHECK_LOWER:
    237     return "RANGE_CHECK_LOWER";
    238 
    239   case InductiveRangeCheck::RANGE_CHECK_BOTH:
    240     return "RANGE_CHECK_BOTH";
    241   }
    242 
    243   llvm_unreachable("unknown range check type!");
    244 }
    245 
    246 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
    247 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
    248 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
    249 /// range checked, and set `Length` to the upper limit `Index` is being range
    250 /// checked with if (and only if) the range check type is stronger or equal to
    251 /// RANGE_CHECK_UPPER.
    252 ///
    253 InductiveRangeCheck::RangeCheckKind
    254 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
    255                                          ScalarEvolution &SE, Value *&Index,
    256                                          Value *&Length) {
    257 
    258   auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
    259     const SCEV *S = SE.getSCEV(V);
    260     if (isa<SCEVCouldNotCompute>(S))
    261       return false;
    262 
    263     return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
    264            SE.isKnownNonNegative(S);
    265   };
    266 
    267   using namespace llvm::PatternMatch;
    268 
    269   ICmpInst::Predicate Pred = ICI->getPredicate();
    270   Value *LHS = ICI->getOperand(0);
    271   Value *RHS = ICI->getOperand(1);
    272 
    273   switch (Pred) {
    274   default:
    275     return RANGE_CHECK_UNKNOWN;
    276 
    277   case ICmpInst::ICMP_SLE:
    278     std::swap(LHS, RHS);
    279   // fallthrough
    280   case ICmpInst::ICMP_SGE:
    281     if (match(RHS, m_ConstantInt<0>())) {
    282       Index = LHS;
    283       return RANGE_CHECK_LOWER;
    284     }
    285     return RANGE_CHECK_UNKNOWN;
    286 
    287   case ICmpInst::ICMP_SLT:
    288     std::swap(LHS, RHS);
    289   // fallthrough
    290   case ICmpInst::ICMP_SGT:
    291     if (match(RHS, m_ConstantInt<-1>())) {
    292       Index = LHS;
    293       return RANGE_CHECK_LOWER;
    294     }
    295 
    296     if (IsNonNegativeAndNotLoopVarying(LHS)) {
    297       Index = RHS;
    298       Length = LHS;
    299       return RANGE_CHECK_UPPER;
    300     }
    301     return RANGE_CHECK_UNKNOWN;
    302 
    303   case ICmpInst::ICMP_ULT:
    304     std::swap(LHS, RHS);
    305   // fallthrough
    306   case ICmpInst::ICMP_UGT:
    307     if (IsNonNegativeAndNotLoopVarying(LHS)) {
    308       Index = RHS;
    309       Length = LHS;
    310       return RANGE_CHECK_BOTH;
    311     }
    312     return RANGE_CHECK_UNKNOWN;
    313   }
    314 
    315   llvm_unreachable("default clause returns!");
    316 }
    317 
    318 void InductiveRangeCheck::extractRangeChecksFromCond(
    319     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
    320     SmallVectorImpl<InductiveRangeCheck> &Checks,
    321     SmallPtrSetImpl<Value *> &Visited) {
    322   using namespace llvm::PatternMatch;
    323 
    324   Value *Condition = ConditionUse.get();
    325   if (!Visited.insert(Condition).second)
    326     return;
    327 
    328   if (match(Condition, m_And(m_Value(), m_Value()))) {
    329     SmallVector<InductiveRangeCheck, 8> SubChecks;
    330     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
    331                                SubChecks, Visited);
    332     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
    333                                SubChecks, Visited);
    334 
    335     if (SubChecks.size() == 2) {
    336       // Handle a special case where we know how to merge two checks separately
    337       // checking the upper and lower bounds into a full range check.
    338       const auto &RChkA = SubChecks[0];
    339       const auto &RChkB = SubChecks[1];
    340       if ((RChkA.Length == RChkB.Length || !RChkA.Length || !RChkB.Length) &&
    341           RChkA.Offset == RChkB.Offset && RChkA.Scale == RChkB.Scale) {
    342 
    343         // If RChkA.Kind == RChkB.Kind then we just found two identical checks.
    344         // But if one of them is a RANGE_CHECK_LOWER and the other is a
    345         // RANGE_CHECK_UPPER (only possibility if they're different) then
    346         // together they form a RANGE_CHECK_BOTH.
    347         SubChecks[0].Kind =
    348             (InductiveRangeCheck::RangeCheckKind)(RChkA.Kind | RChkB.Kind);
    349         SubChecks[0].Length = RChkA.Length ? RChkA.Length : RChkB.Length;
    350         SubChecks[0].CheckUse = &ConditionUse;
    351 
    352         // We updated one of the checks in place, now erase the other.
