Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===//
      8 //
      9 //  This file implements semantic analysis for C++ templates.
     10 //===----------------------------------------------------------------------===//
     11 
     12 #include "TreeTransform.h"
     13 #include "clang/AST/ASTConsumer.h"
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/DeclFriend.h"
     16 #include "clang/AST/DeclTemplate.h"
     17 #include "clang/AST/Expr.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/RecursiveASTVisitor.h"
     20 #include "clang/AST/TypeVisitor.h"
     21 #include "clang/Basic/Builtins.h"
     22 #include "clang/Basic/LangOptions.h"
     23 #include "clang/Basic/PartialDiagnostic.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/Sema/DeclSpec.h"
     26 #include "clang/Sema/Lookup.h"
     27 #include "clang/Sema/ParsedTemplate.h"
     28 #include "clang/Sema/Scope.h"
     29 #include "clang/Sema/SemaInternal.h"
     30 #include "clang/Sema/Template.h"
     31 #include "clang/Sema/TemplateDeduction.h"
     32 #include "llvm/ADT/SmallBitVector.h"
     33 #include "llvm/ADT/SmallString.h"
     34 #include "llvm/ADT/StringExtras.h"
     35 
     36 #include <iterator>
     37 using namespace clang;
     38 using namespace sema;
     39 
     40 // Exported for use by Parser.
     41 SourceRange
     42 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
     43                               unsigned N) {
     44   if (!N) return SourceRange();
     45   return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
     46 }
     47 
     48 /// \brief Determine whether the declaration found is acceptable as the name
     49 /// of a template and, if so, return that template declaration. Otherwise,
     50 /// returns NULL.
     51 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
     52                                            NamedDecl *Orig,
     53                                            bool AllowFunctionTemplates) {
     54   NamedDecl *D = Orig->getUnderlyingDecl();
     55 
     56   if (isa<TemplateDecl>(D)) {
     57     if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
     58       return nullptr;
     59 
     60     return Orig;
     61   }
     62 
     63   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
     64     // C++ [temp.local]p1:
     65     //   Like normal (non-template) classes, class templates have an
     66     //   injected-class-name (Clause 9). The injected-class-name
     67     //   can be used with or without a template-argument-list. When
     68     //   it is used without a template-argument-list, it is
     69     //   equivalent to the injected-class-name followed by the
     70     //   template-parameters of the class template enclosed in
     71     //   <>. When it is used with a template-argument-list, it
     72     //   refers to the specified class template specialization,
     73     //   which could be the current specialization or another
     74     //   specialization.
     75     if (Record->isInjectedClassName()) {
     76       Record = cast<CXXRecordDecl>(Record->getDeclContext());
     77       if (Record->getDescribedClassTemplate())
     78         return Record->getDescribedClassTemplate();
     79 
     80       if (ClassTemplateSpecializationDecl *Spec
     81             = dyn_cast<ClassTemplateSpecializationDecl>(Record))
     82         return Spec->getSpecializedTemplate();
     83     }
     84 
     85     return nullptr;
     86   }
     87 
     88   return nullptr;
     89 }
     90 
     91 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
     92                                          bool AllowFunctionTemplates) {
     93   // The set of class templates we've already seen.
     94   llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
     95   LookupResult::Filter filter = R.makeFilter();
     96   while (filter.hasNext()) {
     97     NamedDecl *Orig = filter.next();
     98     NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
     99                                                AllowFunctionTemplates);
    100     if (!Repl)
    101       filter.erase();
    102     else if (Repl != Orig) {
    103 
    104       // C++ [temp.local]p3:
    105       //   A lookup that finds an injected-class-name (10.2) can result in an
    106       //   ambiguity in certain cases (for example, if it is found in more than
    107       //   one base class). If all of the injected-class-names that are found
    108       //   refer to specializations of the same class template, and if the name
    109       //   is used as a template-name, the reference refers to the class
    110       //   template itself and not a specialization thereof, and is not
    111       //   ambiguous.
    112       if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
    113         if (!ClassTemplates.insert(ClassTmpl).second) {
    114           filter.erase();
    115           continue;
    116         }
    117 
    118       // FIXME: we promote access to public here as a workaround to
    119       // the fact that LookupResult doesn't let us remember that we
    120       // found this template through a particular injected class name,
    121       // which means we end up doing nasty things to the invariants.
    122       // Pretending that access is public is *much* safer.
    123       filter.replace(Repl, AS_public);
    124     }
    125   }
    126   filter.done();
    127 }
    128 
    129 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
    130                                          bool AllowFunctionTemplates) {
    131   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
    132     if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
    133       return true;
    134 
    135   return false;
    136 }
    137 
    138 TemplateNameKind Sema::isTemplateName(Scope *S,
    139                                       CXXScopeSpec &SS,
    140                                       bool hasTemplateKeyword,
    141                                       UnqualifiedId &Name,
    142                                       ParsedType ObjectTypePtr,
    143                                       bool EnteringContext,
    144                                       TemplateTy &TemplateResult,
    145                                       bool &MemberOfUnknownSpecialization) {
    146   assert(getLangOpts().CPlusPlus && "No template names in C!");
    147 
    148   DeclarationName TName;
    149   MemberOfUnknownSpecialization = false;
    150 
    151   switch (Name.getKind()) {
    152   case UnqualifiedId::IK_Identifier:
    153     TName = DeclarationName(Name.Identifier);
    154     break;
    155 
    156   case UnqualifiedId::IK_OperatorFunctionId:
    157     TName = Context.DeclarationNames.getCXXOperatorName(
    158                                               Name.OperatorFunctionId.Operator);
    159     break;
    160 
    161   case UnqualifiedId::IK_LiteralOperatorId:
    162     TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
    163     break;
    164 
    165   default:
    166     return TNK_Non_template;
    167   }
    168 
    169   QualType ObjectType = ObjectTypePtr.get();
    170 
    171   LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
    172   LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
    173                      MemberOfUnknownSpecialization);
    174   if (R.empty()) return TNK_Non_template;
    175   if (R.isAmbiguous()) {
    176     // Suppress diagnostics;  we'll redo this lookup later.
    177     R.suppressDiagnostics();
    178 
    179     // FIXME: we might have ambiguous templates, in which case we
    180     // should at least parse them properly!
    181     return TNK_Non_template;
    182   }
    183 
    184   TemplateName Template;
    185   TemplateNameKind TemplateKind;
    186 
    187   unsigned ResultCount = R.end() - R.begin();
    188   if (ResultCount > 1) {
    189     // We assume that we'll preserve the qualifier from a function
    190     // template name in other ways.
    191     Template = Context.getOverloadedTemplateName(R.begin(), R.end());
    192     TemplateKind = TNK_Function_template;
    193 
    194     // We'll do this lookup again later.
    195     R.suppressDiagnostics();
    196   } else {
    197     TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
    198 
    199     if (SS.isSet() && !SS.isInvalid()) {
    200       NestedNameSpecifier *Qualifier = SS.getScopeRep();
    201       Template = Context.getQualifiedTemplateName(Qualifier,
    202                                                   hasTemplateKeyword, TD);
    203     } else {
    204       Template = TemplateName(TD);
    205     }
    206 
    207     if (isa<FunctionTemplateDecl>(TD)) {
    208       TemplateKind = TNK_Function_template;
    209 
    210       // We'll do this lookup again later.
    211       R.suppressDiagnostics();
    212     } else {
    213       assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
    214              isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
    215              isa<BuiltinTemplateDecl>(TD));
    216       TemplateKind =
    217           isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
    218     }
    219   }
    220 
    221   TemplateResult = TemplateTy::make(Template);
    222   return TemplateKind;
    223 }
    224 
    225 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
    226                                        SourceLocation IILoc,
    227                                        Scope *S,
    228                                        const CXXScopeSpec *SS,
    229                                        TemplateTy &SuggestedTemplate,
    230                                        TemplateNameKind &SuggestedKind) {
    231   // We can't recover unless there's a dependent scope specifier preceding the
    232   // template name.
    233   // FIXME: Typo correction?
    234   if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
    235       computeDeclContext(*SS))
    236     return false;
    237 
    238   // The code is missing a 'template' keyword prior to the dependent template
    239   // name.
    240   NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
    241   Diag(IILoc, diag::err_template_kw_missing)
    242     << Qualifier << II.getName()
    243     << FixItHint::CreateInsertion(IILoc, "template ");
    244   SuggestedTemplate
    245     = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
    246   SuggestedKind = TNK_Dependent_template_name;
    247   return true;
    248 }
    249 
    250 void Sema::LookupTemplateName(LookupResult &Found,
    251                               Scope *S, CXXScopeSpec &SS,
    252                               QualType ObjectType,
    253                               bool EnteringContext,
    254                               bool &MemberOfUnknownSpecialization) {
    255   // Determine where to perform name lookup
    256   MemberOfUnknownSpecialization = false;
    257   DeclContext *LookupCtx = nullptr;
    258   bool isDependent = false;
    259   if (!ObjectType.isNull()) {
    260     // This nested-name-specifier occurs in a member access expression, e.g.,
    261     // x->B::f, and we are looking into the type of the object.
    262     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    263     LookupCtx = computeDeclContext(ObjectType);
    264     isDependent = ObjectType->isDependentType();
    265     assert((isDependent || !ObjectType->isIncompleteType() ||
    266             ObjectType->castAs<TagType>()->isBeingDefined()) &&
    267            "Caller should have completed object type");
    268 
    269     // Template names cannot appear inside an Objective-C class or object type.
    270     if (ObjectType->isObjCObjectOrInterfaceType()) {
    271       Found.clear();
    272       return;
    273     }
    274   } else if (SS.isSet()) {
    275     // This nested-name-specifier occurs after another nested-name-specifier,
    276     // so long into the context associated with the prior nested-name-specifier.
    277     LookupCtx = computeDeclContext(SS, EnteringContext);
    278     isDependent = isDependentScopeSpecifier(SS);
    279 
    280     // The declaration context must be complete.
    281     if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
    282       return;
    283   }
    284 
    285   bool ObjectTypeSearchedInScope = false;
    286   bool AllowFunctionTemplatesInLookup = true;
    287   if (LookupCtx) {
    288     // Perform "qualified" name lookup into the declaration context we
    289     // computed, which is either the type of the base of a member access
    290     // expression or the declaration context associated with a prior
    291     // nested-name-specifier.
    292     LookupQualifiedName(Found, LookupCtx);
    293     if (!ObjectType.isNull() && Found.empty()) {
    294       // C++ [basic.lookup.classref]p1:
    295       //   In a class member access expression (5.2.5), if the . or -> token is
    296       //   immediately followed by an identifier followed by a <, the
    297       //   identifier must be looked up to determine whether the < is the
    298       //   beginning of a template argument list (14.2) or a less-than operator.
    299       //   The identifier is first looked up in the class of the object
    300       //   expression. If the identifier is not found, it is then looked up in
    301       //   the context of the entire postfix-expression and shall name a class
    302       //   or function template.
    303       if (S) LookupName(Found, S);
    304       ObjectTypeSearchedInScope = true;
    305       AllowFunctionTemplatesInLookup = false;
    306     }
    307   } else if (isDependent && (!S || ObjectType.isNull())) {
    308     // We cannot look into a dependent object type or nested nme
    309     // specifier.
    310     MemberOfUnknownSpecialization = true;
    311     return;
    312   } else {
    313     // Perform unqualified name lookup in the current scope.
    314     LookupName(Found, S);
    315 
    316     if (!ObjectType.isNull())
    317       AllowFunctionTemplatesInLookup = false;
    318   }
    319 
    320   if (Found.empty() && !isDependent) {
    321     // If we did not find any names, attempt to correct any typos.
    322     DeclarationName Name = Found.getLookupName();
    323     Found.clear();
    324     // Simple filter callback that, for keywords, only accepts the C++ *_cast
    325     auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
    326     FilterCCC->WantTypeSpecifiers = false;
    327     FilterCCC->WantExpressionKeywords = false;
    328     FilterCCC->WantRemainingKeywords = false;
    329     FilterCCC->WantCXXNamedCasts = true;
    330     if (TypoCorrection Corrected = CorrectTypo(
    331             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
    332             std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
    333       Found.setLookupName(Corrected.getCorrection());
    334       if (auto *ND = Corrected.getFoundDecl())
    335         Found.addDecl(ND);
    336       FilterAcceptableTemplateNames(Found);
    337       if (!Found.empty()) {
    338         if (LookupCtx) {
    339           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    340           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
    341                                   Name.getAsString() == CorrectedStr;
    342           diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
    343                                     << Name << LookupCtx << DroppedSpecifier
    344                                     << SS.getRange());
    345         } else {
    346           diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
    347         }
    348       }
    349     } else {
    350       Found.setLookupName(Name);
    351     }
    352   }
    353 
    354   FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
    355   if (Found.empty()) {
    356     if (isDependent)
    357       MemberOfUnknownSpecialization = true;
    358     return;
    359   }
    360 
    361   if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
    362       !getLangOpts().CPlusPlus11) {
    363     // C++03 [basic.lookup.classref]p1:
    364     //   [...] If the lookup in the class of the object expression finds a
    365     //   template, the name is also looked up in the context of the entire
    366     //   postfix-expression and [...]
    367     //
    368     // Note: C++11 does not perform this second lookup.
    369     LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
    370                             LookupOrdinaryName);
    371     LookupName(FoundOuter, S);
    372     FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
    373 
    374     if (FoundOuter.empty()) {
    375       //   - if the name is not found, the name found in the class of the
    376       //     object expression is used, otherwise
    377     } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
    378                FoundOuter.isAmbiguous()) {
    379       //   - if the name is found in the context of the entire
    380       //     postfix-expression and does not name a class template, the name
    381       //     found in the class of the object expression is used, otherwise
    382       FoundOuter.clear();
    383     } else if (!Found.isSuppressingDiagnostics()) {
    384       //   - if the name found is a class template, it must refer to the same
    385       //     entity as the one found in the class of the object expression,
    386       //     otherwise the program is ill-formed.
    387       if (!Found.isSingleResult() ||
    388           Found.getFoundDecl()->getCanonicalDecl()
    389             != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
    390         Diag(Found.getNameLoc(),
    391              diag::ext_nested_name_member_ref_lookup_ambiguous)
    392           << Found.getLookupName()
    393           << ObjectType;
    394         Diag(Found.getRepresentativeDecl()->getLocation(),
    395              diag::note_ambig_member_ref_object_type)
    396           << ObjectType;
    397         Diag(FoundOuter.getFoundDecl()->getLocation(),
    398              diag::note_ambig_member_ref_scope);
    399 
    400         // Recover by taking the template that we found in the object
    401         // expression's type.
    402       }
    403     }
    404   }
    405 }
    406 
    407 /// ActOnDependentIdExpression - Handle a dependent id-expression that
    408 /// was just parsed.  This is only possible with an explicit scope
    409 /// specifier naming a dependent type.
    410 ExprResult
    411 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
    412                                  SourceLocation TemplateKWLoc,
    413                                  const DeclarationNameInfo &NameInfo,
    414                                  bool isAddressOfOperand,
    415                            const TemplateArgumentListInfo *TemplateArgs) {
    416   DeclContext *DC = getFunctionLevelDeclContext();
    417 
    418   // C++11 [expr.prim.general]p12:
    419   //   An id-expression that denotes a non-static data member or non-static
    420   //   member function of a class can only be used:
    421   //   (...)
    422   //   - if that id-expression denotes a non-static data member and it
    423   //     appears in an unevaluated operand.
    424   //
    425   // If this might be the case, form a DependentScopeDeclRefExpr instead of a
    426   // CXXDependentScopeMemberExpr. The former can instantiate to either
    427   // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
    428   // always a MemberExpr.
    429   bool MightBeCxx11UnevalField =
    430       getLangOpts().CPlusPlus11 && isUnevaluatedContext();
    431 
    432   if (!MightBeCxx11UnevalField && !isAddressOfOperand &&
    433       isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
    434     QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
    435 
    436     // Since the 'this' expression is synthesized, we don't need to
    437     // perform the double-lookup check.
    438     NamedDecl *FirstQualifierInScope = nullptr;
    439 
    440     return CXXDependentScopeMemberExpr::Create(
    441         Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
    442         /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
    443         FirstQualifierInScope, NameInfo, TemplateArgs);
    444   }
    445 
    446   return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
    447 }
    448 
    449 ExprResult
    450 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
    451                                 SourceLocation TemplateKWLoc,
    452                                 const DeclarationNameInfo &NameInfo,
    453                                 const TemplateArgumentListInfo *TemplateArgs) {
    454   return DependentScopeDeclRefExpr::Create(
    455       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
    456       TemplateArgs);
    457 }
    458 
    459 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
    460 /// that the template parameter 'PrevDecl' is being shadowed by a new
    461 /// declaration at location Loc. Returns true to indicate that this is
    462 /// an error, and false otherwise.
    463 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
    464   assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
    465 
    466   // Microsoft Visual C++ permits template parameters to be shadowed.
    467   if (getLangOpts().MicrosoftExt)
    468     return;
    469 
    470   // C++ [temp.local]p4:
    471   //   A template-parameter shall not be redeclared within its
    472   //   scope (including nested scopes).
    473   Diag(Loc, diag::err_template_param_shadow)
    474     << cast<NamedDecl>(PrevDecl)->getDeclName();
    475   Diag(PrevDecl->getLocation(), diag::note_template_param_here);
    476 }
    477 
    478 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
    479 /// the parameter D to reference the templated declaration and return a pointer
    480 /// to the template declaration. Otherwise, do nothing to D and return null.
    481 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
    482   if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
    483     D = Temp->getTemplatedDecl();
    484     return Temp;
    485   }
    486   return nullptr;
    487 }
    488 
    489 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
    490                                              SourceLocation EllipsisLoc) const {
    491   assert(Kind == Template &&
    492          "Only template template arguments can be pack expansions here");
    493   assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
    494          "Template template argument pack expansion without packs");
    495   ParsedTemplateArgument Result(*this);
    496   Result.EllipsisLoc = EllipsisLoc;
    497   return Result;
    498 }
    499 
    500 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
    501                                             const ParsedTemplateArgument &Arg) {
    502 
    503   switch (Arg.getKind()) {
    504   case ParsedTemplateArgument::Type: {
    505     TypeSourceInfo *DI;
    506     QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
    507     if (!DI)
    508       DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
    509     return TemplateArgumentLoc(TemplateArgument(T), DI);
    510   }
    511 
    512   case ParsedTemplateArgument::NonType: {
    513     Expr *E = static_cast<Expr *>(Arg.getAsExpr());
    514     return TemplateArgumentLoc(TemplateArgument(E), E);
    515   }
    516 
    517   case ParsedTemplateArgument::Template: {
    518     TemplateName Template = Arg.getAsTemplate().get();
    519     TemplateArgument TArg;
    520     if (Arg.getEllipsisLoc().isValid())
    521       TArg = TemplateArgument(Template, Optional<unsigned int>());
    522     else
    523       TArg = Template;
    524     return TemplateArgumentLoc(TArg,
    525                                Arg.getScopeSpec().getWithLocInContext(
    526                                                               SemaRef.Context),
    527                                Arg.getLocation(),
    528                                Arg.getEllipsisLoc());
    529   }
    530   }
    531 
    532   llvm_unreachable("Unhandled parsed template argument");
    533 }
    534 
    535 /// \brief Translates template arguments as provided by the parser
    536 /// into template arguments used by semantic analysis.
    537 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
    538                                       TemplateArgumentListInfo &TemplateArgs) {
    539  for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
    540    TemplateArgs.addArgument(translateTemplateArgument(*this,
    541                                                       TemplateArgsIn[I]));
    542 }
    543 
    544 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
    545                                                  SourceLocation Loc,
    546                                                  IdentifierInfo *Name) {
    547   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
    548       S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
    549   if (PrevDecl && PrevDecl->isTemplateParameter())
    550     SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
    551 }
    552 
    553 /// ActOnTypeParameter - Called when a C++ template type parameter
    554 /// (e.g., "typename T") has been parsed. Typename specifies whether
    555 /// the keyword "typename" was used to declare the type parameter
    556 /// (otherwise, "class" was used), and KeyLoc is the location of the
    557 /// "class" or "typename" keyword. ParamName is the name of the
    558 /// parameter (NULL indicates an unnamed template parameter) and
    559 /// ParamNameLoc is the location of the parameter name (if any).
    560 /// If the type parameter has a default argument, it will be added
    561 /// later via ActOnTypeParameterDefault.
    562 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
    563                                SourceLocation EllipsisLoc,
    564                                SourceLocation KeyLoc,
    565                                IdentifierInfo *ParamName,
    566                                SourceLocation ParamNameLoc,
    567                                unsigned Depth, unsigned Position,
    568                                SourceLocation EqualLoc,
    569                                ParsedType DefaultArg) {
    570   assert(S->isTemplateParamScope() &&
    571          "Template type parameter not in template parameter scope!");
    572 
    573   SourceLocation Loc = ParamNameLoc;
    574   if (!ParamName)
    575     Loc = KeyLoc;
    576 
    577   bool IsParameterPack = EllipsisLoc.isValid();
    578   TemplateTypeParmDecl *Param
    579     = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    580                                    KeyLoc, Loc, Depth, Position, ParamName,
    581                                    Typename, IsParameterPack);
    582   Param->setAccess(AS_public);
    583 
    584   if (ParamName) {
    585     maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
    586 
    587     // Add the template parameter into the current scope.
    588     S->AddDecl(Param);
    589     IdResolver.AddDecl(Param);
    590   }
    591 
    592   // C++0x [temp.param]p9:
    593   //   A default template-argument may be specified for any kind of
    594   //   template-parameter that is not a template parameter pack.
    595   if (DefaultArg && IsParameterPack) {
    596     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    597     DefaultArg = nullptr;
    598   }
    599 
    600   // Handle the default argument, if provided.
    601   if (DefaultArg) {
    602     TypeSourceInfo *DefaultTInfo;
    603     GetTypeFromParser(DefaultArg, &DefaultTInfo);
    604 
    605     assert(DefaultTInfo && "expected source information for type");
    606 
    607     // Check for unexpanded parameter packs.
    608     if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
    609                                         UPPC_DefaultArgument))
    610       return Param;
    611 
    612     // Check the template argument itself.
    613     if (CheckTemplateArgument(Param, DefaultTInfo)) {
    614       Param->setInvalidDecl();
    615       return Param;
    616     }
    617 
    618     Param->setDefaultArgument(DefaultTInfo);
    619   }
    620 
    621   return Param;
    622 }
    623 
    624 /// \brief Check that the type of a non-type template parameter is
    625 /// well-formed.
    626 ///
    627 /// \returns the (possibly-promoted) parameter type if valid;
    628 /// otherwise, produces a diagnostic and returns a NULL type.
    629 QualType
    630 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
    631   // We don't allow variably-modified types as the type of non-type template
    632   // parameters.
    633   if (T->isVariablyModifiedType()) {
    634     Diag(Loc, diag::err_variably_modified_nontype_template_param)
    635       << T;
    636     return QualType();
    637   }
    638 
    639   // C++ [temp.param]p4:
    640   //
    641   // A non-type template-parameter shall have one of the following
    642   // (optionally cv-qualified) types:
    643   //
    644   //       -- integral or enumeration type,
    645   if (T->isIntegralOrEnumerationType() ||
    646       //   -- pointer to object or pointer to function,
    647       T->isPointerType() ||
    648       //   -- reference to object or reference to function,
    649       T->isReferenceType() ||
    650       //   -- pointer to member,
    651       T->isMemberPointerType() ||
    652       //   -- std::nullptr_t.
    653       T->isNullPtrType() ||
    654       // If T is a dependent type, we can't do the check now, so we
    655       // assume that it is well-formed.
    656       T->isDependentType()) {
    657     // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
    658     // are ignored when determining its type.
    659     return T.getUnqualifiedType();
    660   }
    661 
    662   // C++ [temp.param]p8:
    663   //
    664   //   A non-type template-parameter of type "array of T" or
    665   //   "function returning T" is adjusted to be of type "pointer to
    666   //   T" or "pointer to function returning T", respectively.
    667   else if (T->isArrayType() || T->isFunctionType())
    668     return Context.getDecayedType(T);
    669 
    670   Diag(Loc, diag::err_template_nontype_parm_bad_type)
    671     << T;
    672 
    673   return QualType();
    674 }
    675 
    676 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
    677                                           unsigned Depth,
    678                                           unsigned Position,
    679                                           SourceLocation EqualLoc,
    680                                           Expr *Default) {
    681   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
    682   QualType T = TInfo->getType();
    683 
    684   assert(S->isTemplateParamScope() &&
    685          "Non-type template parameter not in template parameter scope!");
    686   bool Invalid = false;
    687 
    688   T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
    689   if (T.isNull()) {
    690     T = Context.IntTy; // Recover with an 'int' type.
    691     Invalid = true;
    692   }
    693 
    694   IdentifierInfo *ParamName = D.getIdentifier();
    695   bool IsParameterPack = D.hasEllipsis();
    696   NonTypeTemplateParmDecl *Param
    697     = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    698                                       D.getLocStart(),
    699                                       D.getIdentifierLoc(),
    700                                       Depth, Position, ParamName, T,
    701                                       IsParameterPack, TInfo);
    702   Param->setAccess(AS_public);
    703 
    704   if (Invalid)
    705     Param->setInvalidDecl();
    706 
    707   if (ParamName) {
    708     maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
    709                                          ParamName);
    710 
    711     // Add the template parameter into the current scope.
    712     S->AddDecl(Param);
    713     IdResolver.AddDecl(Param);
    714   }
    715 
    716   // C++0x [temp.param]p9:
    717   //   A default template-argument may be specified for any kind of
    718   //   template-parameter that is not a template parameter pack.
    719   if (Default && IsParameterPack) {
    720     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    721     Default = nullptr;
    722   }
    723 
    724   // Check the well-formedness of the default template argument, if provided.
    725   if (Default) {
    726     // Check for unexpanded parameter packs.
    727     if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
    728       return Param;
    729 
    730     TemplateArgument Converted;
    731     ExprResult DefaultRes =
    732         CheckTemplateArgument(Param, Param->getType(), Default, Converted);
    733     if (DefaultRes.isInvalid()) {
    734       Param->setInvalidDecl();
    735       return Param;
    736     }
    737     Default = DefaultRes.get();
    738 
    739     Param->setDefaultArgument(Default);
    740   }
    741 
    742   return Param;
    743 }
    744 
    745 /// ActOnTemplateTemplateParameter - Called when a C++ template template
    746 /// parameter (e.g. T in template <template \<typename> class T> class array)
    747 /// has been parsed. S is the current scope.
    748 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
    749                                            SourceLocation TmpLoc,
    750                                            TemplateParameterList *Params,
    751                                            SourceLocation EllipsisLoc,
    752                                            IdentifierInfo *Name,
    753                                            SourceLocation NameLoc,
    754                                            unsigned Depth,
    755                                            unsigned Position,
    756                                            SourceLocation EqualLoc,
    757                                            ParsedTemplateArgument Default) {
    758   assert(S->isTemplateParamScope() &&
    759          "Template template parameter not in template parameter scope!");
    760 
    761   // Construct the parameter object.
    762   bool IsParameterPack = EllipsisLoc.isValid();
    763   TemplateTemplateParmDecl *Param =
    764     TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
    765                                      NameLoc.isInvalid()? TmpLoc : NameLoc,
    766                                      Depth, Position, IsParameterPack,
    767                                      Name, Params);
    768   Param->setAccess(AS_public);
    769 
    770   // If the template template parameter has a name, then link the identifier
    771   // into the scope and lookup mechanisms.
    772   if (Name) {
    773     maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
    774 
    775     S->AddDecl(Param);
    776     IdResolver.AddDecl(Param);
    777   }
    778 
    779   if (Params->size() == 0) {
    780     Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
    781     << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
    782     Param->setInvalidDecl();
    783   }
    784 
    785   // C++0x [temp.param]p9:
    786   //   A default template-argument may be specified for any kind of
    787   //   template-parameter that is not a template parameter pack.
    788   if (IsParameterPack && !Default.isInvalid()) {
    789     Diag(EqualLoc, diag::err_template_param_pack_default_arg);
    790     Default = ParsedTemplateArgument();
    791   }
    792 
    793   if (!Default.isInvalid()) {
    794     // Check only that we have a template template argument. We don't want to
    795     // try to check well-formedness now, because our template template parameter
    796     // might have dependent types in its template parameters, which we wouldn't
    797     // be able to match now.
    798     //
    799     // If none of the template template parameter's template arguments mention
    800     // other template parameters, we could actually perform more checking here.
    801     // However, it isn't worth doing.
    802     TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
    803     if (DefaultArg.getArgument().getAsTemplate().isNull()) {
    804       Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
    805         << DefaultArg.getSourceRange();
    806       return Param;
    807     }
    808 
    809     // Check for unexpanded parameter packs.
    810     if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
    811                                         DefaultArg.getArgument().getAsTemplate(),
    812                                         UPPC_DefaultArgument))
    813       return Param;
    814 
    815     Param->setDefaultArgument(Context, DefaultArg);
    816   }
    817 
    818   return Param;
    819 }
    820 
    821 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
    822 /// constrained by RequiresClause, that contains the template parameters in
    823 /// Params.
    824 TemplateParameterList *
    825 Sema::ActOnTemplateParameterList(unsigned Depth,
    826                                  SourceLocation ExportLoc,
    827                                  SourceLocation TemplateLoc,
    828                                  SourceLocation LAngleLoc,
    829                                  ArrayRef<Decl *> Params,
    830                                  SourceLocation RAngleLoc,
    831                                  Expr *RequiresClause) {
    832   if (ExportLoc.isValid())
    833     Diag(ExportLoc, diag::warn_template_export_unsupported);
    834 
    835   // FIXME: store RequiresClause
    836   return TemplateParameterList::Create(
    837       Context, TemplateLoc, LAngleLoc,
    838       llvm::makeArrayRef((NamedDecl *const *)Params.data(), Params.size()),
    839       RAngleLoc);
    840 }
    841 
    842 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
    843   if (SS.isSet())
    844     T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
    845 }
    846 
    847 DeclResult
    848 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
    849                          SourceLocation KWLoc, CXXScopeSpec &SS,
    850                          IdentifierInfo *Name, SourceLocation NameLoc,
    851                          AttributeList *Attr,
    852                          TemplateParameterList *TemplateParams,
    853                          AccessSpecifier AS, SourceLocation ModulePrivateLoc,
    854                          SourceLocation FriendLoc,
    855                          unsigned NumOuterTemplateParamLists,
    856                          TemplateParameterList** OuterTemplateParamLists,
    857                          SkipBodyInfo *SkipBody) {
    858   assert(TemplateParams && TemplateParams->size() > 0 &&
    859          "No template parameters");
    860   assert(TUK != TUK_Reference && "Can only declare or define class templates");
    861   bool Invalid = false;
    862 
    863   // Check that we can declare a template here.
