1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_HEAP_HEAP_H_ 6 #define V8_HEAP_HEAP_H_ 7 8 #include <cmath> 9 #include <map> 10 11 // Clients of this interface shouldn't depend on lots of heap internals. 12 // Do not include anything from src/heap here! 13 #include "include/v8.h" 14 #include "src/allocation.h" 15 #include "src/assert-scope.h" 16 #include "src/base/atomic-utils.h" 17 #include "src/debug/debug-interface.h" 18 #include "src/globals.h" 19 #include "src/heap-symbols.h" 20 #include "src/list.h" 21 #include "src/objects.h" 22 23 namespace v8 { 24 namespace internal { 25 26 using v8::MemoryPressureLevel; 27 28 // Defines all the roots in Heap. 29 #define STRONG_ROOT_LIST(V) \ 30 /* Cluster the most popular ones in a few cache lines here at the top. */ \ 31 /* The first 32 entries are most often used in the startup snapshot and */ \ 32 /* can use a shorter representation in the serialization format. */ \ 33 V(Map, free_space_map, FreeSpaceMap) \ 34 V(Map, one_pointer_filler_map, OnePointerFillerMap) \ 35 V(Map, two_pointer_filler_map, TwoPointerFillerMap) \ 36 V(Oddball, uninitialized_value, UninitializedValue) \ 37 V(Oddball, undefined_value, UndefinedValue) \ 38 V(Oddball, the_hole_value, TheHoleValue) \ 39 V(Oddball, null_value, NullValue) \ 40 V(Oddball, true_value, TrueValue) \ 41 V(Oddball, false_value, FalseValue) \ 42 V(String, empty_string, empty_string) \ 43 V(Map, meta_map, MetaMap) \ 44 V(Map, byte_array_map, ByteArrayMap) \ 45 V(Map, fixed_array_map, FixedArrayMap) \ 46 V(Map, fixed_cow_array_map, FixedCOWArrayMap) \ 47 V(Map, hash_table_map, HashTableMap) \ 48 V(Map, symbol_map, SymbolMap) \ 49 V(Map, one_byte_string_map, OneByteStringMap) \ 50 V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap) \ 51 V(Map, scope_info_map, ScopeInfoMap) \ 52 V(Map, shared_function_info_map, SharedFunctionInfoMap) \ 53 V(Map, code_map, CodeMap) \ 54 V(Map, function_context_map, FunctionContextMap) \ 55 V(Map, cell_map, CellMap) \ 56 V(Map, weak_cell_map, WeakCellMap) \ 57 V(Map, global_property_cell_map, GlobalPropertyCellMap) \ 58 V(Map, foreign_map, ForeignMap) \ 59 V(Map, heap_number_map, HeapNumberMap) \ 60 V(Map, transition_array_map, TransitionArrayMap) \ 61 V(Map, feedback_vector_map, FeedbackVectorMap) \ 62 V(ScopeInfo, empty_scope_info, EmptyScopeInfo) \ 63 V(FixedArray, empty_fixed_array, EmptyFixedArray) \ 64 V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray) \ 65 /* Entries beyond the first 32 */ \ 66 /* The roots above this line should be boring from a GC point of view. */ \ 67 /* This means they are never in new space and never on a page that is */ \ 68 /* being compacted. */ \ 69 /* Oddballs */ \ 70 V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel) \ 71 V(Oddball, arguments_marker, ArgumentsMarker) \ 72 V(Oddball, exception, Exception) \ 73 V(Oddball, termination_exception, TerminationException) \ 74 V(Oddball, optimized_out, OptimizedOut) \ 75 V(Oddball, stale_register, StaleRegister) \ 76 /* Context maps */ \ 77 V(Map, native_context_map, NativeContextMap) \ 78 V(Map, module_context_map, ModuleContextMap) \ 79 V(Map, eval_context_map, EvalContextMap) \ 80 V(Map, script_context_map, ScriptContextMap) \ 81 V(Map, block_context_map, BlockContextMap) \ 82 V(Map, catch_context_map, CatchContextMap) \ 83 V(Map, with_context_map, WithContextMap) \ 84 V(Map, debug_evaluate_context_map, DebugEvaluateContextMap) \ 85 V(Map, script_context_table_map, ScriptContextTableMap) \ 86 /* Maps */ \ 87 V(Map, fixed_double_array_map, FixedDoubleArrayMap) \ 88 V(Map, mutable_heap_number_map, MutableHeapNumberMap) \ 89 V(Map, ordered_hash_table_map, OrderedHashTableMap) \ 90 V(Map, unseeded_number_dictionary_map, UnseededNumberDictionaryMap) \ 91 V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap) \ 92 V(Map, message_object_map, JSMessageObjectMap) \ 93 V(Map, external_map, ExternalMap) \ 94 V(Map, bytecode_array_map, BytecodeArrayMap) \ 95 V(Map, module_info_map, ModuleInfoMap) \ 96 V(Map, no_closures_cell_map, NoClosuresCellMap) \ 97 V(Map, one_closure_cell_map, OneClosureCellMap) \ 98 V(Map, many_closures_cell_map, ManyClosuresCellMap) \ 99 /* String maps */ \ 100 V(Map, native_source_string_map, NativeSourceStringMap) \ 101 V(Map, string_map, StringMap) \ 102 V(Map, cons_one_byte_string_map, ConsOneByteStringMap) \ 103 V(Map, cons_string_map, ConsStringMap) \ 104 V(Map, thin_one_byte_string_map, ThinOneByteStringMap) \ 105 V(Map, thin_string_map, ThinStringMap) \ 106 V(Map, sliced_string_map, SlicedStringMap) \ 107 V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap) \ 108 V(Map, external_string_map, ExternalStringMap) \ 109 V(Map, external_string_with_one_byte_data_map, \ 110 ExternalStringWithOneByteDataMap) \ 111 V(Map, external_one_byte_string_map, ExternalOneByteStringMap) \ 112 V(Map, short_external_string_map, ShortExternalStringMap) \ 113 V(Map, short_external_string_with_one_byte_data_map, \ 114 ShortExternalStringWithOneByteDataMap) \ 115 V(Map, internalized_string_map, InternalizedStringMap) \ 116 V(Map, external_internalized_string_map, ExternalInternalizedStringMap) \ 117 V(Map, external_internalized_string_with_one_byte_data_map, \ 118 ExternalInternalizedStringWithOneByteDataMap) \ 119 V(Map, external_one_byte_internalized_string_map, \ 120 ExternalOneByteInternalizedStringMap) \ 121 V(Map, short_external_internalized_string_map, \ 122 ShortExternalInternalizedStringMap) \ 123 V(Map, short_external_internalized_string_with_one_byte_data_map, \ 124 ShortExternalInternalizedStringWithOneByteDataMap) \ 125 V(Map, short_external_one_byte_internalized_string_map, \ 126 ShortExternalOneByteInternalizedStringMap) \ 127 V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap) \ 128 /* Array element maps */ \ 129 V(Map, fixed_uint8_array_map, FixedUint8ArrayMap) \ 130 V(Map, fixed_int8_array_map, FixedInt8ArrayMap) \ 131 V(Map, fixed_uint16_array_map, FixedUint16ArrayMap) \ 132 V(Map, fixed_int16_array_map, FixedInt16ArrayMap) \ 133 V(Map, fixed_uint32_array_map, FixedUint32ArrayMap) \ 134 V(Map, fixed_int32_array_map, FixedInt32ArrayMap) \ 135 V(Map, fixed_float32_array_map, FixedFloat32ArrayMap) \ 136 V(Map, fixed_float64_array_map, FixedFloat64ArrayMap) \ 137 V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap) \ 138 /* Canonical empty values */ \ 139 V(ByteArray, empty_byte_array, EmptyByteArray) \ 140 V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array) \ 141 V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array) \ 142 V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array) \ 143 V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array) \ 144 V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array) \ 145 V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array) \ 146 V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array) \ 147 V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array) \ 148 V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array, \ 149 EmptyFixedUint8ClampedArray) \ 150 V(Script, empty_script, EmptyScript) \ 151 V(Cell, undefined_cell, UndefinedCell) \ 152 V(FixedArray, empty_sloppy_arguments_elements, EmptySloppyArgumentsElements) \ 153 V(SeededNumberDictionary, empty_slow_element_dictionary, \ 154 EmptySlowElementDictionary) \ 155 V(PropertyCell, empty_property_cell, EmptyPropertyCell) \ 156 V(WeakCell, empty_weak_cell, EmptyWeakCell) \ 157 /* Protectors */ \ 158 V(PropertyCell, array_protector, ArrayProtector) \ 159 V(Cell, is_concat_spreadable_protector, IsConcatSpreadableProtector) \ 160 V(Cell, species_protector, SpeciesProtector) \ 161 V(PropertyCell, string_length_protector, StringLengthProtector) \ 162 V(Cell, fast_array_iteration_protector, FastArrayIterationProtector) \ 163 V(PropertyCell, array_iterator_protector, ArrayIteratorProtector) \ 164 V(PropertyCell, array_buffer_neutering_protector, \ 165 ArrayBufferNeuteringProtector) \ 166 /* Special numbers */ \ 167 V(HeapNumber, nan_value, NanValue) \ 168 V(HeapNumber, hole_nan_value, HoleNanValue) \ 169 V(HeapNumber, infinity_value, InfinityValue) \ 170 V(HeapNumber, minus_zero_value, MinusZeroValue) \ 171 V(HeapNumber, minus_infinity_value, MinusInfinityValue) \ 172 /* Caches */ \ 173 V(FixedArray, number_string_cache, NumberStringCache) \ 174 V(FixedArray, single_character_string_cache, SingleCharacterStringCache) \ 175 V(FixedArray, string_split_cache, StringSplitCache) \ 176 V(FixedArray, regexp_multiple_cache, RegExpMultipleCache) \ 177 V(Object, instanceof_cache_function, InstanceofCacheFunction) \ 178 V(Object, instanceof_cache_map, InstanceofCacheMap) \ 179 V(Object, instanceof_cache_answer, InstanceofCacheAnswer) \ 180 V(FixedArray, natives_source_cache, NativesSourceCache) \ 181 V(FixedArray, experimental_natives_source_cache, \ 182 ExperimentalNativesSourceCache) \ 183 V(FixedArray, extra_natives_source_cache, ExtraNativesSourceCache) \ 184 V(FixedArray, experimental_extra_natives_source_cache, \ 185 ExperimentalExtraNativesSourceCache) \ 186 /* Lists and dictionaries */ \ 187 V(NameDictionary, empty_properties_dictionary, EmptyPropertiesDictionary) \ 188 V(NameDictionary, public_symbol_table, PublicSymbolTable) \ 189 V(NameDictionary, api_symbol_table, ApiSymbolTable) \ 190 V(NameDictionary, api_private_symbol_table, ApiPrivateSymbolTable) \ 191 V(Object, script_list, ScriptList) \ 192 V(UnseededNumberDictionary, code_stubs, CodeStubs) \ 193 V(FixedArray, materialized_objects, MaterializedObjects) \ 194 V(FixedArray, microtask_queue, MicrotaskQueue) \ 195 V(FixedArray, detached_contexts, DetachedContexts) \ 196 V(ArrayList, retained_maps, RetainedMaps) \ 197 V(WeakHashTable, weak_object_to_code_table, WeakObjectToCodeTable) \ 198 /* weak_new_space_object_to_code_list is an array of weak cells, where */ \ 199 /* slots with even indices refer to the weak object, and the subsequent */ \ 200 /* slots refer to the code with the reference to the weak object. */ \ 201 V(ArrayList, weak_new_space_object_to_code_list, \ 202 WeakNewSpaceObjectToCodeList) \ 203 /* List to hold onto feedback vectors that we need for code coverage */ \ 204 V(Object, code_coverage_list, CodeCoverageList) \ 205 V(Object, weak_stack_trace_list, WeakStackTraceList) \ 206 V(Object, noscript_shared_function_infos, NoScriptSharedFunctionInfos) \ 207 V(FixedArray, serialized_templates, SerializedTemplates) \ 208 V(FixedArray, serialized_global_proxy_sizes, SerializedGlobalProxySizes) \ 209 /* Configured values */ \ 210 V(TemplateList, message_listeners, MessageListeners) \ 211 V(InterceptorInfo, noop_interceptor_info, NoOpInterceptorInfo) \ 212 V(Code, js_entry_code, JsEntryCode) \ 213 V(Code, js_construct_entry_code, JsConstructEntryCode) \ 214 /* Oddball maps */ \ 215 V(Map, undefined_map, UndefinedMap) \ 216 V(Map, the_hole_map, TheHoleMap) \ 217 V(Map, null_map, NullMap) \ 218 V(Map, boolean_map, BooleanMap) \ 219 V(Map, uninitialized_map, UninitializedMap) \ 220 V(Map, arguments_marker_map, ArgumentsMarkerMap) \ 221 V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap) \ 222 V(Map, exception_map, ExceptionMap) \ 223 V(Map, termination_exception_map, TerminationExceptionMap) \ 224 V(Map, optimized_out_map, OptimizedOutMap) \ 225 V(Map, stale_register_map, StaleRegisterMap) \ 226 /* per-Isolate map for JSPromiseCapability. */ \ 227 /* TODO(caitp): Make this a Struct */ \ 228 V(Map, js_promise_capability_map, JSPromiseCapabilityMap) 229 230 // Entries in this list are limited to Smis and are not visited during GC. 231 #define SMI_ROOT_LIST(V) \ 232 V(Smi, stack_limit, StackLimit) \ 233 V(Smi, real_stack_limit, RealStackLimit) \ 234 V(Smi, last_script_id, LastScriptId) \ 235 V(Smi, hash_seed, HashSeed) \ 236 /* To distinguish the function templates, so that we can find them in the */ \ 237 /* function cache of the native context. */ \ 238 V(Smi, next_template_serial_number, NextTemplateSerialNumber) \ 239 V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \ 240 V(Smi, construct_stub_create_deopt_pc_offset, \ 241 ConstructStubCreateDeoptPCOffset) \ 242 V(Smi, construct_stub_invoke_deopt_pc_offset, \ 243 ConstructStubInvokeDeoptPCOffset) \ 244 V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset) \ 245 V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset) \ 246 V(Smi, interpreter_entry_return_pc_offset, InterpreterEntryReturnPCOffset) 247 248 #define ROOT_LIST(V) \ 249 STRONG_ROOT_LIST(V) \ 250 SMI_ROOT_LIST(V) \ 251 V(StringTable, string_table, StringTable) 252 253 254 // Heap roots that are known to be immortal immovable, for which we can safely 255 // skip write barriers. This list is not complete and has omissions. 