    353         SubChecks.pop_back();
    354       }
    355     }
    356 
    357     Checks.insert(Checks.end(), SubChecks.begin(), SubChecks.end());
    358     return;
    359   }
    360 
    361   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
    362   if (!ICI)
    363     return;
    364 
    365   Value *Length = nullptr, *Index;
    366   auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length);
    367   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
    368     return;
    369 
    370   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
    371   bool IsAffineIndex =
    372       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
    373 
    374   if (!IsAffineIndex)
    375     return;
    376 
    377   InductiveRangeCheck IRC;
    378   IRC.Length = Length;
    379   IRC.Offset = IndexAddRec->getStart();
    380   IRC.Scale = IndexAddRec->getStepRecurrence(SE);
    381   IRC.CheckUse = &ConditionUse;
    382   IRC.Kind = RCKind;
    383   Checks.push_back(IRC);
    384 }
    385 
    386 void InductiveRangeCheck::extractRangeChecksFromBranch(
    387     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
    388     SmallVectorImpl<InductiveRangeCheck> &Checks) {
    389 
    390   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
    391     return;
    392 
    393   BranchProbability LikelyTaken(15, 16);
    394 
    395   if (BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
    396     return;
    397 
    398   SmallPtrSet<Value *, 8> Visited;
    399   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
    400                                                   Checks, Visited);
    401 }
    402 
    403 namespace {
    404 
    405 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
    406 // except that it is more lightweight and can track the state of a loop through
    407 // changing and potentially invalid IR.  This structure also formalizes the
    408 // kinds of loops we can deal with -- ones that have a single latch that is also
    409 // an exiting block *and* have a canonical induction variable.
    410 struct LoopStructure {
    411   const char *Tag;
    412 
    413   BasicBlock *Header;
    414   BasicBlock *Latch;
    415 
    416   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
    417   // successor is `LatchExit', the exit block of the loop.
    418   BranchInst *LatchBr;
    419   BasicBlock *LatchExit;
    420   unsigned LatchBrExitIdx;
    421 
    422   Value *IndVarNext;
    423   Value *IndVarStart;
    424   Value *LoopExitAt;
    425   bool IndVarIncreasing;
    426 
    427   LoopStructure()
    428       : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
    429         LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
    430         IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
    431 
    432   template <typename M> LoopStructure map(M Map) const {
    433     LoopStructure Result;
    434     Result.Tag = Tag;
    435     Result.Header = cast<BasicBlock>(Map(Header));
    436     Result.Latch = cast<BasicBlock>(Map(Latch));
    437     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
    438     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
    439     Result.LatchBrExitIdx = LatchBrExitIdx;
    440     Result.IndVarNext = Map(IndVarNext);
    441     Result.IndVarStart = Map(IndVarStart);
    442     Result.LoopExitAt = Map(LoopExitAt);
    443     Result.IndVarIncreasing = IndVarIncreasing;
    444     return Result;
    445   }
    446 
    447   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
    448                                                     BranchProbabilityInfo &BPI,
    449                                                     Loop &,
    450                                                     const char *&);
    451 };
    452 
    453 /// This class is used to constrain loops to run within a given iteration space.
    454 /// The algorithm this class implements is given a Loop and a range [Begin,
    455 /// End).  The algorithm then tries to break out a "main loop" out of the loop
    456 /// it is given in a way that the "main loop" runs with the induction variable
    457 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
    458 /// loops to run any remaining iterations.  The pre loop runs any iterations in
    459 /// which the induction variable is < Begin, and the post loop runs any
    460 /// iterations in which the induction variable is >= End.
    461 ///
    462 class LoopConstrainer {
    463   // The representation of a clone of the original loop we started out with.
    464   struct ClonedLoop {
    465     // The cloned blocks
    466     std::vector<BasicBlock *> Blocks;
    467 
    468     // `Map` maps values in the clonee into values in the cloned version
    469     ValueToValueMapTy Map;
    470 
    471     // An instance of `LoopStructure` for the cloned loop
    472     LoopStructure Structure;
    473   };
    474 
    475   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
    476   // more details on what these fields mean.
    477   struct RewrittenRangeInfo {
    478     BasicBlock *PseudoExit;
    479     BasicBlock *ExitSelector;
    480     std::vector<PHINode *> PHIValuesAtPseudoExit;
    481     PHINode *IndVarEnd;
    482 
    483     RewrittenRangeInfo()
    484         : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
    485   };
    486 
    487   // Calculated subranges we restrict the iteration space of the main loop to.
    488   // See the implementation of `calculateSubRanges' for more details on how
    489   // these fields are computed.  `LowLimit` is None if there is no restriction
    490   // on low end of the restricted iteration space of the main loop.  `HighLimit`
    491   // is None if there is no restriction on high end of the restricted iteration
    492   // space of the main loop.
    493 
    494   struct SubRanges {
    495     Optional<const SCEV *> LowLimit;
    496     Optional<const SCEV *> HighLimit;
    497   };
    498 
    499   // A utility function that does a `replaceUsesOfWith' on the incoming block
    500   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
    501   // incoming block list with `ReplaceBy'.
    502   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
    503                               BasicBlock *ReplaceBy);
    504 
    505   // Compute a safe set of limits for the main loop to run in -- effectively the
    506   // intersection of `Range' and the iteration space of the original loop.
    507   // Return None if unable to compute the set of subranges.
    508   //
    509   Optional<SubRanges> calculateSubRanges() const;
    510 
    511   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
    512   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
    513   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
    514   // but there is no such edge.
    515   //
    516   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
    517 
    518   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
    519   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
    520   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
    521   // `OriginalHeaderCount'.