    864   if (CheckTemplateDeclScope(S, TemplateParams))
    865     return true;
    866 
    867   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
    868   assert(Kind != TTK_Enum && "can't build template of enumerated type");
    869 
    870   // There is no such thing as an unnamed class template.
    871   if (!Name) {
    872     Diag(KWLoc, diag::err_template_unnamed_class);
    873     return true;
    874   }
    875 
    876   // Find any previous declaration with this name. For a friend with no
    877   // scope explicitly specified, we only look for tag declarations (per
    878   // C++11 [basic.lookup.elab]p2).
    879   DeclContext *SemanticContext;
    880   LookupResult Previous(*this, Name, NameLoc,
    881                         (SS.isEmpty() && TUK == TUK_Friend)
    882                           ? LookupTagName : LookupOrdinaryName,
    883                         ForRedeclaration);
    884   if (SS.isNotEmpty() && !SS.isInvalid()) {
    885     SemanticContext = computeDeclContext(SS, true);
    886     if (!SemanticContext) {
    887       // FIXME: Horrible, horrible hack! We can't currently represent this
    888       // in the AST, and historically we have just ignored such friend
    889       // class templates, so don't complain here.
    890       Diag(NameLoc, TUK == TUK_Friend
    891                         ? diag::warn_template_qualified_friend_ignored
    892                         : diag::err_template_qualified_declarator_no_match)
    893           << SS.getScopeRep() << SS.getRange();
    894       return TUK != TUK_Friend;
    895     }
    896 
    897     if (RequireCompleteDeclContext(SS, SemanticContext))
    898       return true;
    899 
    900     // If we're adding a template to a dependent context, we may need to
    901     // rebuilding some of the types used within the template parameter list,
    902     // now that we know what the current instantiation is.
    903     if (SemanticContext->isDependentContext()) {
    904       ContextRAII SavedContext(*this, SemanticContext);
    905       if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
    906         Invalid = true;
    907     } else if (TUK != TUK_Friend && TUK != TUK_Reference)
    908       diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
    909 
    910     LookupQualifiedName(Previous, SemanticContext);
    911   } else {
    912     SemanticContext = CurContext;
    913 
    914     // C++14 [class.mem]p14:
    915     //   If T is the name of a class, then each of the following shall have a
    916     //   name different from T:
    917     //    -- every member template of class T
    918     if (TUK != TUK_Friend &&
    919         DiagnoseClassNameShadow(SemanticContext,
    920                                 DeclarationNameInfo(Name, NameLoc)))
    921       return true;
    922 
    923     LookupName(Previous, S);
    924   }
    925 
    926   if (Previous.isAmbiguous())
    927     return true;
    928 
    929   NamedDecl *PrevDecl = nullptr;
    930   if (Previous.begin() != Previous.end())
    931     PrevDecl = (*Previous.begin())->getUnderlyingDecl();
    932 
    933   if (PrevDecl && PrevDecl->isTemplateParameter()) {
    934     // Maybe we will complain about the shadowed template parameter.
    935     DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
    936     // Just pretend that we didn't see the previous declaration.
    937     PrevDecl = nullptr;
    938   }
    939 
    940   // If there is a previous declaration with the same name, check
    941   // whether this is a valid redeclaration.
    942   ClassTemplateDecl *PrevClassTemplate
    943     = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
    944 
    945   // We may have found the injected-class-name of a class template,
    946   // class template partial specialization, or class template specialization.
    947   // In these cases, grab the template that is being defined or specialized.
    948   if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
    949       cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
    950     PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
    951     PrevClassTemplate
    952       = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
    953     if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
    954       PrevClassTemplate
    955         = cast<ClassTemplateSpecializationDecl>(PrevDecl)
    956             ->getSpecializedTemplate();
    957     }
    958   }
    959 
    960   if (TUK == TUK_Friend) {
    961     // C++ [namespace.memdef]p3:
    962     //   [...] When looking for a prior declaration of a class or a function
    963     //   declared as a friend, and when the name of the friend class or
    964     //   function is neither a qualified name nor a template-id, scopes outside
    965     //   the innermost enclosing namespace scope are not considered.
    966     if (!SS.isSet()) {
    967       DeclContext *OutermostContext = CurContext;
    968       while (!OutermostContext->isFileContext())
    969         OutermostContext = OutermostContext->getLookupParent();
    970 
    971       if (PrevDecl &&
    972           (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
    973            OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
    974         SemanticContext = PrevDecl->getDeclContext();
    975       } else {
    976         // Declarations in outer scopes don't matter. However, the outermost
    977         // context we computed is the semantic context for our new
    978         // declaration.
    979         PrevDecl = PrevClassTemplate = nullptr;
    980         SemanticContext = OutermostContext;
    981 
    982         // Check that the chosen semantic context doesn't already contain a
    983         // declaration of this name as a non-tag type.
    984         Previous.clear(LookupOrdinaryName);
    985         DeclContext *LookupContext = SemanticContext;
    986         while (LookupContext->isTransparentContext())
    987           LookupContext = LookupContext->getLookupParent();
    988         LookupQualifiedName(Previous, LookupContext);
    989 
    990         if (Previous.isAmbiguous())
    991           return true;
    992 
    993         if (Previous.begin() != Previous.end())
    994           PrevDecl = (*Previous.begin())->getUnderlyingDecl();
    995       }
    996     }
    997   } else if (PrevDecl &&
    998              !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
    999                             S, SS.isValid()))
   1000     PrevDecl = PrevClassTemplate = nullptr;
   1001 
   1002   if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
   1003           PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
   1004     if (SS.isEmpty() &&
   1005         !(PrevClassTemplate &&
   1006           PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
   1007               SemanticContext->getRedeclContext()))) {
   1008       Diag(KWLoc, diag::err_using_decl_conflict_reverse);
   1009       Diag(Shadow->getTargetDecl()->getLocation(),
   1010            diag::note_using_decl_target);
   1011       Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
   1012       // Recover by ignoring the old declaration.
   1013       PrevDecl = PrevClassTemplate = nullptr;
   1014     }
   1015   }
   1016 
   1017   if (PrevClassTemplate) {
   1018     // Ensure that the template parameter lists are compatible. Skip this check
   1019     // for a friend in a dependent context: the template parameter list itself
   1020     // could be dependent.
   1021     if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
   1022         !TemplateParameterListsAreEqual(TemplateParams,
   1023                                    PrevClassTemplate->getTemplateParameters(),
   1024                                         /*Complain=*/true,
   1025                                         TPL_TemplateMatch))
   1026       return true;
   1027 
   1028     // C++ [temp.class]p4:
   1029     //   In a redeclaration, partial specialization, explicit
   1030     //   specialization or explicit instantiation of a class template,
   1031     //   the class-key shall agree in kind with the original class
   1032     //   template declaration (7.1.5.3).
   1033     RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
   1034     if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
   1035                                       TUK == TUK_Definition,  KWLoc, Name)) {
   1036       Diag(KWLoc, diag::err_use_with_wrong_tag)
   1037         << Name
   1038         << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
   1039       Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
   1040       Kind = PrevRecordDecl->getTagKind();
   1041     }
   1042 
   1043     // Check for redefinition of this class template.
   1044     if (TUK == TUK_Definition) {
   1045       if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
   1046         // If we have a prior definition that is not visible, treat this as
   1047         // simply making that previous definition visible.
   1048         NamedDecl *Hidden = nullptr;
   1049         if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
   1050           SkipBody->ShouldSkip = true;
   1051           auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
   1052           assert(Tmpl && "original definition of a class template is not a "
   1053                          "class template?");
   1054           makeMergedDefinitionVisible(Hidden, KWLoc);
   1055           makeMergedDefinitionVisible(Tmpl, KWLoc);
   1056           return Def;
   1057         }
   1058 
   1059         Diag(NameLoc, diag::err_redefinition) << Name;
   1060         Diag(Def->getLocation(), diag::note_previous_definition);
   1061         // FIXME: Would it make sense to try to "forget" the previous
   1062         // definition, as part of error recovery?
   1063         return true;
   1064       }
   1065     }
   1066   } else if (PrevDecl) {
   1067     // C++ [temp]p5:
   1068     //   A class template shall not have the same name as any other
   1069     //   template, class, function, object, enumeration, enumerator,
   1070     //   namespace, or type in the same scope (3.3), except as specified
   1071     //   in (14.5.4).
   1072     Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   1073     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1074     return true;
   1075   }
   1076 
   1077   // Check the template parameter list of this declaration, possibly
   1078   // merging in the template parameter list from the previous class
   1079   // template declaration. Skip this check for a friend in a dependent
   1080   // context, because the template parameter list might be dependent.
   1081   if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
   1082       CheckTemplateParameterList(
   1083           TemplateParams,
   1084           PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
   1085                             : nullptr,
   1086           (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
   1087            SemanticContext->isDependentContext())
   1088               ? TPC_ClassTemplateMember
   1089               : TUK == TUK_Friend ? TPC_FriendClassTemplate
   1090                                   : TPC_ClassTemplate))
   1091     Invalid = true;
   1092 
   1093   if (SS.isSet()) {
   1094     // If the name of the template was qualified, we must be defining the
   1095     // template out-of-line.
   1096     if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
   1097       Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
   1098                                       : diag::err_member_decl_does_not_match)
   1099         << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
   1100       Invalid = true;
   1101     }
   1102   }
   1103 
   1104   CXXRecordDecl *NewClass =
   1105     CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
   1106                           PrevClassTemplate?
   1107                             PrevClassTemplate->getTemplatedDecl() : nullptr,
   1108                           /*DelayTypeCreation=*/true);
   1109   SetNestedNameSpecifier(NewClass, SS);
   1110   if (NumOuterTemplateParamLists > 0)
   1111     NewClass->setTemplateParameterListsInfo(
   1112         Context, llvm::makeArrayRef(OuterTemplateParamLists,
   1113                                     NumOuterTemplateParamLists));
   1114 
   1115   // Add alignment attributes if necessary; these attributes are checked when
   1116   // the ASTContext lays out the structure.
   1117   if (TUK == TUK_Definition) {
   1118     AddAlignmentAttributesForRecord(NewClass);
   1119     AddMsStructLayoutForRecord(NewClass);
   1120   }
   1121 
   1122   ClassTemplateDecl *NewTemplate
   1123     = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
   1124                                 DeclarationName(Name), TemplateParams,
   1125                                 NewClass, PrevClassTemplate);
   1126   NewClass->setDescribedClassTemplate(NewTemplate);
   1127 
   1128   if (ModulePrivateLoc.isValid())
   1129     NewTemplate->setModulePrivate();
   1130 
   1131   // Build the type for the class template declaration now.
   1132   QualType T = NewTemplate->getInjectedClassNameSpecialization();
   1133   T = Context.getInjectedClassNameType(NewClass, T);
   1134   assert(T->isDependentType() && "Class template type is not dependent?");
   1135   (void)T;
   1136 
   1137   // If we are providing an explicit specialization of a member that is a
   1138   // class template, make a note of that.
   1139   if (PrevClassTemplate &&
   1140       PrevClassTemplate->getInstantiatedFromMemberTemplate())
   1141     PrevClassTemplate->setMemberSpecialization();
   1142 
   1143   // Set the access specifier.
   1144   if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
   1145     SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
   1146 
   1147   // Set the lexical context of these templates
   1148   NewClass->setLexicalDeclContext(CurContext);
   1149   NewTemplate->setLexicalDeclContext(CurContext);
   1150 
   1151   if (TUK == TUK_Definition)
   1152     NewClass->startDefinition();
   1153 
   1154   if (Attr)
   1155     ProcessDeclAttributeList(S, NewClass, Attr);
   1156 
   1157   if (PrevClassTemplate)
   1158     mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
   1159 
   1160   AddPushedVisibilityAttribute(NewClass);
   1161 
   1162   if (TUK != TUK_Friend) {
   1163     // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
   1164     Scope *Outer = S;
   1165     while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
   1166       Outer = Outer->getParent();
   1167     PushOnScopeChains(NewTemplate, Outer);
   1168   } else {
   1169     if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
   1170       NewTemplate->setAccess(PrevClassTemplate->getAccess());
   1171       NewClass->setAccess(PrevClassTemplate->getAccess());
   1172     }
   1173 
   1174     NewTemplate->setObjectOfFriendDecl();
   1175 
   1176     // Friend templates are visible in fairly strange ways.
   1177     if (!CurContext->isDependentContext()) {
   1178       DeclContext *DC = SemanticContext->getRedeclContext();
   1179       DC->makeDeclVisibleInContext(NewTemplate);
   1180       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   1181         PushOnScopeChains(NewTemplate, EnclosingScope,
   1182                           /* AddToContext = */ false);
   1183     }
   1184 
   1185     FriendDecl *Friend = FriendDecl::Create(
   1186         Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
   1187     Friend->setAccess(AS_public);
   1188     CurContext->addDecl(Friend);
   1189   }
   1190 
   1191   if (Invalid) {
   1192     NewTemplate->setInvalidDecl();
   1193     NewClass->setInvalidDecl();
   1194   }
   1195 
   1196   ActOnDocumentableDecl(NewTemplate);
   1197 
   1198   return NewTemplate;
   1199 }
   1200 
   1201 /// \brief Diagnose the presence of a default template argument on a
   1202 /// template parameter, which is ill-formed in certain contexts.
   1203 ///
   1204 /// \returns true if the default template argument should be dropped.
   1205 static bool DiagnoseDefaultTemplateArgument(Sema &S,
   1206                                             Sema::TemplateParamListContext TPC,
   1207                                             SourceLocation ParamLoc,
   1208                                             SourceRange DefArgRange) {
   1209   switch (TPC) {
   1210   case Sema::TPC_ClassTemplate:
   1211   case Sema::TPC_VarTemplate:
   1212   case Sema::TPC_TypeAliasTemplate:
   1213     return false;
   1214 
   1215   case Sema::TPC_FunctionTemplate:
   1216   case Sema::TPC_FriendFunctionTemplateDefinition:
   1217     // C++ [temp.param]p9:
   1218     //   A default template-argument shall not be specified in a
   1219     //   function template declaration or a function template
   1220     //   definition [...]
   1221     //   If a friend function template declaration specifies a default
   1222     //   template-argument, that declaration shall be a definition and shall be
   1223     //   the only declaration of the function template in the translation unit.
   1224     // (C++98/03 doesn't have this wording; see DR226).
   1225     S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
   1226          diag::warn_cxx98_compat_template_parameter_default_in_function_template
   1227            : diag::ext_template_parameter_default_in_function_template)
   1228       << DefArgRange;
   1229     return false;
   1230 
   1231   case Sema::TPC_ClassTemplateMember:
   1232     // C++0x [temp.param]p9:
   1233     //   A default template-argument shall not be specified in the
   1234     //   template-parameter-lists of the definition of a member of a
   1235     //   class template that appears outside of the member's class.
   1236     S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
   1237       << DefArgRange;
   1238     return true;
   1239 
   1240   case Sema::TPC_FriendClassTemplate:
   1241   case Sema::TPC_FriendFunctionTemplate:
   1242     // C++ [temp.param]p9:
   1243     //   A default template-argument shall not be specified in a
   1244     //   friend template declaration.
   1245     S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
   1246       << DefArgRange;
   1247     return true;
   1248 
   1249     // FIXME: C++0x [temp.param]p9 allows default template-arguments
   1250     // for friend function templates if there is only a single
   1251     // declaration (and it is a definition). Strange!
   1252   }
   1253 
   1254   llvm_unreachable("Invalid TemplateParamListContext!");
   1255 }
   1256 
   1257 /// \brief Check for unexpanded parameter packs within the template parameters
   1258 /// of a template template parameter, recursively.
   1259 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
   1260                                              TemplateTemplateParmDecl *TTP) {
   1261   // A template template parameter which is a parameter pack is also a pack
   1262   // expansion.
   1263   if (TTP->isParameterPack())
   1264     return false;
   1265 
   1266   TemplateParameterList *Params = TTP->getTemplateParameters();
   1267   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   1268     NamedDecl *P = Params->getParam(I);
   1269     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
   1270       if (!NTTP->isParameterPack() &&
   1271           S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
   1272                                             NTTP->getTypeSourceInfo(),
   1273                                       Sema::UPPC_NonTypeTemplateParameterType))
   1274         return true;
   1275 
   1276       continue;
   1277     }
   1278 
   1279     if (TemplateTemplateParmDecl *InnerTTP
   1280                                         = dyn_cast<TemplateTemplateParmDecl>(P))
   1281       if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
   1282         return true;
   1283   }
   1284 
   1285   return false;
   1286 }
   1287 
   1288 /// \brief Checks the validity of a template parameter list, possibly
   1289 /// considering the template parameter list from a previous
   1290 /// declaration.
   1291 ///
   1292 /// If an "old" template parameter list is provided, it must be
   1293 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
   1294 /// template parameter list.
   1295 ///
   1296 /// \param NewParams Template parameter list for a new template
   1297 /// declaration. This template parameter list will be updated with any
   1298 /// default arguments that are carried through from the previous
   1299 /// template parameter list.
   1300 ///
   1301 /// \param OldParams If provided, template parameter list from a
   1302 /// previous declaration of the same template. Default template
   1303 /// arguments will be merged from the old template parameter list to
   1304 /// the new template parameter list.
   1305 ///
   1306 /// \param TPC Describes the context in which we are checking the given
   1307 /// template parameter list.
   1308 ///
   1309 /// \returns true if an error occurred, false otherwise.
   1310 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
   1311                                       TemplateParameterList *OldParams,
   1312                                       TemplateParamListContext TPC) {
   1313   bool Invalid = false;
   1314 
   1315   // C++ [temp.param]p10:
   1316   //   The set of default template-arguments available for use with a
   1317   //   template declaration or definition is obtained by merging the
   1318   //   default arguments from the definition (if in scope) and all
   1319   //   declarations in scope in the same way default function
   1320   //   arguments are (8.3.6).
   1321   bool SawDefaultArgument = false;
   1322   SourceLocation PreviousDefaultArgLoc;
   1323 
   1324   // Dummy initialization to avoid warnings.
   1325   TemplateParameterList::iterator OldParam = NewParams->end();
   1326   if (OldParams)
   1327     OldParam = OldParams->begin();
   1328 
   1329   bool RemoveDefaultArguments = false;
   1330   for (TemplateParameterList::iterator NewParam = NewParams->begin(),
   1331                                     NewParamEnd = NewParams->end();
   1332        NewParam != NewParamEnd; ++NewParam) {
   1333     // Variables used to diagnose redundant default arguments
   1334     bool RedundantDefaultArg = false;
   1335     SourceLocation OldDefaultLoc;
   1336     SourceLocation NewDefaultLoc;
   1337 
   1338     // Variable used to diagnose missing default arguments
   1339     bool MissingDefaultArg = false;
   1340 
   1341     // Variable used to diagnose non-final parameter packs
   1342     bool SawParameterPack = false;
   1343 
   1344     if (TemplateTypeParmDecl *NewTypeParm
   1345           = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
   1346       // Check the presence of a default argument here.
   1347       if (NewTypeParm->hasDefaultArgument() &&
   1348           DiagnoseDefaultTemplateArgument(*this, TPC,
   1349                                           NewTypeParm->getLocation(),
   1350                NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
   1351                                                        .getSourceRange()))
   1352         NewTypeParm->removeDefaultArgument();
   1353 
   1354       // Merge default arguments for template type parameters.
   1355       TemplateTypeParmDecl *OldTypeParm
   1356           = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
   1357       if (NewTypeParm->isParameterPack()) {
   1358         assert(!NewTypeParm->hasDefaultArgument() &&
   1359                "Parameter packs can't have a default argument!");
   1360         SawParameterPack = true;
   1361       } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
   1362                  NewTypeParm->hasDefaultArgument()) {
   1363         OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
   1364         NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
   1365         SawDefaultArgument = true;
   1366         RedundantDefaultArg = true;
   1367         PreviousDefaultArgLoc = NewDefaultLoc;
   1368       } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
   1369         // Merge the default argument from the old declaration to the
   1370         // new declaration.
   1371         NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
   1372         PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
   1373       } else if (NewTypeParm->hasDefaultArgument()) {
   1374         SawDefaultArgument = true;
   1375         PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
   1376       } else if (SawDefaultArgument)
   1377         MissingDefaultArg = true;
   1378     } else if (NonTypeTemplateParmDecl *NewNonTypeParm
   1379                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
   1380       // Check for unexpanded parameter packs.
   1381       if (!NewNonTypeParm->isParameterPack() &&
   1382           DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
   1383                                           NewNonTypeParm->getTypeSourceInfo(),
   1384                                           UPPC_NonTypeTemplateParameterType)) {
   1385         Invalid = true;
   1386         continue;
   1387       }
   1388 
   1389       // Check the presence of a default argument here.
   1390       if (NewNonTypeParm->hasDefaultArgument() &&
   1391           DiagnoseDefaultTemplateArgument(*this, TPC,
   1392                                           NewNonTypeParm->getLocation(),
   1393                     NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
   1394         NewNonTypeParm->removeDefaultArgument();
   1395       }
   1396 
   1397       // Merge default arguments for non-type template parameters
   1398       NonTypeTemplateParmDecl *OldNonTypeParm
   1399         = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
   1400       if (NewNonTypeParm->isParameterPack()) {
   1401         assert(!NewNonTypeParm->hasDefaultArgument() &&
   1402                "Parameter packs can't have a default argument!");
   1403         if (!NewNonTypeParm->isPackExpansion())
   1404           SawParameterPack = true;
   1405       } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
   1406                  NewNonTypeParm->hasDefaultArgument()) {
   1407         OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
   1408         NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
   1409         SawDefaultArgument = true;
   1410         RedundantDefaultArg = true;
   1411         PreviousDefaultArgLoc = NewDefaultLoc;
   1412       } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
   1413         // Merge the default argument from the old declaration to the
   1414         // new declaration.
   1415         NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
   1416         PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
   1417       } else if (NewNonTypeParm->hasDefaultArgument()) {
   1418         SawDefaultArgument = true;
   1419         PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
   1420       } else if (SawDefaultArgument)
   1421         MissingDefaultArg = true;
   1422     } else {
   1423       TemplateTemplateParmDecl *NewTemplateParm
   1424         = cast<TemplateTemplateParmDecl>(*NewParam);
   1425 
   1426       // Check for unexpanded parameter packs, recursively.
   1427       if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
   1428         Invalid = true;
   1429         continue;
   1430       }
   1431 
   1432       // Check the presence of a default argument here.
   1433       if (NewTemplateParm->hasDefaultArgument() &&
   1434           DiagnoseDefaultTemplateArgument(*this, TPC,
   1435                                           NewTemplateParm->getLocation(),
   1436                      NewTemplateParm->getDefaultArgument().getSourceRange()))
   1437         NewTemplateParm->removeDefaultArgument();
   1438 
   1439       // Merge default arguments for template template parameters
   1440       TemplateTemplateParmDecl *OldTemplateParm
   1441         = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
   1442       if (NewTemplateParm->isParameterPack()) {
   1443         assert(!NewTemplateParm->hasDefaultArgument() &&
   1444                "Parameter packs can't have a default argument!");
   1445         if (!NewTemplateParm->isPackExpansion())
   1446           SawParameterPack = true;
   1447       } else if (OldTemplateParm &&
   1448                  hasVisibleDefaultArgument(OldTemplateParm) &&
   1449                  NewTemplateParm->hasDefaultArgument()) {
   1450         OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
   1451         NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
   1452         SawDefaultArgument = true;
   1453         RedundantDefaultArg = true;
   1454         PreviousDefaultArgLoc = NewDefaultLoc;
   1455       } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
   1456         // Merge the default argument from the old declaration to the
   1457         // new declaration.
   1458         NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
   1459         PreviousDefaultArgLoc
   1460           = OldTemplateParm->getDefaultArgument().getLocation();
   1461       } else if (NewTemplateParm->hasDefaultArgument()) {
   1462         SawDefaultArgument = true;
   1463         PreviousDefaultArgLoc
   1464           = NewTemplateParm->getDefaultArgument().getLocation();
   1465       } else if (SawDefaultArgument)
   1466         MissingDefaultArg = true;
   1467     }
   1468 
   1469     // C++11 [temp.param]p11:
   1470     //   If a template parameter of a primary class template or alias template
   1471     //   is a template parameter pack, it shall be the last template parameter.
   1472     if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
   1473         (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
   1474          TPC == TPC_TypeAliasTemplate)) {
   1475       Diag((*NewParam)->getLocation(),
   1476            diag::err_template_param_pack_must_be_last_template_parameter);
   1477       Invalid = true;
   1478     }
   1479 
   1480     if (RedundantDefaultArg) {
   1481       // C++ [temp.param]p12:
   1482       //   A template-parameter shall not be given default arguments
   1483       //   by two different declarations in the same scope.
   1484       Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
   1485       Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
   1486       Invalid = true;
   1487     } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
   1488       // C++ [temp.param]p11:
   1489       //   If a template-parameter of a class template has a default
   1490       //   template-argument, each subsequent template-parameter shall either
   1491       //   have a default template-argument supplied or be a template parameter
   1492       //   pack.
   1493       Diag((*NewParam)->getLocation(),
   1494            diag::err_template_param_default_arg_missing);
   1495       Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
   1496       Invalid = true;
   1497       RemoveDefaultArguments = true;
   1498     }
   1499 
   1500     // If we have an old template parameter list that we're merging
   1501     // in, move on to the next parameter.
   1502     if (OldParams)
   1503       ++OldParam;
   1504   }
   1505 
   1506   // We were missing some default arguments at the end of the list, so remove
   1507   // all of the default arguments.
   1508   if (RemoveDefaultArguments) {
   1509     for (TemplateParameterList::iterator NewParam = NewParams->begin(),
   1510                                       NewParamEnd = NewParams->end();
   1511          NewParam != NewParamEnd; ++NewParam) {
   1512       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
   1513         TTP->removeDefaultArgument();
   1514       else if (NonTypeTemplateParmDecl *NTTP
   1515                                 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
   1516         NTTP->removeDefaultArgument();
   1517       else
   1518         cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
   1519     }
   1520   }
   1521 
   1522   return Invalid;
   1523 }
   1524 
   1525 namespace {
   1526 
   1527 /// A class which looks for a use of a certain level of template
   1528 /// parameter.
   1529 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
   1530   typedef RecursiveASTVisitor<DependencyChecker> super;
   1531 
   1532   unsigned Depth;
   1533   bool Match;
   1534   SourceLocation MatchLoc;
   1535 
   1536   DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
   1537 
   1538   DependencyChecker(TemplateParameterList *Params) : Match(false) {
   1539     NamedDecl *ND = Params->getParam(0);
   1540     if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
   1541       Depth = PD->getDepth();
   1542     } else if (NonTypeTemplateParmDecl *PD =
   1543                  dyn_cast<NonTypeTemplateParmDecl>(ND)) {
   1544       Depth = PD->getDepth();
   1545     } else {
   1546       Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
   1547     }
   1548   }
   1549 
   1550   bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
   1551     if (ParmDepth >= Depth) {
   1552       Match = true;
   1553       MatchLoc = Loc;
   1554       return true;
   1555     }
   1556     return false;
   1557   }
   1558 
   1559   bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
   1560     return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
   1561   }
   1562 
   1563   bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
   1564     return !Matches(T->getDepth());
   1565   }
   1566 
   1567   bool TraverseTemplateName(TemplateName N) {
   1568     if (TemplateTemplateParmDecl *PD =
   1569           dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
   1570       if (Matches(PD->getDepth()))
   1571         return false;
   1572     return super::TraverseTemplateName(N);
   1573   }
   1574 
   1575   bool VisitDeclRefExpr(DeclRefExpr *E) {
   1576     if (NonTypeTemplateParmDecl *PD =
   1577           dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
   1578       if (Matches(PD->getDepth(), E->getExprLoc()))
   1579         return false;
   1580     return super::VisitDeclRefExpr(E);
   1581   }
   1582 
   1583   bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
   1584     return TraverseType(T->getReplacementType());
   1585   }
   1586 
   1587   bool
   1588   VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
   1589     return TraverseTemplateArgument(T->getArgumentPack());
   1590   }
   1591 
   1592   bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
   1593     return TraverseType(T->getInjectedSpecializationType());
   1594   }
   1595 };
   1596 } // end anonymous namespace
   1597 
   1598 /// Determines whether a given type depends on the given parameter
   1599 /// list.
   1600 static bool
   1601 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
   1602   DependencyChecker Checker(Params);
   1603   Checker.TraverseType(T);
   1604   return Checker.Match;
   1605 }
   1606 
   1607 // Find the source range corresponding to the named type in the given
   1608 // nested-name-specifier, if any.
   1609 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
   1610                                                        QualType T,
   1611                                                        const CXXScopeSpec &SS) {
   1612   NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
   1613   while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
   1614     if (const Type *CurType = NNS->getAsType()) {
   1615       if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
   1616         return NNSLoc.getTypeLoc().getSourceRange();
   1617     } else
   1618       break;
   1619 
   1620     NNSLoc = NNSLoc.getPrefix();
   1621   }
   1622 
   1623   return SourceRange();
   1624 }
   1625 
   1626 /// \brief Match the given template parameter lists to the given scope
   1627 /// specifier, returning the template parameter list that applies to the
   1628 /// name.
   1629 ///
   1630 /// \param DeclStartLoc the start of the declaration that has a scope
   1631 /// specifier or a template parameter list.
   1632 ///
   1633 /// \param DeclLoc The location of the declaration itself.
   1634 ///
   1635 /// \param SS the scope specifier that will be matched to the given template
   1636 /// parameter lists. This scope specifier precedes a qualified name that is
   1637 /// being declared.
   1638 ///
   1639 /// \param TemplateId The template-id following the scope specifier, if there
   1640 /// is one. Used to check for a missing 'template<>'.
   1641 ///
   1642 /// \param ParamLists the template parameter lists, from the outermost to the
   1643 /// innermost template parameter lists.
   1644 ///
   1645 /// \param IsFriend Whether to apply the slightly different rules for
   1646 /// matching template parameters to scope specifiers in friend
   1647 /// declarations.
   1648 ///
   1649 /// \param IsExplicitSpecialization will be set true if the entity being
   1650 /// declared is an explicit specialization, false otherwise.
   1651 ///
   1652 /// \returns the template parameter list, if any, that corresponds to the
   1653 /// name that is preceded by the scope specifier @p SS. This template
   1654 /// parameter list may have template parameters (if we're declaring a
   1655 /// template) or may have no template parameters (if we're declaring a
   1656 /// template specialization), or may be NULL (if what we're declaring isn't
   1657 /// itself a template).
   1658 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
   1659     SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
   1660     TemplateIdAnnotation *TemplateId,
   1661     ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
   1662     bool &IsExplicitSpecialization, bool &Invalid) {
   1663   IsExplicitSpecialization = false;
   1664   Invalid = false;
   1665 
   1666   // The sequence of nested types to which we will match up the template
   1667   // parameter lists. We first build this list by starting with the type named
   1668   // by the nested-name-specifier and walking out until we run out of types.