256 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \ 257 V(ByteArrayMap) \ 258 V(BytecodeArrayMap) \ 259 V(FreeSpaceMap) \ 260 V(OnePointerFillerMap) \ 261 V(TwoPointerFillerMap) \ 262 V(UndefinedValue) \ 263 V(TheHoleValue) \ 264 V(NullValue) \ 265 V(TrueValue) \ 266 V(FalseValue) \ 267 V(UninitializedValue) \ 268 V(CellMap) \ 269 V(GlobalPropertyCellMap) \ 270 V(SharedFunctionInfoMap) \ 271 V(MetaMap) \ 272 V(HeapNumberMap) \ 273 V(MutableHeapNumberMap) \ 274 V(NativeContextMap) \ 275 V(FixedArrayMap) \ 276 V(CodeMap) \ 277 V(ScopeInfoMap) \ 278 V(ModuleInfoMap) \ 279 V(FixedCOWArrayMap) \ 280 V(FixedDoubleArrayMap) \ 281 V(WeakCellMap) \ 282 V(TransitionArrayMap) \ 283 V(NoInterceptorResultSentinel) \ 284 V(HashTableMap) \ 285 V(OrderedHashTableMap) \ 286 V(EmptyFixedArray) \ 287 V(EmptyByteArray) \ 288 V(EmptyDescriptorArray) \ 289 V(ArgumentsMarker) \ 290 V(SymbolMap) \ 291 V(SloppyArgumentsElementsMap) \ 292 V(FunctionContextMap) \ 293 V(CatchContextMap) \ 294 V(WithContextMap) \ 295 V(BlockContextMap) \ 296 V(ModuleContextMap) \ 297 V(EvalContextMap) \ 298 V(ScriptContextMap) \ 299 V(UndefinedMap) \ 300 V(TheHoleMap) \ 301 V(NullMap) \ 302 V(BooleanMap) \ 303 V(UninitializedMap) \ 304 V(ArgumentsMarkerMap) \ 305 V(JSMessageObjectMap) \ 306 V(ForeignMap) \ 307 V(NoClosuresCellMap) \ 308 V(OneClosureCellMap) \ 309 V(ManyClosuresCellMap) \ 310 V(NanValue) \ 311 V(InfinityValue) \ 312 V(MinusZeroValue) \ 313 V(MinusInfinityValue) \ 314 V(EmptyWeakCell) \ 315 V(empty_string) \ 316 PRIVATE_SYMBOL_LIST(V) 317 318 // Forward declarations. 319 class AllocationObserver; 320 class ArrayBufferTracker; 321 class GCIdleTimeAction; 322 class GCIdleTimeHandler; 323 class GCIdleTimeHeapState; 324 class GCTracer; 325 class HeapObjectsFilter; 326 class HeapStats; 327 class HistogramTimer; 328 class Isolate; 329 class LocalEmbedderHeapTracer; 330 class MemoryAllocator; 331 class MemoryReducer; 332 class ObjectIterator; 333 class ObjectStats; 334 class Page; 335 class PagedSpace; 336 class Scavenger; 337 class ScavengeJob; 338 class Space; 339 class StoreBuffer; 340 class TracePossibleWrapperReporter; 341 class WeakObjectRetainer; 342 343 typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to); 344 345 enum ArrayStorageAllocationMode { 346 DONT_INITIALIZE_ARRAY_ELEMENTS, 347 INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE 348 }; 349 350 enum class ClearRecordedSlots { kYes, kNo }; 351 352 enum class GarbageCollectionReason { 353 kUnknown = 0, 354 kAllocationFailure = 1, 355 kAllocationLimit = 2, 356 kContextDisposal = 3, 357 kCountersExtension = 4, 358 kDebugger = 5, 359 kDeserializer = 6, 360 kExternalMemoryPressure = 7, 361 kFinalizeMarkingViaStackGuard = 8, 362 kFinalizeMarkingViaTask = 9, 363 kFullHashtable = 10, 364 kHeapProfiler = 11, 365 kIdleTask = 12, 366 kLastResort = 13, 367 kLowMemoryNotification = 14, 368 kMakeHeapIterable = 15, 369 kMemoryPressure = 16, 370 kMemoryReducer = 17, 371 kRuntime = 18, 372 kSamplingProfiler = 19, 373 kSnapshotCreator = 20, 374 kTesting = 21 375 // If you add new items here, then update the incremental_marking_reason, 376 // mark_compact_reason, and scavenge_reason counters in counters.h. 377 // Also update src/tools/metrics/histograms/histograms.xml in chromium. 378 }; 379 380 enum class YoungGenerationHandling { 381 kRegularScavenge = 0, 382 kFastPromotionDuringScavenge = 1, 383 // Histogram::InspectConstructionArguments in chromium requires us to have at 384 // least three buckets. 385 kUnusedBucket = 2, 386 // If you add new items here, then update the young_generation_handling in 387 // counters.h. 388 // Also update src/tools/metrics/histograms/histograms.xml in chromium. 389 }; 390 391 // A queue of objects promoted during scavenge. Each object is accompanied by 392 // its size to avoid dereferencing a map pointer for scanning. The last page in 393 // to-space is used for the promotion queue. On conflict during scavenge, the 394 // promotion queue is allocated externally and all entries are copied to the 395 // external queue. 396 class PromotionQueue { 397 public: 398 explicit PromotionQueue(Heap* heap) 399 : front_(nullptr), 400 rear_(nullptr), 401 limit_(nullptr), 402 emergency_stack_(nullptr), 403 heap_(heap) {} 404 405 void Initialize(); 406 void Destroy(); 407 408 inline void SetNewLimit(Address limit); 409 inline bool IsBelowPromotionQueue(Address to_space_top); 410 411 inline void insert(HeapObject* target, int32_t size, bool was_marked_black); 412 inline void remove(HeapObject** target, int32_t* size, 413 bool* was_marked_black); 414 415 bool is_empty() { 416 return (front_ == rear_) && 417 (emergency_stack_ == nullptr || emergency_stack_->length() == 0); 418 } 419 420 private: 421 struct Entry { 422 Entry(HeapObject* obj, int32_t size, bool was_marked_black) 423 : obj_(obj), size_(size), was_marked_black_(was_marked_black) {} 424 425 HeapObject* obj_; 426 int32_t size_ : 31; 427 bool was_marked_black_ : 1; 428 }; 429 430 inline Page* GetHeadPage(); 431 432 void RelocateQueueHead(); 433 434 // The front of the queue is higher in the memory page chain than the rear. 435 struct Entry* front_; 436 struct Entry* rear_; 437 struct Entry* limit_; 438 439 List<Entry>* emergency_stack_; 440 Heap* heap_; 441 442 DISALLOW_COPY_AND_ASSIGN(PromotionQueue); 443 }; 444 445 class AllocationResult { 446 public: 447 static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) { 448 return AllocationResult(space); 449 } 450 451 // Implicit constructor from Object*. 452 AllocationResult(Object* object) // NOLINT 453 : object_(object) { 454 // AllocationResults can't return Smis, which are used to represent 455 // failure and the space to retry in. 456 CHECK(!object->IsSmi()); 457 } 458 459 AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {} 460 461 inline bool IsRetry() { return object_->IsSmi(); } 462 inline HeapObject* ToObjectChecked(); 463 inline AllocationSpace RetrySpace(); 464 465 template <typename T> 466 bool To(T** obj) { 467 if (IsRetry()) return false; 468 *obj = T::cast(object_); 469 return true; 470 } 471 472 private: 473 explicit AllocationResult(AllocationSpace space) 474 : object_(Smi::FromInt(static_cast<int>(space))) {} 475 476 Object* object_; 477 }; 478 479 STATIC_ASSERT(sizeof(AllocationResult) == kPointerSize); 480 481 #ifdef DEBUG 482 struct CommentStatistic { 483 const char* comment; 484 int size; 485 int count; 486 void Clear() { 487 comment = NULL; 488 size = 0; 489 count = 0; 490 } 491 // Must be small, since an iteration is used for lookup. 492 static const int kMaxComments = 64; 493 }; 494 #endif 495 496 class NumberAndSizeInfo BASE_EMBEDDED { 497 public: 498 NumberAndSizeInfo() : number_(0), bytes_(0) {} 499 500 int number() const { return number_; } 501 void increment_number(int num) { number_ += num; } 502 503 int bytes() const { return bytes_; } 504 void increment_bytes(int size) { bytes_ += size; } 505 506 void clear() { 507 number_ = 0; 508 bytes_ = 0; 509 } 510 511 private: 512 int number_; 513 int bytes_; 514 }; 515 516 // HistogramInfo class for recording a single "bar" of a histogram. This 517 // class is used for collecting statistics to print to the log file. 518 class HistogramInfo : public NumberAndSizeInfo { 519 public: 520 HistogramInfo() : NumberAndSizeInfo(), name_(nullptr) {} 521 522 const char* name() { return name_; } 523 void set_name(const char* name) { name_ = name; } 524 525 private: 526 const char* name_; 527 }; 528 529 class Heap { 530 public: 531 // Declare all the root indices. This defines the root list order. 532 enum RootListIndex { 533 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex, 534 STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION) 535 #undef ROOT_INDEX_DECLARATION 536 537 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex, 538 INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION) 539 #undef STRING_DECLARATION 540 541 #define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex, 542 PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION) 543 #undef SYMBOL_INDEX_DECLARATION 544 545 #define SYMBOL_INDEX_DECLARATION(name, description) k##name##RootIndex, 546 PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION) 547 WELL_KNOWN_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION) 548 #undef SYMBOL_INDEX_DECLARATION 549 550 // Utility type maps 551 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex, 552 STRUCT_LIST(DECLARE_STRUCT_MAP) 553 #undef DECLARE_STRUCT_MAP 554 kStringTableRootIndex, 555 556 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex, 557 SMI_ROOT_LIST(ROOT_INDEX_DECLARATION) 558 #undef ROOT_INDEX_DECLARATION 559 kRootListLength, 560 kStrongRootListLength = kStringTableRootIndex, 561 kSmiRootsStart = kStringTableRootIndex + 1 562 }; 563 564 enum FindMementoMode { kForRuntime, kForGC }; 565 566 enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT }; 567 568 enum UpdateAllocationSiteMode { kGlobal, kCached }; 569 570 // Taking this lock prevents the GC from entering a phase that relocates 571 // object references. 572 class RelocationLock { 573 public: 574 explicit RelocationLock(Heap* heap) : heap_(heap) { 575 heap_->relocation_mutex_.Lock(); 576 } 577 578 ~RelocationLock() { heap_->relocation_mutex_.Unlock(); } 579 580 private: 581 Heap* heap_; 582 }; 583 584 // Support for partial snapshots. After calling this we have a linear 585 // space to write objects in each space. 586 struct Chunk { 587 uint32_t size; 588 Address start; 589 Address end; 590 }; 591 typedef List<Chunk> Reservation; 592 593 static const int kInitalOldGenerationLimitFactor = 2; 594 595 #if V8_OS_ANDROID 596 // Don't apply pointer multiplier on Android since it has no swap space and 597 // should instead adapt it's heap size based on available physical memory. 598 static const int kPointerMultiplier = 1; 599 #else 600 static const int kPointerMultiplier = i::kPointerSize / 4; 601 #endif 602 603 // The new space size has to be a power of 2. Sizes are in MB. 604 static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier; 605 static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier; 606 static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier; 607 static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier; 608 609 // The old space size has to be a multiple of Page::kPageSize. 610 // Sizes are in MB. 611 static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier; 612 static const int kMaxOldSpaceSizeMediumMemoryDevice = 613 256 * kPointerMultiplier; 614 static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier; 615 static const int kMaxOldSpaceSizeHugeMemoryDevice = 1024 * kPointerMultiplier; 616 617 // The executable size has to be a multiple of Page::kPageSize. 618 // Sizes are in MB. 619 static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier; 620 static const int kMaxExecutableSizeMediumMemoryDevice = 621 192 * kPointerMultiplier; 622 static const int kMaxExecutableSizeHighMemoryDevice = 623 256 * kPointerMultiplier; 624 static const int kMaxExecutableSizeHugeMemoryDevice = 625 256 * kPointerMultiplier; 626 627 static const int kTraceRingBufferSize = 512; 628 static const int kStacktraceBufferSize = 512; 629 630 V8_EXPORT_PRIVATE static const double kMinHeapGrowingFactor; 631 V8_EXPORT_PRIVATE static const double kMaxHeapGrowingFactor; 632 static const double kMaxHeapGrowingFactorMemoryConstrained; 633 static const double kMaxHeapGrowingFactorIdle; 634 static const double kConservativeHeapGrowingFactor; 635 static const double kTargetMutatorUtilization; 636 637 static const int kNoGCFlags = 0; 638 static const int kReduceMemoryFootprintMask = 1; 639 static const int kAbortIncrementalMarkingMask = 2; 640 static const int kFinalizeIncrementalMarkingMask = 4; 641 642 // Making the heap iterable requires us to abort incremental marking. 643 static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask; 644 645 // The roots that have an index less than this are always in old space. 646 static const int kOldSpaceRoots = 0x20; 647 648 // The minimum size of a HeapObject on the heap. 649 static const int kMinObjectSizeInWords = 2; 650 651 static const int kMinPromotedPercentForFastPromotionMode = 90; 652 653 STATIC_ASSERT(kUndefinedValueRootIndex == 654 Internals::kUndefinedValueRootIndex); 655 STATIC_ASSERT(kTheHoleValueRootIndex == Internals::kTheHoleValueRootIndex); 656 STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex); 657 STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex); 658 STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex); 659 STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex); 660 661 // Calculates the maximum amount of filler that could be required by the 662 // given alignment. 663 static int GetMaximumFillToAlign(AllocationAlignment alignment); 664 // Calculates the actual amount of filler required for a given address at the 665 // given alignment. 666 static int GetFillToAlign(Address address, AllocationAlignment alignment); 667 668 template <typename T> 669 static inline bool IsOneByte(T t, int chars); 670 671 static void FatalProcessOutOfMemory(const char* location, 672 bool is_heap_oom = false); 673 674 static bool RootIsImmortalImmovable(int root_index); 675 676 // Checks whether the space is valid. 677 static bool IsValidAllocationSpace(AllocationSpace space); 678 679 // Generated code can embed direct references to non-writable roots if 680 // they are in new space. 