    522   //
    523   // If there are iterations left to execute, control is made to jump to
    524   // `ContinuationBlock', otherwise they take the normal loop exit.  The
    525   // returned `RewrittenRangeInfo' object is populated as follows:
    526   //
    527   //  .PseudoExit is a basic block that unconditionally branches to
    528   //      `ContinuationBlock'.
    529   //
    530   //  .ExitSelector is a basic block that decides, on exit from the loop,
    531   //      whether to branch to the "true" exit or to `PseudoExit'.
    532   //
    533   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
    534   //      for each PHINode in the loop header on taking the pseudo exit.
    535   //
    536   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
    537   // preheader because it is made to branch to the loop header only
    538   // conditionally.
    539   //
    540   RewrittenRangeInfo
    541   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
    542                           Value *ExitLoopAt,
    543                           BasicBlock *ContinuationBlock) const;
    544 
    545   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
    546   // function creates a new preheader for `LS' and returns it.
    547   //
    548   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
    549                               const char *Tag) const;
    550 
    551   // `ContinuationBlockAndPreheader' was the continuation block for some call to
    552   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
    553   // This function rewrites the PHI nodes in `LS.Header' to start with the
    554   // correct value.
    555   void rewriteIncomingValuesForPHIs(
    556       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
    557       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
    558 
    559   // Even though we do not preserve any passes at this time, we at least need to
    560   // keep the parent loop structure consistent.  The `LPPassManager' seems to
    561   // verify this after running a loop pass.  This function adds the list of
    562   // blocks denoted by BBs to this loops parent loop if required.
    563   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
    564 
    565   // Some global state.
    566   Function &F;
    567   LLVMContext &Ctx;
    568   ScalarEvolution &SE;
    569 
    570   // Information about the original loop we started out with.
    571   Loop &OriginalLoop;
    572   LoopInfo &OriginalLoopInfo;
    573   const SCEV *LatchTakenCount;
    574   BasicBlock *OriginalPreheader;
    575 
    576   // The preheader of the main loop.  This may or may not be different from
    577   // `OriginalPreheader'.
    578   BasicBlock *MainLoopPreheader;
    579 
    580   // The range we need to run the main loop in.
    581   InductiveRangeCheck::Range Range;
    582 
    583   // The structure of the main loop (see comment at the beginning of this class
    584   // for a definition)
    585   LoopStructure MainLoopStructure;
    586 
    587 public:
    588   LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
    589                   ScalarEvolution &SE, InductiveRangeCheck::Range R)
    590       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
    591         SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
    592         OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
    593         MainLoopStructure(LS) {}
    594 
    595   // Entry point for the algorithm.  Returns true on success.
    596   bool run();
    597 };
    598 
    599 }
    600 
    601 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
    602                                       BasicBlock *ReplaceBy) {
    603   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    604     if (PN->getIncomingBlock(i) == Block)
    605       PN->setIncomingBlock(i, ReplaceBy);
    606 }
    607 
    608 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
    609   APInt SMax =
    610       APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
    611   return SE.getSignedRange(S).contains(SMax) &&
    612          SE.getUnsignedRange(S).contains(SMax);
    613 }
    614 
    615 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
    616   APInt SMin =
    617       APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
    618   return SE.getSignedRange(S).contains(SMin) &&
    619          SE.getUnsignedRange(S).contains(SMin);
    620 }
    621 
    622 Optional<LoopStructure>
    623 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
    624                                   Loop &L, const char *&FailureReason) {
    625   assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
    626 
    627   BasicBlock *Latch = L.getLoopLatch();
    628   if (!L.isLoopExiting(Latch)) {
    629     FailureReason = "no loop latch";
    630     return None;
    631   }
    632 
    633   BasicBlock *Header = L.getHeader();
    634   BasicBlock *Preheader = L.getLoopPreheader();
    635   if (!Preheader) {
    636     FailureReason = "no preheader";
    637     return None;
    638   }
    639 
    640   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
    641   if (!LatchBr || LatchBr->isUnconditional()) {
    642     FailureReason = "latch terminator not conditional branch";
    643     return None;
    644   }
    645 
    646   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
    647 
    648   BranchProbability ExitProbability =
    649     BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
    650 
    651   if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
    652     FailureReason = "short running loop, not profitable";
    653     return None;
    654   }
    655 
    656   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
    657   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
    658     FailureReason = "latch terminator branch not conditional on integral icmp";
    659     return None;
    660   }
    661 
    662   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
    663   if (isa<SCEVCouldNotCompute>(LatchCount)) {
    664     FailureReason = "could not compute latch count";
    665     return None;
    666   }
    667 
    668   ICmpInst::Predicate Pred = ICI->getPredicate();
    669   Value *LeftValue = ICI->getOperand(0);
    670   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
    671   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
    672 
    673   Value *RightValue = ICI->getOperand(1);
    674   const SCEV *RightSCEV = SE.getSCEV(RightValue);
    675 
    676   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
    677   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
    678     if (isa<SCEVAddRecExpr>(RightSCEV)) {
    679       std::swap(LeftSCEV, RightSCEV);
    680       std::swap(LeftValue, RightValue);
    681       Pred = ICmpInst::getSwappedPredicate(Pred);
    682     } else {
    683       FailureReason = "no add recurrences in the icmp";
    684       return None;
    685     }
    686   }
    687 
    688   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
    689     if (AR->getNoWrapFlags(SCEV::FlagNSW))
    690       return true;
    691 
    692     IntegerType *Ty = cast<IntegerType>(AR->getType());
    693     IntegerType *WideTy =
    694         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
    695 
    696     const SCEVAddRecExpr *ExtendAfterOp =
    697         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    698     if (ExtendAfterOp) {
    699       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
    700       const SCEV *ExtendedStep =
    701           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
    702 
    703       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
    704                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
    705 
    706       if (NoSignedWrap)
    707         return true;
    708     }
    709 
    710     // We may have proved this when computing the sign extension above.