   1669   SmallVector<QualType, 4> NestedTypes;
   1670   QualType T;
   1671   if (SS.getScopeRep()) {
   1672     if (CXXRecordDecl *Record
   1673               = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
   1674       T = Context.getTypeDeclType(Record);
   1675     else
   1676       T = QualType(SS.getScopeRep()->getAsType(), 0);
   1677   }
   1678 
   1679   // If we found an explicit specialization that prevents us from needing
   1680   // 'template<>' headers, this will be set to the location of that
   1681   // explicit specialization.
   1682   SourceLocation ExplicitSpecLoc;
   1683 
   1684   while (!T.isNull()) {
   1685     NestedTypes.push_back(T);
   1686 
   1687     // Retrieve the parent of a record type.
   1688     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
   1689       // If this type is an explicit specialization, we're done.
   1690       if (ClassTemplateSpecializationDecl *Spec
   1691           = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
   1692         if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
   1693             Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
   1694           ExplicitSpecLoc = Spec->getLocation();
   1695           break;
   1696         }
   1697       } else if (Record->getTemplateSpecializationKind()
   1698                                                 == TSK_ExplicitSpecialization) {
   1699         ExplicitSpecLoc = Record->getLocation();
   1700         break;
   1701       }
   1702 
   1703       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
   1704         T = Context.getTypeDeclType(Parent);
   1705       else
   1706         T = QualType();
   1707       continue;
   1708     }
   1709 
   1710     if (const TemplateSpecializationType *TST
   1711                                      = T->getAs<TemplateSpecializationType>()) {
   1712       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
   1713         if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
   1714           T = Context.getTypeDeclType(Parent);
   1715         else
   1716           T = QualType();
   1717         continue;
   1718       }
   1719     }
   1720 
   1721     // Look one step prior in a dependent template specialization type.
   1722     if (const DependentTemplateSpecializationType *DependentTST
   1723                           = T->getAs<DependentTemplateSpecializationType>()) {
   1724       if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
   1725         T = QualType(NNS->getAsType(), 0);
   1726       else
   1727         T = QualType();
   1728       continue;
   1729     }
   1730 
   1731     // Look one step prior in a dependent name type.
   1732     if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
   1733       if (NestedNameSpecifier *NNS = DependentName->getQualifier())
   1734         T = QualType(NNS->getAsType(), 0);
   1735       else
   1736         T = QualType();
   1737       continue;
   1738     }
   1739 
   1740     // Retrieve the parent of an enumeration type.
   1741     if (const EnumType *EnumT = T->getAs<EnumType>()) {
   1742       // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
   1743       // check here.
   1744       EnumDecl *Enum = EnumT->getDecl();
   1745 
   1746       // Get to the parent type.
   1747       if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
   1748         T = Context.getTypeDeclType(Parent);
   1749       else
   1750         T = QualType();
   1751       continue;
   1752     }
   1753 
   1754     T = QualType();
   1755   }
   1756   // Reverse the nested types list, since we want to traverse from the outermost
   1757   // to the innermost while checking template-parameter-lists.
   1758   std::reverse(NestedTypes.begin(), NestedTypes.end());
   1759 
   1760   // C++0x [temp.expl.spec]p17:
   1761   //   A member or a member template may be nested within many
   1762   //   enclosing class templates. In an explicit specialization for
   1763   //   such a member, the member declaration shall be preceded by a
   1764   //   template<> for each enclosing class template that is
   1765   //   explicitly specialized.
   1766   bool SawNonEmptyTemplateParameterList = false;
   1767 
   1768   auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
   1769     if (SawNonEmptyTemplateParameterList) {
   1770       Diag(DeclLoc, diag::err_specialize_member_of_template)
   1771         << !Recovery << Range;
   1772       Invalid = true;
   1773       IsExplicitSpecialization = false;
   1774       return true;
   1775     }
   1776 
   1777     return false;
   1778   };
   1779 
   1780   auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
   1781     // Check that we can have an explicit specialization here.
   1782     if (CheckExplicitSpecialization(Range, true))
   1783       return true;
   1784 
   1785     // We don't have a template header, but we should.
   1786     SourceLocation ExpectedTemplateLoc;
   1787     if (!ParamLists.empty())
   1788       ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
   1789     else
   1790       ExpectedTemplateLoc = DeclStartLoc;
   1791 
   1792     Diag(DeclLoc, diag::err_template_spec_needs_header)
   1793       << Range
   1794       << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
   1795     return false;
   1796   };
   1797 
   1798   unsigned ParamIdx = 0;
   1799   for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
   1800        ++TypeIdx) {
   1801     T = NestedTypes[TypeIdx];
   1802 
   1803     // Whether we expect a 'template<>' header.
   1804     bool NeedEmptyTemplateHeader = false;
   1805 
   1806     // Whether we expect a template header with parameters.
   1807     bool NeedNonemptyTemplateHeader = false;
   1808 
   1809     // For a dependent type, the set of template parameters that we
   1810     // expect to see.
   1811     TemplateParameterList *ExpectedTemplateParams = nullptr;
   1812 
   1813     // C++0x [temp.expl.spec]p15:
   1814     //   A member or a member template may be nested within many enclosing
   1815     //   class templates. In an explicit specialization for such a member, the
   1816     //   member declaration shall be preceded by a template<> for each
   1817     //   enclosing class template that is explicitly specialized.
   1818     if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
   1819       if (ClassTemplatePartialSpecializationDecl *Partial
   1820             = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
   1821         ExpectedTemplateParams = Partial->getTemplateParameters();
   1822         NeedNonemptyTemplateHeader = true;
   1823       } else if (Record->isDependentType()) {
   1824         if (Record->getDescribedClassTemplate()) {
   1825           ExpectedTemplateParams = Record->getDescribedClassTemplate()
   1826                                                       ->getTemplateParameters();
   1827           NeedNonemptyTemplateHeader = true;
   1828         }
   1829       } else if (ClassTemplateSpecializationDecl *Spec
   1830                      = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
   1831         // C++0x [temp.expl.spec]p4:
   1832         //   Members of an explicitly specialized class template are defined
   1833         //   in the same manner as members of normal classes, and not using
   1834         //   the template<> syntax.
   1835         if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
   1836           NeedEmptyTemplateHeader = true;
   1837         else
   1838           continue;
   1839       } else if (Record->getTemplateSpecializationKind()) {
   1840         if (Record->getTemplateSpecializationKind()
   1841                                                 != TSK_ExplicitSpecialization &&
   1842             TypeIdx == NumTypes - 1)
   1843           IsExplicitSpecialization = true;
   1844 
   1845         continue;
   1846       }
   1847     } else if (const TemplateSpecializationType *TST
   1848                                      = T->getAs<TemplateSpecializationType>()) {
   1849       if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
   1850         ExpectedTemplateParams = Template->getTemplateParameters();
   1851         NeedNonemptyTemplateHeader = true;
   1852       }
   1853     } else if (T->getAs<DependentTemplateSpecializationType>()) {
   1854       // FIXME:  We actually could/should check the template arguments here
   1855       // against the corresponding template parameter list.
   1856       NeedNonemptyTemplateHeader = false;
   1857     }
   1858 
   1859     // C++ [temp.expl.spec]p16:
   1860     //   In an explicit specialization declaration for a member of a class
   1861     //   template or a member template that ap- pears in namespace scope, the
   1862     //   member template and some of its enclosing class templates may remain
   1863     //   unspecialized, except that the declaration shall not explicitly
   1864     //   specialize a class member template if its en- closing class templates
   1865     //   are not explicitly specialized as well.
   1866     if (ParamIdx < ParamLists.size()) {
   1867       if (ParamLists[ParamIdx]->size() == 0) {
   1868         if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
   1869                                         false))
   1870           return nullptr;
   1871       } else
   1872         SawNonEmptyTemplateParameterList = true;
   1873     }
   1874 
   1875     if (NeedEmptyTemplateHeader) {
   1876       // If we're on the last of the types, and we need a 'template<>' header
   1877       // here, then it's an explicit specialization.
   1878       if (TypeIdx == NumTypes - 1)
   1879         IsExplicitSpecialization = true;
   1880 
   1881       if (ParamIdx < ParamLists.size()) {
   1882         if (ParamLists[ParamIdx]->size() > 0) {
   1883           // The header has template parameters when it shouldn't. Complain.
   1884           Diag(ParamLists[ParamIdx]->getTemplateLoc(),
   1885                diag::err_template_param_list_matches_nontemplate)
   1886             << T
   1887             << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
   1888                            ParamLists[ParamIdx]->getRAngleLoc())
   1889             << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
   1890           Invalid = true;
   1891           return nullptr;
   1892         }
   1893 
   1894         // Consume this template header.
   1895         ++ParamIdx;
   1896         continue;
   1897       }
   1898 
   1899       if (!IsFriend)
   1900         if (DiagnoseMissingExplicitSpecialization(
   1901                 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
   1902           return nullptr;
   1903 
   1904       continue;
   1905     }
   1906 
   1907     if (NeedNonemptyTemplateHeader) {
   1908       // In friend declarations we can have template-ids which don't
   1909       // depend on the corresponding template parameter lists.  But
   1910       // assume that empty parameter lists are supposed to match this
   1911       // template-id.
   1912       if (IsFriend && T->isDependentType()) {
   1913         if (ParamIdx < ParamLists.size() &&
   1914             DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
   1915           ExpectedTemplateParams = nullptr;
   1916         else
   1917           continue;
   1918       }
   1919 
   1920       if (ParamIdx < ParamLists.size()) {
   1921         // Check the template parameter list, if we can.
   1922         if (ExpectedTemplateParams &&
   1923             !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
   1924                                             ExpectedTemplateParams,
   1925                                             true, TPL_TemplateMatch))
   1926           Invalid = true;
   1927 
   1928         if (!Invalid &&
   1929             CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
   1930                                        TPC_ClassTemplateMember))
   1931           Invalid = true;
   1932 
   1933         ++ParamIdx;
   1934         continue;
   1935       }
   1936 
   1937       Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
   1938         << T
   1939         << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
   1940       Invalid = true;
   1941       continue;
   1942     }
   1943   }
   1944 
   1945   // If there were at least as many template-ids as there were template
   1946   // parameter lists, then there are no template parameter lists remaining for
   1947   // the declaration itself.
   1948   if (ParamIdx >= ParamLists.size()) {
   1949     if (TemplateId && !IsFriend) {
   1950       // We don't have a template header for the declaration itself, but we
   1951       // should.
   1952       IsExplicitSpecialization = true;
   1953       DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
   1954                                                         TemplateId->RAngleLoc));
   1955 
   1956       // Fabricate an empty template parameter list for the invented header.
   1957       return TemplateParameterList::Create(Context, SourceLocation(),
   1958                                            SourceLocation(), None,
   1959                                            SourceLocation());
   1960     }
   1961 
   1962     return nullptr;
   1963   }
   1964 
   1965   // If there were too many template parameter lists, complain about that now.
   1966   if (ParamIdx < ParamLists.size() - 1) {
   1967     bool HasAnyExplicitSpecHeader = false;
   1968     bool AllExplicitSpecHeaders = true;
   1969     for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
   1970       if (ParamLists[I]->size() == 0)
   1971         HasAnyExplicitSpecHeader = true;
   1972       else
   1973         AllExplicitSpecHeaders = false;
   1974     }
   1975 
   1976     Diag(ParamLists[ParamIdx]->getTemplateLoc(),
   1977          AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
   1978                                 : diag::err_template_spec_extra_headers)
   1979         << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
   1980                        ParamLists[ParamLists.size() - 2]->getRAngleLoc());
   1981 
   1982     // If there was a specialization somewhere, such that 'template<>' is
   1983     // not required, and there were any 'template<>' headers, note where the
   1984     // specialization occurred.
   1985     if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
   1986       Diag(ExplicitSpecLoc,
   1987            diag::note_explicit_template_spec_does_not_need_header)
   1988         << NestedTypes.back();
   1989 
   1990     // We have a template parameter list with no corresponding scope, which
   1991     // means that the resulting template declaration can't be instantiated
   1992     // properly (we'll end up with dependent nodes when we shouldn't).
   1993     if (!AllExplicitSpecHeaders)
   1994       Invalid = true;
   1995   }
   1996 
   1997   // C++ [temp.expl.spec]p16:
   1998   //   In an explicit specialization declaration for a member of a class
   1999   //   template or a member template that ap- pears in namespace scope, the
   2000   //   member template and some of its enclosing class templates may remain
   2001   //   unspecialized, except that the declaration shall not explicitly
   2002   //   specialize a class member template if its en- closing class templates
   2003   //   are not explicitly specialized as well.
   2004   if (ParamLists.back()->size() == 0 &&
   2005       CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
   2006                                   false))
   2007     return nullptr;
   2008 
   2009   // Return the last template parameter list, which corresponds to the
   2010   // entity being declared.
   2011   return ParamLists.back();
   2012 }
   2013 
   2014 void Sema::NoteAllFoundTemplates(TemplateName Name) {
   2015   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   2016     Diag(Template->getLocation(), diag::note_template_declared_here)
   2017         << (isa<FunctionTemplateDecl>(Template)
   2018                 ? 0
   2019                 : isa<ClassTemplateDecl>(Template)
   2020                       ? 1
   2021                       : isa<VarTemplateDecl>(Template)
   2022                             ? 2
   2023                             : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
   2024         << Template->getDeclName();
   2025     return;
   2026   }
   2027 
   2028   if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
   2029     for (OverloadedTemplateStorage::iterator I = OST->begin(),
   2030                                           IEnd = OST->end();
   2031          I != IEnd; ++I)
   2032       Diag((*I)->getLocation(), diag::note_template_declared_here)
   2033         << 0 << (*I)->getDeclName();
   2034 
   2035     return;
   2036   }
   2037 }
   2038 
   2039 static QualType
   2040 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
   2041                            const SmallVectorImpl<TemplateArgument> &Converted,
   2042                            SourceLocation TemplateLoc,
   2043                            TemplateArgumentListInfo &TemplateArgs) {
   2044   ASTContext &Context = SemaRef.getASTContext();
   2045   switch (BTD->getBuiltinTemplateKind()) {
   2046   case BTK__make_integer_seq: {
   2047     // Specializations of __make_integer_seq<S, T, N> are treated like
   2048     // S<T, 0, ..., N-1>.
   2049 
   2050     // C++14 [inteseq.intseq]p1:
   2051     //   T shall be an integer type.
   2052     if (!Converted[1].getAsType()->isIntegralType(Context)) {
   2053       SemaRef.Diag(TemplateArgs[1].getLocation(),
   2054                    diag::err_integer_sequence_integral_element_type);
   2055       return QualType();
   2056     }
   2057 
   2058     // C++14 [inteseq.make]p1:
   2059     //   If N is negative the program is ill-formed.
   2060     TemplateArgument NumArgsArg = Converted[2];
   2061     llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
   2062     if (NumArgs < 0) {
   2063       SemaRef.Diag(TemplateArgs[2].getLocation(),
   2064                    diag::err_integer_sequence_negative_length);
   2065       return QualType();
   2066     }
   2067 
   2068     QualType ArgTy = NumArgsArg.getIntegralType();
   2069     TemplateArgumentListInfo SyntheticTemplateArgs;
   2070     // The type argument gets reused as the first template argument in the
   2071     // synthetic template argument list.
   2072     SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
   2073     // Expand N into 0 ... N-1.
   2074     for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
   2075          I < NumArgs; ++I) {
   2076       TemplateArgument TA(Context, I, ArgTy);
   2077       Expr *E = SemaRef.BuildExpressionFromIntegralTemplateArgument(
   2078                            TA, TemplateArgs[2].getLocation())
   2079                     .getAs<Expr>();
   2080       SyntheticTemplateArgs.addArgument(
   2081           TemplateArgumentLoc(TemplateArgument(E), E));
   2082     }
   2083     // The first template argument will be reused as the template decl that
   2084     // our synthetic template arguments will be applied to.
   2085     return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
   2086                                        TemplateLoc, SyntheticTemplateArgs);
   2087   }
   2088 
   2089   case BTK__type_pack_element:
   2090     // Specializations of
   2091     //    __type_pack_element<Index, T_1, ..., T_N>
   2092     // are treated like T_Index.
   2093     assert(Converted.size() == 2 &&
   2094       "__type_pack_element should be given an index and a parameter pack");
   2095 
   2096     // If the Index is out of bounds, the program is ill-formed.
   2097     TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
   2098     llvm::APSInt Index = IndexArg.getAsIntegral();
   2099     assert(Index >= 0 && "the index used with __type_pack_element should be of "
   2100                          "type std::size_t, and hence be non-negative");
   2101     if (Index >= Ts.pack_size()) {
   2102       SemaRef.Diag(TemplateArgs[0].getLocation(),
   2103                    diag::err_type_pack_element_out_of_bounds);
   2104       return QualType();
   2105     }
   2106 
   2107     // We simply return the type at index `Index`.
   2108     auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
   2109     return Nth->getAsType();
   2110   }
   2111   llvm_unreachable("unexpected BuiltinTemplateDecl!");
   2112 }
   2113 
   2114 QualType Sema::CheckTemplateIdType(TemplateName Name,
   2115                                    SourceLocation TemplateLoc,
   2116                                    TemplateArgumentListInfo &TemplateArgs) {
   2117   DependentTemplateName *DTN
   2118     = Name.getUnderlying().getAsDependentTemplateName();
   2119   if (DTN && DTN->isIdentifier())
   2120     // When building a template-id where the template-name is dependent,
   2121     // assume the template is a type template. Either our assumption is
   2122     // correct, or the code is ill-formed and will be diagnosed when the
   2123     // dependent name is substituted.
   2124     return Context.getDependentTemplateSpecializationType(ETK_None,
   2125                                                           DTN->getQualifier(),
   2126                                                           DTN->getIdentifier(),
   2127                                                           TemplateArgs);
   2128 
   2129   TemplateDecl *Template = Name.getAsTemplateDecl();
   2130   if (!Template || isa<FunctionTemplateDecl>(Template) ||
   2131       isa<VarTemplateDecl>(Template)) {
   2132     // We might have a substituted template template parameter pack. If so,
   2133     // build a template specialization type for it.
   2134     if (Name.getAsSubstTemplateTemplateParmPack())
   2135       return Context.getTemplateSpecializationType(Name, TemplateArgs);
   2136 
   2137     Diag(TemplateLoc, diag::err_template_id_not_a_type)
   2138       << Name;
   2139     NoteAllFoundTemplates(Name);
   2140     return QualType();
   2141   }
   2142 
   2143   // Check that the template argument list is well-formed for this
   2144   // template.
   2145   SmallVector<TemplateArgument, 4> Converted;
   2146   if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
   2147                                 false, Converted))
   2148     return QualType();
   2149 
   2150   QualType CanonType;
   2151 
   2152   bool InstantiationDependent = false;
   2153   if (TypeAliasTemplateDecl *AliasTemplate =
   2154           dyn_cast<TypeAliasTemplateDecl>(Template)) {
   2155     // Find the canonical type for this type alias template specialization.
   2156     TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
   2157     if (Pattern->isInvalidDecl())
   2158       return QualType();
   2159 
   2160     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2161                                       Converted);
   2162 
   2163     // Only substitute for the innermost template argument list.
   2164     MultiLevelTemplateArgumentList TemplateArgLists;
   2165     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   2166     unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
   2167     for (unsigned I = 0; I < Depth; ++I)
   2168       TemplateArgLists.addOuterTemplateArguments(None);
   2169 
   2170     LocalInstantiationScope Scope(*this);
   2171     InstantiatingTemplate Inst(*this, TemplateLoc, Template);
   2172     if (Inst.isInvalid())
   2173       return QualType();
   2174 
   2175     CanonType = SubstType(Pattern->getUnderlyingType(),
   2176                           TemplateArgLists, AliasTemplate->getLocation(),
   2177                           AliasTemplate->getDeclName());
   2178     if (CanonType.isNull())
   2179       return QualType();
   2180   } else if (Name.isDependent() ||
   2181              TemplateSpecializationType::anyDependentTemplateArguments(
   2182                TemplateArgs, InstantiationDependent)) {
   2183     // This class template specialization is a dependent
   2184     // type. Therefore, its canonical type is another class template
   2185     // specialization type that contains all of the converted
   2186     // arguments in canonical form. This ensures that, e.g., A<T> and
   2187     // A<T, T> have identical types when A is declared as:
   2188     //
   2189     //   template<typename T, typename U = T> struct A;
   2190     TemplateName CanonName = Context.getCanonicalTemplateName(Name);
   2191     CanonType = Context.getTemplateSpecializationType(CanonName,
   2192                                                       Converted);
   2193 
   2194     // FIXME: CanonType is not actually the canonical type, and unfortunately
   2195     // it is a TemplateSpecializationType that we will never use again.
   2196     // In the future, we need to teach getTemplateSpecializationType to only
   2197     // build the canonical type and return that to us.
   2198     CanonType = Context.getCanonicalType(CanonType);
   2199 
   2200     // This might work out to be a current instantiation, in which
   2201     // case the canonical type needs to be the InjectedClassNameType.
   2202     //
   2203     // TODO: in theory this could be a simple hashtable lookup; most
   2204     // changes to CurContext don't change the set of current
   2205     // instantiations.
   2206     if (isa<ClassTemplateDecl>(Template)) {
   2207       for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
   2208         // If we get out to a namespace, we're done.
   2209         if (Ctx->isFileContext()) break;
   2210 
   2211         // If this isn't a record, keep looking.
   2212         CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
   2213         if (!Record) continue;
   2214 
   2215         // Look for one of the two cases with InjectedClassNameTypes
   2216         // and check whether it's the same template.
   2217         if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
   2218             !Record->getDescribedClassTemplate())
   2219           continue;
   2220 
   2221         // Fetch the injected class name type and check whether its
   2222         // injected type is equal to the type we just built.
   2223         QualType ICNT = Context.getTypeDeclType(Record);
   2224         QualType Injected = cast<InjectedClassNameType>(ICNT)
   2225           ->getInjectedSpecializationType();
   2226 
   2227         if (CanonType != Injected->getCanonicalTypeInternal())
   2228           continue;
   2229 
   2230         // If so, the canonical type of this TST is the injected
   2231         // class name type of the record we just found.
   2232         assert(ICNT.isCanonical());
   2233         CanonType = ICNT;
   2234         break;
   2235       }
   2236     }
   2237   } else if (ClassTemplateDecl *ClassTemplate
   2238                = dyn_cast<ClassTemplateDecl>(Template)) {
   2239     // Find the class template specialization declaration that
   2240     // corresponds to these arguments.
   2241     void *InsertPos = nullptr;
   2242     ClassTemplateSpecializationDecl *Decl
   2243       = ClassTemplate->findSpecialization(Converted, InsertPos);
   2244     if (!Decl) {
   2245       // This is the first time we have referenced this class template
   2246       // specialization. Create the canonical declaration and add it to
   2247       // the set of specializations.
   2248       Decl = ClassTemplateSpecializationDecl::Create(Context,
   2249                             ClassTemplate->getTemplatedDecl()->getTagKind(),
   2250                                                 ClassTemplate->getDeclContext(),
   2251                             ClassTemplate->getTemplatedDecl()->getLocStart(),
   2252                                                 ClassTemplate->getLocation(),
   2253                                                      ClassTemplate,
   2254                                                      Converted, nullptr);
   2255       ClassTemplate->AddSpecialization(Decl, InsertPos);
   2256       if (ClassTemplate->isOutOfLine())
   2257         Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
   2258     }
   2259 
   2260     // Diagnose uses of this specialization.
   2261     (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
   2262 
   2263     CanonType = Context.getTypeDeclType(Decl);
   2264     assert(isa<RecordType>(CanonType) &&
   2265            "type of non-dependent specialization is not a RecordType");
   2266   } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
   2267     CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
   2268                                            TemplateArgs);
   2269   }
   2270 
   2271   // Build the fully-sugared type for this class template
   2272   // specialization, which refers back to the class template
   2273   // specialization we created or found.
   2274   return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
   2275 }
   2276 
   2277 TypeResult
   2278 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
   2279                           TemplateTy TemplateD, SourceLocation TemplateLoc,
   2280                           SourceLocation LAngleLoc,
   2281                           ASTTemplateArgsPtr TemplateArgsIn,
   2282                           SourceLocation RAngleLoc,
   2283                           bool IsCtorOrDtorName) {
   2284   if (SS.isInvalid())
   2285     return true;
   2286 
   2287   TemplateName Template = TemplateD.get();
   2288 
   2289   // Translate the parser's template argument list in our AST format.
   2290   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   2291   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   2292 
   2293   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   2294     QualType T
   2295       = Context.getDependentTemplateSpecializationType(ETK_None,
   2296                                                        DTN->getQualifier(),
   2297                                                        DTN->getIdentifier(),
   2298                                                        TemplateArgs);
   2299     // Build type-source information.
   2300     TypeLocBuilder TLB;
   2301     DependentTemplateSpecializationTypeLoc SpecTL
   2302       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
   2303     SpecTL.setElaboratedKeywordLoc(SourceLocation());
   2304     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2305     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2306     SpecTL.setTemplateNameLoc(TemplateLoc);
   2307     SpecTL.setLAngleLoc(LAngleLoc);
   2308     SpecTL.setRAngleLoc(RAngleLoc);
   2309     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
   2310       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   2311     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
   2312   }
   2313 
   2314   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
   2315 
   2316   if (Result.isNull())
   2317     return true;
   2318 
   2319   // Build type-source information.
   2320   TypeLocBuilder TLB;
   2321   TemplateSpecializationTypeLoc SpecTL
   2322     = TLB.push<TemplateSpecializationTypeLoc>(Result);
   2323   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2324   SpecTL.setTemplateNameLoc(TemplateLoc);
   2325   SpecTL.setLAngleLoc(LAngleLoc);
   2326   SpecTL.setRAngleLoc(RAngleLoc);
   2327   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
   2328     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
   2329 
   2330   // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
   2331   // constructor or destructor name (in such a case, the scope specifier
   2332   // will be attached to the enclosing Decl or Expr node).
   2333   if (SS.isNotEmpty() && !IsCtorOrDtorName) {
   2334     // Create an elaborated-type-specifier containing the nested-name-specifier.
   2335     Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
   2336     ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
   2337     ElabTL.setElaboratedKeywordLoc(SourceLocation());
   2338     ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2339   }
   2340 
   2341   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   2342 }
   2343 
   2344 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
   2345                                         TypeSpecifierType TagSpec,
   2346                                         SourceLocation TagLoc,
   2347                                         CXXScopeSpec &SS,
   2348                                         SourceLocation TemplateKWLoc,
   2349                                         TemplateTy TemplateD,
   2350                                         SourceLocation TemplateLoc,
   2351                                         SourceLocation LAngleLoc,
   2352                                         ASTTemplateArgsPtr TemplateArgsIn,
   2353                                         SourceLocation RAngleLoc) {
   2354   TemplateName Template = TemplateD.get();
   2355 
   2356   // Translate the parser's template argument list in our AST format.
   2357   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   2358   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   2359 
   2360   // Determine the tag kind
   2361   TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   2362   ElaboratedTypeKeyword Keyword
   2363     = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
   2364 
   2365   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   2366     QualType T = Context.getDependentTemplateSpecializationType(Keyword,
   2367                                                           DTN->getQualifier(),
   2368                                                           DTN->getIdentifier(),
   2369                                                                 TemplateArgs);
   2370 
   2371     // Build type-source information.
   2372     TypeLocBuilder TLB;
   2373     DependentTemplateSpecializationTypeLoc SpecTL
   2374       = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
   2375     SpecTL.setElaboratedKeywordLoc(TagLoc);
   2376     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2377     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2378     SpecTL.setTemplateNameLoc(TemplateLoc);
   2379     SpecTL.setLAngleLoc(LAngleLoc);
   2380     SpecTL.setRAngleLoc(RAngleLoc);
   2381     for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
   2382       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   2383     return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
   2384   }
   2385 
   2386   if (TypeAliasTemplateDecl *TAT =
   2387         dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
   2388     // C++0x [dcl.type.elab]p2:
   2389     //   If the identifier resolves to a typedef-name or the simple-template-id
   2390     //   resolves to an alias template specialization, the
   2391     //   elaborated-type-specifier is ill-formed.
   2392     Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
   2393     Diag(TAT->getLocation(), diag::note_declared_at);
   2394   }
   2395 
   2396   QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
   2397   if (Result.isNull())
   2398     return TypeResult(true);
   2399 
   2400   // Check the tag kind
   2401   if (const RecordType *RT = Result->getAs<RecordType>()) {
   2402     RecordDecl *D = RT->getDecl();
   2403 
   2404     IdentifierInfo *Id = D->getIdentifier();
   2405     assert(Id && "templated class must have an identifier");
   2406 
   2407     if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
   2408                                       TagLoc, Id)) {
   2409       Diag(TagLoc, diag::err_use_with_wrong_tag)
   2410         << Result
   2411         << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
   2412       Diag(D->getLocation(), diag::note_previous_use);
   2413     }
   2414   }
   2415 
   2416   // Provide source-location information for the template specialization.
   2417   TypeLocBuilder TLB;
   2418   TemplateSpecializationTypeLoc SpecTL
   2419     = TLB.push<TemplateSpecializationTypeLoc>(Result);
   2420   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   2421   SpecTL.setTemplateNameLoc(TemplateLoc);
   2422   SpecTL.setLAngleLoc(LAngleLoc);
   2423   SpecTL.setRAngleLoc(RAngleLoc);
   2424   for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
   2425     SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
   2426 
   2427   // Construct an elaborated type containing the nested-name-specifier (if any)
   2428   // and tag keyword.
   2429   Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
   2430   ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
   2431   ElabTL.setElaboratedKeywordLoc(TagLoc);
   2432   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2433   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   2434 }
   2435 
   2436 static bool CheckTemplatePartialSpecializationArgs(
   2437     Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
   2438     unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
   2439 
   2440 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
   2441                                              NamedDecl *PrevDecl,
   2442                                              SourceLocation Loc,
   2443                                              bool IsPartialSpecialization);
   2444 
   2445 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
   2446 
   2447 static bool isTemplateArgumentTemplateParameter(
   2448     const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
   2449   switch (Arg.getKind()) {
   2450   case TemplateArgument::Null:
   2451   case TemplateArgument::NullPtr:
   2452   case TemplateArgument::Integral:
   2453   case TemplateArgument::Declaration:
   2454   case TemplateArgument::Pack:
   2455   case TemplateArgument::TemplateExpansion:
   2456     return false;
   2457 
   2458   case TemplateArgument::Type: {
   2459     QualType Type = Arg.getAsType();
   2460     const TemplateTypeParmType *TPT =
   2461         Arg.getAsType()->getAs<TemplateTypeParmType>();
   2462     return TPT && !Type.hasQualifiers() &&
   2463            TPT->getDepth() == Depth && TPT->getIndex() == Index;
   2464   }
   2465 
   2466   case TemplateArgument::Expression: {
   2467     DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
   2468     if (!DRE || !DRE->getDecl())
   2469       return false;
   2470     const NonTypeTemplateParmDecl *NTTP =
   2471         dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   2472     return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
   2473   }
   2474 
   2475   case TemplateArgument::Template:
   2476     const TemplateTemplateParmDecl *TTP =
   2477         dyn_cast_or_null<TemplateTemplateParmDecl>(
   2478             Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
   2479     return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
   2480   }
   2481   llvm_unreachable("unexpected kind of template argument");
   2482 }
   2483 
   2484 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
   2485                                     ArrayRef<TemplateArgument> Args) {
   2486   if (Params->size() != Args.size())
   2487     return false;
   2488 
   2489   unsigned Depth = Params->getDepth();
   2490 
   2491   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
   2492     TemplateArgument Arg = Args[I];
   2493 
   2494     // If the parameter is a pack expansion, the argument must be a pack
   2495     // whose only element is a pack expansion.