681 static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index); 682 683 static bool IsUnmodifiedHeapObject(Object** p); 684 685 // Zapping is needed for verify heap, and always done in debug builds. 686 static inline bool ShouldZapGarbage() { 687 #ifdef DEBUG 688 return true; 689 #else 690 #ifdef VERIFY_HEAP 691 return FLAG_verify_heap; 692 #else 693 return false; 694 #endif 695 #endif 696 } 697 698 static inline bool IsYoungGenerationCollector(GarbageCollector collector) { 699 return collector == SCAVENGER || collector == MINOR_MARK_COMPACTOR; 700 } 701 702 static inline GarbageCollector YoungGenerationCollector() { 703 return (FLAG_minor_mc) ? MINOR_MARK_COMPACTOR : SCAVENGER; 704 } 705 706 static inline const char* CollectorName(GarbageCollector collector) { 707 switch (collector) { 708 case SCAVENGER: 709 return "Scavenger"; 710 case MARK_COMPACTOR: 711 return "Mark-Compact"; 712 case MINOR_MARK_COMPACTOR: 713 return "Minor Mark-Compact"; 714 } 715 return "Unknown collector"; 716 } 717 718 V8_EXPORT_PRIVATE static double HeapGrowingFactor(double gc_speed, 719 double mutator_speed); 720 721 // Copy block of memory from src to dst. Size of block should be aligned 722 // by pointer size. 723 static inline void CopyBlock(Address dst, Address src, int byte_size); 724 725 // Determines a static visitor id based on the given {map} that can then be 726 // stored on the map to facilitate fast dispatch for {StaticVisitorBase}. 727 static int GetStaticVisitorIdForMap(Map* map); 728 729 // Notifies the heap that is ok to start marking or other activities that 730 // should not happen during deserialization. 731 void NotifyDeserializationComplete(); 732 733 inline Address* NewSpaceAllocationTopAddress(); 734 inline Address* NewSpaceAllocationLimitAddress(); 735 inline Address* OldSpaceAllocationTopAddress(); 736 inline Address* OldSpaceAllocationLimitAddress(); 737 738 // Clear the Instanceof cache (used when a prototype changes). 739 inline void ClearInstanceofCache(); 740 741 // FreeSpace objects have a null map after deserialization. Update the map. 742 void RepairFreeListsAfterDeserialization(); 743 744 // Move len elements within a given array from src_index index to dst_index 745 // index. 746 void MoveElements(FixedArray* array, int dst_index, int src_index, int len); 747 748 // Initialize a filler object to keep the ability to iterate over the heap 749 // when introducing gaps within pages. If slots could have been recorded in 750 // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise, 751 // pass ClearRecordedSlots::kNo. 752 HeapObject* CreateFillerObjectAt(Address addr, int size, 753 ClearRecordedSlots mode); 754 755 bool CanMoveObjectStart(HeapObject* object); 756 757 static bool IsImmovable(HeapObject* object); 758 759 // Maintain consistency of live bytes during incremental marking. 760 void AdjustLiveBytes(HeapObject* object, int by); 761 762 // Trim the given array from the left. Note that this relocates the object 763 // start and hence is only valid if there is only a single reference to it. 764 FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim); 765 766 // Trim the given array from the right. 767 void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim); 768 769 // Converts the given boolean condition to JavaScript boolean value. 770 inline Oddball* ToBoolean(bool condition); 771 772 // Notify the heap that a context has been disposed. 773 int NotifyContextDisposed(bool dependant_context); 774 775 void set_native_contexts_list(Object* object) { 776 native_contexts_list_ = object; 777 } 778 Object* native_contexts_list() const { return native_contexts_list_; } 779 780 void set_allocation_sites_list(Object* object) { 781 allocation_sites_list_ = object; 782 } 783 Object* allocation_sites_list() { return allocation_sites_list_; } 784 785 // Used in CreateAllocationSiteStub and the (de)serializer. 786 Object** allocation_sites_list_address() { return &allocation_sites_list_; } 787 788 void set_encountered_weak_collections(Object* weak_collection) { 789 encountered_weak_collections_ = weak_collection; 790 } 791 Object* encountered_weak_collections() const { 792 return encountered_weak_collections_; 793 } 794 void VisitEncounteredWeakCollections(ObjectVisitor* visitor) { 795 visitor->VisitPointer(&encountered_weak_collections_); 796 } 797 798 void set_encountered_weak_cells(Object* weak_cell) { 799 encountered_weak_cells_ = weak_cell; 800 } 801 Object* encountered_weak_cells() const { return encountered_weak_cells_; } 802 803 void set_encountered_transition_arrays(Object* transition_array) { 804 encountered_transition_arrays_ = transition_array; 805 } 806 Object* encountered_transition_arrays() const { 807 return encountered_transition_arrays_; 808 } 809 810 // Number of mark-sweeps. 811 int ms_count() const { return ms_count_; } 812 813 // Checks whether the given object is allowed to be migrated from it's 814 // current space into the given destination space. Used for debugging. 815 inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest); 816 817 void CheckHandleCount(); 818 819 // Number of "runtime allocations" done so far. 820 uint32_t allocations_count() { return allocations_count_; } 821 822 // Print short heap statistics. 823 void PrintShortHeapStatistics(); 824 825 inline HeapState gc_state() { return gc_state_; } 826 void SetGCState(HeapState state); 827 828 inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; } 829 830 // If an object has an AllocationMemento trailing it, return it, otherwise 831 // return NULL; 832 template <FindMementoMode mode> 833 inline AllocationMemento* FindAllocationMemento(HeapObject* object); 834 835 // Returns false if not able to reserve. 836 bool ReserveSpace(Reservation* reservations, List<Address>* maps); 837 838 // 839 // Support for the API. 840 // 841 842 bool CreateApiObjects(); 843 844 // Implements the corresponding V8 API function. 845 bool IdleNotification(double deadline_in_seconds); 846 bool IdleNotification(int idle_time_in_ms); 847 848 void MemoryPressureNotification(MemoryPressureLevel level, 849 bool is_isolate_locked); 850 void CheckMemoryPressure(); 851 852 void SetOutOfMemoryCallback(v8::debug::OutOfMemoryCallback callback, 853 void* data); 854 855 double MonotonicallyIncreasingTimeInMs(); 856 857 void RecordStats(HeapStats* stats, bool take_snapshot = false); 858 859 // Check new space expansion criteria and expand semispaces if it was hit. 860 void CheckNewSpaceExpansionCriteria(); 861 862 void VisitExternalResources(v8::ExternalResourceVisitor* visitor); 863 864 // An object should be promoted if the object has survived a 865 // scavenge operation. 866 inline bool ShouldBePromoted(Address old_address, int object_size); 867 868 void ClearNormalizedMapCaches(); 869 870 void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature); 871 872 // Completely clear the Instanceof cache (to stop it keeping objects alive 873 // around a GC). 874 inline void CompletelyClearInstanceofCache(); 875 876 inline uint32_t HashSeed(); 877 878 inline int NextScriptId(); 879 880 inline void SetArgumentsAdaptorDeoptPCOffset(int pc_offset); 881 inline void SetConstructStubCreateDeoptPCOffset(int pc_offset); 882 inline void SetConstructStubInvokeDeoptPCOffset(int pc_offset); 883 inline void SetGetterStubDeoptPCOffset(int pc_offset); 884 inline void SetSetterStubDeoptPCOffset(int pc_offset); 885 inline void SetInterpreterEntryReturnPCOffset(int pc_offset); 886 inline int GetNextTemplateSerialNumber(); 887 888 inline void SetSerializedTemplates(FixedArray* templates); 889 inline void SetSerializedGlobalProxySizes(FixedArray* sizes); 890 891 // For post mortem debugging. 892 void RememberUnmappedPage(Address page, bool compacted); 893 894 // Global inline caching age: it is incremented on some GCs after context 895 // disposal. We use it to flush inline caches. 896 int global_ic_age() { return global_ic_age_; } 897 898 void AgeInlineCaches() { 899 global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax; 900 } 901 902 int64_t external_memory_hard_limit() { return MaxOldGenerationSize() / 2; } 903 904 int64_t external_memory() { return external_memory_; } 905 void update_external_memory(int64_t delta) { external_memory_ += delta; } 906 907 void update_external_memory_concurrently_freed(intptr_t freed) { 908 external_memory_concurrently_freed_.Increment(freed); 909 } 910 911 void account_external_memory_concurrently_freed() { 912 external_memory_ -= external_memory_concurrently_freed_.Value(); 913 external_memory_concurrently_freed_.SetValue(0); 914 } 915 916 void DeoptMarkedAllocationSites(); 917 918 inline bool DeoptMaybeTenuredAllocationSites(); 919 920 void AddWeakNewSpaceObjectToCodeDependency(Handle<HeapObject> obj, 921 Handle<WeakCell> code); 922 923 void AddWeakObjectToCodeDependency(Handle<HeapObject> obj, 924 Handle<DependentCode> dep); 925 926 DependentCode* LookupWeakObjectToCodeDependency(Handle<HeapObject> obj); 927 928 void CompactWeakFixedArrays(); 929 930 void AddRetainedMap(Handle<Map> map); 931 932 // This event is triggered after successful allocation of a new object made 933 // by runtime. Allocations of target space for object evacuation do not 934 // trigger the event. In order to track ALL allocations one must turn off 935 // FLAG_inline_new and FLAG_use_allocation_folding. 936 inline void OnAllocationEvent(HeapObject* object, int size_in_bytes); 937 938 // This event is triggered after object is moved to a new place. 939 inline void OnMoveEvent(HeapObject* target, HeapObject* source, 940 int size_in_bytes); 941 942 bool deserialization_complete() const { return deserialization_complete_; } 943 944 bool HasLowAllocationRate(); 945 bool HasHighFragmentation(); 946 bool HasHighFragmentation(size_t used, size_t committed); 947 948 void ActivateMemoryReducerIfNeeded(); 949 950 bool ShouldOptimizeForMemoryUsage(); 951 952 bool IsLowMemoryDevice() { 953 return max_old_generation_size_ <= kMaxOldSpaceSizeLowMemoryDevice; 954 } 955 956 bool IsMemoryConstrainedDevice() { 957 return max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice; 958 } 959 960 bool HighMemoryPressure() { 961 return memory_pressure_level_.Value() != MemoryPressureLevel::kNone; 962 } 963 964 size_t HeapLimitForDebugging() { 965 const size_t kDebugHeapSizeFactor = 4; 966 size_t max_limit = std::numeric_limits<size_t>::max() / 4; 967 return Min(max_limit, 968 initial_max_old_generation_size_ * kDebugHeapSizeFactor); 969 } 970 971 void IncreaseHeapLimitForDebugging() { 972 max_old_generation_size_ = 973 Max(max_old_generation_size_, HeapLimitForDebugging()); 974 } 975 976 void RestoreOriginalHeapLimit() { 977 // Do not set the limit lower than the live size + some slack. 978 size_t min_limit = SizeOfObjects() + SizeOfObjects() / 4; 979 max_old_generation_size_ = 980 Min(max_old_generation_size_, 981 Max(initial_max_old_generation_size_, min_limit)); 982 } 983 984 bool IsHeapLimitIncreasedForDebugging() { 985 return max_old_generation_size_ == HeapLimitForDebugging(); 986 } 987 988 // =========================================================================== 989 // Initialization. =========================================================== 990 // =========================================================================== 991 992 // Configure heap size in MB before setup. Return false if the heap has been 993 // set up already. 994 bool ConfigureHeap(size_t max_semi_space_size, size_t max_old_space_size, 995 size_t max_executable_size, size_t code_range_size); 996 bool ConfigureHeapDefault(); 997 998 // Prepares the heap, setting up memory areas that are needed in the isolate 999 // without actually creating any objects. 1000 bool SetUp(); 1001 1002 // Bootstraps the object heap with the core set of objects required to run. 1003 // Returns whether it succeeded. 1004 bool CreateHeapObjects(); 1005 1006 // Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr. 1007 V8_INLINE void CreateObjectStats(); 1008 1009 // Destroys all memory allocated by the heap. 1010 void TearDown(); 1011 1012 // Returns whether SetUp has been called. 1013 bool HasBeenSetUp(); 1014 1015 // =========================================================================== 1016 // Getters for spaces. ======================================================= 1017 // =========================================================================== 1018 1019 inline Address NewSpaceTop(); 1020 1021 NewSpace* new_space() { return new_space_; } 1022 OldSpace* old_space() { return old_space_; } 1023 OldSpace* code_space() { return code_space_; } 1024 MapSpace* map_space() { return map_space_; } 1025 LargeObjectSpace* lo_space() { return lo_space_; } 1026 1027 inline PagedSpace* paged_space(int idx); 1028 inline Space* space(int idx); 1029 1030 // Returns name of the space. 