    711     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
    712   };
    713 
    714   auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
    715     if (!AR->isAffine())
    716       return false;
    717 
    718     // Currently we only work with induction variables that have been proved to
    719     // not wrap.  This restriction can potentially be lifted in the future.
    720 
    721     if (!HasNoSignedWrap(AR))
    722       return false;
    723 
    724     if (const SCEVConstant *StepExpr =
    725             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
    726       ConstantInt *StepCI = StepExpr->getValue();
    727       if (StepCI->isOne() || StepCI->isMinusOne()) {
    728         IsIncreasing = StepCI->isOne();
    729         return true;
    730       }
    731     }
    732 
    733     return false;
    734   };
    735 
    736   // `ICI` is interpreted as taking the backedge if the *next* value of the
    737   // induction variable satisfies some constraint.
    738 
    739   const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
    740   bool IsIncreasing = false;
    741   if (!IsInductionVar(IndVarNext, IsIncreasing)) {
    742     FailureReason = "LHS in icmp not induction variable";
    743     return None;
    744   }
    745 
    746   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
    747   // TODO: generalize the predicates here to also match their unsigned variants.
    748   if (IsIncreasing) {
    749     bool FoundExpectedPred =
    750         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
    751         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
    752 
    753     if (!FoundExpectedPred) {
    754       FailureReason = "expected icmp slt semantically, found something else";
    755       return None;
    756     }
    757 
    758     if (LatchBrExitIdx == 0) {
    759       if (CanBeSMax(SE, RightSCEV)) {
    760         // TODO: this restriction is easily removable -- we just have to
    761         // remember that the icmp was an slt and not an sle.
    762         FailureReason = "limit may overflow when coercing sle to slt";
    763         return None;
    764       }
    765 
    766       IRBuilder<> B(Preheader->getTerminator());
    767       RightValue = B.CreateAdd(RightValue, One);
    768     }
    769 
    770   } else {
    771     bool FoundExpectedPred =
    772         (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
    773         (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
    774 
    775     if (!FoundExpectedPred) {
    776       FailureReason = "expected icmp sgt semantically, found something else";
    777       return None;
    778     }
    779 
    780     if (LatchBrExitIdx == 0) {
    781       if (CanBeSMin(SE, RightSCEV)) {
    782         // TODO: this restriction is easily removable -- we just have to
    783         // remember that the icmp was an sgt and not an sge.
    784         FailureReason = "limit may overflow when coercing sge to sgt";
    785         return None;
    786       }
    787 
    788       IRBuilder<> B(Preheader->getTerminator());
    789       RightValue = B.CreateSub(RightValue, One);
    790     }
    791   }
    792 
    793   const SCEV *StartNext = IndVarNext->getStart();
    794   const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
    795   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
    796 
    797   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
    798 
    799   assert(SE.getLoopDisposition(LatchCount, &L) ==
    800              ScalarEvolution::LoopInvariant &&
    801          "loop variant exit count doesn't make sense!");
    802 
    803   assert(!L.contains(LatchExit) && "expected an exit block!");
    804   const DataLayout &DL = Preheader->getModule()->getDataLayout();
    805   Value *IndVarStartV =
    806       SCEVExpander(SE, DL, "irce")
    807           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
    808   IndVarStartV->setName("indvar.start");
    809 
    810   LoopStructure Result;
    811 
    812   Result.Tag = "main";
    813   Result.Header = Header;
    814   Result.Latch = Latch;
    815   Result.LatchBr = LatchBr;
    816   Result.LatchExit = LatchExit;
    817   Result.LatchBrExitIdx = LatchBrExitIdx;
    818   Result.IndVarStart = IndVarStartV;
    819   Result.IndVarNext = LeftValue;
    820   Result.IndVarIncreasing = IsIncreasing;
    821   Result.LoopExitAt = RightValue;
    822 
    823   FailureReason = nullptr;
    824 
    825   return Result;
    826 }
    827 
    828 Optional<LoopConstrainer::SubRanges>
    829 LoopConstrainer::calculateSubRanges() const {
    830   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
    831 
    832   if (Range.getType() != Ty)
    833     return None;
    834 
    835   LoopConstrainer::SubRanges Result;
    836 
    837   // I think we can be more aggressive here and make this nuw / nsw if the
    838   // addition that feeds into the icmp for the latch's terminating branch is nuw
    839   // / nsw.  In any case, a wrapping 2's complement addition is safe.
    840   ConstantInt *One = ConstantInt::get(Ty, 1);
    841   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
    842   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
    843 
    844   bool Increasing = MainLoopStructure.IndVarIncreasing;
    845 
    846   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
    847   // range of values the induction variable takes.