   2496     if (Params->getParam(I)->isParameterPack()) {
   2497       if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
   2498           !Arg.pack_begin()->isPackExpansion())
   2499         return false;
   2500       Arg = Arg.pack_begin()->getPackExpansionPattern();
   2501     }
   2502 
   2503     if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
   2504       return false;
   2505   }
   2506 
   2507   return true;
   2508 }
   2509 
   2510 /// Convert the parser's template argument list representation into our form.
   2511 static TemplateArgumentListInfo
   2512 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
   2513   TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
   2514                                         TemplateId.RAngleLoc);
   2515   ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
   2516                                      TemplateId.NumArgs);
   2517   S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
   2518   return TemplateArgs;
   2519 }
   2520 
   2521 DeclResult Sema::ActOnVarTemplateSpecialization(
   2522     Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
   2523     TemplateParameterList *TemplateParams, StorageClass SC,
   2524     bool IsPartialSpecialization) {
   2525   // D must be variable template id.
   2526   assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
   2527          "Variable template specialization is declared with a template it.");
   2528 
   2529   TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   2530   TemplateArgumentListInfo TemplateArgs =
   2531       makeTemplateArgumentListInfo(*this, *TemplateId);
   2532   SourceLocation TemplateNameLoc = D.getIdentifierLoc();
   2533   SourceLocation LAngleLoc = TemplateId->LAngleLoc;
   2534   SourceLocation RAngleLoc = TemplateId->RAngleLoc;
   2535 
   2536   TemplateName Name = TemplateId->Template.get();
   2537 
   2538   // The template-id must name a variable template.
   2539   VarTemplateDecl *VarTemplate =
   2540       dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
   2541   if (!VarTemplate) {
   2542     NamedDecl *FnTemplate;
   2543     if (auto *OTS = Name.getAsOverloadedTemplate())
   2544       FnTemplate = *OTS->begin();
   2545     else
   2546       FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
   2547     if (FnTemplate)
   2548       return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
   2549                << FnTemplate->getDeclName();
   2550     return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
   2551              << IsPartialSpecialization;
   2552   }
   2553 
   2554   // Check for unexpanded parameter packs in any of the template arguments.
   2555   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   2556     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
   2557                                         UPPC_PartialSpecialization))
   2558       return true;
   2559 
   2560   // Check that the template argument list is well-formed for this
   2561   // template.
   2562   SmallVector<TemplateArgument, 4> Converted;
   2563   if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
   2564                                 false, Converted))
   2565     return true;
   2566 
   2567   // Find the variable template (partial) specialization declaration that
   2568   // corresponds to these arguments.
   2569   if (IsPartialSpecialization) {
   2570     if (CheckTemplatePartialSpecializationArgs(
   2571             *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
   2572             TemplateArgs.size(), Converted))
   2573       return true;
   2574 
   2575     bool InstantiationDependent;
   2576     if (!Name.isDependent() &&
   2577         !TemplateSpecializationType::anyDependentTemplateArguments(
   2578             TemplateArgs.arguments(),
   2579             InstantiationDependent)) {
   2580       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
   2581           << VarTemplate->getDeclName();
   2582       IsPartialSpecialization = false;
   2583     }
   2584 
   2585     if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
   2586                                 Converted)) {
   2587       // C++ [temp.class.spec]p9b3:
   2588       //
   2589       //   -- The argument list of the specialization shall not be identical
   2590       //      to the implicit argument list of the primary template.
   2591       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
   2592         << /*variable template*/ 1
   2593         << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
   2594         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
   2595       // FIXME: Recover from this by treating the declaration as a redeclaration
   2596       // of the primary template.
   2597       return true;
   2598     }
   2599   }
   2600 
   2601   void *InsertPos = nullptr;
   2602   VarTemplateSpecializationDecl *PrevDecl = nullptr;
   2603 
   2604   if (IsPartialSpecialization)
   2605     // FIXME: Template parameter list matters too
   2606     PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
   2607   else
   2608     PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
   2609 
   2610   VarTemplateSpecializationDecl *Specialization = nullptr;
   2611 
   2612   // Check whether we can declare a variable template specialization in
   2613   // the current scope.
   2614   if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
   2615                                        TemplateNameLoc,
   2616                                        IsPartialSpecialization))
   2617     return true;
   2618 
   2619   if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
   2620     // Since the only prior variable template specialization with these
   2621     // arguments was referenced but not declared,  reuse that
   2622     // declaration node as our own, updating its source location and
   2623     // the list of outer template parameters to reflect our new declaration.
   2624     Specialization = PrevDecl;
   2625     Specialization->setLocation(TemplateNameLoc);
   2626     PrevDecl = nullptr;
   2627   } else if (IsPartialSpecialization) {
   2628     // Create a new class template partial specialization declaration node.
   2629     VarTemplatePartialSpecializationDecl *PrevPartial =
   2630         cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
   2631     VarTemplatePartialSpecializationDecl *Partial =
   2632         VarTemplatePartialSpecializationDecl::Create(
   2633             Context, VarTemplate->getDeclContext(), TemplateKWLoc,
   2634             TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
   2635             Converted, TemplateArgs);
   2636 
   2637     if (!PrevPartial)
   2638       VarTemplate->AddPartialSpecialization(Partial, InsertPos);
   2639     Specialization = Partial;
   2640 
   2641     // If we are providing an explicit specialization of a member variable
   2642     // template specialization, make a note of that.
   2643     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
   2644       PrevPartial->setMemberSpecialization();
   2645 
   2646     // Check that all of the template parameters of the variable template
   2647     // partial specialization are deducible from the template
   2648     // arguments. If not, this variable template partial specialization
   2649     // will never be used.
   2650     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
   2651     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
   2652                                TemplateParams->getDepth(), DeducibleParams);
   2653 
   2654     if (!DeducibleParams.all()) {
   2655       unsigned NumNonDeducible =
   2656           DeducibleParams.size() - DeducibleParams.count();
   2657       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
   2658         << /*variable template*/ 1 << (NumNonDeducible > 1)
   2659         << SourceRange(TemplateNameLoc, RAngleLoc);
   2660       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
   2661         if (!DeducibleParams[I]) {
   2662           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
   2663           if (Param->getDeclName())
   2664             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
   2665                 << Param->getDeclName();
   2666           else
   2667             Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
   2668                 << "(anonymous)";
   2669         }
   2670       }
   2671     }
   2672   } else {
   2673     // Create a new class template specialization declaration node for
   2674     // this explicit specialization or friend declaration.
   2675     Specialization = VarTemplateSpecializationDecl::Create(
   2676         Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
   2677         VarTemplate, DI->getType(), DI, SC, Converted);
   2678     Specialization->setTemplateArgsInfo(TemplateArgs);
   2679 
   2680     if (!PrevDecl)
   2681       VarTemplate->AddSpecialization(Specialization, InsertPos);
   2682   }
   2683 
   2684   // C++ [temp.expl.spec]p6:
   2685   //   If a template, a member template or the member of a class template is
   2686   //   explicitly specialized then that specialization shall be declared
   2687   //   before the first use of that specialization that would cause an implicit
   2688   //   instantiation to take place, in every translation unit in which such a
   2689   //   use occurs; no diagnostic is required.
   2690   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
   2691     bool Okay = false;
   2692     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   2693       // Is there any previous explicit specialization declaration?
   2694       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   2695         Okay = true;
   2696         break;
   2697       }
   2698     }
   2699 
   2700     if (!Okay) {
   2701       SourceRange Range(TemplateNameLoc, RAngleLoc);
   2702       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
   2703           << Name << Range;
   2704 
   2705       Diag(PrevDecl->getPointOfInstantiation(),
   2706            diag::note_instantiation_required_here)
   2707           << (PrevDecl->getTemplateSpecializationKind() !=
   2708               TSK_ImplicitInstantiation);
   2709       return true;
   2710     }
   2711   }
   2712 
   2713   Specialization->setTemplateKeywordLoc(TemplateKWLoc);
   2714   Specialization->setLexicalDeclContext(CurContext);
   2715 
   2716   // Add the specialization into its lexical context, so that it can
   2717   // be seen when iterating through the list of declarations in that
   2718   // context. However, specializations are not found by name lookup.
   2719   CurContext->addDecl(Specialization);
   2720 
   2721   // Note that this is an explicit specialization.
   2722   Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
   2723 
   2724   if (PrevDecl) {
   2725     // Check that this isn't a redefinition of this specialization,
   2726     // merging with previous declarations.
   2727     LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
   2728                           ForRedeclaration);
   2729     PrevSpec.addDecl(PrevDecl);
   2730     D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
   2731   } else if (Specialization->isStaticDataMember() &&
   2732              Specialization->isOutOfLine()) {
   2733     Specialization->setAccess(VarTemplate->getAccess());
   2734   }
   2735 
   2736   // Link instantiations of static data members back to the template from
   2737   // which they were instantiated.
   2738   if (Specialization->isStaticDataMember())
   2739     Specialization->setInstantiationOfStaticDataMember(
   2740         VarTemplate->getTemplatedDecl(),
   2741         Specialization->getSpecializationKind());
   2742 
   2743   return Specialization;
   2744 }
   2745 
   2746 namespace {
   2747 /// \brief A partial specialization whose template arguments have matched
   2748 /// a given template-id.
   2749 struct PartialSpecMatchResult {
   2750   VarTemplatePartialSpecializationDecl *Partial;
   2751   TemplateArgumentList *Args;
   2752 };
   2753 } // end anonymous namespace
   2754 
   2755 DeclResult
   2756 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
   2757                          SourceLocation TemplateNameLoc,
   2758                          const TemplateArgumentListInfo &TemplateArgs) {
   2759   assert(Template && "A variable template id without template?");
   2760 
   2761   // Check that the template argument list is well-formed for this template.
   2762   SmallVector<TemplateArgument, 4> Converted;
   2763   if (CheckTemplateArgumentList(
   2764           Template, TemplateNameLoc,
   2765           const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
   2766           Converted))
   2767     return true;
   2768 
   2769   // Find the variable template specialization declaration that
   2770   // corresponds to these arguments.
   2771   void *InsertPos = nullptr;
   2772   if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
   2773           Converted, InsertPos)) {
   2774     checkSpecializationVisibility(TemplateNameLoc, Spec);
   2775     // If we already have a variable template specialization, return it.
   2776     return Spec;
   2777   }
   2778 
   2779   // This is the first time we have referenced this variable template
   2780   // specialization. Create the canonical declaration and add it to
   2781   // the set of specializations, based on the closest partial specialization
   2782   // that it represents. That is,
   2783   VarDecl *InstantiationPattern = Template->getTemplatedDecl();
   2784   TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
   2785                                        Converted);
   2786   TemplateArgumentList *InstantiationArgs = &TemplateArgList;
   2787   bool AmbiguousPartialSpec = false;
   2788   typedef PartialSpecMatchResult MatchResult;
   2789   SmallVector<MatchResult, 4> Matched;
   2790   SourceLocation PointOfInstantiation = TemplateNameLoc;
   2791   TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
   2792                                             /*ForTakingAddress=*/false);
   2793 
   2794   // 1. Attempt to find the closest partial specialization that this
   2795   // specializes, if any.
   2796   // If any of the template arguments is dependent, then this is probably
   2797   // a placeholder for an incomplete declarative context; which must be
   2798   // complete by instantiation time. Thus, do not search through the partial
   2799   // specializations yet.
   2800   // TODO: Unify with InstantiateClassTemplateSpecialization()?
   2801   //       Perhaps better after unification of DeduceTemplateArguments() and
   2802   //       getMoreSpecializedPartialSpecialization().
   2803   bool InstantiationDependent = false;
   2804   if (!TemplateSpecializationType::anyDependentTemplateArguments(
   2805           TemplateArgs, InstantiationDependent)) {
   2806 
   2807     SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
   2808     Template->getPartialSpecializations(PartialSpecs);
   2809 
   2810     for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
   2811       VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
   2812       TemplateDeductionInfo Info(FailedCandidates.getLocation());
   2813 
   2814       if (TemplateDeductionResult Result =
   2815               DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
   2816         // Store the failed-deduction information for use in diagnostics, later.
   2817         // TODO: Actually use the failed-deduction info?
   2818         FailedCandidates.addCandidate().set(
   2819             DeclAccessPair::make(Template, AS_public), Partial,
   2820             MakeDeductionFailureInfo(Context, Result, Info));
   2821         (void)Result;
   2822       } else {
   2823         Matched.push_back(PartialSpecMatchResult());
   2824         Matched.back().Partial = Partial;
   2825         Matched.back().Args = Info.take();
   2826       }
   2827     }
   2828 
   2829     if (Matched.size() >= 1) {
   2830       SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
   2831       if (Matched.size() == 1) {
   2832         //   -- If exactly one matching specialization is found, the
   2833         //      instantiation is generated from that specialization.
   2834         // We don't need to do anything for this.
   2835       } else {
   2836         //   -- If more than one matching specialization is found, the
   2837         //      partial order rules (14.5.4.2) are used to determine
   2838         //      whether one of the specializations is more specialized
   2839         //      than the others. If none of the specializations is more
   2840         //      specialized than all of the other matching
   2841         //      specializations, then the use of the variable template is
   2842         //      ambiguous and the program is ill-formed.
   2843         for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
   2844                                                    PEnd = Matched.end();
   2845              P != PEnd; ++P) {
   2846           if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
   2847                                                       PointOfInstantiation) ==
   2848               P->Partial)
   2849             Best = P;
   2850         }
   2851 
   2852         // Determine if the best partial specialization is more specialized than
   2853         // the others.
   2854         for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
   2855                                                    PEnd = Matched.end();
   2856              P != PEnd; ++P) {
   2857           if (P != Best && getMoreSpecializedPartialSpecialization(
   2858                                P->Partial, Best->Partial,
   2859                                PointOfInstantiation) != Best->Partial) {
   2860             AmbiguousPartialSpec = true;
   2861             break;
   2862           }
   2863         }
   2864       }
   2865 
   2866       // Instantiate using the best variable template partial specialization.
   2867       InstantiationPattern = Best->Partial;
   2868       InstantiationArgs = Best->Args;
   2869     } else {
   2870       //   -- If no match is found, the instantiation is generated
   2871       //      from the primary template.
   2872       // InstantiationPattern = Template->getTemplatedDecl();
   2873     }
   2874   }
   2875 
   2876   // 2. Create the canonical declaration.
   2877   // Note that we do not instantiate a definition until we see an odr-use
   2878   // in DoMarkVarDeclReferenced().
   2879   // FIXME: LateAttrs et al.?
   2880   VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
   2881       Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
   2882       Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
   2883   if (!Decl)
   2884     return true;
   2885 
   2886   if (AmbiguousPartialSpec) {
   2887     // Partial ordering did not produce a clear winner. Complain.
   2888     Decl->setInvalidDecl();
   2889     Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
   2890         << Decl;
   2891 
   2892     // Print the matching partial specializations.
   2893     for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
   2894                                                PEnd = Matched.end();
   2895          P != PEnd; ++P)
   2896       Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
   2897           << getTemplateArgumentBindingsText(
   2898                  P->Partial->getTemplateParameters(), *P->Args);
   2899     return true;
   2900   }
   2901 
   2902   if (VarTemplatePartialSpecializationDecl *D =
   2903           dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
   2904     Decl->setInstantiationOf(D, InstantiationArgs);
   2905 
   2906   checkSpecializationVisibility(TemplateNameLoc, Decl);
   2907 
   2908   assert(Decl && "No variable template specialization?");
   2909   return Decl;
   2910 }
   2911 
   2912 ExprResult
   2913 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
   2914                          const DeclarationNameInfo &NameInfo,
   2915                          VarTemplateDecl *Template, SourceLocation TemplateLoc,
   2916                          const TemplateArgumentListInfo *TemplateArgs) {
   2917 
   2918   DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
   2919                                        *TemplateArgs);
   2920   if (Decl.isInvalid())
   2921     return ExprError();
   2922 
   2923   VarDecl *Var = cast<VarDecl>(Decl.get());
   2924   if (!Var->getTemplateSpecializationKind())
   2925     Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
   2926                                        NameInfo.getLoc());
   2927 
   2928   // Build an ordinary singleton decl ref.
   2929   return BuildDeclarationNameExpr(SS, NameInfo, Var,
   2930                                   /*FoundD=*/nullptr, TemplateArgs);
   2931 }
   2932 
   2933 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
   2934                                      SourceLocation TemplateKWLoc,
   2935                                      LookupResult &R,
   2936                                      bool RequiresADL,
   2937                                  const TemplateArgumentListInfo *TemplateArgs) {
   2938   // FIXME: Can we do any checking at this point? I guess we could check the
   2939   // template arguments that we have against the template name, if the template
   2940   // name refers to a single template. That's not a terribly common case,
   2941   // though.
   2942   // foo<int> could identify a single function unambiguously
   2943   // This approach does NOT work, since f<int>(1);
   2944   // gets resolved prior to resorting to overload resolution
   2945   // i.e., template<class T> void f(double);
   2946   //       vs template<class T, class U> void f(U);
   2947 
   2948   // These should be filtered out by our callers.
   2949   assert(!R.empty() && "empty lookup results when building templateid");
   2950   assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
   2951 
   2952   // In C++1y, check variable template ids.
   2953   bool InstantiationDependent;
   2954   if (R.getAsSingle<VarTemplateDecl>() &&
   2955       !TemplateSpecializationType::anyDependentTemplateArguments(
   2956            *TemplateArgs, InstantiationDependent)) {
   2957     return CheckVarTemplateId(SS, R.getLookupNameInfo(),
   2958                               R.getAsSingle<VarTemplateDecl>(),
   2959                               TemplateKWLoc, TemplateArgs);
   2960   }
   2961 
   2962   // We don't want lookup warnings at this point.
   2963   R.suppressDiagnostics();
   2964 
   2965   UnresolvedLookupExpr *ULE
   2966     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2967                                    SS.getWithLocInContext(Context),
   2968                                    TemplateKWLoc,
   2969                                    R.getLookupNameInfo(),
   2970                                    RequiresADL, TemplateArgs,
   2971                                    R.begin(), R.end());
   2972 
   2973   return ULE;
   2974 }
   2975 
   2976 // We actually only call this from template instantiation.
   2977 ExprResult
   2978 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
   2979                                    SourceLocation TemplateKWLoc,
   2980                                    const DeclarationNameInfo &NameInfo,
   2981                              const TemplateArgumentListInfo *TemplateArgs) {
   2982 
   2983   assert(TemplateArgs || TemplateKWLoc.isValid());
   2984   DeclContext *DC;
   2985   if (!(DC = computeDeclContext(SS, false)) ||
   2986       DC->isDependentContext() ||
   2987       RequireCompleteDeclContext(SS, DC))
   2988     return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
   2989 
   2990   bool MemberOfUnknownSpecialization;
   2991   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2992   LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
   2993                      MemberOfUnknownSpecialization);
   2994 
   2995   if (R.isAmbiguous())
   2996     return ExprError();
   2997 
   2998   if (R.empty()) {
   2999     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
   3000       << NameInfo.getName() << SS.getRange();
   3001     return ExprError();
   3002   }
   3003 
   3004   if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
   3005     Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
   3006       << SS.getScopeRep()
   3007       << NameInfo.getName().getAsString() << SS.getRange();
   3008     Diag(Temp->getLocation(), diag::note_referenced_class_template);
   3009     return ExprError();
   3010   }
   3011 
   3012   return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
   3013 }
   3014 
   3015 /// \brief Form a dependent template name.
   3016 ///
   3017 /// This action forms a dependent template name given the template
   3018 /// name and its (presumably dependent) scope specifier. For
   3019 /// example, given "MetaFun::template apply", the scope specifier \p
   3020 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
   3021 /// of the "template" keyword, and "apply" is the \p Name.
   3022 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
   3023                                                   CXXScopeSpec &SS,
   3024                                                   SourceLocation TemplateKWLoc,
   3025                                                   UnqualifiedId &Name,
   3026                                                   ParsedType ObjectType,
   3027                                                   bool EnteringContext,
   3028                                                   TemplateTy &Result) {
   3029   if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
   3030     Diag(TemplateKWLoc,
   3031          getLangOpts().CPlusPlus11 ?
   3032            diag::warn_cxx98_compat_template_outside_of_template :
   3033            diag::ext_template_outside_of_template)
   3034       << FixItHint::CreateRemoval(TemplateKWLoc);
   3035 
   3036   DeclContext *LookupCtx = nullptr;
   3037   if (SS.isSet())
   3038     LookupCtx = computeDeclContext(SS, EnteringContext);
   3039   if (!LookupCtx && ObjectType)
   3040     LookupCtx = computeDeclContext(ObjectType.get());
   3041   if (LookupCtx) {
   3042     // C++0x [temp.names]p5:
   3043     //   If a name prefixed by the keyword template is not the name of
   3044     //   a template, the program is ill-formed. [Note: the keyword
   3045     //   template may not be applied to non-template members of class
   3046     //   templates. -end note ] [ Note: as is the case with the
   3047     //   typename prefix, the template prefix is allowed in cases
   3048     //   where it is not strictly necessary; i.e., when the
   3049     //   nested-name-specifier or the expression on the left of the ->
   3050     //   or . is not dependent on a template-parameter, or the use
   3051     //   does not appear in the scope of a template. -end note]
   3052     //
   3053     // Note: C++03 was more strict here, because it banned the use of
   3054     // the "template" keyword prior to a template-name that was not a
   3055     // dependent name. C++ DR468 relaxed this requirement (the
   3056     // "template" keyword is now permitted). We follow the C++0x
   3057     // rules, even in C++03 mode with a warning, retroactively applying the DR.
   3058     bool MemberOfUnknownSpecialization;
   3059     TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
   3060                                           ObjectType, EnteringContext, Result,
   3061                                           MemberOfUnknownSpecialization);
   3062     if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
   3063         isa<CXXRecordDecl>(LookupCtx) &&
   3064         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
   3065          cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
   3066       // This is a dependent template. Handle it below.
   3067     } else if (TNK == TNK_Non_template) {
   3068       Diag(Name.getLocStart(),
   3069            diag::err_template_kw_refers_to_non_template)
   3070         << GetNameFromUnqualifiedId(Name).getName()
   3071         << Name.getSourceRange()
   3072         << TemplateKWLoc;
   3073       return TNK_Non_template;
   3074     } else {
   3075       // We found something; return it.
   3076       return TNK;
   3077     }
   3078   }
   3079 
   3080   NestedNameSpecifier *Qualifier = SS.getScopeRep();
   3081 
   3082   switch (Name.getKind()) {
   3083   case UnqualifiedId::IK_Identifier:
   3084     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
   3085                                                               Name.Identifier));
   3086     return TNK_Dependent_template_name;
   3087 
   3088   case UnqualifiedId::IK_OperatorFunctionId:
   3089     Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
   3090                                              Name.OperatorFunctionId.Operator));
   3091     return TNK_Function_template;
   3092 
   3093   case UnqualifiedId::IK_LiteralOperatorId:
   3094     llvm_unreachable("literal operator id cannot have a dependent scope");
   3095 
   3096   default:
   3097     break;
   3098   }
   3099 
   3100   Diag(Name.getLocStart(),
   3101        diag::err_template_kw_refers_to_non_template)
   3102     << GetNameFromUnqualifiedId(Name).getName()
   3103     << Name.getSourceRange()
   3104     << TemplateKWLoc;
   3105   return TNK_Non_template;
   3106 }
   3107 
   3108 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
   3109                                      TemplateArgumentLoc &AL,
   3110                           SmallVectorImpl<TemplateArgument> &Converted) {
   3111   const TemplateArgument &Arg = AL.getArgument();
   3112   QualType ArgType;
   3113   TypeSourceInfo *TSI = nullptr;
   3114 
   3115   // Check template type parameter.
   3116   switch(Arg.getKind()) {
   3117   case TemplateArgument::Type:
   3118     // C++ [temp.arg.type]p1:
   3119     //   A template-argument for a template-parameter which is a
   3120     //   type shall be a type-id.
   3121     ArgType = Arg.getAsType();
   3122     TSI = AL.getTypeSourceInfo();
   3123     break;
   3124   case TemplateArgument::Template: {
   3125     // We have a template type parameter but the template argument
   3126     // is a template without any arguments.
   3127     SourceRange SR = AL.getSourceRange();
   3128     TemplateName Name = Arg.getAsTemplate();
   3129     Diag(SR.getBegin(), diag::err_template_missing_args)
   3130       << Name << SR;
   3131     if (TemplateDecl *Decl = Name.getAsTemplateDecl())
   3132       Diag(Decl->getLocation(), diag::note_template_decl_here);
   3133 
   3134     return true;
   3135   }
   3136   case TemplateArgument::Expression: {
   3137     // We have a template type parameter but the template argument is an
   3138     // expression; see if maybe it is missing the "typename" keyword.
   3139     CXXScopeSpec SS;
   3140     DeclarationNameInfo NameInfo;
   3141 
   3142     if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
   3143       SS.Adopt(ArgExpr->getQualifierLoc());
   3144       NameInfo = ArgExpr->getNameInfo();
   3145     } else if (DependentScopeDeclRefExpr *ArgExpr =
   3146                dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
   3147       SS.Adopt(ArgExpr->getQualifierLoc());
   3148       NameInfo = ArgExpr->getNameInfo();
   3149     } else if (CXXDependentScopeMemberExpr *ArgExpr =
   3150                dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
   3151       if (ArgExpr->isImplicitAccess()) {
   3152         SS.Adopt(ArgExpr->getQualifierLoc());
   3153         NameInfo = ArgExpr->getMemberNameInfo();
   3154       }
   3155     }
   3156 
   3157     if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
   3158       LookupResult Result(*this, NameInfo, LookupOrdinaryName);
   3159       LookupParsedName(Result, CurScope, &SS);
   3160 
   3161       if (Result.getAsSingle<TypeDecl>() ||
   3162           Result.getResultKind() ==
   3163               LookupResult::NotFoundInCurrentInstantiation) {
   3164         // Suggest that the user add 'typename' before the NNS.
   3165         SourceLocation Loc = AL.getSourceRange().getBegin();
   3166         Diag(Loc, getLangOpts().MSVCCompat
   3167                       ? diag::ext_ms_template_type_arg_missing_typename
   3168                       : diag::err_template_arg_must_be_type_suggest)
   3169             << FixItHint::CreateInsertion(Loc, "typename ");
   3170         Diag(Param->getLocation(), diag::note_template_param_here);
   3171 
   3172         // Recover by synthesizing a type using the location information that we
   3173         // already have.
   3174         ArgType =
   3175             Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
   3176         TypeLocBuilder TLB;
   3177         DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
   3178         TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
   3179         TL.setQualifierLoc(SS.getWithLocInContext(Context));
   3180         TL.setNameLoc(NameInfo.getLoc());
   3181         TSI = TLB.getTypeSourceInfo(Context, ArgType);
   3182 
   3183         // Overwrite our input TemplateArgumentLoc so that we can recover
   3184         // properly.
   3185         AL = TemplateArgumentLoc(TemplateArgument(ArgType),
   3186                                  TemplateArgumentLocInfo(TSI));
   3187 
   3188         break;
   3189       }
   3190     }
   3191     // fallthrough
   3192   }
   3193   default: {
   3194     // We have a template type parameter but the template argument
   3195     // is not a type.
   3196     SourceRange SR = AL.getSourceRange();
   3197     Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
   3198     Diag(Param->getLocation(), diag::note_template_param_here);
   3199 
   3200     return true;
   3201   }
   3202   }
   3203 
   3204   if (CheckTemplateArgument(Param, TSI))
   3205     return true;
   3206 
   3207   // Add the converted template type argument.
   3208   ArgType = Context.getCanonicalType(ArgType);
   3209 
   3210   // Objective-C ARC:
   3211   //   If an explicitly-specified template argument type is a lifetime type
   3212   //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
   3213   if (getLangOpts().ObjCAutoRefCount &&
   3214       ArgType->isObjCLifetimeType() &&
   3215       !ArgType.getObjCLifetime()) {
   3216     Qualifiers Qs;
   3217     Qs.setObjCLifetime(Qualifiers::OCL_Strong);
   3218     ArgType = Context.getQualifiedType(ArgType, Qs);
   3219   }
   3220 
   3221   Converted.push_back(TemplateArgument(ArgType));
   3222   return false;
   3223 }
   3224 
   3225 /// \brief Substitute template arguments into the default template argument for
   3226 /// the given template type parameter.
   3227 ///
   3228 /// \param SemaRef the semantic analysis object for which we are performing
   3229 /// the substitution.
   3230 ///
   3231 /// \param Template the template that we are synthesizing template arguments
   3232 /// for.
   3233 ///
   3234 /// \param TemplateLoc the location of the template name that started the
   3235 /// template-id we are checking.
   3236 ///
   3237 /// \param RAngleLoc the location of the right angle bracket ('>') that
   3238 /// terminates the template-id.
   3239 ///
   3240 /// \param Param the template template parameter whose default we are
   3241 /// substituting into.
   3242 ///
   3243 /// \param Converted the list of template arguments provided for template
   3244 /// parameters that precede \p Param in the template parameter list.
   3245 /// \returns the substituted template argument, or NULL if an error occurred.
   3246 static TypeSourceInfo *
   3247 SubstDefaultTemplateArgument(Sema &SemaRef,
   3248                              TemplateDecl *Template,
   3249                              SourceLocation TemplateLoc,
   3250                              SourceLocation RAngleLoc,
   3251                              TemplateTypeParmDecl *Param,
   3252                          SmallVectorImpl<TemplateArgument> &Converted) {
   3253   TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
   3254 
   3255   // If the argument type is dependent, instantiate it now based
   3256   // on the previously-computed template arguments.
   3257   if (ArgType->getType()->isDependentType()) {
   3258     Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   3259                                      Template, Converted,
   3260                                      SourceRange(TemplateLoc, RAngleLoc));
   3261     if (Inst.isInvalid())
   3262       return nullptr;
   3263 
   3264     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
   3265 
   3266     // Only substitute for the innermost template argument list.