1031 const char* GetSpaceName(int idx); 1032 1033 // =========================================================================== 1034 // Getters to other components. ============================================== 1035 // =========================================================================== 1036 1037 GCTracer* tracer() { return tracer_; } 1038 1039 MemoryAllocator* memory_allocator() { return memory_allocator_; } 1040 1041 PromotionQueue* promotion_queue() { return &promotion_queue_; } 1042 1043 inline Isolate* isolate(); 1044 1045 MarkCompactCollector* mark_compact_collector() { 1046 return mark_compact_collector_; 1047 } 1048 1049 // =========================================================================== 1050 // Root set access. ========================================================== 1051 // =========================================================================== 1052 1053 // Heap root getters. 1054 #define ROOT_ACCESSOR(type, name, camel_name) inline type* name(); 1055 ROOT_LIST(ROOT_ACCESSOR) 1056 #undef ROOT_ACCESSOR 1057 1058 // Utility type maps. 1059 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) inline Map* name##_map(); 1060 STRUCT_LIST(STRUCT_MAP_ACCESSOR) 1061 #undef STRUCT_MAP_ACCESSOR 1062 1063 #define STRING_ACCESSOR(name, str) inline String* name(); 1064 INTERNALIZED_STRING_LIST(STRING_ACCESSOR) 1065 #undef STRING_ACCESSOR 1066 1067 #define SYMBOL_ACCESSOR(name) inline Symbol* name(); 1068 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR) 1069 #undef SYMBOL_ACCESSOR 1070 1071 #define SYMBOL_ACCESSOR(name, description) inline Symbol* name(); 1072 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR) 1073 WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR) 1074 #undef SYMBOL_ACCESSOR 1075 1076 Object* root(RootListIndex index) { return roots_[index]; } 1077 Handle<Object> root_handle(RootListIndex index) { 1078 return Handle<Object>(&roots_[index]); 1079 } 1080 template <typename T> 1081 bool IsRootHandle(Handle<T> handle, RootListIndex* index) const { 1082 Object** const handle_location = bit_cast<Object**>(handle.address()); 1083 if (handle_location >= &roots_[kRootListLength]) return false; 1084 if (handle_location < &roots_[0]) return false; 1085 *index = static_cast<RootListIndex>(handle_location - &roots_[0]); 1086 return true; 1087 } 1088 1089 // Generated code can embed this address to get access to the roots. 1090 Object** roots_array_start() { return roots_; } 1091 1092 // Sets the stub_cache_ (only used when expanding the dictionary). 1093 void SetRootCodeStubs(UnseededNumberDictionary* value) { 1094 roots_[kCodeStubsRootIndex] = value; 1095 } 1096 1097 void SetRootMaterializedObjects(FixedArray* objects) { 1098 roots_[kMaterializedObjectsRootIndex] = objects; 1099 } 1100 1101 void SetRootScriptList(Object* value) { 1102 roots_[kScriptListRootIndex] = value; 1103 } 1104 1105 void SetRootStringTable(StringTable* value) { 1106 roots_[kStringTableRootIndex] = value; 1107 } 1108 1109 void SetRootNoScriptSharedFunctionInfos(Object* value) { 1110 roots_[kNoScriptSharedFunctionInfosRootIndex] = value; 1111 } 1112 1113 void SetMessageListeners(TemplateList* value) { 1114 roots_[kMessageListenersRootIndex] = value; 1115 } 1116 1117 // Set the stack limit in the roots_ array. Some architectures generate 1118 // code that looks here, because it is faster than loading from the static 1119 // jslimit_/real_jslimit_ variable in the StackGuard. 1120 void SetStackLimits(); 1121 1122 // The stack limit is thread-dependent. To be able to reproduce the same 1123 // snapshot blob, we need to reset it before serializing. 1124 void ClearStackLimits(); 1125 1126 // Generated code can treat direct references to this root as constant. 1127 bool RootCanBeTreatedAsConstant(RootListIndex root_index); 1128 1129 Map* MapForFixedTypedArray(ExternalArrayType array_type); 1130 RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type); 1131 1132 RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind); 1133 FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map); 1134 1135 void RegisterStrongRoots(Object** start, Object** end); 1136 void UnregisterStrongRoots(Object** start); 1137 1138 // =========================================================================== 1139 // Inline allocation. ======================================================== 1140 // =========================================================================== 1141 1142 // Indicates whether inline bump-pointer allocation has been disabled. 1143 bool inline_allocation_disabled() { return inline_allocation_disabled_; } 1144 1145 // Switch whether inline bump-pointer allocation should be used. 1146 void EnableInlineAllocation(); 1147 void DisableInlineAllocation(); 1148 1149 // =========================================================================== 1150 // Methods triggering GCs. =================================================== 1151 // =========================================================================== 1152 1153 // Performs garbage collection operation. 1154 // Returns whether there is a chance that another major GC could 1155 // collect more garbage. 1156 inline bool CollectGarbage( 1157 AllocationSpace space, GarbageCollectionReason gc_reason, 1158 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); 1159 1160 // Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is 1161 // non-zero, then the slower precise sweeper is used, which leaves the heap 1162 // in a state where we can iterate over the heap visiting all objects. 1163 void CollectAllGarbage( 1164 int flags, GarbageCollectionReason gc_reason, 1165 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); 1166 1167 // Last hope GC, should try to squeeze as much as possible. 1168 void CollectAllAvailableGarbage(GarbageCollectionReason gc_reason); 1169 1170 // Reports and external memory pressure event, either performs a major GC or 1171 // completes incremental marking in order to free external resources. 1172 void ReportExternalMemoryPressure(); 1173 1174 // Invoked when GC was requested via the stack guard. 1175 void HandleGCRequest(); 1176 1177 // =========================================================================== 1178 // Iterators. ================================================================ 1179 // =========================================================================== 1180 1181 // Iterates over all roots in the heap. 1182 void IterateRoots(ObjectVisitor* v, VisitMode mode); 1183 // Iterates over all strong roots in the heap. 1184 void IterateStrongRoots(ObjectVisitor* v, VisitMode mode); 1185 // Iterates over entries in the smi roots list. Only interesting to the 1186 // serializer/deserializer, since GC does not care about smis. 1187 void IterateSmiRoots(ObjectVisitor* v); 1188 // Iterates over all the other roots in the heap. 1189 void IterateWeakRoots(ObjectVisitor* v, VisitMode mode); 1190 1191 // Iterate pointers of promoted objects. 1192 void IterateAndScavengePromotedObject(HeapObject* target, int size, 1193 bool was_marked_black); 1194 1195 // =========================================================================== 1196 // Store buffer API. ========================================================= 1197 // =========================================================================== 1198 1199 // Write barrier support for object[offset] = o; 1200 inline void RecordWrite(Object* object, int offset, Object* o); 1201 inline void RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* target); 1202 void RecordWriteIntoCodeSlow(Code* host, RelocInfo* rinfo, Object* target); 1203 void RecordWritesIntoCode(Code* code); 1204 inline void RecordFixedArrayElements(FixedArray* array, int offset, 1205 int length); 1206 1207 inline Address* store_buffer_top_address(); 1208 1209 void ClearRecordedSlot(HeapObject* object, Object** slot); 1210 void ClearRecordedSlotRange(Address start, Address end); 1211 1212 bool HasRecordedSlot(HeapObject* object, Object** slot); 1213 1214 // =========================================================================== 1215 // Incremental marking API. ================================================== 1216 // =========================================================================== 1217 1218 // Start incremental marking and ensure that idle time handler can perform 1219 // incremental steps. 1220 void StartIdleIncrementalMarking(GarbageCollectionReason gc_reason); 1221 1222 // Starts incremental marking assuming incremental marking is currently 1223 // stopped. 1224 void StartIncrementalMarking( 1225 int gc_flags, GarbageCollectionReason gc_reason, 1226 GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags); 1227 1228 void StartIncrementalMarkingIfAllocationLimitIsReached( 1229 int gc_flags, 1230 GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags); 1231 1232 void FinalizeIncrementalMarkingIfComplete(GarbageCollectionReason gc_reason); 1233 1234 bool TryFinalizeIdleIncrementalMarking(double idle_time_in_ms, 1235 GarbageCollectionReason gc_reason); 1236 1237 void RegisterReservationsForBlackAllocation(Reservation* reservations); 1238 1239 IncrementalMarking* incremental_marking() { return incremental_marking_; } 1240 1241 // The runtime uses this function to notify potentially unsafe object layout 1242 // changes that require special synchronization with the concurrent marker. 1243 // A layout change is unsafe if 1244 // - it removes a tagged in-object field. 1245 // - it replaces a tagged in-objects field with an untagged in-object field. 1246 void NotifyObjectLayoutChange(HeapObject* object, 1247 const DisallowHeapAllocation&); 1248 #ifdef VERIFY_HEAP 1249 // This function checks that either 1250 // - the map transition is safe, 1251 // - or it was communicated to GC using NotifyObjectLayoutChange. 1252 void VerifyObjectLayoutChange(HeapObject* object, Map* new_map); 1253 #endif 1254 1255 // =========================================================================== 1256 // Embedder heap tracer support. ============================================= 1257 // =========================================================================== 1258 1259 LocalEmbedderHeapTracer* local_embedder_heap_tracer() { 1260 return local_embedder_heap_tracer_; 1261 } 1262 void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer); 1263 void TracePossibleWrapper(JSObject* js_object); 1264 void RegisterExternallyReferencedObject(Object** object); 1265 1266 // =========================================================================== 1267 // External string table API. ================================================ 1268 // =========================================================================== 1269 1270 // Registers an external string. 1271 inline void RegisterExternalString(String* string); 1272 1273 // Finalizes an external string by deleting the associated external 1274 // data and clearing the resource pointer. 1275 inline void FinalizeExternalString(String* string); 1276 1277 // =========================================================================== 1278 // Methods checking/returning the space of a given object/address. =========== 1279 // =========================================================================== 1280 1281 // Returns whether the object resides in new space. 1282 inline bool InNewSpace(Object* object); 1283 inline bool InFromSpace(Object* object); 1284 inline bool InToSpace(Object* object); 1285 1286 // Returns whether the object resides in old space. 1287 inline bool InOldSpace(Object* object); 1288 1289 // Checks whether an address/object in the heap (including auxiliary 1290 // area and unused area). 1291 bool Contains(HeapObject* value); 1292 1293 // Checks whether an address/object in a space. 1294 // Currently used by tests, serialization and heap verification only. 1295 bool InSpace(HeapObject* value, AllocationSpace space); 1296 1297 // Slow methods that can be used for verification as they can also be used 1298 // with off-heap Addresses. 1299 bool ContainsSlow(Address addr); 1300 bool InSpaceSlow(Address addr, AllocationSpace space); 1301 inline bool InNewSpaceSlow(Address address); 1302 inline bool InOldSpaceSlow(Address address); 1303 1304 // =========================================================================== 1305 // Object statistics tracking. =============================================== 1306 // =========================================================================== 1307 1308 // Returns the number of buckets used by object statistics tracking during a 1309 // major GC. Note that the following methods fail gracefully when the bounds 1310 // are exceeded though. 1311 size_t NumberOfTrackedHeapObjectTypes(); 1312 1313 // Returns object statistics about count and size at the last major GC. 1314 // Objects are being grouped into buckets that roughly resemble existing 1315 // instance types. 1316 size_t ObjectCountAtLastGC(size_t index); 1317 size_t ObjectSizeAtLastGC(size_t index); 1318 1319 // Retrieves names of buckets used by object statistics tracking. 1320 bool GetObjectTypeName(size_t index, const char** object_type, 1321 const char** object_sub_type); 1322 1323 // =========================================================================== 1324 // Code statistics. ========================================================== 1325 // =========================================================================== 1326 1327 // Collect code (Code and BytecodeArray objects) statistics. 