    848 
    849   const SCEV *Smallest = nullptr, *Greatest = nullptr;
    850 
    851   if (Increasing) {
    852     Smallest = Start;
    853     Greatest = End;
    854   } else {
    855     // These two computations may sign-overflow.  Here is why that is okay:
    856     //
    857     // We know that the induction variable does not sign-overflow on any
    858     // iteration except the last one, and it starts at `Start` and ends at
    859     // `End`, decrementing by one every time.
    860     //
    861     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
    862     //    induction variable is decreasing we know that that the smallest value
    863     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
    864     //
    865     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
    866     //    that case, `Clamp` will always return `Smallest` and
    867     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
    868     //    will be an empty range.  Returning an empty range is always safe.
    869     //
    870 
    871     Smallest = SE.getAddExpr(End, SE.getSCEV(One));
    872     Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
    873   }
    874 
    875   auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
    876     return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
    877   };
    878 
    879   // In some cases we can prove that we don't need a pre or post loop
    880 
    881   bool ProvablyNoPreloop =
    882       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
    883   if (!ProvablyNoPreloop)
    884     Result.LowLimit = Clamp(Range.getBegin());
    885 
    886   bool ProvablyNoPostLoop =
    887       SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
    888   if (!ProvablyNoPostLoop)
    889     Result.HighLimit = Clamp(Range.getEnd());
    890 
    891   return Result;
    892 }
    893 
    894 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
    895                                 const char *Tag) const {
    896   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
    897     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
    898     Result.Blocks.push_back(Clone);
    899     Result.Map[BB] = Clone;
    900   }
    901 
    902   auto GetClonedValue = [&Result](Value *V) {
    903     assert(V && "null values not in domain!");
    904     auto It = Result.Map.find(V);
    905     if (It == Result.Map.end())
    906       return V;
    907     return static_cast<Value *>(It->second);
    908   };
    909 
    910   Result.Structure = MainLoopStructure.map(GetClonedValue);
    911   Result.Structure.Tag = Tag;
    912 
    913   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
    914     BasicBlock *ClonedBB = Result.Blocks[i];
    915     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
    916 
    917     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
    918 
    919     for (Instruction &I : *ClonedBB)
    920       RemapInstruction(&I, Result.Map,
    921                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
    922 
    923     // Exit blocks will now have one more predecessor and their PHI nodes need
    924     // to be edited to reflect that.  No phi nodes need to be introduced because
    925     // the loop is in LCSSA.
    926 
    927     for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
    928          SBBI != SBBE; ++SBBI) {
    929 
    930       if (OriginalLoop.contains(*SBBI))
    931         continue; // not an exit block
    932 
    933       for (Instruction &I : **SBBI) {
    934         if (!isa<PHINode>(&I))
    935           break;
    936 
    937         PHINode *PN = cast<PHINode>(&I);
    938         Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
    939         PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
    940       }
    941     }
    942   }
    943 }
    944 
    945 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
    946     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
    947     BasicBlock *ContinuationBlock) const {
    948 
    949   // We start with a loop with a single latch:
    950   //
    951   //    +--------------------+
    952   //    |                    |
    953   //    |     preheader      |
    954   //    |                    |
    955   //    +--------+-----------+
    956   //             |      ----------------\
    957   //             |     /                |
    958   //    +--------v----v------+          |
    959   //    |                    |          |
    960   //    |      header        |          |
    961   //    |                    |          |
    962   //    +--------------------+          |
    963   //                                    |
    964   //            .....                   |
    965   //                                    |
    966   //    +--------------------+          |
    967   //    |                    |          |
    968   //    |       latch        >----------/
    969   //    |                    |
    970   //    +-------v------------+
    971   //            |
    972   //            |
    973   //            |   +--------------------+
    974   //            |   |                    |
    975   //            +--->   original exit    |
    976   //                |                    |
    977   //                +--------------------+
    978   //
    979   // We change the control flow to look like
    980   //
    981   //
    982   //    +--------------------+
    983   //    |                    |
    984   //    |     preheader      >-------------------------+
    985   //    |                    |                         |
    986   //    +--------v-----------+                         |
    987   //             |    /-------------+                  |
    988   //             |   /              |                  |
    989   //    +--------v--v--------+      |                  |
    990   //    |                    |      |                  |
    991   //    |      header        |      |   +--------+     |
    992   //    |                    |      |   |        |     |
    993   //    +--------------------+      |   |  +-----v-----v-----------+
    994   //                                |   |  |                       |
    995   //                                |   |  |     .pseudo.exit      |
    996   //                                |   |  |                       |
    997   //                                |   |  +-----------v-----------+
    998   //                                |   |              |
    999   //            .....               |   |              |
   1000   //                                |   |     +--------v-------------+
   1001   //    +--------------------+      |   |     |                      |
   1002   //    |                    |      |   |     |   ContinuationBlock  |
   1003   //    |       latch        >------+   |     |                      |
   1004   //    |                    |          |     +----------------------+
   1005   //    +---------v----------+          |
   1006   //              |                     |
   1007   //              |                     |
   1008   //              |     +---------------^-----+
   1009   //              |     |                     |
   1010   //              +----->    .exit.selector   |
   1011   //                    |                     |
   1012   //                    +----------v----------+
   1013   //                               |
   1014   //     +--------------------+    |
   1015   //     |                    |    |
   1016   //     |   original exit    <----+
   1017   //     |                    |
   1018   //     +--------------------+
   1019   //
   1020 
   1021   RewrittenRangeInfo RRI;
   1022 
   1023   auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
   1024   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
   1025                                         &F, &*BBInsertLocation);
   1026   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
   1027                                       &*BBInsertLocation);
   1028 
   1029   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
   1030   bool Increasing = LS.IndVarIncreasing;
   1031 
   1032   IRBuilder<> B(PreheaderJump);
   1033 
   1034   // EnterLoopCond - is it okay to start executing this `LS'?