   3267     MultiLevelTemplateArgumentList TemplateArgLists;
   3268     TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   3269     for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
   3270       TemplateArgLists.addOuterTemplateArguments(None);
   3271 
   3272     Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
   3273     ArgType =
   3274         SemaRef.SubstType(ArgType, TemplateArgLists,
   3275                           Param->getDefaultArgumentLoc(), Param->getDeclName());
   3276   }
   3277 
   3278   return ArgType;
   3279 }
   3280 
   3281 /// \brief Substitute template arguments into the default template argument for
   3282 /// the given non-type template parameter.
   3283 ///
   3284 /// \param SemaRef the semantic analysis object for which we are performing
   3285 /// the substitution.
   3286 ///
   3287 /// \param Template the template that we are synthesizing template arguments
   3288 /// for.
   3289 ///
   3290 /// \param TemplateLoc the location of the template name that started the
   3291 /// template-id we are checking.
   3292 ///
   3293 /// \param RAngleLoc the location of the right angle bracket ('>') that
   3294 /// terminates the template-id.
   3295 ///
   3296 /// \param Param the non-type template parameter whose default we are
   3297 /// substituting into.
   3298 ///
   3299 /// \param Converted the list of template arguments provided for template
   3300 /// parameters that precede \p Param in the template parameter list.
   3301 ///
   3302 /// \returns the substituted template argument, or NULL if an error occurred.
   3303 static ExprResult
   3304 SubstDefaultTemplateArgument(Sema &SemaRef,
   3305                              TemplateDecl *Template,
   3306                              SourceLocation TemplateLoc,
   3307                              SourceLocation RAngleLoc,
   3308                              NonTypeTemplateParmDecl *Param,
   3309                         SmallVectorImpl<TemplateArgument> &Converted) {
   3310   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
   3311                                    Template, Converted,
   3312                                    SourceRange(TemplateLoc, RAngleLoc));
   3313   if (Inst.isInvalid())
   3314     return ExprError();
   3315 
   3316   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
   3317 
   3318   // Only substitute for the innermost template argument list.
   3319   MultiLevelTemplateArgumentList TemplateArgLists;
   3320   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   3321   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
   3322     TemplateArgLists.addOuterTemplateArguments(None);
   3323 
   3324   EnterExpressionEvaluationContext ConstantEvaluated(SemaRef,
   3325                                                      Sema::ConstantEvaluated);
   3326   return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
   3327 }
   3328 
   3329 /// \brief Substitute template arguments into the default template argument for
   3330 /// the given template template parameter.
   3331 ///
   3332 /// \param SemaRef the semantic analysis object for which we are performing
   3333 /// the substitution.
   3334 ///
   3335 /// \param Template the template that we are synthesizing template arguments
   3336 /// for.
   3337 ///
   3338 /// \param TemplateLoc the location of the template name that started the
   3339 /// template-id we are checking.
   3340 ///
   3341 /// \param RAngleLoc the location of the right angle bracket ('>') that
   3342 /// terminates the template-id.
   3343 ///
   3344 /// \param Param the template template parameter whose default we are
   3345 /// substituting into.
   3346 ///
   3347 /// \param Converted the list of template arguments provided for template
   3348 /// parameters that precede \p Param in the template parameter list.
   3349 ///
   3350 /// \param QualifierLoc Will be set to the nested-name-specifier (with
   3351 /// source-location information) that precedes the template name.
   3352 ///
   3353 /// \returns the substituted template argument, or NULL if an error occurred.
   3354 static TemplateName
   3355 SubstDefaultTemplateArgument(Sema &SemaRef,
   3356                              TemplateDecl *Template,
   3357                              SourceLocation TemplateLoc,
   3358                              SourceLocation RAngleLoc,
   3359                              TemplateTemplateParmDecl *Param,
   3360                        SmallVectorImpl<TemplateArgument> &Converted,
   3361                              NestedNameSpecifierLoc &QualifierLoc) {
   3362   Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
   3363                                    SourceRange(TemplateLoc, RAngleLoc));
   3364   if (Inst.isInvalid())
   3365     return TemplateName();
   3366 
   3367   TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
   3368 
   3369   // Only substitute for the innermost template argument list.
   3370   MultiLevelTemplateArgumentList TemplateArgLists;
   3371   TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
   3372   for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
   3373     TemplateArgLists.addOuterTemplateArguments(None);
   3374 
   3375   Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
   3376   // Substitute into the nested-name-specifier first,
   3377   QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
   3378   if (QualifierLoc) {
   3379     QualifierLoc =
   3380         SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
   3381     if (!QualifierLoc)
   3382       return TemplateName();
   3383   }
   3384 
   3385   return SemaRef.SubstTemplateName(
   3386              QualifierLoc,
   3387              Param->getDefaultArgument().getArgument().getAsTemplate(),
   3388              Param->getDefaultArgument().getTemplateNameLoc(),
   3389              TemplateArgLists);
   3390 }
   3391 
   3392 /// \brief If the given template parameter has a default template
   3393 /// argument, substitute into that default template argument and
   3394 /// return the corresponding template argument.
   3395 TemplateArgumentLoc
   3396 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
   3397                                               SourceLocation TemplateLoc,
   3398                                               SourceLocation RAngleLoc,
   3399                                               Decl *Param,
   3400                                               SmallVectorImpl<TemplateArgument>
   3401                                                 &Converted,
   3402                                               bool &HasDefaultArg) {
   3403   HasDefaultArg = false;
   3404 
   3405   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
   3406     if (!hasVisibleDefaultArgument(TypeParm))
   3407       return TemplateArgumentLoc();
   3408 
   3409     HasDefaultArg = true;
   3410     TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
   3411                                                       TemplateLoc,
   3412                                                       RAngleLoc,
   3413                                                       TypeParm,
   3414                                                       Converted);
   3415     if (DI)
   3416       return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
   3417 
   3418     return TemplateArgumentLoc();
   3419   }
   3420 
   3421   if (NonTypeTemplateParmDecl *NonTypeParm
   3422         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   3423     if (!hasVisibleDefaultArgument(NonTypeParm))
   3424       return TemplateArgumentLoc();
   3425 
   3426     HasDefaultArg = true;
   3427     ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
   3428                                                   TemplateLoc,
   3429                                                   RAngleLoc,
   3430                                                   NonTypeParm,
   3431                                                   Converted);
   3432     if (Arg.isInvalid())
   3433       return TemplateArgumentLoc();
   3434 
   3435     Expr *ArgE = Arg.getAs<Expr>();
   3436     return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
   3437   }
   3438 
   3439   TemplateTemplateParmDecl *TempTempParm
   3440     = cast<TemplateTemplateParmDecl>(Param);
   3441   if (!hasVisibleDefaultArgument(TempTempParm))
   3442     return TemplateArgumentLoc();
   3443 
   3444   HasDefaultArg = true;
   3445   NestedNameSpecifierLoc QualifierLoc;
   3446   TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
   3447                                                     TemplateLoc,
   3448                                                     RAngleLoc,
   3449                                                     TempTempParm,
   3450                                                     Converted,
   3451                                                     QualifierLoc);
   3452   if (TName.isNull())
   3453     return TemplateArgumentLoc();
   3454 
   3455   return TemplateArgumentLoc(TemplateArgument(TName),
   3456                 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
   3457                 TempTempParm->getDefaultArgument().getTemplateNameLoc());
   3458 }
   3459 
   3460 /// \brief Check that the given template argument corresponds to the given
   3461 /// template parameter.
   3462 ///
   3463 /// \param Param The template parameter against which the argument will be
   3464 /// checked.
   3465 ///
   3466 /// \param Arg The template argument, which may be updated due to conversions.
   3467 ///
   3468 /// \param Template The template in which the template argument resides.
   3469 ///
   3470 /// \param TemplateLoc The location of the template name for the template
   3471 /// whose argument list we're matching.
   3472 ///
   3473 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
   3474 /// the template argument list.
   3475 ///
   3476 /// \param ArgumentPackIndex The index into the argument pack where this
   3477 /// argument will be placed. Only valid if the parameter is a parameter pack.
   3478 ///
   3479 /// \param Converted The checked, converted argument will be added to the
   3480 /// end of this small vector.
   3481 ///
   3482 /// \param CTAK Describes how we arrived at this particular template argument:
   3483 /// explicitly written, deduced, etc.
   3484 ///
   3485 /// \returns true on error, false otherwise.
   3486 bool Sema::CheckTemplateArgument(NamedDecl *Param,
   3487                                  TemplateArgumentLoc &Arg,
   3488                                  NamedDecl *Template,
   3489                                  SourceLocation TemplateLoc,
   3490                                  SourceLocation RAngleLoc,
   3491                                  unsigned ArgumentPackIndex,
   3492                             SmallVectorImpl<TemplateArgument> &Converted,
   3493                                  CheckTemplateArgumentKind CTAK) {
   3494   // Check template type parameters.
   3495   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
   3496     return CheckTemplateTypeArgument(TTP, Arg, Converted);
   3497 
   3498   // Check non-type template parameters.
   3499   if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   3500     // Do substitution on the type of the non-type template parameter
   3501     // with the template arguments we've seen thus far.  But if the
   3502     // template has a dependent context then we cannot substitute yet.
   3503     QualType NTTPType = NTTP->getType();
   3504     if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
   3505       NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
   3506 
   3507     if (NTTPType->isDependentType() &&
   3508         !isa<TemplateTemplateParmDecl>(Template) &&
   3509         !Template->getDeclContext()->isDependentContext()) {
   3510       // Do substitution on the type of the non-type template parameter.
   3511       InstantiatingTemplate Inst(*this, TemplateLoc, Template,
   3512                                  NTTP, Converted,
   3513                                  SourceRange(TemplateLoc, RAngleLoc));
   3514       if (Inst.isInvalid())
   3515         return true;
   3516 
   3517       TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   3518                                         Converted);
   3519       NTTPType = SubstType(NTTPType,
   3520                            MultiLevelTemplateArgumentList(TemplateArgs),
   3521                            NTTP->getLocation(),
   3522                            NTTP->getDeclName());
   3523       // If that worked, check the non-type template parameter type
   3524       // for validity.
   3525       if (!NTTPType.isNull())
   3526         NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
   3527                                                      NTTP->getLocation());
   3528       if (NTTPType.isNull())
   3529         return true;
   3530     }
   3531 
   3532     switch (Arg.getArgument().getKind()) {
   3533     case TemplateArgument::Null:
   3534       llvm_unreachable("Should never see a NULL template argument here");
   3535 
   3536     case TemplateArgument::Expression: {
   3537       TemplateArgument Result;
   3538       ExprResult Res =
   3539         CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
   3540                               Result, CTAK);
   3541       if (Res.isInvalid())
   3542         return true;
   3543 
   3544       // If the resulting expression is new, then use it in place of the
   3545       // old expression in the template argument.
   3546       if (Res.get() != Arg.getArgument().getAsExpr()) {
   3547         TemplateArgument TA(Res.get());
   3548         Arg = TemplateArgumentLoc(TA, Res.get());
   3549       }
   3550 
   3551       Converted.push_back(Result);
   3552       break;
   3553     }
   3554 
   3555     case TemplateArgument::Declaration:
   3556     case TemplateArgument::Integral:
   3557     case TemplateArgument::NullPtr:
   3558       // We've already checked this template argument, so just copy
   3559       // it to the list of converted arguments.
   3560       Converted.push_back(Arg.getArgument());
   3561       break;
   3562 
   3563     case TemplateArgument::Template:
   3564     case TemplateArgument::TemplateExpansion:
   3565       // We were given a template template argument. It may not be ill-formed;
   3566       // see below.
   3567       if (DependentTemplateName *DTN
   3568             = Arg.getArgument().getAsTemplateOrTemplatePattern()
   3569                                               .getAsDependentTemplateName()) {
   3570         // We have a template argument such as \c T::template X, which we
   3571         // parsed as a template template argument. However, since we now
   3572         // know that we need a non-type template argument, convert this
   3573         // template name into an expression.
   3574 
   3575         DeclarationNameInfo NameInfo(DTN->getIdentifier(),
   3576                                      Arg.getTemplateNameLoc());
   3577 
   3578         CXXScopeSpec SS;
   3579         SS.Adopt(Arg.getTemplateQualifierLoc());
   3580         // FIXME: the template-template arg was a DependentTemplateName,
   3581         // so it was provided with a template keyword. However, its source
   3582         // location is not stored in the template argument structure.
   3583         SourceLocation TemplateKWLoc;
   3584         ExprResult E = DependentScopeDeclRefExpr::Create(
   3585             Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   3586             nullptr);
   3587 
   3588         // If we parsed the template argument as a pack expansion, create a
   3589         // pack expansion expression.
   3590         if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
   3591           E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
   3592           if (E.isInvalid())
   3593             return true;
   3594         }
   3595 
   3596         TemplateArgument Result;
   3597         E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
   3598         if (E.isInvalid())
   3599           return true;
   3600 
   3601         Converted.push_back(Result);
   3602         break;
   3603       }
   3604 
   3605       // We have a template argument that actually does refer to a class
   3606       // template, alias template, or template template parameter, and
   3607       // therefore cannot be a non-type template argument.
   3608       Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
   3609         << Arg.getSourceRange();
   3610 
   3611       Diag(Param->getLocation(), diag::note_template_param_here);
   3612       return true;
   3613 
   3614     case TemplateArgument::Type: {
   3615       // We have a non-type template parameter but the template
   3616       // argument is a type.
   3617 
   3618       // C++ [temp.arg]p2:
   3619       //   In a template-argument, an ambiguity between a type-id and
   3620       //   an expression is resolved to a type-id, regardless of the
   3621       //   form of the corresponding template-parameter.
   3622       //
   3623       // We warn specifically about this case, since it can be rather
   3624       // confusing for users.
   3625       QualType T = Arg.getArgument().getAsType();
   3626       SourceRange SR = Arg.getSourceRange();
   3627       if (T->isFunctionType())
   3628         Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
   3629       else
   3630         Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
   3631       Diag(Param->getLocation(), diag::note_template_param_here);
   3632       return true;
   3633     }
   3634 
   3635     case TemplateArgument::Pack:
   3636       llvm_unreachable("Caller must expand template argument packs");
   3637     }
   3638 
   3639     return false;
   3640   }
   3641 
   3642 
   3643   // Check template template parameters.
   3644   TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
   3645 
   3646   // Substitute into the template parameter list of the template
   3647   // template parameter, since previously-supplied template arguments
   3648   // may appear within the template template parameter.
   3649   {
   3650     // Set up a template instantiation context.
   3651     LocalInstantiationScope Scope(*this);
   3652     InstantiatingTemplate Inst(*this, TemplateLoc, Template,
   3653                                TempParm, Converted,
   3654                                SourceRange(TemplateLoc, RAngleLoc));
   3655     if (Inst.isInvalid())
   3656       return true;
   3657 
   3658     TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
   3659     TempParm = cast_or_null<TemplateTemplateParmDecl>(
   3660                       SubstDecl(TempParm, CurContext,
   3661                                 MultiLevelTemplateArgumentList(TemplateArgs)));
   3662     if (!TempParm)
   3663       return true;
   3664   }
   3665 
   3666   switch (Arg.getArgument().getKind()) {
   3667   case TemplateArgument::Null:
   3668     llvm_unreachable("Should never see a NULL template argument here");
   3669 
   3670   case TemplateArgument::Template:
   3671   case TemplateArgument::TemplateExpansion:
   3672     if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
   3673       return true;
   3674 
   3675     Converted.push_back(Arg.getArgument());
   3676     break;
   3677 
   3678   case TemplateArgument::Expression:
   3679   case TemplateArgument::Type:
   3680     // We have a template template parameter but the template
   3681     // argument does not refer to a template.
   3682     Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
   3683       << getLangOpts().CPlusPlus11;
   3684     return true;
   3685 
   3686   case TemplateArgument::Declaration:
   3687     llvm_unreachable("Declaration argument with template template parameter");
   3688   case TemplateArgument::Integral:
   3689     llvm_unreachable("Integral argument with template template parameter");
   3690   case TemplateArgument::NullPtr:
   3691     llvm_unreachable("Null pointer argument with template template parameter");
   3692 
   3693   case TemplateArgument::Pack:
   3694     llvm_unreachable("Caller must expand template argument packs");
   3695   }
   3696 
   3697   return false;
   3698 }
   3699 
   3700 /// \brief Diagnose an arity mismatch in the
   3701 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
   3702                                   SourceLocation TemplateLoc,
   3703                                   TemplateArgumentListInfo &TemplateArgs) {
   3704   TemplateParameterList *Params = Template->getTemplateParameters();
   3705   unsigned NumParams = Params->size();
   3706   unsigned NumArgs = TemplateArgs.size();
   3707 
   3708   SourceRange Range;
   3709   if (NumArgs > NumParams)
   3710     Range = SourceRange(TemplateArgs[NumParams].getLocation(),
   3711                         TemplateArgs.getRAngleLoc());
   3712   S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   3713     << (NumArgs > NumParams)
   3714     << (isa<ClassTemplateDecl>(Template)? 0 :
   3715         isa<FunctionTemplateDecl>(Template)? 1 :
   3716         isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   3717     << Template << Range;
   3718   S.Diag(Template->getLocation(), diag::note_template_decl_here)
   3719     << Params->getSourceRange();
   3720   return true;
   3721 }
   3722 
   3723 /// \brief Check whether the template parameter is a pack expansion, and if so,
   3724 /// determine the number of parameters produced by that expansion. For instance:
   3725 ///
   3726 /// \code
   3727 /// template<typename ...Ts> struct A {
   3728 ///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
   3729 /// };
   3730 /// \endcode
   3731 ///
   3732 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
   3733 /// is not a pack expansion, so returns an empty Optional.
   3734 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
   3735   if (NonTypeTemplateParmDecl *NTTP
   3736         = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   3737     if (NTTP->isExpandedParameterPack())
   3738       return NTTP->getNumExpansionTypes();
   3739   }
   3740 
   3741   if (TemplateTemplateParmDecl *TTP
   3742         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
   3743     if (TTP->isExpandedParameterPack())
   3744       return TTP->getNumExpansionTemplateParameters();
   3745   }
   3746 
   3747   return None;
   3748 }
   3749 
   3750 /// Diagnose a missing template argument.
   3751 template<typename TemplateParmDecl>
   3752 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
   3753                                     TemplateDecl *TD,
   3754                                     const TemplateParmDecl *D,
   3755                                     TemplateArgumentListInfo &Args) {
   3756   // Dig out the most recent declaration of the template parameter; there may be
   3757   // declarations of the template that are more recent than TD.
   3758   D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
   3759                                  ->getTemplateParameters()
   3760                                  ->getParam(D->getIndex()));
   3761 
   3762   // If there's a default argument that's not visible, diagnose that we're
   3763   // missing a module import.
   3764   llvm::SmallVector<Module*, 8> Modules;
   3765   if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
   3766     S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
   3767                             D->getDefaultArgumentLoc(), Modules,
   3768                             Sema::MissingImportKind::DefaultArgument,
   3769                             /*Recover*/true);
   3770     return true;
   3771   }
   3772 
   3773   // FIXME: If there's a more recent default argument that *is* visible,
   3774   // diagnose that it was declared too late.
   3775 
   3776   return diagnoseArityMismatch(S, TD, Loc, Args);
   3777 }
   3778 
   3779 /// \brief Check that the given template argument list is well-formed
   3780 /// for specializing the given template.
   3781 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
   3782                                      SourceLocation TemplateLoc,
   3783                                      TemplateArgumentListInfo &TemplateArgs,
   3784                                      bool PartialTemplateArgs,
   3785                           SmallVectorImpl<TemplateArgument> &Converted) {
   3786   // Make a copy of the template arguments for processing.  Only make the
   3787   // changes at the end when successful in matching the arguments to the
   3788   // template.
   3789   TemplateArgumentListInfo NewArgs = TemplateArgs;
   3790 
   3791   TemplateParameterList *Params = Template->getTemplateParameters();
   3792 
   3793   SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
   3794 
   3795   // C++ [temp.arg]p1:
   3796   //   [...] The type and form of each template-argument specified in
   3797   //   a template-id shall match the type and form specified for the
   3798   //   corresponding parameter declared by the template in its
   3799   //   template-parameter-list.
   3800   bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
   3801   SmallVector<TemplateArgument, 2> ArgumentPack;
   3802   unsigned ArgIdx = 0, NumArgs = NewArgs.size();
   3803   LocalInstantiationScope InstScope(*this, true);
   3804   for (TemplateParameterList::iterator Param = Params->begin(),
   3805                                        ParamEnd = Params->end();
   3806        Param != ParamEnd; /* increment in loop */) {
   3807     // If we have an expanded parameter pack, make sure we don't have too
   3808     // many arguments.
   3809     if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
   3810       if (*Expansions == ArgumentPack.size()) {
   3811         // We're done with this parameter pack. Pack up its arguments and add
   3812         // them to the list.
   3813         Converted.push_back(
   3814             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
   3815         ArgumentPack.clear();
   3816 
   3817         // This argument is assigned to the next parameter.
   3818         ++Param;
   3819         continue;
   3820       } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
   3821         // Not enough arguments for this parameter pack.
   3822         Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
   3823           << false
   3824           << (isa<ClassTemplateDecl>(Template)? 0 :
   3825               isa<FunctionTemplateDecl>(Template)? 1 :
   3826               isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
   3827           << Template;
   3828         Diag(Template->getLocation(), diag::note_template_decl_here)
   3829           << Params->getSourceRange();
   3830         return true;
   3831       }
   3832     }
   3833 
   3834     if (ArgIdx < NumArgs) {
   3835       // Check the template argument we were given.
   3836       if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
   3837                                 TemplateLoc, RAngleLoc,
   3838                                 ArgumentPack.size(), Converted))
   3839         return true;
   3840 
   3841       bool PackExpansionIntoNonPack =
   3842           NewArgs[ArgIdx].getArgument().isPackExpansion() &&
   3843           (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
   3844       if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
   3845         // Core issue 1430: we have a pack expansion as an argument to an
   3846         // alias template, and it's not part of a parameter pack. This
   3847         // can't be canonicalized, so reject it now.
   3848         Diag(NewArgs[ArgIdx].getLocation(),
   3849              diag::err_alias_template_expansion_into_fixed_list)
   3850           << NewArgs[ArgIdx].getSourceRange();
   3851         Diag((*Param)->getLocation(), diag::note_template_param_here);
   3852         return true;
   3853       }
   3854 
   3855       // We're now done with this argument.
   3856       ++ArgIdx;
   3857 
   3858       if ((*Param)->isTemplateParameterPack()) {
   3859         // The template parameter was a template parameter pack, so take the
   3860         // deduced argument and place it on the argument pack. Note that we
   3861         // stay on the same template parameter so that we can deduce more
   3862         // arguments.
   3863         ArgumentPack.push_back(Converted.pop_back_val());
   3864       } else {
   3865         // Move to the next template parameter.
   3866         ++Param;
   3867       }
   3868 
   3869       // If we just saw a pack expansion into a non-pack, then directly convert
   3870       // the remaining arguments, because we don't know what parameters they'll
   3871       // match up with.
   3872       if (PackExpansionIntoNonPack) {
   3873         if (!ArgumentPack.empty()) {
   3874           // If we were part way through filling in an expanded parameter pack,
   3875           // fall back to just producing individual arguments.
   3876           Converted.insert(Converted.end(),
   3877                            ArgumentPack.begin(), ArgumentPack.end());
   3878           ArgumentPack.clear();
   3879         }
   3880 
   3881         while (ArgIdx < NumArgs) {
   3882           Converted.push_back(NewArgs[ArgIdx].getArgument());
   3883           ++ArgIdx;
   3884         }
   3885 
   3886         return false;
   3887       }
   3888 
   3889       continue;
   3890     }
   3891 
   3892     // If we're checking a partial template argument list, we're done.
   3893     if (PartialTemplateArgs) {
   3894       if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
   3895         Converted.push_back(
   3896             TemplateArgument::CreatePackCopy(Context, ArgumentPack));
   3897 
   3898       return false;
   3899     }
   3900 
   3901     // If we have a template parameter pack with no more corresponding
   3902     // arguments, just break out now and we'll fill in the argument pack below.
   3903     if ((*Param)->isTemplateParameterPack()) {
   3904       assert(!getExpandedPackSize(*Param) &&
   3905              "Should have dealt with this already");
   3906 
   3907       // A non-expanded parameter pack before the end of the parameter list
   3908       // only occurs for an ill-formed template parameter list, unless we've
   3909       // got a partial argument list for a function template, so just bail out.
   3910       if (Param + 1 != ParamEnd)
   3911         return true;
   3912 
   3913       Converted.push_back(
   3914           TemplateArgument::CreatePackCopy(Context, ArgumentPack));
   3915       ArgumentPack.clear();
   3916 
   3917       ++Param;
   3918       continue;
   3919     }
   3920 
   3921     // Check whether we have a default argument.
   3922     TemplateArgumentLoc Arg;
   3923 
   3924     // Retrieve the default template argument from the template
   3925     // parameter. For each kind of template parameter, we substitute the
   3926     // template arguments provided thus far and any "outer" template arguments
   3927     // (when the template parameter was part of a nested template) into
   3928     // the default argument.
   3929     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
   3930       if (!hasVisibleDefaultArgument(TTP))
   3931         return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
   3932                                        NewArgs);
   3933 
   3934       TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
   3935                                                              Template,
   3936                                                              TemplateLoc,
   3937                                                              RAngleLoc,
   3938                                                              TTP,
   3939                                                              Converted);
   3940       if (!ArgType)
   3941         return true;
   3942 
   3943       Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
   3944                                 ArgType);
   3945     } else if (NonTypeTemplateParmDecl *NTTP
   3946                  = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
   3947       if (!hasVisibleDefaultArgument(NTTP))
   3948         return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
   3949                                        NewArgs);
   3950 
   3951       ExprResult E = SubstDefaultTemplateArgument(*this, Template,
   3952                                                               TemplateLoc,
   3953                                                               RAngleLoc,
   3954                                                               NTTP,
   3955                                                               Converted);
   3956       if (E.isInvalid())
   3957         return true;
   3958 
   3959       Expr *Ex = E.getAs<Expr>();
   3960       Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
   3961     } else {
   3962       TemplateTemplateParmDecl *TempParm
   3963         = cast<TemplateTemplateParmDecl>(*Param);
   3964 
   3965       if (!hasVisibleDefaultArgument(TempParm))
   3966         return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
   3967                                        NewArgs);
   3968 
   3969       NestedNameSpecifierLoc QualifierLoc;
   3970       TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
   3971                                                        TemplateLoc,
   3972                                                        RAngleLoc,
   3973                                                        TempParm,
   3974                                                        Converted,
   3975                                                        QualifierLoc);
   3976       if (Name.isNull())
   3977         return true;
   3978 
   3979       Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
   3980                            TempParm->getDefaultArgument().getTemplateNameLoc());
   3981     }
   3982 
   3983     // Introduce an instantiation record that describes where we are using
   3984     // the default template argument.
   3985     InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
   3986                                SourceRange(TemplateLoc, RAngleLoc));
   3987     if (Inst.isInvalid())
   3988       return true;
   3989 
   3990     // Check the default template argument.
   3991     if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
   3992                               RAngleLoc, 0, Converted))
   3993       return true;
   3994 
   3995     // Core issue 150 (assumed resolution): if this is a template template
   3996     // parameter, keep track of the default template arguments from the
   3997     // template definition.
   3998     if (isTemplateTemplateParameter)
   3999       NewArgs.addArgument(Arg);
   4000 
   4001     // Move to the next template parameter and argument.
   4002     ++Param;
   4003     ++ArgIdx;
   4004   }
   4005 
   4006   // If we're performing a partial argument substitution, allow any trailing
   4007   // pack expansions; they might be empty. This can happen even if
   4008   // PartialTemplateArgs is false (the list of arguments is complete but
   4009   // still dependent).
   4010   if (ArgIdx < NumArgs && CurrentInstantiationScope &&
   4011       CurrentInstantiationScope->getPartiallySubstitutedPack()) {
   4012     while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
   4013       Converted.push_back(NewArgs[ArgIdx++].getArgument());
   4014   }
   4015 
   4016   // If we have any leftover arguments, then there were too many arguments.
   4017   // Complain and fail.
   4018   if (ArgIdx < NumArgs)
   4019     return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
   4020 
   4021   // No problems found with the new argument list, propagate changes back
   4022   // to caller.