1328 void CollectCodeStatistics(); 1329 1330 // =========================================================================== 1331 // GC statistics. ============================================================ 1332 // =========================================================================== 1333 1334 // Returns the maximum amount of memory reserved for the heap. 1335 size_t MaxReserved() { 1336 return 2 * max_semi_space_size_ + max_old_generation_size_; 1337 } 1338 size_t MaxSemiSpaceSize() { return max_semi_space_size_; } 1339 size_t InitialSemiSpaceSize() { return initial_semispace_size_; } 1340 size_t MaxOldGenerationSize() { return max_old_generation_size_; } 1341 size_t MaxExecutableSize() { return max_executable_size_; } 1342 1343 // Returns the capacity of the heap in bytes w/o growing. Heap grows when 1344 // more spaces are needed until it reaches the limit. 1345 size_t Capacity(); 1346 1347 // Returns the capacity of the old generation. 1348 size_t OldGenerationCapacity(); 1349 1350 // Returns the amount of memory currently committed for the heap. 1351 size_t CommittedMemory(); 1352 1353 // Returns the amount of memory currently committed for the old space. 1354 size_t CommittedOldGenerationMemory(); 1355 1356 // Returns the amount of executable memory currently committed for the heap. 1357 size_t CommittedMemoryExecutable(); 1358 1359 // Returns the amount of phyical memory currently committed for the heap. 1360 size_t CommittedPhysicalMemory(); 1361 1362 // Returns the maximum amount of memory ever committed for the heap. 1363 size_t MaximumCommittedMemory() { return maximum_committed_; } 1364 1365 // Updates the maximum committed memory for the heap. Should be called 1366 // whenever a space grows. 1367 void UpdateMaximumCommitted(); 1368 1369 // Returns the available bytes in space w/o growing. 1370 // Heap doesn't guarantee that it can allocate an object that requires 1371 // all available bytes. Check MaxHeapObjectSize() instead. 1372 size_t Available(); 1373 1374 // Returns of size of all objects residing in the heap. 1375 size_t SizeOfObjects(); 1376 1377 void UpdateSurvivalStatistics(int start_new_space_size); 1378 1379 inline void IncrementPromotedObjectsSize(size_t object_size) { 1380 promoted_objects_size_ += object_size; 1381 } 1382 inline size_t promoted_objects_size() { return promoted_objects_size_; } 1383 1384 inline void IncrementSemiSpaceCopiedObjectSize(size_t object_size) { 1385 semi_space_copied_object_size_ += object_size; 1386 } 1387 inline size_t semi_space_copied_object_size() { 1388 return semi_space_copied_object_size_; 1389 } 1390 1391 inline size_t SurvivedNewSpaceObjectSize() { 1392 return promoted_objects_size_ + semi_space_copied_object_size_; 1393 } 1394 1395 inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; } 1396 1397 inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; } 1398 1399 inline void IncrementNodesPromoted() { nodes_promoted_++; } 1400 1401 inline void IncrementYoungSurvivorsCounter(size_t survived) { 1402 survived_last_scavenge_ = survived; 1403 survived_since_last_expansion_ += survived; 1404 } 1405 1406 inline uint64_t PromotedTotalSize() { 1407 return PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize(); 1408 } 1409 1410 inline void UpdateNewSpaceAllocationCounter(); 1411 1412 inline size_t NewSpaceAllocationCounter(); 1413 1414 // This should be used only for testing. 1415 void set_new_space_allocation_counter(size_t new_value) { 1416 new_space_allocation_counter_ = new_value; 1417 } 1418 1419 void UpdateOldGenerationAllocationCounter() { 1420 old_generation_allocation_counter_at_last_gc_ = 1421 OldGenerationAllocationCounter(); 1422 } 1423 1424 size_t OldGenerationAllocationCounter() { 1425 return old_generation_allocation_counter_at_last_gc_ + 1426 PromotedSinceLastGC(); 1427 } 1428 1429 // This should be used only for testing. 1430 void set_old_generation_allocation_counter_at_last_gc(size_t new_value) { 1431 old_generation_allocation_counter_at_last_gc_ = new_value; 1432 } 1433 1434 size_t PromotedSinceLastGC() { 1435 return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_; 1436 } 1437 1438 int gc_count() const { return gc_count_; } 1439 1440 // Returns the size of objects residing in non new spaces. 1441 size_t PromotedSpaceSizeOfObjects(); 1442 1443 // =========================================================================== 1444 // Prologue/epilogue callback methods.======================================== 1445 // =========================================================================== 1446 1447 void AddGCPrologueCallback(v8::Isolate::GCCallback callback, 1448 GCType gc_type_filter, bool pass_isolate = true); 1449 void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback); 1450 1451 void AddGCEpilogueCallback(v8::Isolate::GCCallback callback, 1452 GCType gc_type_filter, bool pass_isolate = true); 1453 void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback); 1454 1455 void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags); 1456 void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags); 1457 1458 // =========================================================================== 1459 // Allocation methods. ======================================================= 1460 // =========================================================================== 1461 1462 // Creates a filler object and returns a heap object immediately after it. 1463 MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object, 1464 int filler_size); 1465 1466 // Creates a filler object if needed for alignment and returns a heap object 1467 // immediately after it. If any space is left after the returned object, 1468 // another filler object is created so the over allocated memory is iterable. 1469 MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object, 1470 int object_size, 1471 int allocation_size, 1472 AllocationAlignment alignment); 1473 1474 // =========================================================================== 1475 // ArrayBuffer tracking. ===================================================== 1476 // =========================================================================== 1477 1478 // TODO(gc): API usability: encapsulate mutation of JSArrayBuffer::is_external 1479 // in the registration/unregistration APIs. Consider dropping the "New" from 1480 // "RegisterNewArrayBuffer" because one can re-register a previously 1481 // unregistered buffer, too, and the name is confusing. 1482 void RegisterNewArrayBuffer(JSArrayBuffer* buffer); 1483 void UnregisterArrayBuffer(JSArrayBuffer* buffer); 1484 1485 // =========================================================================== 1486 // Allocation site tracking. ================================================= 1487 // =========================================================================== 1488 1489 // Updates the AllocationSite of a given {object}. If the global prenuring 1490 // storage is passed as {pretenuring_feedback} the memento found count on 1491 // the corresponding allocation site is immediately updated and an entry 1492 // in the hash map is created. Otherwise the entry (including a the count 1493 // value) is cached on the local pretenuring feedback. 1494 template <UpdateAllocationSiteMode mode> 1495 inline void UpdateAllocationSite(HeapObject* object, 1496 base::HashMap* pretenuring_feedback); 1497 1498 // Removes an entry from the global pretenuring storage. 1499 inline void RemoveAllocationSitePretenuringFeedback(AllocationSite* site); 1500 1501 // Merges local pretenuring feedback into the global one. Note that this 1502 // method needs to be called after evacuation, as allocation sites may be 1503 // evacuated and this method resolves forward pointers accordingly. 1504 void MergeAllocationSitePretenuringFeedback( 1505 const base::HashMap& local_pretenuring_feedback); 1506 1507 // ============================================================================= 1508 1509 #ifdef VERIFY_HEAP 1510 // Verify the heap is in its normal state before or after a GC. 1511 void Verify(); 1512 #endif 1513 1514 #ifdef DEBUG 1515 void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; } 1516 1517 void Print(); 1518 void PrintHandles(); 1519 1520 // Report heap statistics. 1521 void ReportHeapStatistics(const char* title); 1522 void ReportCodeStatistics(const char* title); 1523 #endif 1524 1525 static const char* GarbageCollectionReasonToString( 1526 GarbageCollectionReason gc_reason); 1527 1528 private: 1529 class SkipStoreBufferScope; 1530 class PretenuringScope; 1531 1532 // External strings table is a place where all external strings are 1533 // registered. We need to keep track of such strings to properly 1534 // finalize them. 1535 class ExternalStringTable { 1536 public: 1537 // Registers an external string. 1538 inline void AddString(String* string); 1539 1540 inline void IterateAll(ObjectVisitor* v); 1541 inline void IterateNewSpaceStrings(ObjectVisitor* v); 1542 inline void PromoteAllNewSpaceStrings(); 1543 1544 // Restores internal invariant and gets rid of collected strings. Must be 1545 // called after each Iterate*() that modified the strings. 1546 void CleanUpAll(); 1547 void CleanUpNewSpaceStrings(); 1548 1549 // Destroys all allocated memory. 1550 void TearDown(); 1551 1552 private: 1553 explicit ExternalStringTable(Heap* heap) : heap_(heap) {} 1554 1555 inline void Verify(); 1556 1557 inline void AddOldString(String* string); 1558 1559 // Notifies the table that only a prefix of the new list is valid. 1560 inline void ShrinkNewStrings(int position); 1561 1562 // To speed up scavenge collections new space string are kept 1563 // separate from old space strings. 1564 List<Object*> new_space_strings_; 1565 List<Object*> old_space_strings_; 1566 1567 Heap* heap_; 1568 1569 friend class Heap; 1570 1571 DISALLOW_COPY_AND_ASSIGN(ExternalStringTable); 1572 }; 1573 1574 struct StrongRootsList; 1575 1576 struct StringTypeTable { 1577 InstanceType type; 1578 int size; 1579 RootListIndex index; 1580 }; 1581 1582 struct ConstantStringTable { 1583 const char* contents; 1584 RootListIndex index; 1585 }; 1586 1587 struct StructTable { 1588 InstanceType type; 1589 int size; 1590 RootListIndex index; 1591 }; 1592 1593 struct GCCallbackPair { 1594 GCCallbackPair(v8::Isolate::GCCallback callback, GCType gc_type, 1595 bool pass_isolate) 1596 : callback(callback), gc_type(gc_type), pass_isolate(pass_isolate) {} 1597 1598 bool operator==(const GCCallbackPair& other) const { 1599 return other.callback == callback; 1600 } 1601 1602 v8::Isolate::GCCallback callback; 1603 GCType gc_type; 1604 bool pass_isolate; 1605 }; 1606 1607 typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap, 1608 Object** pointer); 1609 1610 static const int kInitialStringTableSize = 2048; 1611 static const int kInitialEvalCacheSize = 64; 1612 static const int kInitialNumberStringCacheSize = 256; 1613 1614 static const int kRememberedUnmappedPages = 128; 1615 1616 static const StringTypeTable string_type_table[]; 1617 static const ConstantStringTable constant_string_table[]; 1618 static const StructTable struct_table[]; 1619 1620 static const int kYoungSurvivalRateHighThreshold = 90; 1621 static const int kYoungSurvivalRateAllowedDeviation = 15; 1622 static const int kOldSurvivalRateLowThreshold = 10; 1623 1624 static const int kMaxMarkCompactsInIdleRound = 7; 1625 static const int kIdleScavengeThreshold = 5; 1626 1627 static const int kInitialFeedbackCapacity = 256; 1628 1629 Heap(); 1630 1631 static String* UpdateNewSpaceReferenceInExternalStringTableEntry( 1632 Heap* heap, Object** pointer); 1633 1634 // Selects the proper allocation space based on the pretenuring decision. 1635 static AllocationSpace SelectSpace(PretenureFlag pretenure) { 1636 return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE; 1637 } 1638 1639 #define ROOT_ACCESSOR(type, name, camel_name) \ 1640 inline void set_##name(type* value); 1641 ROOT_LIST(ROOT_ACCESSOR) 1642 #undef ROOT_ACCESSOR 1643 1644 StoreBuffer* store_buffer() { return store_buffer_; } 1645 1646 void set_current_gc_flags(int flags) { 1647 current_gc_flags_ = flags; 1648 DCHECK(!ShouldFinalizeIncrementalMarking() || 1649 !ShouldAbortIncrementalMarking()); 1650 } 1651 1652 inline bool ShouldReduceMemory() const { 1653 return current_gc_flags_ & kReduceMemoryFootprintMask; 1654 } 1655 1656 inline bool ShouldAbortIncrementalMarking() const { 1657 return current_gc_flags_ & kAbortIncrementalMarkingMask; 1658 } 1659 1660 inline bool ShouldFinalizeIncrementalMarking() const { 1661 return current_gc_flags_ & kFinalizeIncrementalMarkingMask; 1662 } 1663 1664 void PreprocessStackTraces(); 1665 1666 // Checks whether a global GC is necessary 1667 GarbageCollector SelectGarbageCollector(AllocationSpace space, 1668 const char** reason); 1669 1670 // Make sure there is a filler value behind the top of the new space 1671 // so that the GC does not confuse some unintialized/stale memory 1672 // with the allocation memento of the object at the top 1673 void EnsureFillerObjectAtTop(); 1674 1675 // Ensure that we have swept all spaces in such a way that we can iterate 1676 // over all objects. May cause a GC. 1677 void MakeHeapIterable(); 1678 1679 // Performs garbage collection operation. 