   1035   Value *EnterLoopCond = Increasing
   1036                              ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
   1037                              : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
   1038 
   1039   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
   1040   PreheaderJump->eraseFromParent();
   1041 
   1042   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
   1043   B.SetInsertPoint(LS.LatchBr);
   1044   Value *TakeBackedgeLoopCond =
   1045       Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
   1046                  : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
   1047   Value *CondForBranch = LS.LatchBrExitIdx == 1
   1048                              ? TakeBackedgeLoopCond
   1049                              : B.CreateNot(TakeBackedgeLoopCond);
   1050 
   1051   LS.LatchBr->setCondition(CondForBranch);
   1052 
   1053   B.SetInsertPoint(RRI.ExitSelector);
   1054 
   1055   // IterationsLeft - are there any more iterations left, given the original
   1056   // upper bound on the induction variable?  If not, we branch to the "real"
   1057   // exit.
   1058   Value *IterationsLeft = Increasing
   1059                               ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
   1060                               : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
   1061   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
   1062 
   1063   BranchInst *BranchToContinuation =
   1064       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
   1065 
   1066   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
   1067   // each of the PHI nodes in the loop header.  This feeds into the initial
   1068   // value of the same PHI nodes if/when we continue execution.
   1069   for (Instruction &I : *LS.Header) {
   1070     if (!isa<PHINode>(&I))
   1071       break;
   1072 
   1073     PHINode *PN = cast<PHINode>(&I);
   1074 
   1075     PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
   1076                                       BranchToContinuation);
   1077 
   1078     NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
   1079     NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
   1080                         RRI.ExitSelector);
   1081     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
   1082   }
   1083 
   1084   RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
   1085                                   BranchToContinuation);
   1086   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
   1087   RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
   1088 
   1089   // The latch exit now has a branch from `RRI.ExitSelector' instead of
   1090   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
   1091   for (Instruction &I : *LS.LatchExit) {
   1092     if (PHINode *PN = dyn_cast<PHINode>(&I))
   1093       replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
   1094     else
   1095       break;
   1096   }
   1097 
   1098   return RRI;
   1099 }
   1100 
   1101 void LoopConstrainer::rewriteIncomingValuesForPHIs(
   1102     LoopStructure &LS, BasicBlock *ContinuationBlock,
   1103     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
   1104 
   1105   unsigned PHIIndex = 0;
   1106   for (Instruction &I : *LS.Header) {
   1107     if (!isa<PHINode>(&I))
   1108       break;
   1109 
   1110     PHINode *PN = cast<PHINode>(&I);
   1111 
   1112     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
   1113       if (PN->getIncomingBlock(i) == ContinuationBlock)
   1114         PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
   1115   }
   1116 
   1117   LS.IndVarStart = RRI.IndVarEnd;
   1118 }
   1119 
   1120 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
   1121                                              BasicBlock *OldPreheader,
   1122                                              const char *Tag) const {
   1123 
   1124   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
   1125   BranchInst::Create(LS.Header, Preheader);
   1126 
   1127   for (Instruction &I : *LS.Header) {
   1128     if (!isa<PHINode>(&I))
   1129       break;
   1130 
   1131     PHINode *PN = cast<PHINode>(&I);
   1132     for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
   1133       replacePHIBlock(PN, OldPreheader, Preheader);
   1134   }
   1135 
   1136   return Preheader;
   1137 }
   1138 
   1139 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
   1140   Loop *ParentLoop = OriginalLoop.getParentLoop();
   1141   if (!ParentLoop)
   1142     return;
   1143 
   1144   for (BasicBlock *BB : BBs)
   1145     ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
   1146 }
   1147 
   1148 bool LoopConstrainer::run() {
   1149   BasicBlock *Preheader = nullptr;
   1150   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
   1151   Preheader = OriginalLoop.getLoopPreheader();
   1152   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
   1153          "preconditions!");
   1154 
   1155   OriginalPreheader = Preheader;
   1156   MainLoopPreheader = Preheader;
   1157 
   1158   Optional<SubRanges> MaybeSR = calculateSubRanges();
   1159   if (!MaybeSR.hasValue()) {
   1160     DEBUG(dbgs() << "irce: could not compute subranges\n");
   1161     return false;
   1162   }
   1163 
   1164   SubRanges SR = MaybeSR.getValue();
   1165   bool Increasing = MainLoopStructure.IndVarIncreasing;
   1166   IntegerType *IVTy =
   1167       cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
   1168 
   1169   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
   1170   Instruction *InsertPt = OriginalPreheader->getTerminator();
   1171 
   1172   // It would have been better to make `PreLoop' and `PostLoop'
   1173   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
   1174   // constructor.