   4023   TemplateArgs = std::move(NewArgs);
   4024 
   4025   return false;
   4026 }
   4027 
   4028 namespace {
   4029   class UnnamedLocalNoLinkageFinder
   4030     : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
   4031   {
   4032     Sema &S;
   4033     SourceRange SR;
   4034 
   4035     typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
   4036 
   4037   public:
   4038     UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
   4039 
   4040     bool Visit(QualType T) {
   4041       return inherited::Visit(T.getTypePtr());
   4042     }
   4043 
   4044 #define TYPE(Class, Parent) \
   4045     bool Visit##Class##Type(const Class##Type *);
   4046 #define ABSTRACT_TYPE(Class, Parent) \
   4047     bool Visit##Class##Type(const Class##Type *) { return false; }
   4048 #define NON_CANONICAL_TYPE(Class, Parent) \
   4049     bool Visit##Class##Type(const Class##Type *) { return false; }
   4050 #include "clang/AST/TypeNodes.def"
   4051 
   4052     bool VisitTagDecl(const TagDecl *Tag);
   4053     bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
   4054   };
   4055 } // end anonymous namespace
   4056 
   4057 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
   4058   return false;
   4059 }
   4060 
   4061 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
   4062   return Visit(T->getElementType());
   4063 }
   4064 
   4065 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
   4066   return Visit(T->getPointeeType());
   4067 }
   4068 
   4069 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
   4070                                                     const BlockPointerType* T) {
   4071   return Visit(T->getPointeeType());
   4072 }
   4073 
   4074 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
   4075                                                 const LValueReferenceType* T) {
   4076   return Visit(T->getPointeeType());
   4077 }
   4078 
   4079 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
   4080                                                 const RValueReferenceType* T) {
   4081   return Visit(T->getPointeeType());
   4082 }
   4083 
   4084 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
   4085                                                   const MemberPointerType* T) {
   4086   return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
   4087 }
   4088 
   4089 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
   4090                                                   const ConstantArrayType* T) {
   4091   return Visit(T->getElementType());
   4092 }
   4093 
   4094 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
   4095                                                  const IncompleteArrayType* T) {
   4096   return Visit(T->getElementType());
   4097 }
   4098 
   4099 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
   4100                                                    const VariableArrayType* T) {
   4101   return Visit(T->getElementType());
   4102 }
   4103 
   4104 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
   4105                                             const DependentSizedArrayType* T) {
   4106   return Visit(T->getElementType());
   4107 }
   4108 
   4109 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
   4110                                          const DependentSizedExtVectorType* T) {
   4111   return Visit(T->getElementType());
   4112 }
   4113 
   4114 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
   4115   return Visit(T->getElementType());
   4116 }
   4117 
   4118 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
   4119   return Visit(T->getElementType());
   4120 }
   4121 
   4122 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
   4123                                                   const FunctionProtoType* T) {
   4124   for (const auto &A : T->param_types()) {
   4125     if (Visit(A))
   4126       return true;
   4127   }
   4128 
   4129   return Visit(T->getReturnType());
   4130 }
   4131 
   4132 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
   4133                                                const FunctionNoProtoType* T) {
   4134   return Visit(T->getReturnType());
   4135 }
   4136 
   4137 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
   4138                                                   const UnresolvedUsingType*) {
   4139   return false;
   4140 }
   4141 
   4142 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
   4143   return false;
   4144 }
   4145 
   4146 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
   4147   return Visit(T->getUnderlyingType());
   4148 }
   4149 
   4150 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
   4151   return false;
   4152 }
   4153 
   4154 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
   4155                                                     const UnaryTransformType*) {
   4156   return false;
   4157 }
   4158 
   4159 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
   4160   return Visit(T->getDeducedType());
   4161 }
   4162 
   4163 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
   4164   return VisitTagDecl(T->getDecl());
   4165 }
   4166 
   4167 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
   4168   return VisitTagDecl(T->getDecl());
   4169 }
   4170 
   4171 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
   4172                                                  const TemplateTypeParmType*) {
   4173   return false;
   4174 }
   4175 
   4176 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
   4177                                         const SubstTemplateTypeParmPackType *) {
   4178   return false;
   4179 }
   4180 
   4181 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
   4182                                             const TemplateSpecializationType*) {
   4183   return false;
   4184 }
   4185 
   4186 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
   4187                                               const InjectedClassNameType* T) {
   4188   return VisitTagDecl(T->getDecl());
   4189 }
   4190 
   4191 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
   4192                                                    const DependentNameType* T) {
   4193   return VisitNestedNameSpecifier(T->getQualifier());
   4194 }
   4195 
   4196 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
   4197                                  const DependentTemplateSpecializationType* T) {
   4198   return VisitNestedNameSpecifier(T->getQualifier());
   4199 }
   4200 
   4201 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
   4202                                                    const PackExpansionType* T) {
   4203   return Visit(T->getPattern());
   4204 }
   4205 
   4206 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
   4207   return false;
   4208 }
   4209 
   4210 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
   4211                                                    const ObjCInterfaceType *) {
   4212   return false;
   4213 }
   4214 
   4215 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
   4216                                                 const ObjCObjectPointerType *) {
   4217   return false;
   4218 }
   4219 
   4220 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
   4221   return Visit(T->getValueType());
   4222 }
   4223 
   4224 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
   4225   return false;
   4226 }
   4227 
   4228 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
   4229   if (Tag->getDeclContext()->isFunctionOrMethod()) {
   4230     S.Diag(SR.getBegin(),
   4231            S.getLangOpts().CPlusPlus11 ?
   4232              diag::warn_cxx98_compat_template_arg_local_type :
   4233              diag::ext_template_arg_local_type)
   4234       << S.Context.getTypeDeclType(Tag) << SR;
   4235     return true;
   4236   }
   4237 
   4238   if (!Tag->hasNameForLinkage()) {
   4239     S.Diag(SR.getBegin(),
   4240            S.getLangOpts().CPlusPlus11 ?
   4241              diag::warn_cxx98_compat_template_arg_unnamed_type :
   4242              diag::ext_template_arg_unnamed_type) << SR;
   4243     S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
   4244     return true;
   4245   }
   4246 
   4247   return false;
   4248 }
   4249 
   4250 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
   4251                                                     NestedNameSpecifier *NNS) {
   4252   if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
   4253     return true;
   4254 
   4255   switch (NNS->getKind()) {
   4256   case NestedNameSpecifier::Identifier:
   4257   case NestedNameSpecifier::Namespace:
   4258   case NestedNameSpecifier::NamespaceAlias:
   4259   case NestedNameSpecifier::Global:
   4260   case NestedNameSpecifier::Super:
   4261     return false;
   4262 
   4263   case NestedNameSpecifier::TypeSpec:
   4264   case NestedNameSpecifier::TypeSpecWithTemplate:
   4265     return Visit(QualType(NNS->getAsType(), 0));
   4266   }
   4267   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   4268 }
   4269 
   4270 /// \brief Check a template argument against its corresponding
   4271 /// template type parameter.
   4272 ///
   4273 /// This routine implements the semantics of C++ [temp.arg.type]. It
   4274 /// returns true if an error occurred, and false otherwise.
   4275 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
   4276                                  TypeSourceInfo *ArgInfo) {
   4277   assert(ArgInfo && "invalid TypeSourceInfo");
   4278   QualType Arg = ArgInfo->getType();
   4279   SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
   4280 
   4281   if (Arg->isVariablyModifiedType()) {
   4282     return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
   4283   } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
   4284     return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
   4285   }
   4286 
   4287   // C++03 [temp.arg.type]p2:
   4288   //   A local type, a type with no linkage, an unnamed type or a type
   4289   //   compounded from any of these types shall not be used as a
   4290   //   template-argument for a template type-parameter.
   4291   //
   4292   // C++11 allows these, and even in C++03 we allow them as an extension with
   4293   // a warning.
   4294   bool NeedsCheck;
   4295   if (LangOpts.CPlusPlus11)
   4296     NeedsCheck =
   4297         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
   4298                          SR.getBegin()) ||
   4299         !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
   4300                          SR.getBegin());
   4301   else
   4302     NeedsCheck = Arg->hasUnnamedOrLocalType();
   4303 
   4304   if (NeedsCheck) {
   4305     UnnamedLocalNoLinkageFinder Finder(*this, SR);
   4306     (void)Finder.Visit(Context.getCanonicalType(Arg));
   4307   }
   4308 
   4309   return false;
   4310 }
   4311 
   4312 enum NullPointerValueKind {
   4313   NPV_NotNullPointer,
   4314   NPV_NullPointer,
   4315   NPV_Error
   4316 };
   4317 
   4318 /// \brief Determine whether the given template argument is a null pointer
   4319 /// value of the appropriate type.
   4320 static NullPointerValueKind
   4321 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
   4322                                    QualType ParamType, Expr *Arg) {
   4323   if (Arg->isValueDependent() || Arg->isTypeDependent())
   4324     return NPV_NotNullPointer;
   4325 
   4326   if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
   4327     llvm_unreachable(
   4328         "Incomplete parameter type in isNullPointerValueTemplateArgument!");
   4329 
   4330   if (!S.getLangOpts().CPlusPlus11)
   4331     return NPV_NotNullPointer;
   4332 
   4333   // Determine whether we have a constant expression.
   4334   ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
   4335   if (ArgRV.isInvalid())
   4336     return NPV_Error;
   4337   Arg = ArgRV.get();
   4338 
   4339   Expr::EvalResult EvalResult;
   4340   SmallVector<PartialDiagnosticAt, 8> Notes;
   4341   EvalResult.Diag = &Notes;
   4342   if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
   4343       EvalResult.HasSideEffects) {
   4344     SourceLocation DiagLoc = Arg->getExprLoc();
   4345 
   4346     // If our only note is the usual "invalid subexpression" note, just point
   4347     // the caret at its location rather than producing an essentially
   4348     // redundant note.
   4349     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   4350         diag::note_invalid_subexpr_in_const_expr) {
   4351       DiagLoc = Notes[0].first;
   4352       Notes.clear();
   4353     }
   4354 
   4355     S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
   4356       << Arg->getType() << Arg->getSourceRange();
   4357     for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   4358       S.Diag(Notes[I].first, Notes[I].second);
   4359 
   4360     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4361     return NPV_Error;
   4362   }
   4363 
   4364   // C++11 [temp.arg.nontype]p1:
   4365   //   - an address constant expression of type std::nullptr_t
   4366   if (Arg->getType()->isNullPtrType())
   4367     return NPV_NullPointer;
   4368 
   4369   //   - a constant expression that evaluates to a null pointer value (4.10); or
   4370   //   - a constant expression that evaluates to a null member pointer value
   4371   //     (4.11); or
   4372   if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
   4373       (EvalResult.Val.isMemberPointer() &&
   4374        !EvalResult.Val.getMemberPointerDecl())) {
   4375     // If our expression has an appropriate type, we've succeeded.
   4376     bool ObjCLifetimeConversion;
   4377     if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
   4378         S.IsQualificationConversion(Arg->getType(), ParamType, false,
   4379                                      ObjCLifetimeConversion))
   4380       return NPV_NullPointer;
   4381 
   4382     // The types didn't match, but we know we got a null pointer; complain,
   4383     // then recover as if the types were correct.
   4384     S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
   4385       << Arg->getType() << ParamType << Arg->getSourceRange();
   4386     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4387     return NPV_NullPointer;
   4388   }
   4389 
   4390   // If we don't have a null pointer value, but we do have a NULL pointer
   4391   // constant, suggest a cast to the appropriate type.
   4392   if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
   4393     std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
   4394     S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
   4395         << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
   4396         << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
   4397                                       ")");
   4398     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4399     return NPV_NullPointer;
   4400   }
   4401 
   4402   // FIXME: If we ever want to support general, address-constant expressions
   4403   // as non-type template arguments, we should return the ExprResult here to
   4404   // be interpreted by the caller.
   4405   return NPV_NotNullPointer;
   4406 }
   4407 
   4408 /// \brief Checks whether the given template argument is compatible with its
   4409 /// template parameter.
   4410 static bool CheckTemplateArgumentIsCompatibleWithParameter(
   4411     Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
   4412     Expr *Arg, QualType ArgType) {
   4413   bool ObjCLifetimeConversion;
   4414   if (ParamType->isPointerType() &&
   4415       !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
   4416       S.IsQualificationConversion(ArgType, ParamType, false,
   4417                                   ObjCLifetimeConversion)) {
   4418     // For pointer-to-object types, qualification conversions are
   4419     // permitted.
   4420   } else {
   4421     if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
   4422       if (!ParamRef->getPointeeType()->isFunctionType()) {
   4423         // C++ [temp.arg.nontype]p5b3:
   4424         //   For a non-type template-parameter of type reference to
   4425         //   object, no conversions apply. The type referred to by the
   4426         //   reference may be more cv-qualified than the (otherwise
   4427         //   identical) type of the template- argument. The
   4428         //   template-parameter is bound directly to the
   4429         //   template-argument, which shall be an lvalue.
   4430 
   4431         // FIXME: Other qualifiers?
   4432         unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
   4433         unsigned ArgQuals = ArgType.getCVRQualifiers();
   4434 
   4435         if ((ParamQuals | ArgQuals) != ParamQuals) {
   4436           S.Diag(Arg->getLocStart(),
   4437                  diag::err_template_arg_ref_bind_ignores_quals)
   4438             << ParamType << Arg->getType() << Arg->getSourceRange();
   4439           S.Diag(Param->getLocation(), diag::note_template_param_here);
   4440           return true;
   4441         }
   4442       }
   4443     }
   4444 
   4445     // At this point, the template argument refers to an object or
   4446     // function with external linkage. We now need to check whether the
   4447     // argument and parameter types are compatible.
   4448     if (!S.Context.hasSameUnqualifiedType(ArgType,
   4449                                           ParamType.getNonReferenceType())) {
   4450       // We can't perform this conversion or binding.
   4451       if (ParamType->isReferenceType())
   4452         S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
   4453           << ParamType << ArgIn->getType() << Arg->getSourceRange();
   4454       else
   4455         S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
   4456           << ArgIn->getType() << ParamType << Arg->getSourceRange();
   4457       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4458       return true;
   4459     }
   4460   }
   4461 
   4462   return false;
   4463 }
   4464 
   4465 /// \brief Checks whether the given template argument is the address
   4466 /// of an object or function according to C++ [temp.arg.nontype]p1.
   4467 static bool
   4468 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
   4469                                                NonTypeTemplateParmDecl *Param,
   4470                                                QualType ParamType,
   4471                                                Expr *ArgIn,
   4472                                                TemplateArgument &Converted) {
   4473   bool Invalid = false;
   4474   Expr *Arg = ArgIn;
   4475   QualType ArgType = Arg->getType();
   4476 
   4477   bool AddressTaken = false;
   4478   SourceLocation AddrOpLoc;
   4479   if (S.getLangOpts().MicrosoftExt) {
   4480     // Microsoft Visual C++ strips all casts, allows an arbitrary number of
   4481     // dereference and address-of operators.
   4482     Arg = Arg->IgnoreParenCasts();
   4483 
   4484     bool ExtWarnMSTemplateArg = false;
   4485     UnaryOperatorKind FirstOpKind;
   4486     SourceLocation FirstOpLoc;
   4487     while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   4488       UnaryOperatorKind UnOpKind = UnOp->getOpcode();
   4489       if (UnOpKind == UO_Deref)
   4490         ExtWarnMSTemplateArg = true;
   4491       if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
   4492         Arg = UnOp->getSubExpr()->IgnoreParenCasts();
   4493         if (!AddrOpLoc.isValid()) {
   4494           FirstOpKind = UnOpKind;
   4495           FirstOpLoc = UnOp->getOperatorLoc();
   4496         }
   4497       } else
   4498         break;
   4499     }
   4500     if (FirstOpLoc.isValid()) {
   4501       if (ExtWarnMSTemplateArg)
   4502         S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
   4503           << ArgIn->getSourceRange();
   4504 
   4505       if (FirstOpKind == UO_AddrOf)
   4506         AddressTaken = true;
   4507       else if (Arg->getType()->isPointerType()) {
   4508         // We cannot let pointers get dereferenced here, that is obviously not a
   4509         // constant expression.
   4510         assert(FirstOpKind == UO_Deref);
   4511         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
   4512           << Arg->getSourceRange();
   4513       }
   4514     }
   4515   } else {
   4516     // See through any implicit casts we added to fix the type.
   4517     Arg = Arg->IgnoreImpCasts();
   4518 
   4519     // C++ [temp.arg.nontype]p1:
   4520     //
   4521     //   A template-argument for a non-type, non-template
   4522     //   template-parameter shall be one of: [...]
   4523     //
   4524     //     -- the address of an object or function with external
   4525     //        linkage, including function templates and function
   4526     //        template-ids but excluding non-static class members,
   4527     //        expressed as & id-expression where the & is optional if
   4528     //        the name refers to a function or array, or if the
   4529     //        corresponding template-parameter is a reference; or
   4530 
   4531     // In C++98/03 mode, give an extension warning on any extra parentheses.
   4532     // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
   4533     bool ExtraParens = false;
   4534     while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
   4535       if (!Invalid && !ExtraParens) {
   4536         S.Diag(Arg->getLocStart(),
   4537                S.getLangOpts().CPlusPlus11
   4538                    ? diag::warn_cxx98_compat_template_arg_extra_parens
   4539                    : diag::ext_template_arg_extra_parens)
   4540             << Arg->getSourceRange();
   4541         ExtraParens = true;
   4542       }
   4543 
   4544       Arg = Parens->getSubExpr();
   4545     }
   4546 
   4547     while (SubstNonTypeTemplateParmExpr *subst =
   4548                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   4549       Arg = subst->getReplacement()->IgnoreImpCasts();
   4550 
   4551     if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   4552       if (UnOp->getOpcode() == UO_AddrOf) {
   4553         Arg = UnOp->getSubExpr();
   4554         AddressTaken = true;
   4555         AddrOpLoc = UnOp->getOperatorLoc();
   4556       }
   4557     }
   4558 
   4559     while (SubstNonTypeTemplateParmExpr *subst =
   4560                dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   4561       Arg = subst->getReplacement()->IgnoreImpCasts();
   4562   }
   4563 
   4564   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
   4565   ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
   4566 
   4567   // If our parameter has pointer type, check for a null template value.
   4568   if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
   4569     NullPointerValueKind NPV;
   4570     // dllimport'd entities aren't constant but are available inside of template
   4571     // arguments.
   4572     if (Entity && Entity->hasAttr<DLLImportAttr>())
   4573       NPV = NPV_NotNullPointer;
   4574     else
   4575       NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
   4576     switch (NPV) {
   4577     case NPV_NullPointer:
   4578       S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
   4579       Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
   4580                                    /*isNullPtr=*/true);
   4581       return false;
   4582 
   4583     case NPV_Error:
   4584       return true;
   4585 
   4586     case NPV_NotNullPointer:
   4587       break;
   4588     }
   4589   }
   4590 
   4591   // Stop checking the precise nature of the argument if it is value dependent,
   4592   // it should be checked when instantiated.
   4593   if (Arg->isValueDependent()) {
   4594     Converted = TemplateArgument(ArgIn);
   4595     return false;
   4596   }
   4597 
   4598   if (isa<CXXUuidofExpr>(Arg)) {
   4599     if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
   4600                                                        ArgIn, Arg, ArgType))
   4601       return true;
   4602 
   4603     Converted = TemplateArgument(ArgIn);
   4604     return false;
   4605   }
   4606 
   4607   if (!DRE) {
   4608     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
   4609     << Arg->getSourceRange();
   4610     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4611     return true;
   4612   }
   4613 
   4614   // Cannot refer to non-static data members
   4615   if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
   4616     S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
   4617       << Entity << Arg->getSourceRange();
   4618     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4619     return true;
   4620   }
   4621 
   4622   // Cannot refer to non-static member functions
   4623   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
   4624     if (!Method->isStatic()) {
   4625       S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
   4626         << Method << Arg->getSourceRange();
   4627       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4628       return true;
   4629     }
   4630   }
   4631 
   4632   FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
   4633   VarDecl *Var = dyn_cast<VarDecl>(Entity);
   4634 
   4635   // A non-type template argument must refer to an object or function.
   4636   if (!Func && !Var) {
   4637     // We found something, but we don't know specifically what it is.
   4638     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
   4639       << Arg->getSourceRange();
   4640     S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
   4641     return true;
   4642   }
   4643 
   4644   // Address / reference template args must have external linkage in C++98.
   4645   if (Entity->getFormalLinkage() == InternalLinkage) {
   4646     S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
   4647              diag::warn_cxx98_compat_template_arg_object_internal :
   4648              diag::ext_template_arg_object_internal)
   4649       << !Func << Entity << Arg->getSourceRange();
   4650     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
   4651       << !Func;
   4652   } else if (!Entity->hasLinkage()) {
   4653     S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
   4654       << !Func << Entity << Arg->getSourceRange();
   4655     S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
   4656       << !Func;
   4657     return true;
   4658   }
   4659 
   4660   if (Func) {
   4661     // If the template parameter has pointer type, the function decays.
   4662     if (ParamType->isPointerType() && !AddressTaken)
   4663       ArgType = S.Context.getPointerType(Func->getType());
   4664     else if (AddressTaken && ParamType->isReferenceType()) {
   4665       // If we originally had an address-of operator, but the
   4666       // parameter has reference type, complain and (if things look
   4667       // like they will work) drop the address-of operator.
   4668       if (!S.Context.hasSameUnqualifiedType(Func->getType(),
   4669                                             ParamType.getNonReferenceType())) {
   4670         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   4671           << ParamType;
   4672         S.Diag(Param->getLocation(), diag::note_template_param_here);
   4673         return true;
   4674       }
   4675 
   4676       S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   4677         << ParamType
   4678         << FixItHint::CreateRemoval(AddrOpLoc);
   4679       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4680 
   4681       ArgType = Func->getType();
   4682     }
   4683   } else {
   4684     // A value of reference type is not an object.
   4685     if (Var->getType()->isReferenceType()) {
   4686       S.Diag(Arg->getLocStart(),
   4687              diag::err_template_arg_reference_var)
   4688         << Var->getType() << Arg->getSourceRange();
   4689       S.Diag(Param->getLocation(), diag::note_template_param_here);
   4690       return true;
   4691     }
   4692 
   4693     // A template argument must have static storage duration.
   4694     if (Var->getTLSKind()) {
   4695       S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
   4696         << Arg->getSourceRange();
   4697       S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
   4698       return true;
   4699     }
   4700 
   4701     // If the template parameter has pointer type, we must have taken
   4702     // the address of this object.
   4703     if (ParamType->isReferenceType()) {
   4704       if (AddressTaken) {
   4705         // If we originally had an address-of operator, but the
   4706         // parameter has reference type, complain and (if things look
   4707         // like they will work) drop the address-of operator.
   4708         if (!S.Context.hasSameUnqualifiedType(Var->getType(),
   4709                                             ParamType.getNonReferenceType())) {
   4710           S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   4711             << ParamType;
   4712           S.Diag(Param->getLocation(), diag::note_template_param_here);
   4713           return true;
   4714         }
   4715 
   4716         S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
   4717           << ParamType
   4718           << FixItHint::CreateRemoval(AddrOpLoc);
   4719         S.Diag(Param->getLocation(), diag::note_template_param_here);
   4720 
   4721         ArgType = Var->getType();
   4722       }
   4723     } else if (!AddressTaken && ParamType->isPointerType()) {
   4724       if (Var->getType()->isArrayType()) {
   4725         // Array-to-pointer decay.
   4726         ArgType = S.Context.getArrayDecayedType(Var->getType());
   4727       } else {
   4728         // If the template parameter has pointer type but the address of
   4729         // this object was not taken, complain and (possibly) recover by
   4730         // taking the address of the entity.
   4731         ArgType = S.Context.getPointerType(Var->getType());
   4732         if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
   4733           S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
   4734             << ParamType;
   4735           S.Diag(Param->getLocation(), diag::note_template_param_here);
   4736           return true;
   4737         }
   4738 
   4739         S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
   4740           << ParamType
   4741           << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
   4742 
   4743         S.Diag(Param->getLocation(), diag::note_template_param_here);
   4744       }
   4745     }
   4746   }
   4747 
   4748   if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
   4749                                                      Arg, ArgType))
   4750     return true;
   4751 
   4752   // Create the template argument.
   4753   Converted =
   4754       TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
   4755   S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
   4756   return false;
   4757 }
   4758 
   4759 /// \brief Checks whether the given template argument is a pointer to
   4760 /// member constant according to C++ [temp.arg.nontype]p1.
   4761 static bool CheckTemplateArgumentPointerToMember(Sema &S,
   4762                                                  NonTypeTemplateParmDecl *Param,
   4763                                                  QualType ParamType,
   4764                                                  Expr *&ResultArg,
   4765                                                  TemplateArgument &Converted) {
   4766   bool Invalid = false;
   4767 
   4768   // Check for a null pointer value.
   4769   Expr *Arg = ResultArg;
   4770   switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
   4771   case NPV_Error:
   4772     return true;
   4773   case NPV_NullPointer:
   4774     S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
   4775     Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
   4776                                  /*isNullPtr*/true);
   4777     return false;
   4778   case NPV_NotNullPointer:
   4779     break;
   4780   }
   4781 
   4782   bool ObjCLifetimeConversion;
   4783   if (S.IsQualificationConversion(Arg->getType(),
   4784                                   ParamType.getNonReferenceType(),
   4785                                   false, ObjCLifetimeConversion)) {
   4786     Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
   4787                               Arg->getValueKind()).get();
   4788     ResultArg = Arg;
   4789   } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
   4790                 ParamType.getNonReferenceType())) {
   4791     // We can't perform this conversion.
   4792     S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
   4793       << Arg->getType() << ParamType << Arg->getSourceRange();
   4794     S.Diag(Param->getLocation(), diag::note_template_param_here);
   4795     return true;
   4796   }
   4797 
   4798   // See through any implicit casts we added to fix the type.
   4799   while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
   4800     Arg = Cast->getSubExpr();
   4801 
   4802   // C++ [temp.arg.nontype]p1:
   4803   //
   4804   //   A template-argument for a non-type, non-template
   4805   //   template-parameter shall be one of: [...]
   4806   //
   4807   //     -- a pointer to member expressed as described in 5.3.1.
   4808   DeclRefExpr *DRE = nullptr;
   4809 
   4810   // In C++98/03 mode, give an extension warning on any extra parentheses.
   4811   // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
   4812   bool ExtraParens = false;
   4813   while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
   4814     if (!Invalid && !ExtraParens) {
   4815       S.Diag(Arg->getLocStart(),
   4816              S.getLangOpts().CPlusPlus11 ?
   4817                diag::warn_cxx98_compat_template_arg_extra_parens :
   4818                diag::ext_template_arg_extra_parens)
   4819         << Arg->getSourceRange();
   4820       ExtraParens = true;
   4821     }
   4822 
   4823     Arg = Parens->getSubExpr();
   4824   }
   4825 
   4826   while (SubstNonTypeTemplateParmExpr *subst =
   4827            dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
   4828     Arg = subst->getReplacement()->IgnoreImpCasts();
   4829 
   4830   // A pointer-to-member constant written &Class::member.
   4831   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
   4832     if (UnOp->getOpcode() == UO_AddrOf) {
   4833       DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
   4834       if (DRE && !DRE->getQualifier())
   4835         DRE = nullptr;
   4836     }
   4837   }
   4838   // A constant of pointer-to-member type.
   4839   else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
   4840     if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
   4841       if (VD->getType()->isMemberPointerType()) {
   4842         if (isa<NonTypeTemplateParmDecl>(VD)) {
   4843           if (Arg->isTypeDependent() || Arg->isValueDependent()) {
   4844             Converted = TemplateArgument(Arg);
   4845           } else {
   4846             VD = cast<ValueDecl>(VD->getCanonicalDecl());
   4847             Converted = TemplateArgument(VD, ParamType);
   4848           }
   4849           return Invalid;
   4850         }
   4851       }
   4852     }
   4853 
   4854     DRE = nullptr;
   4855   }
   4856 
   4857   if (!DRE)
   4858     return S.Diag(Arg->getLocStart(),
   4859                   diag::err_template_arg_not_pointer_to_member_form)
   4860       << Arg->getSourceRange();
   4861 
   4862   if (isa<FieldDecl>(DRE->getDecl()) ||
   4863       isa<IndirectFieldDecl>(DRE->getDecl()) ||
   4864       isa<CXXMethodDecl>(DRE->getDecl())) {
   4865     assert((isa<FieldDecl>(DRE->getDecl()) ||
   4866             isa<IndirectFieldDecl>(DRE->getDecl()) ||
   4867             !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
   4868            "Only non-static member pointers can make it here");
   4869 
   4870     // Okay: this is the address of a non-static member, and therefore
   4871     // a member pointer constant.
   4872     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
   4873       Converted = TemplateArgument(Arg);
   4874     } else {
   4875       ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
   4876       Converted = TemplateArgument(D, ParamType);
   4877     }
   4878     return Invalid;
   4879   }
   4880 
   4881   // We found something else, but we don't know specifically what it is.
   4882   S.Diag(Arg->getLocStart(),
   4883          diag::err_template_arg_not_pointer_to_member_form)
   4884     << Arg->getSourceRange();
   4885   S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
   4886   return true;
   4887 }
   4888 
   4889 /// \brief Check a template argument against its corresponding
   4890 /// non-type template parameter.
   4891 ///
   4892 /// This routine implements the semantics of C++ [temp.arg.nontype].
   4893 /// If an error occurred, it returns ExprError(); otherwise, it
   4894 /// returns the converted template argument. \p ParamType is the
   4895 /// type of the non-type template parameter after it has been instantiated.
   4896 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
   4897                                        QualType ParamType, Expr *Arg,
   4898                                        TemplateArgument &Converted,
   4899                                        CheckTemplateArgumentKind CTAK) {
   4900   SourceLocation StartLoc = Arg->getLocStart();
   4901 
   4902   // If either the parameter has a dependent type or the argument is
   4903   // type-dependent, there's nothing we can check now.
   4904   if (ParamType->isDependentType() || Arg->isTypeDependent()) {
   4905     // FIXME: Produce a cloned, canonical expression?
   4906     Converted = TemplateArgument(Arg);
   4907     return Arg;
   4908   }
   4909 
   4910   // We should have already dropped all cv-qualifiers by now.
   4911   assert(!ParamType.hasQualifiers() &&
   4912          "non-type template parameter type cannot be qualified");
   4913 
   4914   if (CTAK == CTAK_Deduced &&
   4915       !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
   4916     // C++ [temp.deduct.type]p17:
   4917     //   If, in the declaration of a function template with a non-type
   4918     //   template-parameter, the non-type template-parameter is used
   4919     //   in an expression in the function parameter-list and, if the
   4920     //   corresponding template-argument is deduced, the
   4921     //   template-argument type shall match the type of the
   4922     //   template-parameter exactly, except that a template-argument
   4923     //   deduced from an array bound may be of any integral type.
   4924     Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
   4925       << Arg->getType().getUnqualifiedType()
   4926       << ParamType.getUnqualifiedType();
   4927     Diag(Param->getLocation(), diag::note_template_param_here);
   4928     return ExprError();
   4929   }
   4930 
   4931   if (getLangOpts().CPlusPlus1z) {
   4932     // FIXME: We can do some limited checking for a value-dependent but not
   4933     // type-dependent argument.
   4934     if (Arg->isValueDependent()) {
   4935       Converted = TemplateArgument(Arg);
   4936       return Arg;
   4937     }
   4938 
   4939     // C++1z [temp.arg.nontype]p1:
   4940     //   A template-argument for a non-type template parameter shall be
   4941     //   a converted constant expression of the type of the template-parameter.
   4942     APValue Value;
   4943     ExprResult ArgResult = CheckConvertedConstantExpression(
   4944         Arg, ParamType, Value, CCEK_TemplateArg);
   4945     if (ArgResult.isInvalid())
   4946       return ExprError();
   4947 
   4948     QualType CanonParamType = Context.getCanonicalType(ParamType);
   4949 
   4950     // Convert the APValue to a TemplateArgument.
   4951     switch (Value.getKind()) {
   4952     case APValue::Uninitialized:
   4953       assert(ParamType->isNullPtrType());
   4954       Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
   4955       break;
   4956     case APValue::Int:
   4957       assert(ParamType->isIntegralOrEnumerationType());
   4958       Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
   4959       break;
   4960     case APValue::MemberPointer: {
   4961       assert(ParamType->isMemberPointerType());
   4962 
   4963       // FIXME: We need TemplateArgument representation and mangling for these.
   4964       if (!Value.getMemberPointerPath().empty()) {
   4965         Diag(Arg->getLocStart(),
   4966              diag::err_template_arg_member_ptr_base_derived_not_supported)
   4967             << Value.getMemberPointerDecl() << ParamType
   4968             << Arg->getSourceRange();
   4969         return ExprError();
   4970       }
   4971 
   4972       auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
   4973       Converted = VD ? TemplateArgument(VD, CanonParamType)
   4974                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
   4975       break;
   4976     }
   4977     case APValue::LValue: {
   4978       //   For a non-type template-parameter of pointer or reference type,
   4979       //   the value of the constant expression shall not refer to
   4980       assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
   4981              ParamType->isNullPtrType());
   4982       // -- a temporary object
   4983       // -- a string literal
   4984       // -- the result of a typeid expression, or
   4985       // -- a predefind __func__ variable
   4986       if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
   4987         if (isa<CXXUuidofExpr>(E)) {
   4988           Converted = TemplateArgument(const_cast<Expr*>(E));
   4989           break;
   4990         }
   4991         Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
   4992           << Arg->getSourceRange();
   4993         return ExprError();
   4994       }
   4995       auto *VD = const_cast<ValueDecl *>(
   4996           Value.getLValueBase().dyn_cast<const ValueDecl *>());
   4997       // -- a subobject
   4998       if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
   4999           VD && VD->getType()->isArrayType() &&
   5000           Value.getLValuePath()[0].ArrayIndex == 0 &&
   5001           !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
   5002         // Per defect report (no number yet):
   5003         //   ... other than a pointer to the first element of a complete array
   5004         //       object.