1680 // Returns whether there is a chance that another major GC could 1681 // collect more garbage. 1682 bool CollectGarbage( 1683 GarbageCollector collector, GarbageCollectionReason gc_reason, 1684 const char* collector_reason, 1685 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); 1686 1687 // Performs garbage collection 1688 // Returns whether there is a chance another major GC could 1689 // collect more garbage. 1690 bool PerformGarbageCollection( 1691 GarbageCollector collector, 1692 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); 1693 1694 inline void UpdateOldSpaceLimits(); 1695 1696 // Initializes a JSObject based on its map. 1697 void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties, 1698 Map* map); 1699 1700 // Initializes JSObject body starting at given offset. 1701 void InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset); 1702 1703 void InitializeAllocationMemento(AllocationMemento* memento, 1704 AllocationSite* allocation_site); 1705 1706 bool CreateInitialMaps(); 1707 void CreateInitialObjects(); 1708 1709 // These five Create*EntryStub functions are here and forced to not be inlined 1710 // because of a gcc-4.4 bug that assigns wrong vtable entries. 1711 NO_INLINE(void CreateJSEntryStub()); 1712 NO_INLINE(void CreateJSConstructEntryStub()); 1713 1714 void CreateFixedStubs(); 1715 1716 HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size); 1717 1718 // Commits from space if it is uncommitted. 1719 void EnsureFromSpaceIsCommitted(); 1720 1721 // Uncommit unused semi space. 1722 bool UncommitFromSpace(); 1723 1724 // Fill in bogus values in from space 1725 void ZapFromSpace(); 1726 1727 // Deopts all code that contains allocation instruction which are tenured or 1728 // not tenured. Moreover it clears the pretenuring allocation site statistics. 1729 void ResetAllAllocationSitesDependentCode(PretenureFlag flag); 1730 1731 // Evaluates local pretenuring for the old space and calls 1732 // ResetAllTenuredAllocationSitesDependentCode if too many objects died in 1733 // the old space. 1734 void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc); 1735 1736 // Record statistics before and after garbage collection. 1737 void ReportStatisticsBeforeGC(); 1738 void ReportStatisticsAfterGC(); 1739 1740 // Creates and installs the full-sized number string cache. 1741 int FullSizeNumberStringCacheLength(); 1742 // Flush the number to string cache. 1743 void FlushNumberStringCache(); 1744 1745 void ConfigureInitialOldGenerationSize(); 1746 1747 bool HasLowYoungGenerationAllocationRate(); 1748 bool HasLowOldGenerationAllocationRate(); 1749 double YoungGenerationMutatorUtilization(); 1750 double OldGenerationMutatorUtilization(); 1751 1752 void ReduceNewSpaceSize(); 1753 1754 GCIdleTimeHeapState ComputeHeapState(); 1755 1756 bool PerformIdleTimeAction(GCIdleTimeAction action, 1757 GCIdleTimeHeapState heap_state, 1758 double deadline_in_ms); 1759 1760 void IdleNotificationEpilogue(GCIdleTimeAction action, 1761 GCIdleTimeHeapState heap_state, double start_ms, 1762 double deadline_in_ms); 1763 1764 inline void UpdateAllocationsHash(HeapObject* object); 1765 inline void UpdateAllocationsHash(uint32_t value); 1766 void PrintAlloctionsHash(); 1767 1768 void AddToRingBuffer(const char* string); 1769 void GetFromRingBuffer(char* buffer); 1770 1771 void CompactRetainedMaps(ArrayList* retained_maps); 1772 1773 void CollectGarbageOnMemoryPressure(); 1774 1775 void InvokeOutOfMemoryCallback(); 1776 1777 void ComputeFastPromotionMode(double survival_rate); 1778 1779 // Attempt to over-approximate the weak closure by marking object groups and 1780 // implicit references from global handles, but don't atomically complete 1781 // marking. If we continue to mark incrementally, we might have marked 1782 // objects that die later. 1783 void FinalizeIncrementalMarking(GarbageCollectionReason gc_reason); 1784 1785 // Returns the timer used for a given GC type. 1786 // - GCScavenger: young generation GC 1787 // - GCCompactor: full GC 1788 // - GCFinalzeMC: finalization of incremental full GC 1789 // - GCFinalizeMCReduceMemory: finalization of incremental full GC with 1790 // memory reduction 1791 HistogramTimer* GCTypeTimer(GarbageCollector collector); 1792 1793 // =========================================================================== 1794 // Pretenuring. ============================================================== 1795 // =========================================================================== 1796 1797 // Pretenuring decisions are made based on feedback collected during new space 1798 // evacuation. Note that between feedback collection and calling this method 1799 // object in old space must not move. 1800 void ProcessPretenuringFeedback(); 1801 1802 // =========================================================================== 1803 // Actual GC. ================================================================ 1804 // =========================================================================== 1805 1806 // Code that should be run before and after each GC. Includes some 1807 // reporting/verification activities when compiled with DEBUG set. 1808 void GarbageCollectionPrologue(); 1809 void GarbageCollectionEpilogue(); 1810 1811 // Performs a major collection in the whole heap. 1812 void MarkCompact(); 1813 // Performs a minor collection of just the young generation. 1814 void MinorMarkCompact(); 1815 1816 // Code to be run before and after mark-compact. 1817 void MarkCompactPrologue(); 1818 void MarkCompactEpilogue(); 1819 1820 // Performs a minor collection in new generation. 1821 void Scavenge(); 1822 void EvacuateYoungGeneration(); 1823 1824 Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front); 1825 1826 void UpdateNewSpaceReferencesInExternalStringTable( 1827 ExternalStringTableUpdaterCallback updater_func); 1828 1829 void UpdateReferencesInExternalStringTable( 1830 ExternalStringTableUpdaterCallback updater_func); 1831 1832 void ProcessAllWeakReferences(WeakObjectRetainer* retainer); 1833 void ProcessYoungWeakReferences(WeakObjectRetainer* retainer); 1834 void ProcessNativeContexts(WeakObjectRetainer* retainer); 1835 void ProcessAllocationSites(WeakObjectRetainer* retainer); 1836 void ProcessWeakListRoots(WeakObjectRetainer* retainer); 1837 1838 // =========================================================================== 1839 // GC statistics. ============================================================ 1840 // =========================================================================== 1841 1842 inline size_t OldGenerationSpaceAvailable() { 1843 if (old_generation_allocation_limit_ <= PromotedTotalSize()) return 0; 1844 return old_generation_allocation_limit_ - 1845 static_cast<size_t>(PromotedTotalSize()); 1846 } 1847 1848 // We allow incremental marking to overshoot the allocation limit for 1849 // performace reasons. If the overshoot is too large then we are more 1850 // eager to finalize incremental marking. 1851 inline bool AllocationLimitOvershotByLargeMargin() { 1852 // This guards against too eager finalization in small heaps. 1853 // The number is chosen based on v8.browsing_mobile on Nexus 7v2. 1854 size_t kMarginForSmallHeaps = 32u * MB; 1855 if (old_generation_allocation_limit_ >= PromotedTotalSize()) return false; 1856 uint64_t overshoot = PromotedTotalSize() - old_generation_allocation_limit_; 1857 // Overshoot margin is 50% of allocation limit or half-way to the max heap 1858 // with special handling of small heaps. 1859 uint64_t margin = 1860 Min(Max(old_generation_allocation_limit_ / 2, kMarginForSmallHeaps), 1861 (max_old_generation_size_ - old_generation_allocation_limit_) / 2); 1862 return overshoot >= margin; 1863 } 1864 1865 void UpdateTotalGCTime(double duration); 1866 1867 bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; } 1868 1869 // =========================================================================== 1870 // Growing strategy. ========================================================= 1871 // =========================================================================== 1872 1873 // For some webpages RAIL mode does not switch from PERFORMANCE_LOAD. 1874 // This constant limits the effect of load RAIL mode on GC. 1875 // The value is arbitrary and chosen as the largest load time observed in 1876 // v8 browsing benchmarks. 1877 static const int kMaxLoadTimeMs = 7000; 1878 1879 bool ShouldOptimizeForLoadTime(); 1880 1881 // Decrease the allocation limit if the new limit based on the given 1882 // parameters is lower than the current limit. 1883 void DampenOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed, 1884 double mutator_speed); 1885 1886 // Calculates the allocation limit based on a given growing factor and a 1887 // given old generation size. 1888 size_t CalculateOldGenerationAllocationLimit(double factor, 1889 size_t old_gen_size); 1890 1891 // Sets the allocation limit to trigger the next full garbage collection. 1892 void SetOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed, 1893 double mutator_speed); 1894 1895 size_t MinimumAllocationLimitGrowingStep(); 1896 1897 size_t old_generation_allocation_limit() const { 1898 return old_generation_allocation_limit_; 1899 } 1900 1901 bool always_allocate() { return always_allocate_scope_count_.Value() != 0; } 1902 1903 bool CanExpandOldGeneration(size_t size) { 1904 if (force_oom_) return false; 1905 return (OldGenerationCapacity() + size) < MaxOldGenerationSize(); 1906 } 1907 1908 bool IsCloseToOutOfMemory(size_t slack) { 1909 return OldGenerationCapacity() + slack >= MaxOldGenerationSize(); 1910 } 1911 1912 bool ShouldExpandOldGenerationOnSlowAllocation(); 1913 1914 enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit }; 1915 IncrementalMarkingLimit IncrementalMarkingLimitReached(); 1916 1917 // =========================================================================== 1918 // Idle notification. ======================================================== 1919 // =========================================================================== 1920 1921 bool RecentIdleNotificationHappened(); 1922 void ScheduleIdleScavengeIfNeeded(int bytes_allocated); 1923 1924 // =========================================================================== 1925 // HeapIterator helpers. ===================================================== 1926 // =========================================================================== 1927 1928 void heap_iterator_start() { heap_iterator_depth_++; } 1929 1930 void heap_iterator_end() { heap_iterator_depth_--; } 1931 1932 bool in_heap_iterator() { return heap_iterator_depth_ > 0; } 1933 1934 // =========================================================================== 1935 // Allocation methods. ======================================================= 1936 // =========================================================================== 1937 1938 // Returns a deep copy of the JavaScript object. 1939 // Properties and elements are copied too. 1940 // Optionally takes an AllocationSite to be appended in an AllocationMemento. 1941 MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source, 1942 AllocationSite* site = NULL); 1943 1944 // Allocates a JS Map in the heap. 1945 MUST_USE_RESULT AllocationResult 1946 AllocateMap(InstanceType instance_type, int instance_size, 1947 ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND); 1948 1949 // Allocates and initializes a new JavaScript object based on a 1950 // constructor. 1951 // If allocation_site is non-null, then a memento is emitted after the object 1952 // that points to the site. 1953 MUST_USE_RESULT AllocationResult AllocateJSObject( 1954 JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED, 1955 AllocationSite* allocation_site = NULL); 1956 1957 // Allocates and initializes a new JavaScript object based on a map. 1958 // Passing an allocation site means that a memento will be created that 1959 // points to the site. 1960 MUST_USE_RESULT AllocationResult 1961 AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED, 1962 AllocationSite* allocation_site = NULL); 1963 1964 // Allocates a HeapNumber from value. 1965 MUST_USE_RESULT AllocationResult AllocateHeapNumber( 1966 MutableMode mode = IMMUTABLE, PretenureFlag pretenure = NOT_TENURED); 1967 1968 // Allocates a byte array of the specified length 1969 MUST_USE_RESULT AllocationResult 1970 AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED); 1971 1972 // Allocates a bytecode array with given contents. 