   1175   ClonedLoop PreLoop, PostLoop;
   1176   bool NeedsPreLoop =
   1177       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
   1178   bool NeedsPostLoop =
   1179       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
   1180 
   1181   Value *ExitPreLoopAt = nullptr;
   1182   Value *ExitMainLoopAt = nullptr;
   1183   const SCEVConstant *MinusOneS =
   1184       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
   1185 
   1186   if (NeedsPreLoop) {
   1187     const SCEV *ExitPreLoopAtSCEV = nullptr;
   1188 
   1189     if (Increasing)
   1190       ExitPreLoopAtSCEV = *SR.LowLimit;
   1191     else {
   1192       if (CanBeSMin(SE, *SR.HighLimit)) {
   1193         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
   1194                      << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
   1195                      << "\n");
   1196         return false;
   1197       }
   1198       ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
   1199     }
   1200 
   1201     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
   1202     ExitPreLoopAt->setName("exit.preloop.at");
   1203   }
   1204 
   1205   if (NeedsPostLoop) {
   1206     const SCEV *ExitMainLoopAtSCEV = nullptr;
   1207 
   1208     if (Increasing)
   1209       ExitMainLoopAtSCEV = *SR.HighLimit;
   1210     else {
   1211       if (CanBeSMin(SE, *SR.LowLimit)) {
   1212         DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
   1213                      << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
   1214                      << "\n");
   1215         return false;
   1216       }
   1217       ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
   1218     }
   1219 
   1220     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
   1221     ExitMainLoopAt->setName("exit.mainloop.at");
   1222   }
   1223 
   1224   // We clone these ahead of time so that we don't have to deal with changing
   1225   // and temporarily invalid IR as we transform the loops.
   1226   if (NeedsPreLoop)
   1227     cloneLoop(PreLoop, "preloop");
   1228   if (NeedsPostLoop)
   1229     cloneLoop(PostLoop, "postloop");
   1230 
   1231   RewrittenRangeInfo PreLoopRRI;
   1232 
   1233   if (NeedsPreLoop) {
   1234     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
   1235                                                   PreLoop.Structure.Header);
   1236 
   1237     MainLoopPreheader =
   1238         createPreheader(MainLoopStructure, Preheader, "mainloop");
   1239     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
   1240                                          ExitPreLoopAt, MainLoopPreheader);
   1241     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
   1242                                  PreLoopRRI);
   1243   }
   1244 
   1245   BasicBlock *PostLoopPreheader = nullptr;
   1246   RewrittenRangeInfo PostLoopRRI;
   1247 
   1248   if (NeedsPostLoop) {
   1249     PostLoopPreheader =
   1250         createPreheader(PostLoop.Structure, Preheader, "postloop");
   1251     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
   1252                                           ExitMainLoopAt, PostLoopPreheader);
   1253     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
   1254                                  PostLoopRRI);
   1255   }
   1256 
   1257   BasicBlock *NewMainLoopPreheader =
   1258       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
   1259   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
   1260                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
   1261                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
   1262 
   1263   // Some of the above may be nullptr, filter them out before passing to
   1264   // addToParentLoopIfNeeded.
   1265   auto NewBlocksEnd =
   1266       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
   1267 
   1268   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
   1269   addToParentLoopIfNeeded(PreLoop.Blocks);
   1270   addToParentLoopIfNeeded(PostLoop.Blocks);
   1271 
   1272   return true;
   1273 }
   1274 
   1275 /// Computes and returns a range of values for the induction variable (IndVar)
   1276 /// in which the range check can be safely elided.  If it cannot compute such a
   1277 /// range, returns None.
   1278 Optional<InductiveRangeCheck::Range>
   1279 InductiveRangeCheck::computeSafeIterationSpace(
   1280     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
   1281   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
   1282   // variable, that may or may not exist as a real llvm::Value in the loop) and
   1283   // this inductive range check is a range check on the "C + D * I" ("C" is
   1284   // getOffset() and "D" is getScale()).  We rewrite the value being range
   1285   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
   1286   // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
   1287   // can be generalized as needed.
   1288   //
   1289   // The actual inequalities we solve are of the form
   1290   //
   1291   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
   1292   //
   1293   // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
   1294   // and subtractions are twos-complement wrapping and comparisons are signed.
   1295   //
   1296   // Proof:
   1297   //
   1298   //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
   1299   //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
   1300   //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
   1301   //   overflown.
   1302   //
   1303   //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
   1304   //   Hence 0 <= (IndVar + M) < L
   1305 
   1306   // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
   1307   // 127, IndVar = 126 and L = -2 in an i8 world.
   1308 
   1309   if (!IndVar->isAffine())
   1310     return None;
   1311 
   1312   const SCEV *A = IndVar->getStart();
   1313   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
   1314   if (!B)
   1315     return None;
   1316 
   1317   const SCEV *C = getOffset();
   1318   const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
   1319   if (D != B)
   1320     return None;
   1321 
   1322   ConstantInt *ConstD = D->getValue();
   1323   if (!(ConstD->isMinusOne() || ConstD->isOne()))
   1324     return None;
   1325 
   1326   const SCEV *M = SE.getMinusSCEV(C, A);
   1327 
   1328   const SCEV *Begin = SE.getNegativeSCEV(M);
   1329   const SCEV *UpperLimit = nullptr;
   1330 
   1331   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
   1332   // We can potentially do much better here.