   5005       } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
   5006                  Value.isLValueOnePastTheEnd()) {
   5007         Diag(StartLoc, diag::err_non_type_template_arg_subobject)
   5008           << Value.getAsString(Context, ParamType);
   5009         return ExprError();
   5010       }
   5011       assert((VD || !ParamType->isReferenceType()) &&
   5012              "null reference should not be a constant expression");
   5013       assert((!VD || !ParamType->isNullPtrType()) &&
   5014              "non-null value of type nullptr_t?");
   5015       Converted = VD ? TemplateArgument(VD, CanonParamType)
   5016                      : TemplateArgument(CanonParamType, /*isNullPtr*/true);
   5017       break;
   5018     }
   5019     case APValue::AddrLabelDiff:
   5020       return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
   5021     case APValue::Float:
   5022     case APValue::ComplexInt:
   5023     case APValue::ComplexFloat:
   5024     case APValue::Vector:
   5025     case APValue::Array:
   5026     case APValue::Struct:
   5027     case APValue::Union:
   5028       llvm_unreachable("invalid kind for template argument");
   5029     }
   5030 
   5031     return ArgResult.get();
   5032   }
   5033 
   5034   // C++ [temp.arg.nontype]p5:
   5035   //   The following conversions are performed on each expression used
   5036   //   as a non-type template-argument. If a non-type
   5037   //   template-argument cannot be converted to the type of the
   5038   //   corresponding template-parameter then the program is
   5039   //   ill-formed.
   5040   if (ParamType->isIntegralOrEnumerationType()) {
   5041     // C++11:
   5042     //   -- for a non-type template-parameter of integral or
   5043     //      enumeration type, conversions permitted in a converted
   5044     //      constant expression are applied.
   5045     //
   5046     // C++98:
   5047     //   -- for a non-type template-parameter of integral or
   5048     //      enumeration type, integral promotions (4.5) and integral
   5049     //      conversions (4.7) are applied.
   5050 
   5051     if (getLangOpts().CPlusPlus11) {
   5052       // We can't check arbitrary value-dependent arguments.
   5053       // FIXME: If there's no viable conversion to the template parameter type,
   5054       // we should be able to diagnose that prior to instantiation.
   5055       if (Arg->isValueDependent()) {
   5056         Converted = TemplateArgument(Arg);
   5057         return Arg;
   5058       }
   5059 
   5060       // C++ [temp.arg.nontype]p1:
   5061       //   A template-argument for a non-type, non-template template-parameter
   5062       //   shall be one of:
   5063       //
   5064       //     -- for a non-type template-parameter of integral or enumeration
   5065       //        type, a converted constant expression of the type of the
   5066       //        template-parameter; or
   5067       llvm::APSInt Value;
   5068       ExprResult ArgResult =
   5069         CheckConvertedConstantExpression(Arg, ParamType, Value,
   5070                                          CCEK_TemplateArg);
   5071       if (ArgResult.isInvalid())
   5072         return ExprError();
   5073 
   5074       // Widen the argument value to sizeof(parameter type). This is almost
   5075       // always a no-op, except when the parameter type is bool. In
   5076       // that case, this may extend the argument from 1 bit to 8 bits.
   5077       QualType IntegerType = ParamType;
   5078       if (const EnumType *Enum = IntegerType->getAs<EnumType>())
   5079         IntegerType = Enum->getDecl()->getIntegerType();
   5080       Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
   5081 
   5082       Converted = TemplateArgument(Context, Value,
   5083                                    Context.getCanonicalType(ParamType));
   5084       return ArgResult;
   5085     }
   5086 
   5087     ExprResult ArgResult = DefaultLvalueConversion(Arg);
   5088     if (ArgResult.isInvalid())
   5089       return ExprError();
   5090     Arg = ArgResult.get();
   5091 
   5092     QualType ArgType = Arg->getType();
   5093 
   5094     // C++ [temp.arg.nontype]p1:
   5095     //   A template-argument for a non-type, non-template
   5096     //   template-parameter shall be one of:
   5097     //
   5098     //     -- an integral constant-expression of integral or enumeration
   5099     //        type; or
   5100     //     -- the name of a non-type template-parameter; or
   5101     SourceLocation NonConstantLoc;
   5102     llvm::APSInt Value;
   5103     if (!ArgType->isIntegralOrEnumerationType()) {
   5104       Diag(Arg->getLocStart(),
   5105            diag::err_template_arg_not_integral_or_enumeral)
   5106         << ArgType << Arg->getSourceRange();
   5107       Diag(Param->getLocation(), diag::note_template_param_here);
   5108       return ExprError();
   5109     } else if (!Arg->isValueDependent()) {
   5110       class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
   5111         QualType T;
   5112 
   5113       public:
   5114         TmplArgICEDiagnoser(QualType T) : T(T) { }
   5115 
   5116         void diagnoseNotICE(Sema &S, SourceLocation Loc,
   5117                             SourceRange SR) override {
   5118           S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
   5119         }
   5120       } Diagnoser(ArgType);
   5121 
   5122       Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
   5123                                             false).get();
   5124       if (!Arg)
   5125         return ExprError();
   5126     }
   5127 
   5128     // From here on out, all we care about is the unqualified form
   5129     // of the argument type.
   5130     ArgType = ArgType.getUnqualifiedType();
   5131 
   5132     // Try to convert the argument to the parameter's type.
   5133     if (Context.hasSameType(ParamType, ArgType)) {
   5134       // Okay: no conversion necessary
   5135     } else if (ParamType->isBooleanType()) {
   5136       // This is an integral-to-boolean conversion.
   5137       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
   5138     } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
   5139                !ParamType->isEnumeralType()) {
   5140       // This is an integral promotion or conversion.
   5141       Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
   5142     } else {
   5143       // We can't perform this conversion.
   5144       Diag(Arg->getLocStart(),
   5145            diag::err_template_arg_not_convertible)
   5146         << Arg->getType() << ParamType << Arg->getSourceRange();
   5147       Diag(Param->getLocation(), diag::note_template_param_here);
   5148       return ExprError();
   5149     }
   5150 
   5151     // Add the value of this argument to the list of converted
   5152     // arguments. We use the bitwidth and signedness of the template
   5153     // parameter.
   5154     if (Arg->isValueDependent()) {
   5155       // The argument is value-dependent. Create a new
   5156       // TemplateArgument with the converted expression.
   5157       Converted = TemplateArgument(Arg);
   5158       return Arg;
   5159     }
   5160 
   5161     QualType IntegerType = Context.getCanonicalType(ParamType);
   5162     if (const EnumType *Enum = IntegerType->getAs<EnumType>())
   5163       IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
   5164 
   5165     if (ParamType->isBooleanType()) {
   5166       // Value must be zero or one.
   5167       Value = Value != 0;
   5168       unsigned AllowedBits = Context.getTypeSize(IntegerType);
   5169       if (Value.getBitWidth() != AllowedBits)
   5170         Value = Value.extOrTrunc(AllowedBits);
   5171       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
   5172     } else {
   5173       llvm::APSInt OldValue = Value;
   5174 
   5175       // Coerce the template argument's value to the value it will have
   5176       // based on the template parameter's type.
   5177       unsigned AllowedBits = Context.getTypeSize(IntegerType);
   5178       if (Value.getBitWidth() != AllowedBits)
   5179         Value = Value.extOrTrunc(AllowedBits);
   5180       Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
   5181 
   5182       // Complain if an unsigned parameter received a negative value.
   5183       if (IntegerType->isUnsignedIntegerOrEnumerationType()
   5184                && (OldValue.isSigned() && OldValue.isNegative())) {
   5185         Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
   5186           << OldValue.toString(10) << Value.toString(10) << Param->getType()
   5187           << Arg->getSourceRange();
   5188         Diag(Param->getLocation(), diag::note_template_param_here);
   5189       }
   5190 
   5191       // Complain if we overflowed the template parameter's type.
   5192       unsigned RequiredBits;
   5193       if (IntegerType->isUnsignedIntegerOrEnumerationType())
   5194         RequiredBits = OldValue.getActiveBits();
   5195       else if (OldValue.isUnsigned())
   5196         RequiredBits = OldValue.getActiveBits() + 1;
   5197       else
   5198         RequiredBits = OldValue.getMinSignedBits();
   5199       if (RequiredBits > AllowedBits) {
   5200         Diag(Arg->getLocStart(),
   5201              diag::warn_template_arg_too_large)
   5202           << OldValue.toString(10) << Value.toString(10) << Param->getType()
   5203           << Arg->getSourceRange();
   5204         Diag(Param->getLocation(), diag::note_template_param_here);
   5205       }
   5206     }
   5207 
   5208     Converted = TemplateArgument(Context, Value,
   5209                                  ParamType->isEnumeralType()
   5210                                    ? Context.getCanonicalType(ParamType)
   5211                                    : IntegerType);
   5212     return Arg;
   5213   }
   5214 
   5215   QualType ArgType = Arg->getType();
   5216   DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
   5217 
   5218   // Handle pointer-to-function, reference-to-function, and
   5219   // pointer-to-member-function all in (roughly) the same way.
   5220   if (// -- For a non-type template-parameter of type pointer to
   5221       //    function, only the function-to-pointer conversion (4.3) is
   5222       //    applied. If the template-argument represents a set of
   5223       //    overloaded functions (or a pointer to such), the matching
   5224       //    function is selected from the set (13.4).
   5225       (ParamType->isPointerType() &&
   5226        ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
   5227       // -- For a non-type template-parameter of type reference to
   5228       //    function, no conversions apply. If the template-argument
   5229       //    represents a set of overloaded functions, the matching
   5230       //    function is selected from the set (13.4).
   5231       (ParamType->isReferenceType() &&
   5232        ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
   5233       // -- For a non-type template-parameter of type pointer to
   5234       //    member function, no conversions apply. If the
   5235       //    template-argument represents a set of overloaded member
   5236       //    functions, the matching member function is selected from
   5237       //    the set (13.4).
   5238       (ParamType->isMemberPointerType() &&
   5239        ParamType->getAs<MemberPointerType>()->getPointeeType()
   5240          ->isFunctionType())) {
   5241 
   5242     if (Arg->getType() == Context.OverloadTy) {
   5243       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
   5244                                                                 true,
   5245                                                                 FoundResult)) {
   5246         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
   5247           return ExprError();
   5248 
   5249         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
   5250         ArgType = Arg->getType();
   5251       } else
   5252         return ExprError();
   5253     }
   5254 
   5255     if (!ParamType->isMemberPointerType()) {
   5256       if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   5257                                                          ParamType,
   5258                                                          Arg, Converted))
   5259         return ExprError();
   5260       return Arg;
   5261     }
   5262 
   5263     if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
   5264                                              Converted))
   5265       return ExprError();
   5266     return Arg;
   5267   }
   5268 
   5269   if (ParamType->isPointerType()) {
   5270     //   -- for a non-type template-parameter of type pointer to
   5271     //      object, qualification conversions (4.4) and the
   5272     //      array-to-pointer conversion (4.2) are applied.
   5273     // C++0x also allows a value of std::nullptr_t.
   5274     assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
   5275            "Only object pointers allowed here");
   5276 
   5277     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   5278                                                        ParamType,
   5279                                                        Arg, Converted))
   5280       return ExprError();
   5281     return Arg;
   5282   }
   5283 
   5284   if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
   5285     //   -- For a non-type template-parameter of type reference to
   5286     //      object, no conversions apply. The type referred to by the
   5287     //      reference may be more cv-qualified than the (otherwise
   5288     //      identical) type of the template-argument. The
   5289     //      template-parameter is bound directly to the
   5290     //      template-argument, which must be an lvalue.
   5291     assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
   5292            "Only object references allowed here");
   5293 
   5294     if (Arg->getType() == Context.OverloadTy) {
   5295       if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
   5296                                                  ParamRefType->getPointeeType(),
   5297                                                                 true,
   5298                                                                 FoundResult)) {
   5299         if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
   5300           return ExprError();
   5301 
   5302         Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
   5303         ArgType = Arg->getType();
   5304       } else
   5305         return ExprError();
   5306     }
   5307 
   5308     if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
   5309                                                        ParamType,
   5310                                                        Arg, Converted))
   5311       return ExprError();
   5312     return Arg;
   5313   }
   5314 
   5315   // Deal with parameters of type std::nullptr_t.
   5316   if (ParamType->isNullPtrType()) {
   5317     if (Arg->isTypeDependent() || Arg->isValueDependent()) {
   5318       Converted = TemplateArgument(Arg);
   5319       return Arg;
   5320     }
   5321 
   5322     switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
   5323     case NPV_NotNullPointer:
   5324       Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
   5325         << Arg->getType() << ParamType;
   5326       Diag(Param->getLocation(), diag::note_template_param_here);
   5327       return ExprError();
   5328 
   5329     case NPV_Error:
   5330       return ExprError();
   5331 
   5332     case NPV_NullPointer:
   5333       Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
   5334       Converted = TemplateArgument(Context.getCanonicalType(ParamType),
   5335                                    /*isNullPtr*/true);
   5336       return Arg;
   5337     }
   5338   }
   5339 
   5340   //     -- For a non-type template-parameter of type pointer to data
   5341   //        member, qualification conversions (4.4) are applied.
   5342   assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
   5343 
   5344   if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
   5345                                            Converted))
   5346     return ExprError();
   5347   return Arg;
   5348 }
   5349 
   5350 /// \brief Check a template argument against its corresponding
   5351 /// template template parameter.
   5352 ///
   5353 /// This routine implements the semantics of C++ [temp.arg.template].
   5354 /// It returns true if an error occurred, and false otherwise.
   5355 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
   5356                                  TemplateArgumentLoc &Arg,
   5357                                  unsigned ArgumentPackIndex) {
   5358   TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
   5359   TemplateDecl *Template = Name.getAsTemplateDecl();
   5360   if (!Template) {
   5361     // Any dependent template name is fine.
   5362     assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
   5363     return false;
   5364   }
   5365 
   5366   // C++0x [temp.arg.template]p1:
   5367   //   A template-argument for a template template-parameter shall be
   5368   //   the name of a class template or an alias template, expressed as an
   5369   //   id-expression. When the template-argument names a class template, only
   5370   //   primary class templates are considered when matching the
   5371   //   template template argument with the corresponding parameter;
   5372   //   partial specializations are not considered even if their
   5373   //   parameter lists match that of the template template parameter.
   5374   //
   5375   // Note that we also allow template template parameters here, which
   5376   // will happen when we are dealing with, e.g., class template
   5377   // partial specializations.
   5378   if (!isa<ClassTemplateDecl>(Template) &&
   5379       !isa<TemplateTemplateParmDecl>(Template) &&
   5380       !isa<TypeAliasTemplateDecl>(Template) &&
   5381       !isa<BuiltinTemplateDecl>(Template)) {
   5382     assert(isa<FunctionTemplateDecl>(Template) &&
   5383            "Only function templates are possible here");
   5384     Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
   5385     Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
   5386       << Template;
   5387   }
   5388 
   5389   TemplateParameterList *Params = Param->getTemplateParameters();
   5390   if (Param->isExpandedParameterPack())
   5391     Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
   5392 
   5393   return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
   5394                                          Params,
   5395                                          true,
   5396                                          TPL_TemplateTemplateArgumentMatch,
   5397                                          Arg.getLocation());
   5398 }
   5399 
   5400 /// \brief Given a non-type template argument that refers to a
   5401 /// declaration and the type of its corresponding non-type template
   5402 /// parameter, produce an expression that properly refers to that
   5403 /// declaration.
   5404 ExprResult
   5405 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
   5406                                               QualType ParamType,
   5407                                               SourceLocation Loc) {
   5408   // C++ [temp.param]p8:
   5409   //
   5410   //   A non-type template-parameter of type "array of T" or
   5411   //   "function returning T" is adjusted to be of type "pointer to
   5412   //   T" or "pointer to function returning T", respectively.
   5413   if (ParamType->isArrayType())
   5414     ParamType = Context.getArrayDecayedType(ParamType);
   5415   else if (ParamType->isFunctionType())
   5416     ParamType = Context.getPointerType(ParamType);
   5417 
   5418   // For a NULL non-type template argument, return nullptr casted to the
   5419   // parameter's type.
   5420   if (Arg.getKind() == TemplateArgument::NullPtr) {
   5421     return ImpCastExprToType(
   5422              new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
   5423                              ParamType,
   5424                              ParamType->getAs<MemberPointerType>()
   5425                                ? CK_NullToMemberPointer
   5426                                : CK_NullToPointer);
   5427   }
   5428   assert(Arg.getKind() == TemplateArgument::Declaration &&
   5429          "Only declaration template arguments permitted here");
   5430 
   5431   ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
   5432 
   5433   if (VD->getDeclContext()->isRecord() &&
   5434       (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
   5435        isa<IndirectFieldDecl>(VD))) {
   5436     // If the value is a class member, we might have a pointer-to-member.
   5437     // Determine whether the non-type template template parameter is of
   5438     // pointer-to-member type. If so, we need to build an appropriate
   5439     // expression for a pointer-to-member, since a "normal" DeclRefExpr
   5440     // would refer to the member itself.
   5441     if (ParamType->isMemberPointerType()) {
   5442       QualType ClassType
   5443         = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
   5444       NestedNameSpecifier *Qualifier
   5445         = NestedNameSpecifier::Create(Context, nullptr, false,
   5446                                       ClassType.getTypePtr());
   5447       CXXScopeSpec SS;
   5448       SS.MakeTrivial(Context, Qualifier, Loc);
   5449 
   5450       // The actual value-ness of this is unimportant, but for
   5451       // internal consistency's sake, references to instance methods
   5452       // are r-values.
   5453       ExprValueKind VK = VK_LValue;
   5454       if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
   5455         VK = VK_RValue;
   5456 
   5457       ExprResult RefExpr = BuildDeclRefExpr(VD,
   5458                                             VD->getType().getNonReferenceType(),
   5459                                             VK,
   5460                                             Loc,
   5461                                             &SS);
   5462       if (RefExpr.isInvalid())
   5463         return ExprError();
   5464 
   5465       RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
   5466 
   5467       // We might need to perform a trailing qualification conversion, since
   5468       // the element type on the parameter could be more qualified than the
   5469       // element type in the expression we constructed.
   5470       bool ObjCLifetimeConversion;
   5471       if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
   5472                                     ParamType.getUnqualifiedType(), false,
   5473                                     ObjCLifetimeConversion))
   5474         RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
   5475 
   5476       assert(!RefExpr.isInvalid() &&
   5477              Context.hasSameType(((Expr*) RefExpr.get())->getType(),
   5478                                  ParamType.getUnqualifiedType()));
   5479       return RefExpr;
   5480     }
   5481   }
   5482 
   5483   QualType T = VD->getType().getNonReferenceType();
   5484 
   5485   if (ParamType->isPointerType()) {
   5486     // When the non-type template parameter is a pointer, take the
   5487     // address of the declaration.
   5488     ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
   5489     if (RefExpr.isInvalid())
   5490       return ExprError();
   5491 
   5492     if (T->isFunctionType() || T->isArrayType()) {
   5493       // Decay functions and arrays.
   5494       RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
   5495       if (RefExpr.isInvalid())
   5496         return ExprError();
   5497 
   5498       return RefExpr;
   5499     }
   5500 
   5501     // Take the address of everything else
   5502     return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
   5503   }
   5504 
   5505   ExprValueKind VK = VK_RValue;
   5506 
   5507   // If the non-type template parameter has reference type, qualify the
   5508   // resulting declaration reference with the extra qualifiers on the
   5509   // type that the reference refers to.
   5510   if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
   5511     VK = VK_LValue;
   5512     T = Context.getQualifiedType(T,
   5513                               TargetRef->getPointeeType().getQualifiers());
   5514   } else if (isa<FunctionDecl>(VD)) {
   5515     // References to functions are always lvalues.
   5516     VK = VK_LValue;
   5517   }
   5518 
   5519   return BuildDeclRefExpr(VD, T, VK, Loc);
   5520 }
   5521 
   5522 /// \brief Construct a new expression that refers to the given
   5523 /// integral template argument with the given source-location
   5524 /// information.
   5525 ///
   5526 /// This routine takes care of the mapping from an integral template
   5527 /// argument (which may have any integral type) to the appropriate
   5528 /// literal value.
   5529 ExprResult
   5530 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
   5531                                                   SourceLocation Loc) {
   5532   assert(Arg.getKind() == TemplateArgument::Integral &&
   5533          "Operation is only valid for integral template arguments");
   5534   QualType OrigT = Arg.getIntegralType();
   5535 
   5536   // If this is an enum type that we're instantiating, we need to use an integer
   5537   // type the same size as the enumerator.  We don't want to build an
   5538   // IntegerLiteral with enum type.  The integer type of an enum type can be of
   5539   // any integral type with C++11 enum classes, make sure we create the right
   5540   // type of literal for it.
   5541   QualType T = OrigT;
   5542   if (const EnumType *ET = OrigT->getAs<EnumType>())
   5543     T = ET->getDecl()->getIntegerType();
   5544 
   5545   Expr *E;
   5546   if (T->isAnyCharacterType()) {
   5547     // This does not need to handle u8 character literals because those are
   5548     // of type char, and so can also be covered by an ASCII character literal.
   5549     CharacterLiteral::CharacterKind Kind;
   5550     if (T->isWideCharType())
   5551       Kind = CharacterLiteral::Wide;
   5552     else if (T->isChar16Type())
   5553       Kind = CharacterLiteral::UTF16;
   5554     else if (T->isChar32Type())
   5555       Kind = CharacterLiteral::UTF32;
   5556     else
   5557       Kind = CharacterLiteral::Ascii;
   5558 
   5559     E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
   5560                                        Kind, T, Loc);
   5561   } else if (T->isBooleanType()) {
   5562     E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
   5563                                          T, Loc);
   5564   } else if (T->isNullPtrType()) {
   5565     E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
   5566   } else {
   5567     E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
   5568   }
   5569 
   5570   if (OrigT->isEnumeralType()) {
   5571     // FIXME: This is a hack. We need a better way to handle substituted
   5572     // non-type template parameters.
   5573     E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
   5574                                nullptr,
   5575                                Context.getTrivialTypeSourceInfo(OrigT, Loc),
   5576                                Loc, Loc);
   5577   }
   5578 
   5579   return E;
   5580 }
   5581 
   5582 /// \brief Match two template parameters within template parameter lists.
   5583 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
   5584                                        bool Complain,
   5585                                      Sema::TemplateParameterListEqualKind Kind,
   5586                                        SourceLocation TemplateArgLoc) {
   5587   // Check the actual kind (type, non-type, template).
   5588   if (Old->getKind() != New->getKind()) {
   5589     if (Complain) {
   5590       unsigned NextDiag = diag::err_template_param_different_kind;
   5591       if (TemplateArgLoc.isValid()) {
   5592         S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
   5593         NextDiag = diag::note_template_param_different_kind;
   5594       }
   5595       S.Diag(New->getLocation(), NextDiag)
   5596         << (Kind != Sema::TPL_TemplateMatch);
   5597       S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
   5598         << (Kind != Sema::TPL_TemplateMatch);
   5599     }
   5600 
   5601     return false;
   5602   }
   5603 
   5604   // Check that both are parameter packs are neither are parameter packs.
   5605   // However, if we are matching a template template argument to a
   5606   // template template parameter, the template template parameter can have
   5607   // a parameter pack where the template template argument does not.
   5608   if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
   5609       !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
   5610         Old->isTemplateParameterPack())) {
   5611     if (Complain) {
   5612       unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
   5613       if (TemplateArgLoc.isValid()) {
   5614         S.Diag(TemplateArgLoc,
   5615              diag::err_template_arg_template_params_mismatch);
   5616         NextDiag = diag::note_template_parameter_pack_non_pack;
   5617       }
   5618 
   5619       unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
   5620                       : isa<NonTypeTemplateParmDecl>(New)? 1
   5621                       : 2;
   5622       S.Diag(New->getLocation(), NextDiag)
   5623         << ParamKind << New->isParameterPack();
   5624       S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
   5625         << ParamKind << Old->isParameterPack();
   5626     }
   5627 
   5628     return false;
   5629   }
   5630 
   5631   // For non-type template parameters, check the type of the parameter.
   5632   if (NonTypeTemplateParmDecl *OldNTTP
   5633                                     = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
   5634     NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
   5635 
   5636     // If we are matching a template template argument to a template
   5637     // template parameter and one of the non-type template parameter types
   5638     // is dependent, then we must wait until template instantiation time
   5639     // to actually compare the arguments.
   5640     if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
   5641         (OldNTTP->getType()->isDependentType() ||
   5642          NewNTTP->getType()->isDependentType()))
   5643       return true;
   5644 
   5645     if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
   5646       if (Complain) {
   5647         unsigned NextDiag = diag::err_template_nontype_parm_different_type;
   5648         if (TemplateArgLoc.isValid()) {
   5649           S.Diag(TemplateArgLoc,
   5650                  diag::err_template_arg_template_params_mismatch);
   5651           NextDiag = diag::note_template_nontype_parm_different_type;
   5652         }
   5653         S.Diag(NewNTTP->getLocation(), NextDiag)
   5654           << NewNTTP->getType()
   5655           << (Kind != Sema::TPL_TemplateMatch);
   5656         S.Diag(OldNTTP->getLocation(),
   5657                diag::note_template_nontype_parm_prev_declaration)
   5658           << OldNTTP->getType();
   5659       }
   5660 
   5661       return false;
   5662     }
   5663 
   5664     return true;
   5665   }
   5666 
   5667   // For template template parameters, check the template parameter types.
   5668   // The template parameter lists of template template
   5669   // parameters must agree.
   5670   if (TemplateTemplateParmDecl *OldTTP
   5671                                     = dyn_cast<TemplateTemplateParmDecl>(Old)) {
   5672     TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
   5673     return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
   5674                                             OldTTP->getTemplateParameters(),
   5675                                             Complain,
   5676                                         (Kind == Sema::TPL_TemplateMatch
   5677                                            ? Sema::TPL_TemplateTemplateParmMatch
   5678                                            : Kind),
   5679                                             TemplateArgLoc);
   5680   }
   5681 
   5682   return true;
   5683 }
   5684 
   5685 /// \brief Diagnose a known arity mismatch when comparing template argument
   5686 /// lists.
   5687 static
   5688 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
   5689                                                 TemplateParameterList *New,
   5690                                                 TemplateParameterList *Old,
   5691                                       Sema::TemplateParameterListEqualKind Kind,
   5692                                                 SourceLocation TemplateArgLoc) {
   5693   unsigned NextDiag = diag::err_template_param_list_different_arity;
   5694   if (TemplateArgLoc.isValid()) {
   5695     S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
   5696     NextDiag = diag::note_template_param_list_different_arity;
   5697   }
   5698   S.Diag(New->getTemplateLoc(), NextDiag)
   5699     << (New->size() > Old->size())
   5700     << (Kind != Sema::TPL_TemplateMatch)
   5701     << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
   5702   S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
   5703     << (Kind != Sema::TPL_TemplateMatch)
   5704     << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
   5705 }
   5706 
   5707 /// \brief Determine whether the given template parameter lists are
   5708 /// equivalent.
   5709 ///
   5710 /// \param New  The new template parameter list, typically written in the
   5711 /// source code as part of a new template declaration.
   5712 ///
   5713 /// \param Old  The old template parameter list, typically found via
   5714 /// name lookup of the template declared with this template parameter
   5715 /// list.
   5716 ///
   5717 /// \param Complain  If true, this routine will produce a diagnostic if
   5718 /// the template parameter lists are not equivalent.
   5719 ///
   5720 /// \param Kind describes how we are to match the template parameter lists.
   5721 ///
   5722 /// \param TemplateArgLoc If this source location is valid, then we
   5723 /// are actually checking the template parameter list of a template
   5724 /// argument (New) against the template parameter list of its
   5725 /// corresponding template template parameter (Old). We produce
   5726 /// slightly different diagnostics in this scenario.
   5727 ///
   5728 /// \returns True if the template parameter lists are equal, false
   5729 /// otherwise.
   5730 bool
   5731 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
   5732                                      TemplateParameterList *Old,
   5733                                      bool Complain,
   5734                                      TemplateParameterListEqualKind Kind,
   5735                                      SourceLocation TemplateArgLoc) {
   5736   if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
   5737     if (Complain)
   5738       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   5739                                                  TemplateArgLoc);
   5740 
   5741     return false;
   5742   }
   5743 
   5744   // C++0x [temp.arg.template]p3:
   5745   //   A template-argument matches a template template-parameter (call it P)
   5746   //   when each of the template parameters in the template-parameter-list of
   5747   //   the template-argument's corresponding class template or alias template
   5748   //   (call it A) matches the corresponding template parameter in the
   5749   //   template-parameter-list of P. [...]
   5750   TemplateParameterList::iterator NewParm = New->begin();
   5751   TemplateParameterList::iterator NewParmEnd = New->end();
   5752   for (TemplateParameterList::iterator OldParm = Old->begin(),
   5753                                     OldParmEnd = Old->end();
   5754        OldParm != OldParmEnd; ++OldParm) {
   5755     if (Kind != TPL_TemplateTemplateArgumentMatch ||
   5756         !(*OldParm)->isTemplateParameterPack()) {
   5757       if (NewParm == NewParmEnd) {
   5758         if (Complain)
   5759           DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   5760                                                      TemplateArgLoc);
   5761 
   5762         return false;
   5763       }
   5764 
   5765       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
   5766                                       Kind, TemplateArgLoc))
   5767         return false;
   5768 
   5769       ++NewParm;
   5770       continue;
   5771     }
   5772 
   5773     // C++0x [temp.arg.template]p3:
   5774     //   [...] When P's template- parameter-list contains a template parameter
   5775     //   pack (14.5.3), the template parameter pack will match zero or more
   5776     //   template parameters or template parameter packs in the
   5777     //   template-parameter-list of A with the same type and form as the
   5778     //   template parameter pack in P (ignoring whether those template
   5779     //   parameters are template parameter packs).
   5780     for (; NewParm != NewParmEnd; ++NewParm) {
   5781       if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
   5782                                       Kind, TemplateArgLoc))
   5783         return false;
   5784     }
   5785   }
   5786 
   5787   // Make sure we exhausted all of the arguments.