1973 MUST_USE_RESULT AllocationResult 1974 AllocateBytecodeArray(int length, const byte* raw_bytecodes, int frame_size, 1975 int parameter_count, FixedArray* constant_pool); 1976 1977 MUST_USE_RESULT AllocationResult CopyCode(Code* code); 1978 1979 MUST_USE_RESULT AllocationResult 1980 CopyBytecodeArray(BytecodeArray* bytecode_array); 1981 1982 // Allocates a fixed array initialized with undefined values 1983 MUST_USE_RESULT AllocationResult 1984 AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED); 1985 1986 // Allocate an uninitialized object. The memory is non-executable if the 1987 // hardware and OS allow. This is the single choke-point for allocations 1988 // performed by the runtime and should not be bypassed (to extend this to 1989 // inlined allocations, use the Heap::DisableInlineAllocation() support). 1990 MUST_USE_RESULT inline AllocationResult AllocateRaw( 1991 int size_in_bytes, AllocationSpace space, 1992 AllocationAlignment aligment = kWordAligned); 1993 1994 // Allocates a heap object based on the map. 1995 MUST_USE_RESULT AllocationResult 1996 Allocate(Map* map, AllocationSpace space, 1997 AllocationSite* allocation_site = NULL); 1998 1999 // Allocates a partial map for bootstrapping. 2000 MUST_USE_RESULT AllocationResult 2001 AllocatePartialMap(InstanceType instance_type, int instance_size); 2002 2003 // Allocate a block of memory in the given space (filled with a filler). 2004 // Used as a fall-back for generated code when the space is full. 2005 MUST_USE_RESULT AllocationResult 2006 AllocateFillerObject(int size, bool double_align, AllocationSpace space); 2007 2008 // Allocate an uninitialized fixed array. 2009 MUST_USE_RESULT AllocationResult 2010 AllocateRawFixedArray(int length, PretenureFlag pretenure); 2011 2012 // Allocate an uninitialized fixed double array. 2013 MUST_USE_RESULT AllocationResult 2014 AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure); 2015 2016 // Allocate an initialized fixed array with the given filler value. 2017 MUST_USE_RESULT AllocationResult 2018 AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure, 2019 Object* filler); 2020 2021 // Allocate and partially initializes a String. There are two String 2022 // encodings: one-byte and two-byte. These functions allocate a string of 2023 // the given length and set its map and length fields. The characters of 2024 // the string are uninitialized. 2025 MUST_USE_RESULT AllocationResult 2026 AllocateRawOneByteString(int length, PretenureFlag pretenure); 2027 MUST_USE_RESULT AllocationResult 2028 AllocateRawTwoByteString(int length, PretenureFlag pretenure); 2029 2030 // Allocates an internalized string in old space based on the character 2031 // stream. 2032 MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8( 2033 Vector<const char> str, int chars, uint32_t hash_field); 2034 2035 MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString( 2036 Vector<const uint8_t> str, uint32_t hash_field); 2037 2038 MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString( 2039 Vector<const uc16> str, uint32_t hash_field); 2040 2041 template <bool is_one_byte, typename T> 2042 MUST_USE_RESULT AllocationResult 2043 AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field); 2044 2045 template <typename T> 2046 MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl( 2047 T t, int chars, uint32_t hash_field); 2048 2049 // Allocates an uninitialized fixed array. It must be filled by the caller. 2050 MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length); 2051 2052 // Make a copy of src and return it. 2053 MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src); 2054 2055 // Make a copy of src, also grow the copy, and return the copy. 2056 MUST_USE_RESULT AllocationResult 2057 CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure); 2058 2059 // Make a copy of src, also grow the copy, and return the copy. 2060 MUST_USE_RESULT AllocationResult CopyFixedArrayUpTo(FixedArray* src, 2061 int new_len, 2062 PretenureFlag pretenure); 2063 2064 // Make a copy of src, set the map, and return the copy. 2065 MUST_USE_RESULT AllocationResult 2066 CopyFixedArrayWithMap(FixedArray* src, Map* map); 2067 2068 // Make a copy of src and return it. 2069 MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray( 2070 FixedDoubleArray* src); 2071 2072 // Computes a single character string where the character has code. 2073 // A cache is used for one-byte (Latin1) codes. 2074 MUST_USE_RESULT AllocationResult 2075 LookupSingleCharacterStringFromCode(uint16_t code); 2076 2077 // Allocate a symbol in old space. 2078 MUST_USE_RESULT AllocationResult AllocateSymbol(); 2079 2080 // Allocates an external array of the specified length and type. 2081 MUST_USE_RESULT AllocationResult AllocateFixedTypedArrayWithExternalPointer( 2082 int length, ExternalArrayType array_type, void* external_pointer, 2083 PretenureFlag pretenure); 2084 2085 // Allocates a fixed typed array of the specified length and type. 2086 MUST_USE_RESULT AllocationResult 2087 AllocateFixedTypedArray(int length, ExternalArrayType array_type, 2088 bool initialize, PretenureFlag pretenure); 2089 2090 // Make a copy of src and return it. 2091 MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src); 2092 2093 // Make a copy of src, set the map, and return the copy. 2094 MUST_USE_RESULT AllocationResult 2095 CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map); 2096 2097 // Allocates a fixed double array with uninitialized values. Returns 2098 MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray( 2099 int length, PretenureFlag pretenure = NOT_TENURED); 2100 2101 // Allocate empty fixed array. 2102 MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray(); 2103 2104 // Allocate empty scope info. 2105 MUST_USE_RESULT AllocationResult AllocateEmptyScopeInfo(); 2106 2107 // Allocate empty fixed typed array of given type. 2108 MUST_USE_RESULT AllocationResult 2109 AllocateEmptyFixedTypedArray(ExternalArrayType array_type); 2110 2111 // Allocate a tenured simple cell. 2112 MUST_USE_RESULT AllocationResult AllocateCell(Object* value); 2113 2114 // Allocate a tenured JS global property cell initialized with the hole. 2115 MUST_USE_RESULT AllocationResult AllocatePropertyCell(); 2116 2117 MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value); 2118 2119 MUST_USE_RESULT AllocationResult AllocateTransitionArray(int capacity); 2120 2121 // Allocates a new utility object in the old generation. 2122 MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type); 2123 2124 // Allocates a new foreign object. 2125 MUST_USE_RESULT AllocationResult 2126 AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED); 2127 2128 MUST_USE_RESULT AllocationResult 2129 AllocateCode(int object_size, bool immovable); 2130 2131 // =========================================================================== 2132 2133 void set_force_oom(bool value) { force_oom_ = value; } 2134 2135 // The amount of external memory registered through the API. 2136 int64_t external_memory_; 2137 2138 // The limit when to trigger memory pressure from the API. 2139 int64_t external_memory_limit_; 2140 2141 // Caches the amount of external memory registered at the last MC. 2142 int64_t external_memory_at_last_mark_compact_; 2143 2144 // The amount of memory that has been freed concurrently. 2145 base::AtomicNumber<intptr_t> external_memory_concurrently_freed_; 2146 2147 // This can be calculated directly from a pointer to the heap; however, it is 2148 // more expedient to get at the isolate directly from within Heap methods. 2149 Isolate* isolate_; 2150 2151 Object* roots_[kRootListLength]; 2152 2153 size_t code_range_size_; 2154 size_t max_semi_space_size_; 2155 size_t initial_semispace_size_; 2156 size_t max_old_generation_size_; 2157 size_t initial_max_old_generation_size_; 2158 size_t initial_old_generation_size_; 2159 bool old_generation_size_configured_; 2160 size_t max_executable_size_; 2161 size_t maximum_committed_; 2162 2163 // For keeping track of how much data has survived 2164 // scavenge since last new space expansion. 2165 size_t survived_since_last_expansion_; 2166 2167 // ... and since the last scavenge. 2168 size_t survived_last_scavenge_; 2169 2170 // This is not the depth of nested AlwaysAllocateScope's but rather a single 2171 // count, as scopes can be acquired from multiple tasks (read: threads). 2172 base::AtomicNumber<size_t> always_allocate_scope_count_; 2173 2174 // Stores the memory pressure level that set by MemoryPressureNotification 2175 // and reset by a mark-compact garbage collection. 2176 base::AtomicValue<MemoryPressureLevel> memory_pressure_level_; 2177 2178 v8::debug::OutOfMemoryCallback out_of_memory_callback_; 2179 void* out_of_memory_callback_data_; 2180 2181 // For keeping track of context disposals. 2182 int contexts_disposed_; 2183 2184 // The length of the retained_maps array at the time of context disposal. 2185 // This separates maps in the retained_maps array that were created before 2186 // and after context disposal. 2187 int number_of_disposed_maps_; 2188 2189 int global_ic_age_; 2190 2191 NewSpace* new_space_; 2192 OldSpace* old_space_; 2193 OldSpace* code_space_; 2194 MapSpace* map_space_; 2195 LargeObjectSpace* lo_space_; 2196 // Map from the space id to the space. 2197 Space* space_[LAST_SPACE + 1]; 2198 HeapState gc_state_; 2199 int gc_post_processing_depth_; 2200 Address new_space_top_after_last_gc_; 2201 2202 // Returns the amount of external memory registered since last global gc. 2203 uint64_t PromotedExternalMemorySize(); 2204 2205 // How many "runtime allocations" happened. 2206 uint32_t allocations_count_; 2207 2208 // Running hash over allocations performed. 2209 uint32_t raw_allocations_hash_; 2210 2211 // How many mark-sweep collections happened. 2212 unsigned int ms_count_; 2213 2214 // How many gc happened. 2215 unsigned int gc_count_; 2216 2217 // For post mortem debugging. 2218 int remembered_unmapped_pages_index_; 2219 Address remembered_unmapped_pages_[kRememberedUnmappedPages]; 2220 2221 #ifdef DEBUG 2222 // If the --gc-interval flag is set to a positive value, this 2223 // variable holds the value indicating the number of allocations 2224 // remain until the next failure and garbage collection. 2225 int allocation_timeout_; 2226 #endif // DEBUG 2227 2228 // Limit that triggers a global GC on the next (normally caused) GC. This 2229 // is checked when we have already decided to do a GC to help determine 2230 // which collector to invoke, before expanding a paged space in the old 2231 // generation and on every allocation in large object space. 2232 size_t old_generation_allocation_limit_; 2233 2234 // Indicates that inline bump-pointer allocation has been globally disabled 2235 // for all spaces. This is used to disable allocations in generated code. 2236 bool inline_allocation_disabled_; 2237 2238 // Weak list heads, threaded through the objects. 2239 // List heads are initialized lazily and contain the undefined_value at start. 2240 Object* native_contexts_list_; 2241 Object* allocation_sites_list_; 2242 2243 // List of encountered weak collections (JSWeakMap and JSWeakSet) during 2244 // marking. It is initialized during marking, destroyed after marking and 2245 // contains Smi(0) while marking is not active. 2246 Object* encountered_weak_collections_; 2247 2248 Object* encountered_weak_cells_; 2249 2250 Object* encountered_transition_arrays_; 2251 2252 List<GCCallbackPair> gc_epilogue_callbacks_; 2253 List<GCCallbackPair> gc_prologue_callbacks_; 2254 2255 int deferred_counters_[v8::Isolate::kUseCounterFeatureCount]; 2256 2257 GCTracer* tracer_; 2258 2259 size_t promoted_objects_size_; 2260 double promotion_ratio_; 2261 double promotion_rate_; 2262 size_t semi_space_copied_object_size_; 2263 size_t previous_semi_space_copied_object_size_; 2264 double semi_space_copied_rate_; 2265 int nodes_died_in_new_space_; 2266 int nodes_copied_in_new_space_; 2267 int nodes_promoted_; 2268 2269 // This is the pretenuring trigger for allocation sites that are in maybe 2270 // tenure state. When we switched to the maximum new space size we deoptimize 2271 // the code that belongs to the allocation site and derive the lifetime 2272 // of the allocation site. 2273 unsigned int maximum_size_scavenges_; 2274 2275 // Total time spent in GC. 2276 double total_gc_time_ms_; 2277 2278 // Last time an idle notification happened. 2279 double last_idle_notification_time_; 2280 2281 // Last time a garbage collection happened. 2282 double last_gc_time_; 2283 2284 Scavenger* scavenge_collector_; 2285 2286 MarkCompactCollector* mark_compact_collector_; 2287 2288 MemoryAllocator* memory_allocator_; 2289 2290 StoreBuffer* store_buffer_; 2291 2292 IncrementalMarking* incremental_marking_; 2293 2294 GCIdleTimeHandler* gc_idle_time_handler_; 2295 2296 MemoryReducer* memory_reducer_; 2297 2298 ObjectStats* live_object_stats_; 2299 ObjectStats* dead_object_stats_; 2300 2301 ScavengeJob* scavenge_job_; 2302 2303 AllocationObserver* idle_scavenge_observer_; 2304 2305 // This counter is increased before each GC and never reset. 2306 // To account for the bytes allocated since the last GC, use the 2307 // NewSpaceAllocationCounter() function. 