   1333   if (Value *V = getLength()) {
   1334     UpperLimit = SE.getSCEV(V);
   1335   } else {
   1336     assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
   1337     unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
   1338     UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
   1339   }
   1340 
   1341   const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
   1342   return InductiveRangeCheck::Range(Begin, End);
   1343 }
   1344 
   1345 static Optional<InductiveRangeCheck::Range>
   1346 IntersectRange(ScalarEvolution &SE,
   1347                const Optional<InductiveRangeCheck::Range> &R1,
   1348                const InductiveRangeCheck::Range &R2) {
   1349   if (!R1.hasValue())
   1350     return R2;
   1351   auto &R1Value = R1.getValue();
   1352 
   1353   // TODO: we could widen the smaller range and have this work; but for now we
   1354   // bail out to keep things simple.
   1355   if (R1Value.getType() != R2.getType())
   1356     return None;
   1357 
   1358   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
   1359   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
   1360 
   1361   return InductiveRangeCheck::Range(NewBegin, NewEnd);
   1362 }
   1363 
   1364 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
   1365   if (skipLoop(L))
   1366     return false;
   1367 
   1368   if (L->getBlocks().size() >= LoopSizeCutoff) {
   1369     DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
   1370     return false;
   1371   }
   1372 
   1373   BasicBlock *Preheader = L->getLoopPreheader();
   1374   if (!Preheader) {
   1375     DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
   1376     return false;
   1377   }
   1378 
   1379   LLVMContext &Context = Preheader->getContext();
   1380   SmallVector<InductiveRangeCheck, 16> RangeChecks;
   1381   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   1382   BranchProbabilityInfo &BPI =
   1383       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
   1384 
   1385   for (auto BBI : L->getBlocks())
   1386     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
   1387       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
   1388                                                         RangeChecks);
   1389 
   1390   if (RangeChecks.empty())
   1391     return false;
   1392 
   1393   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
   1394     OS << "irce: looking at loop "; L->print(OS);
   1395     OS << "irce: loop has " << RangeChecks.size()
   1396        << " inductive range checks: \n";
   1397     for (InductiveRangeCheck &IRC : RangeChecks)
   1398       IRC.print(OS);
   1399   };
   1400 
   1401   DEBUG(PrintRecognizedRangeChecks(dbgs()));
   1402 
   1403   if (PrintRangeChecks)
   1404     PrintRecognizedRangeChecks(errs());
   1405 
   1406   const char *FailureReason = nullptr;
   1407   Optional<LoopStructure> MaybeLoopStructure =
   1408       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
   1409   if (!MaybeLoopStructure.hasValue()) {
   1410     DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
   1411                  << "\n";);
   1412     return false;
   1413   }
   1414   LoopStructure LS = MaybeLoopStructure.getValue();
   1415   bool Increasing = LS.IndVarIncreasing;
   1416   const SCEV *MinusOne =
   1417       SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
   1418   const SCEVAddRecExpr *IndVar =
   1419       cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
   1420 
   1421   Optional<InductiveRangeCheck::Range> SafeIterRange;
   1422   Instruction *ExprInsertPt = Preheader->getTerminator();
   1423 
   1424   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
   1425 
   1426   IRBuilder<> B(ExprInsertPt);
   1427   for (InductiveRangeCheck &IRC : RangeChecks) {
   1428     auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
   1429     if (Result.hasValue()) {
   1430       auto MaybeSafeIterRange =
   1431           IntersectRange(SE, SafeIterRange, Result.getValue());
   1432       if (MaybeSafeIterRange.hasValue()) {
   1433         RangeChecksToEliminate.push_back(IRC);
   1434         SafeIterRange = MaybeSafeIterRange.getValue();
   1435       }
   1436     }
   1437   }
   1438 
   1439   if (!SafeIterRange.hasValue())
   1440     return false;
   1441 
   1442   LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
   1443                      SE, SafeIterRange.getValue());
   1444   bool Changed = LC.run();
   1445 
   1446   if (Changed) {
   1447     auto PrintConstrainedLoopInfo = [L]() {
   1448       dbgs() << "irce: in function ";
   1449       dbgs() << L->getHeader()->getParent()->getName() << ": ";
   1450       dbgs() << "constrained ";
   1451       L->print(dbgs());
   1452     };
   1453 
   1454     DEBUG(PrintConstrainedLoopInfo());
   1455 
   1456     if (PrintChangedLoops)
   1457       PrintConstrainedLoopInfo();
   1458 
   1459     // Optimize away the now-redundant range checks.
   1460 
   1461     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
   1462       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
   1463                                           ? ConstantInt::getTrue(Context)
   1464                                           : ConstantInt::getFalse(Context);
   1465       IRC.getCheckUse()->set(FoldedRangeCheck);
   1466     }
   1467   }
   1468 
   1469   return Changed;
   1470 }
   1471 
   1472 Pass *llvm::createInductiveRangeCheckEliminationPass() {
   1473   return new InductiveRangeCheckElimination;
   1474 }
   1475