2308 size_t new_space_allocation_counter_; 2309 2310 // This counter is increased before each GC and never reset. To 2311 // account for the bytes allocated since the last GC, use the 2312 // OldGenerationAllocationCounter() function. 2313 size_t old_generation_allocation_counter_at_last_gc_; 2314 2315 // The size of objects in old generation after the last MarkCompact GC. 2316 size_t old_generation_size_at_last_gc_; 2317 2318 // If the --deopt_every_n_garbage_collections flag is set to a positive value, 2319 // this variable holds the number of garbage collections since the last 2320 // deoptimization triggered by garbage collection. 2321 int gcs_since_last_deopt_; 2322 2323 // The feedback storage is used to store allocation sites (keys) and how often 2324 // they have been visited (values) by finding a memento behind an object. The 2325 // storage is only alive temporary during a GC. The invariant is that all 2326 // pointers in this map are already fixed, i.e., they do not point to 2327 // forwarding pointers. 2328 base::HashMap* global_pretenuring_feedback_; 2329 2330 char trace_ring_buffer_[kTraceRingBufferSize]; 2331 // If it's not full then the data is from 0 to ring_buffer_end_. If it's 2332 // full then the data is from ring_buffer_end_ to the end of the buffer and 2333 // from 0 to ring_buffer_end_. 2334 bool ring_buffer_full_; 2335 size_t ring_buffer_end_; 2336 2337 // Shared state read by the scavenge collector and set by ScavengeObject. 2338 PromotionQueue promotion_queue_; 2339 2340 // Flag is set when the heap has been configured. The heap can be repeatedly 2341 // configured through the API until it is set up. 2342 bool configured_; 2343 2344 // Currently set GC flags that are respected by all GC components. 2345 int current_gc_flags_; 2346 2347 // Currently set GC callback flags that are used to pass information between 2348 // the embedder and V8's GC. 2349 GCCallbackFlags current_gc_callback_flags_; 2350 2351 ExternalStringTable external_string_table_; 2352 2353 base::Mutex relocation_mutex_; 2354 2355 int gc_callbacks_depth_; 2356 2357 bool deserialization_complete_; 2358 2359 StrongRootsList* strong_roots_list_; 2360 2361 // The depth of HeapIterator nestings. 2362 int heap_iterator_depth_; 2363 2364 LocalEmbedderHeapTracer* local_embedder_heap_tracer_; 2365 2366 bool fast_promotion_mode_; 2367 2368 // Used for testing purposes. 2369 bool force_oom_; 2370 bool delay_sweeper_tasks_for_testing_; 2371 2372 HeapObject* pending_layout_change_object_; 2373 2374 // Classes in "heap" can be friends. 2375 friend class AlwaysAllocateScope; 2376 friend class GCCallbacksScope; 2377 friend class GCTracer; 2378 friend class HeapIterator; 2379 friend class IdleScavengeObserver; 2380 friend class IncrementalMarking; 2381 friend class IncrementalMarkingJob; 2382 friend class LargeObjectSpace; 2383 friend class MarkCompactCollector; 2384 friend class MarkCompactMarkingVisitor; 2385 friend class NewSpace; 2386 friend class ObjectStatsCollector; 2387 friend class Page; 2388 friend class PagedSpace; 2389 friend class Scavenger; 2390 friend class StoreBuffer; 2391 friend class TestMemoryAllocatorScope; 2392 2393 // The allocator interface. 2394 friend class Factory; 2395 2396 // The Isolate constructs us. 2397 friend class Isolate; 2398 2399 // Used in cctest. 2400 friend class HeapTester; 2401 2402 DISALLOW_COPY_AND_ASSIGN(Heap); 2403 }; 2404 2405 2406 class HeapStats { 2407 public: 2408 static const int kStartMarker = 0xDECADE00; 2409 static const int kEndMarker = 0xDECADE01; 2410 2411 intptr_t* start_marker; // 0 2412 size_t* new_space_size; // 1 2413 size_t* new_space_capacity; // 2 2414 size_t* old_space_size; // 3 2415 size_t* old_space_capacity; // 4 2416 size_t* code_space_size; // 5 2417 size_t* code_space_capacity; // 6 2418 size_t* map_space_size; // 7 2419 size_t* map_space_capacity; // 8 2420 size_t* lo_space_size; // 9 2421 size_t* global_handle_count; // 10 2422 size_t* weak_global_handle_count; // 11 2423 size_t* pending_global_handle_count; // 12 2424 size_t* near_death_global_handle_count; // 13 2425 size_t* free_global_handle_count; // 14 2426 size_t* memory_allocator_size; // 15 2427 size_t* memory_allocator_capacity; // 16 2428 size_t* malloced_memory; // 17 2429 size_t* malloced_peak_memory; // 18 2430 size_t* objects_per_type; // 19 2431 size_t* size_per_type; // 20 2432 int* os_error; // 21 2433 char* last_few_messages; // 22 2434 char* js_stacktrace; // 23 2435 intptr_t* end_marker; // 24 2436 }; 2437 2438 2439 class AlwaysAllocateScope { 2440 public: 2441 explicit inline AlwaysAllocateScope(Isolate* isolate); 2442 inline ~AlwaysAllocateScope(); 2443 2444 private: 2445 Heap* heap_; 2446 }; 2447 2448 2449 // Visitor class to verify interior pointers in spaces that do not contain 2450 // or care about intergenerational references. All heap object pointers have to 2451 // point into the heap to a location that has a map pointer at its first word. 2452 // Caveat: Heap::Contains is an approximation because it can return true for 2453 // objects in a heap space but above the allocation pointer. 2454 class VerifyPointersVisitor : public ObjectVisitor { 2455 public: 2456 inline void VisitPointers(Object** start, Object** end) override; 2457 }; 2458 2459 2460 // Verify that all objects are Smis. 2461 class VerifySmisVisitor : public ObjectVisitor { 2462 public: 2463 inline void VisitPointers(Object** start, Object** end) override; 2464 }; 2465 2466 2467 // Space iterator for iterating over all spaces of the heap. Returns each space 2468 // in turn, and null when it is done. 2469 class AllSpaces BASE_EMBEDDED { 2470 public: 2471 explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {} 2472 Space* next(); 2473 2474 private: 2475 Heap* heap_; 2476 int counter_; 2477 }; 2478 2479 2480 // Space iterator for iterating over all old spaces of the heap: Old space 2481 // and code space. Returns each space in turn, and null when it is done. 2482 class V8_EXPORT_PRIVATE OldSpaces BASE_EMBEDDED { 2483 public: 2484 explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {} 2485 OldSpace* next(); 2486 2487 private: 2488 Heap* heap_; 2489 int counter_; 2490 }; 2491 2492 2493 // Space iterator for iterating over all the paged spaces of the heap: Map 2494 // space, old space, code space and cell space. Returns 2495 // each space in turn, and null when it is done. 2496 class PagedSpaces BASE_EMBEDDED { 2497 public: 2498 explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {} 2499 PagedSpace* next(); 2500 2501 private: 2502 Heap* heap_; 2503 int counter_; 2504 }; 2505 2506 2507 class SpaceIterator : public Malloced { 2508 public: 2509 explicit SpaceIterator(Heap* heap); 2510 virtual ~SpaceIterator(); 2511 2512 bool has_next(); 2513 Space* next(); 2514 2515 private: 2516 Heap* heap_; 2517 int current_space_; // from enum AllocationSpace. 2518 }; 2519 2520 2521 // A HeapIterator provides iteration over the whole heap. It 2522 // aggregates the specific iterators for the different spaces as 2523 // these can only iterate over one space only. 2524 // 2525 // HeapIterator ensures there is no allocation during its lifetime 2526 // (using an embedded DisallowHeapAllocation instance). 2527 // 2528 // HeapIterator can skip free list nodes (that is, de-allocated heap 2529 // objects that still remain in the heap). As implementation of free 2530 // nodes filtering uses GC marks, it can't be used during MS/MC GC 2531 // phases. Also, it is forbidden to interrupt iteration in this mode, 2532 // as this will leave heap objects marked (and thus, unusable). 2533 class HeapIterator BASE_EMBEDDED { 2534 public: 2535 enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable }; 2536 2537 explicit HeapIterator(Heap* heap, 2538 HeapObjectsFiltering filtering = kNoFiltering); 2539 ~HeapIterator(); 2540 2541 HeapObject* next(); 2542 2543 private: 2544 HeapObject* NextObject(); 2545 2546 DisallowHeapAllocation no_heap_allocation_; 2547 2548 Heap* heap_; 2549 HeapObjectsFiltering filtering_; 2550 HeapObjectsFilter* filter_; 2551 // Space iterator for iterating all the spaces. 2552 SpaceIterator* space_iterator_; 2553 // Object iterator for the space currently being iterated. 2554 std::unique_ptr<ObjectIterator> object_iterator_; 2555 }; 2556 2557 // Abstract base class for checking whether a weak object should be retained. 2558 class WeakObjectRetainer { 2559 public: 2560 virtual ~WeakObjectRetainer() {} 2561 2562 // Return whether this object should be retained. If NULL is returned the 2563 // object has no references. Otherwise the address of the retained object 2564 // should be returned as in some GC situations the object has been moved. 2565 virtual Object* RetainAs(Object* object) = 0; 2566 }; 2567 2568 2569 #ifdef DEBUG 2570 // Helper class for tracing paths to a search target Object from all roots. 2571 // The TracePathFrom() method can be used to trace paths from a specific 2572 // object to the search target object. 2573 class PathTracer : public ObjectVisitor { 2574 public: 2575 enum WhatToFind { 2576 FIND_ALL, // Will find all matches. 2577 FIND_FIRST // Will stop the search after first match. 2578 }; 2579 2580 // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject. 2581 static const int kMarkTag = 2; 2582 2583 // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop 2584 // after the first match. If FIND_ALL is specified, then tracing will be 2585 // done for all matches. 2586 PathTracer(Object* search_target, WhatToFind what_to_find, 2587 VisitMode visit_mode) 2588 : search_target_(search_target), 2589 found_target_(false), 2590 found_target_in_trace_(false), 2591 what_to_find_(what_to_find), 2592 visit_mode_(visit_mode), 2593 object_stack_(20), 2594 no_allocation() {} 2595 2596 void VisitPointers(Object** start, Object** end) override; 2597 2598 void Reset(); 2599 void TracePathFrom(Object** root); 2600 2601 bool found() const { return found_target_; } 2602 2603 static Object* const kAnyGlobalObject; 2604 2605 protected: 2606 class MarkVisitor; 2607 class UnmarkVisitor; 2608 2609 void MarkRecursively(Object** p, MarkVisitor* mark_visitor); 2610 void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor); 2611 virtual void ProcessResults(); 2612 2613 Object* search_target_; 2614 bool found_target_; 2615 bool found_target_in_trace_; 2616 WhatToFind what_to_find_; 2617 VisitMode visit_mode_; 2618 List<Object*> object_stack_; 2619 2620 DisallowHeapAllocation no_allocation; // i.e. no gc allowed. 2621 2622 private: 2623 DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer); 2624 }; 2625 #endif // DEBUG 2626 2627 // ----------------------------------------------------------------------------- 2628 // Allows observation of allocations. 2629 class AllocationObserver { 2630 public: 2631 explicit AllocationObserver(intptr_t step_size) 2632 : step_size_(step_size), bytes_to_next_step_(step_size) { 2633 DCHECK(step_size >= kPointerSize); 2634 } 2635 virtual ~AllocationObserver() {} 2636 2637 // Called each time the observed space does an allocation step. This may be 2638 // more frequently than the step_size we are monitoring (e.g. when there are 2639 // multiple observers, or when page or space boundary is encountered.) 2640 void AllocationStep(int bytes_allocated, Address soon_object, size_t size) { 2641 bytes_to_next_step_ -= bytes_allocated; 2642 if (bytes_to_next_step_ <= 0) { 2643 Step(static_cast<int>(step_size_ - bytes_to_next_step_), soon_object, 2644 size); 2645 step_size_ = GetNextStepSize(); 2646 bytes_to_next_step_ = step_size_; 2647 } 2648 } 2649 2650 protected: 2651 intptr_t step_size() const { return step_size_; } 2652 intptr_t bytes_to_next_step() const { return bytes_to_next_step_; } 2653 2654 // Pure virtual method provided by the subclasses that gets called when at 2655 // least step_size bytes have been allocated. soon_object is the address just 2656 // allocated (but not yet initialized.) size is the size of the object as 2657 // requested (i.e. w/o the alignment fillers). Some complexities to be aware 2658 // of: 2659 // 1) soon_object will be nullptr in cases where we end up observing an 2660 // allocation that happens to be a filler space (e.g. page boundaries.) 2661 // 2) size is the requested size at the time of allocation. Right-trimming 2662 // may change the object size dynamically. 2663 // 3) soon_object may actually be the first object in an allocation-folding 2664 // group. In such a case size is the size of the group rather than the 2665 // first object. 2666 virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0; 2667 2668 // Subclasses can override this method to make step size dynamic. 2669 virtual intptr_t GetNextStepSize() { return step_size_; } 2670 2671 intptr_t step_size_; 2672 intptr_t bytes_to_next_step_; 2673 2674 private: 2675 friend class LargeObjectSpace; 2676 friend class NewSpace; 2677 friend class PagedSpace; 2678 DISALLOW_COPY_AND_ASSIGN(AllocationObserver); 2679 }; 2680 2681 } // namespace internal 2682 } // namespace v8 2683 2684 #endif // V8_HEAP_HEAP_H_ 2685