   5788   if (NewParm != NewParmEnd) {
   5789     if (Complain)
   5790       DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
   5791                                                  TemplateArgLoc);
   5792 
   5793     return false;
   5794   }
   5795 
   5796   return true;
   5797 }
   5798 
   5799 /// \brief Check whether a template can be declared within this scope.
   5800 ///
   5801 /// If the template declaration is valid in this scope, returns
   5802 /// false. Otherwise, issues a diagnostic and returns true.
   5803 bool
   5804 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
   5805   if (!S)
   5806     return false;
   5807 
   5808   // Find the nearest enclosing declaration scope.
   5809   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   5810          (S->getFlags() & Scope::TemplateParamScope) != 0)
   5811     S = S->getParent();
   5812 
   5813   // C++ [temp]p4:
   5814   //   A template [...] shall not have C linkage.
   5815   DeclContext *Ctx = S->getEntity();
   5816   if (Ctx && Ctx->isExternCContext())
   5817     return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
   5818              << TemplateParams->getSourceRange();
   5819 
   5820   while (Ctx && isa<LinkageSpecDecl>(Ctx))
   5821     Ctx = Ctx->getParent();
   5822 
   5823   // C++ [temp]p2:
   5824   //   A template-declaration can appear only as a namespace scope or
   5825   //   class scope declaration.
   5826   if (Ctx) {
   5827     if (Ctx->isFileContext())
   5828       return false;
   5829     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
   5830       // C++ [temp.mem]p2:
   5831       //   A local class shall not have member templates.
   5832       if (RD->isLocalClass())
   5833         return Diag(TemplateParams->getTemplateLoc(),
   5834                     diag::err_template_inside_local_class)
   5835           << TemplateParams->getSourceRange();
   5836       else
   5837         return false;
   5838     }
   5839   }
   5840 
   5841   return Diag(TemplateParams->getTemplateLoc(),
   5842               diag::err_template_outside_namespace_or_class_scope)
   5843     << TemplateParams->getSourceRange();
   5844 }
   5845 
   5846 /// \brief Determine what kind of template specialization the given declaration
   5847 /// is.
   5848 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
   5849   if (!D)
   5850     return TSK_Undeclared;
   5851 
   5852   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
   5853     return Record->getTemplateSpecializationKind();
   5854   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
   5855     return Function->getTemplateSpecializationKind();
   5856   if (VarDecl *Var = dyn_cast<VarDecl>(D))
   5857     return Var->getTemplateSpecializationKind();
   5858 
   5859   return TSK_Undeclared;
   5860 }
   5861 
   5862 /// \brief Check whether a specialization is well-formed in the current
   5863 /// context.
   5864 ///
   5865 /// This routine determines whether a template specialization can be declared
   5866 /// in the current context (C++ [temp.expl.spec]p2).
   5867 ///
   5868 /// \param S the semantic analysis object for which this check is being
   5869 /// performed.
   5870 ///
   5871 /// \param Specialized the entity being specialized or instantiated, which
   5872 /// may be a kind of template (class template, function template, etc.) or
   5873 /// a member of a class template (member function, static data member,
   5874 /// member class).
   5875 ///
   5876 /// \param PrevDecl the previous declaration of this entity, if any.
   5877 ///
   5878 /// \param Loc the location of the explicit specialization or instantiation of
   5879 /// this entity.
   5880 ///
   5881 /// \param IsPartialSpecialization whether this is a partial specialization of
   5882 /// a class template.
   5883 ///
   5884 /// \returns true if there was an error that we cannot recover from, false
   5885 /// otherwise.
   5886 static bool CheckTemplateSpecializationScope(Sema &S,
   5887                                              NamedDecl *Specialized,
   5888                                              NamedDecl *PrevDecl,
   5889                                              SourceLocation Loc,
   5890                                              bool IsPartialSpecialization) {
   5891   // Keep these "kind" numbers in sync with the %select statements in the
   5892   // various diagnostics emitted by this routine.
   5893   int EntityKind = 0;
   5894   if (isa<ClassTemplateDecl>(Specialized))
   5895     EntityKind = IsPartialSpecialization? 1 : 0;
   5896   else if (isa<VarTemplateDecl>(Specialized))
   5897     EntityKind = IsPartialSpecialization ? 3 : 2;
   5898   else if (isa<FunctionTemplateDecl>(Specialized))
   5899     EntityKind = 4;
   5900   else if (isa<CXXMethodDecl>(Specialized))
   5901     EntityKind = 5;
   5902   else if (isa<VarDecl>(Specialized))
   5903     EntityKind = 6;
   5904   else if (isa<RecordDecl>(Specialized))
   5905     EntityKind = 7;
   5906   else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
   5907     EntityKind = 8;
   5908   else {
   5909     S.Diag(Loc, diag::err_template_spec_unknown_kind)
   5910       << S.getLangOpts().CPlusPlus11;
   5911     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   5912     return true;
   5913   }
   5914 
   5915   // C++ [temp.expl.spec]p2:
   5916   //   An explicit specialization shall be declared in the namespace
   5917   //   of which the template is a member, or, for member templates, in
   5918   //   the namespace of which the enclosing class or enclosing class
   5919   //   template is a member. An explicit specialization of a member
   5920   //   function, member class or static data member of a class
   5921   //   template shall be declared in the namespace of which the class
   5922   //   template is a member. Such a declaration may also be a
   5923   //   definition. If the declaration is not a definition, the
   5924   //   specialization may be defined later in the name- space in which
   5925   //   the explicit specialization was declared, or in a namespace
   5926   //   that encloses the one in which the explicit specialization was
   5927   //   declared.
   5928   if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   5929     S.Diag(Loc, diag::err_template_spec_decl_function_scope)
   5930       << Specialized;
   5931     return true;
   5932   }
   5933 
   5934   if (S.CurContext->isRecord() && !IsPartialSpecialization) {
   5935     if (S.getLangOpts().MicrosoftExt) {
   5936       // Do not warn for class scope explicit specialization during
   5937       // instantiation, warning was already emitted during pattern
   5938       // semantic analysis.
   5939       if (!S.ActiveTemplateInstantiations.size())
   5940         S.Diag(Loc, diag::ext_function_specialization_in_class)
   5941           << Specialized;
   5942     } else {
   5943       S.Diag(Loc, diag::err_template_spec_decl_class_scope)
   5944         << Specialized;
   5945       return true;
   5946     }
   5947   }
   5948 
   5949   if (S.CurContext->isRecord() &&
   5950       !S.CurContext->Equals(Specialized->getDeclContext())) {
   5951     // Make sure that we're specializing in the right record context.
   5952     // Otherwise, things can go horribly wrong.
   5953     S.Diag(Loc, diag::err_template_spec_decl_class_scope)
   5954       << Specialized;
   5955     return true;
   5956   }
   5957 
   5958   // C++ [temp.class.spec]p6:
   5959   //   A class template partial specialization may be declared or redeclared
   5960   //   in any namespace scope in which its definition may be defined (14.5.1
   5961   //   and 14.5.2).
   5962   DeclContext *SpecializedContext
   5963     = Specialized->getDeclContext()->getEnclosingNamespaceContext();
   5964   DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
   5965 
   5966   // Make sure that this redeclaration (or definition) occurs in an enclosing
   5967   // namespace.
   5968   // Note that HandleDeclarator() performs this check for explicit
   5969   // specializations of function templates, static data members, and member
   5970   // functions, so we skip the check here for those kinds of entities.
   5971   // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
   5972   // Should we refactor that check, so that it occurs later?
   5973   if (!DC->Encloses(SpecializedContext) &&
   5974       !(isa<FunctionTemplateDecl>(Specialized) ||
   5975         isa<FunctionDecl>(Specialized) ||
   5976         isa<VarTemplateDecl>(Specialized) ||
   5977         isa<VarDecl>(Specialized))) {
   5978     if (isa<TranslationUnitDecl>(SpecializedContext))
   5979       S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
   5980         << EntityKind << Specialized;
   5981     else if (isa<NamespaceDecl>(SpecializedContext)) {
   5982       int Diag = diag::err_template_spec_redecl_out_of_scope;
   5983       if (S.getLangOpts().MicrosoftExt)
   5984         Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
   5985       S.Diag(Loc, Diag) << EntityKind << Specialized
   5986                         << cast<NamedDecl>(SpecializedContext);
   5987     } else
   5988       llvm_unreachable("unexpected namespace context for specialization");
   5989 
   5990     S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   5991   } else if ((!PrevDecl ||
   5992               getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
   5993               getTemplateSpecializationKind(PrevDecl) ==
   5994                   TSK_ImplicitInstantiation)) {
   5995     // C++ [temp.exp.spec]p2:
   5996     //   An explicit specialization shall be declared in the namespace of which
   5997     //   the template is a member, or, for member templates, in the namespace
   5998     //   of which the enclosing class or enclosing class template is a member.
   5999     //   An explicit specialization of a member function, member class or
   6000     //   static data member of a class template shall be declared in the
   6001     //   namespace of which the class template is a member.
   6002     //
   6003     // C++11 [temp.expl.spec]p2:
   6004     //   An explicit specialization shall be declared in a namespace enclosing
   6005     //   the specialized template.
   6006     // C++11 [temp.explicit]p3:
   6007     //   An explicit instantiation shall appear in an enclosing namespace of its
   6008     //   template.
   6009     if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
   6010       bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
   6011       if (isa<TranslationUnitDecl>(SpecializedContext)) {
   6012         assert(!IsCPlusPlus11Extension &&
   6013                "DC encloses TU but isn't in enclosing namespace set");
   6014         S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
   6015           << EntityKind << Specialized;
   6016       } else if (isa<NamespaceDecl>(SpecializedContext)) {
   6017         int Diag;
   6018         if (!IsCPlusPlus11Extension)
   6019           Diag = diag::err_template_spec_decl_out_of_scope;
   6020         else if (!S.getLangOpts().CPlusPlus11)
   6021           Diag = diag::ext_template_spec_decl_out_of_scope;
   6022         else
   6023           Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
   6024         S.Diag(Loc, Diag)
   6025           << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
   6026       }
   6027 
   6028       S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
   6029     }
   6030   }
   6031 
   6032   return false;
   6033 }
   6034 
   6035 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
   6036   if (!E->isInstantiationDependent())
   6037     return SourceLocation();
   6038   DependencyChecker Checker(Depth);
   6039   Checker.TraverseStmt(E);
   6040   if (Checker.Match && Checker.MatchLoc.isInvalid())
   6041     return E->getSourceRange();
   6042   return Checker.MatchLoc;
   6043 }
   6044 
   6045 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
   6046   if (!TL.getType()->isDependentType())
   6047     return SourceLocation();
   6048   DependencyChecker Checker(Depth);
   6049   Checker.TraverseTypeLoc(TL);
   6050   if (Checker.Match && Checker.MatchLoc.isInvalid())
   6051     return TL.getSourceRange();
   6052   return Checker.MatchLoc;
   6053 }
   6054 
   6055 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
   6056 /// that checks non-type template partial specialization arguments.
   6057 static bool CheckNonTypeTemplatePartialSpecializationArgs(
   6058     Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
   6059     const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
   6060   for (unsigned I = 0; I != NumArgs; ++I) {
   6061     if (Args[I].getKind() == TemplateArgument::Pack) {
   6062       if (CheckNonTypeTemplatePartialSpecializationArgs(
   6063               S, TemplateNameLoc, Param, Args[I].pack_begin(),
   6064               Args[I].pack_size(), IsDefaultArgument))
   6065         return true;
   6066 
   6067       continue;
   6068     }
   6069 
   6070     if (Args[I].getKind() != TemplateArgument::Expression)
   6071       continue;
   6072 
   6073     Expr *ArgExpr = Args[I].getAsExpr();
   6074 
   6075     // We can have a pack expansion of any of the bullets below.
   6076     if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
   6077       ArgExpr = Expansion->getPattern();
   6078 
   6079     // Strip off any implicit casts we added as part of type checking.
   6080     while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
   6081       ArgExpr = ICE->getSubExpr();
   6082 
   6083     // C++ [temp.class.spec]p8:
   6084     //   A non-type argument is non-specialized if it is the name of a
   6085     //   non-type parameter. All other non-type arguments are
   6086     //   specialized.
   6087     //
   6088     // Below, we check the two conditions that only apply to
   6089     // specialized non-type arguments, so skip any non-specialized
   6090     // arguments.
   6091     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
   6092       if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
   6093         continue;
   6094 
   6095     // C++ [temp.class.spec]p9:
   6096     //   Within the argument list of a class template partial
   6097     //   specialization, the following restrictions apply:
   6098     //     -- A partially specialized non-type argument expression
   6099     //        shall not involve a template parameter of the partial
   6100     //        specialization except when the argument expression is a
   6101     //        simple identifier.
   6102     SourceRange ParamUseRange =
   6103         findTemplateParameter(Param->getDepth(), ArgExpr);
   6104     if (ParamUseRange.isValid()) {
   6105       if (IsDefaultArgument) {
   6106         S.Diag(TemplateNameLoc,
   6107                diag::err_dependent_non_type_arg_in_partial_spec);
   6108         S.Diag(ParamUseRange.getBegin(),
   6109                diag::note_dependent_non_type_default_arg_in_partial_spec)
   6110           << ParamUseRange;
   6111       } else {
   6112         S.Diag(ParamUseRange.getBegin(),
   6113                diag::err_dependent_non_type_arg_in_partial_spec)
   6114           << ParamUseRange;
   6115       }
   6116       return true;
   6117     }
   6118 
   6119     //     -- The type of a template parameter corresponding to a
   6120     //        specialized non-type argument shall not be dependent on a
   6121     //        parameter of the specialization.
   6122     //
   6123     // FIXME: We need to delay this check until instantiation in some cases:
   6124     //
   6125     //   template<template<typename> class X> struct A {
   6126     //     template<typename T, X<T> N> struct B;
   6127     //     template<typename T> struct B<T, 0>;
   6128     //   };
   6129     //   template<typename> using X = int;
   6130     //   A<X>::B<int, 0> b;
   6131     ParamUseRange = findTemplateParameter(
   6132             Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
   6133     if (ParamUseRange.isValid()) {
   6134       S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
   6135              diag::err_dependent_typed_non_type_arg_in_partial_spec)
   6136         << Param->getType() << ParamUseRange;
   6137       S.Diag(Param->getLocation(), diag::note_template_param_here)
   6138         << (IsDefaultArgument ? ParamUseRange : SourceRange());
   6139       return true;
   6140     }
   6141   }
   6142 
   6143   return false;
   6144 }
   6145 
   6146 /// \brief Check the non-type template arguments of a class template
   6147 /// partial specialization according to C++ [temp.class.spec]p9.
   6148 ///
   6149 /// \param TemplateNameLoc the location of the template name.
   6150 /// \param TemplateParams the template parameters of the primary class
   6151 ///        template.
   6152 /// \param NumExplicit the number of explicitly-specified template arguments.
   6153 /// \param TemplateArgs the template arguments of the class template
   6154 ///        partial specialization.
   6155 ///
   6156 /// \returns \c true if there was an error, \c false otherwise.
   6157 static bool CheckTemplatePartialSpecializationArgs(
   6158     Sema &S, SourceLocation TemplateNameLoc,
   6159     TemplateParameterList *TemplateParams, unsigned NumExplicit,
   6160     SmallVectorImpl<TemplateArgument> &TemplateArgs) {
   6161   const TemplateArgument *ArgList = TemplateArgs.data();
   6162 
   6163   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   6164     NonTypeTemplateParmDecl *Param
   6165       = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
   6166     if (!Param)
   6167       continue;
   6168 
   6169     if (CheckNonTypeTemplatePartialSpecializationArgs(
   6170             S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
   6171       return true;
   6172   }
   6173 
   6174   return false;
   6175 }
   6176 
   6177 DeclResult
   6178 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
   6179                                        TagUseKind TUK,
   6180                                        SourceLocation KWLoc,
   6181                                        SourceLocation ModulePrivateLoc,
   6182                                        TemplateIdAnnotation &TemplateId,
   6183                                        AttributeList *Attr,
   6184                                        MultiTemplateParamsArg
   6185                                            TemplateParameterLists,
   6186                                        SkipBodyInfo *SkipBody) {
   6187   assert(TUK != TUK_Reference && "References are not specializations");
   6188 
   6189   CXXScopeSpec &SS = TemplateId.SS;
   6190 
   6191   // NOTE: KWLoc is the location of the tag keyword. This will instead
   6192   // store the location of the outermost template keyword in the declaration.
   6193   SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
   6194     ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
   6195   SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
   6196   SourceLocation LAngleLoc = TemplateId.LAngleLoc;
   6197   SourceLocation RAngleLoc = TemplateId.RAngleLoc;
   6198 
   6199   // Find the class template we're specializing
   6200   TemplateName Name = TemplateId.Template.get();
   6201   ClassTemplateDecl *ClassTemplate
   6202     = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
   6203 
   6204   if (!ClassTemplate) {
   6205     Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
   6206       << (Name.getAsTemplateDecl() &&
   6207           isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
   6208     return true;
   6209   }
   6210 
   6211   bool isExplicitSpecialization = false;
   6212   bool isPartialSpecialization = false;
   6213 
   6214   // Check the validity of the template headers that introduce this
   6215   // template.
   6216   // FIXME: We probably shouldn't complain about these headers for
   6217   // friend declarations.
   6218   bool Invalid = false;
   6219   TemplateParameterList *TemplateParams =
   6220       MatchTemplateParametersToScopeSpecifier(
   6221           KWLoc, TemplateNameLoc, SS, &TemplateId,
   6222           TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
   6223           Invalid);
   6224   if (Invalid)
   6225     return true;
   6226 
   6227   if (TemplateParams && TemplateParams->size() > 0) {
   6228     isPartialSpecialization = true;
   6229 
   6230     if (TUK == TUK_Friend) {
   6231       Diag(KWLoc, diag::err_partial_specialization_friend)
   6232         << SourceRange(LAngleLoc, RAngleLoc);
   6233       return true;
   6234     }
   6235 
   6236     // C++ [temp.class.spec]p10:
   6237     //   The template parameter list of a specialization shall not
   6238     //   contain default template argument values.
   6239     for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   6240       Decl *Param = TemplateParams->getParam(I);
   6241       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
   6242         if (TTP->hasDefaultArgument()) {
   6243           Diag(TTP->getDefaultArgumentLoc(),
   6244                diag::err_default_arg_in_partial_spec);
   6245           TTP->removeDefaultArgument();
   6246         }
   6247       } else if (NonTypeTemplateParmDecl *NTTP
   6248                    = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   6249         if (Expr *DefArg = NTTP->getDefaultArgument()) {
   6250           Diag(NTTP->getDefaultArgumentLoc(),
   6251                diag::err_default_arg_in_partial_spec)
   6252             << DefArg->getSourceRange();
   6253           NTTP->removeDefaultArgument();
   6254         }
   6255       } else {
   6256         TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
   6257         if (TTP->hasDefaultArgument()) {
   6258           Diag(TTP->getDefaultArgument().getLocation(),
   6259                diag::err_default_arg_in_partial_spec)
   6260             << TTP->getDefaultArgument().getSourceRange();
   6261           TTP->removeDefaultArgument();
   6262         }
   6263       }
   6264     }
   6265   } else if (TemplateParams) {
   6266     if (TUK == TUK_Friend)
   6267       Diag(KWLoc, diag::err_template_spec_friend)
   6268         << FixItHint::CreateRemoval(
   6269                                 SourceRange(TemplateParams->getTemplateLoc(),
   6270                                             TemplateParams->getRAngleLoc()))
   6271         << SourceRange(LAngleLoc, RAngleLoc);
   6272     else
   6273       isExplicitSpecialization = true;
   6274   } else {
   6275     assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
   6276   }
   6277 
   6278   // Check that the specialization uses the same tag kind as the
   6279   // original template.
   6280   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   6281   assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
   6282   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
   6283                                     Kind, TUK == TUK_Definition, KWLoc,
   6284                                     ClassTemplate->getIdentifier())) {
   6285     Diag(KWLoc, diag::err_use_with_wrong_tag)
   6286       << ClassTemplate
   6287       << FixItHint::CreateReplacement(KWLoc,
   6288                             ClassTemplate->getTemplatedDecl()->getKindName());
   6289     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
   6290          diag::note_previous_use);
   6291     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
   6292   }
   6293 
   6294   // Translate the parser's template argument list in our AST format.
   6295   TemplateArgumentListInfo TemplateArgs =
   6296       makeTemplateArgumentListInfo(*this, TemplateId);
   6297 
   6298   // Check for unexpanded parameter packs in any of the template arguments.
   6299   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   6300     if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
   6301                                         UPPC_PartialSpecialization))
   6302       return true;
   6303 
   6304   // Check that the template argument list is well-formed for this
   6305   // template.
   6306   SmallVector<TemplateArgument, 4> Converted;
   6307   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
   6308                                 TemplateArgs, false, Converted))
   6309     return true;
   6310 
   6311   // Find the class template (partial) specialization declaration that
   6312   // corresponds to these arguments.
   6313   if (isPartialSpecialization) {
   6314     if (CheckTemplatePartialSpecializationArgs(
   6315             *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
   6316             TemplateArgs.size(), Converted))
   6317       return true;
   6318 
   6319     bool InstantiationDependent;
   6320     if (!Name.isDependent() &&
   6321         !TemplateSpecializationType::anyDependentTemplateArguments(
   6322             TemplateArgs.arguments(), InstantiationDependent)) {
   6323       Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
   6324         << ClassTemplate->getDeclName();
   6325       isPartialSpecialization = false;
   6326     }
   6327   }
   6328 
   6329   void *InsertPos = nullptr;
   6330   ClassTemplateSpecializationDecl *PrevDecl = nullptr;
   6331 
   6332   if (isPartialSpecialization)
   6333     // FIXME: Template parameter list matters, too
   6334     PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
   6335   else
   6336     PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
   6337 
   6338   ClassTemplateSpecializationDecl *Specialization = nullptr;
   6339 
   6340   // Check whether we can declare a class template specialization in
   6341   // the current scope.
   6342   if (TUK != TUK_Friend &&
   6343       CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
   6344                                        TemplateNameLoc,
   6345                                        isPartialSpecialization))
   6346     return true;
   6347 
   6348   // The canonical type
   6349   QualType CanonType;
   6350   if (isPartialSpecialization) {
   6351     // Build the canonical type that describes the converted template
   6352     // arguments of the class template partial specialization.
   6353     TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   6354     CanonType = Context.getTemplateSpecializationType(CanonTemplate,
   6355                                                       Converted);
   6356 
   6357     if (Context.hasSameType(CanonType,
   6358                         ClassTemplate->getInjectedClassNameSpecialization())) {
   6359       // C++ [temp.class.spec]p9b3:
   6360       //
   6361       //   -- The argument list of the specialization shall not be identical
   6362       //      to the implicit argument list of the primary template.
   6363       Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
   6364         << /*class template*/0 << (TUK == TUK_Definition)
   6365         << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
   6366       return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
   6367                                 ClassTemplate->getIdentifier(),
   6368                                 TemplateNameLoc,
   6369                                 Attr,
   6370                                 TemplateParams,
   6371                                 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
   6372                                 /*FriendLoc*/SourceLocation(),
   6373                                 TemplateParameterLists.size() - 1,
   6374                                 TemplateParameterLists.data());
   6375     }
   6376 
   6377     // Create a new class template partial specialization declaration node.
   6378     ClassTemplatePartialSpecializationDecl *PrevPartial
   6379       = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
   6380     ClassTemplatePartialSpecializationDecl *Partial
   6381       = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
   6382                                              ClassTemplate->getDeclContext(),
   6383                                                        KWLoc, TemplateNameLoc,
   6384                                                        TemplateParams,
   6385                                                        ClassTemplate,
   6386                                                        Converted,
   6387                                                        TemplateArgs,
   6388                                                        CanonType,
   6389                                                        PrevPartial);
   6390     SetNestedNameSpecifier(Partial, SS);
   6391     if (TemplateParameterLists.size() > 1 && SS.isSet()) {
   6392       Partial->setTemplateParameterListsInfo(
   6393           Context, TemplateParameterLists.drop_back(1));
   6394     }
   6395 
   6396     if (!PrevPartial)
   6397       ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
   6398     Specialization = Partial;
   6399 
   6400     // If we are providing an explicit specialization of a member class
   6401     // template specialization, make a note of that.
   6402     if (PrevPartial && PrevPartial->getInstantiatedFromMember())
   6403       PrevPartial->setMemberSpecialization();
   6404 
   6405     // Check that all of the template parameters of the class template
   6406     // partial specialization are deducible from the template
   6407     // arguments. If not, this class template partial specialization
   6408     // will never be used.
   6409     llvm::SmallBitVector DeducibleParams(TemplateParams->size());
   6410     MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
   6411                                TemplateParams->getDepth(),
   6412                                DeducibleParams);
   6413 
   6414     if (!DeducibleParams.all()) {
   6415       unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
   6416       Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
   6417         << /*class template*/0 << (NumNonDeducible > 1)
   6418         << SourceRange(TemplateNameLoc, RAngleLoc);
   6419       for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
   6420         if (!DeducibleParams[I]) {
   6421           NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
   6422           if (Param->getDeclName())
   6423             Diag(Param->getLocation(),
   6424                  diag::note_partial_spec_unused_parameter)
   6425               << Param->getDeclName();
   6426           else
   6427             Diag(Param->getLocation(),
   6428                  diag::note_partial_spec_unused_parameter)
   6429               << "(anonymous)";
   6430         }
   6431       }
   6432     }
   6433   } else {
   6434     // Create a new class template specialization declaration node for
   6435     // this explicit specialization or friend declaration.
   6436     Specialization
   6437       = ClassTemplateSpecializationDecl::Create(Context, Kind,
   6438                                              ClassTemplate->getDeclContext(),
   6439                                                 KWLoc, TemplateNameLoc,
   6440                                                 ClassTemplate,
   6441                                                 Converted,
   6442                                                 PrevDecl);
   6443     SetNestedNameSpecifier(Specialization, SS);
   6444     if (TemplateParameterLists.size() > 0) {
   6445       Specialization->setTemplateParameterListsInfo(Context,
   6446                                                     TemplateParameterLists);
   6447     }
   6448 
   6449     if (!PrevDecl)
   6450       ClassTemplate->AddSpecialization(Specialization, InsertPos);
   6451 
   6452     if (CurContext->isDependentContext()) {
   6453       // -fms-extensions permits specialization of nested classes without
   6454       // fully specializing the outer class(es).
   6455       assert(getLangOpts().MicrosoftExt &&
   6456              "Only possible with -fms-extensions!");
   6457       TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   6458       CanonType = Context.getTemplateSpecializationType(
   6459           CanonTemplate, Converted);
   6460     } else {
   6461       CanonType = Context.getTypeDeclType(Specialization);
   6462     }
   6463   }
   6464 
   6465   // C++ [temp.expl.spec]p6:
   6466   //   If a template, a member template or the member of a class template is
   6467   //   explicitly specialized then that specialization shall be declared
   6468   //   before the first use of that specialization that would cause an implicit
   6469   //   instantiation to take place, in every translation unit in which such a
   6470   //   use occurs; no diagnostic is required.
   6471   if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
   6472     bool Okay = false;
   6473     for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   6474       // Is there any previous explicit specialization declaration?
   6475       if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   6476         Okay = true;
   6477         break;
   6478       }
   6479     }
   6480 
   6481     if (!Okay) {
   6482       SourceRange Range(TemplateNameLoc, RAngleLoc);
   6483       Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
   6484         << Context.getTypeDeclType(Specialization) << Range;
   6485 
   6486       Diag(PrevDecl->getPointOfInstantiation(),
   6487            diag::note_instantiation_required_here)
   6488         << (PrevDecl->getTemplateSpecializationKind()
   6489                                                 != TSK_ImplicitInstantiation);
   6490       return true;
   6491     }
   6492   }
   6493 
   6494   // If this is not a friend, note that this is an explicit specialization.
   6495   if (TUK != TUK_Friend)
   6496     Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
   6497 
   6498   // Check that this isn't a redefinition of this specialization.
   6499   if (TUK == TUK_Definition) {
   6500     RecordDecl *Def = Specialization->getDefinition();
   6501     NamedDecl *Hidden = nullptr;
   6502     if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
   6503       SkipBody->ShouldSkip = true;
   6504       makeMergedDefinitionVisible(Hidden, KWLoc);
   6505       // From here on out, treat this as just a redeclaration.
   6506       TUK = TUK_Declaration;
   6507     } else if (Def) {
   6508       SourceRange Range(TemplateNameLoc, RAngleLoc);
   6509       Diag(TemplateNameLoc, diag::err_redefinition)
   6510         << Context.getTypeDeclType(Specialization) << Range;
   6511       Diag(Def->getLocation(), diag::note_previous_definition);
   6512       Specialization->setInvalidDecl();
   6513       return true;
   6514     }
   6515   }
   6516 
   6517   if (Attr)
   6518     ProcessDeclAttributeList(S, Specialization, Attr);
   6519 
   6520   // Add alignment attributes if necessary; these attributes are checked when
   6521   // the ASTContext lays out the structure.
   6522   if (TUK == TUK_Definition) {
   6523     AddAlignmentAttributesForRecord(Specialization);
   6524     AddMsStructLayoutForRecord(Specialization);
   6525   }
   6526 
   6527   if (ModulePrivateLoc.isValid())
   6528     Diag(Specialization->getLocation(), diag::err_module_private_specialization)
   6529       << (isPartialSpecialization? 1 : 0)
   6530       << FixItHint::CreateRemoval(ModulePrivateLoc);
   6531 
   6532   // Build the fully-sugared type for this class template
   6533   // specialization as the user wrote in the specialization
   6534   // itself. This means that we'll pretty-print the type retrieved
   6535   // from the specialization's declaration the way that the user
   6536   // actually wrote the specialization, rather than formatting the
   6537   // name based on the "canonical" representation used to store the
   6538   // template arguments in the specialization.
   6539   TypeSourceInfo *WrittenTy
   6540     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
   6541                                                 TemplateArgs, CanonType);
   6542   if (TUK != TUK_Friend) {
   6543     Specialization->setTypeAsWritten(WrittenTy);
   6544     Specialization->setTemplateKeywordLoc(TemplateKWLoc);
   6545   }
   6546 
   6547   // C++ [temp.expl.spec]p9:
   6548   //   A template explicit specialization is in the scope of the
   6549   //   namespace in which the template was defined.
   6550   //
   6551   // We actually implement this paragraph where we set the semantic
   6552   // context (in the creation of the ClassTemplateSpecializationDecl),
   6553   // but we also maintain the lexical context where the actual
   6554   // definition occurs.
   6555   Specialization->setLexicalDeclContext(CurContext);
   6556 
   6557   // We may be starting the definition of this specialization.
   6558   if (TUK == TUK_Definition)
   6559     Specialization->startDefinition();
   6560 
   6561   if (TUK == TUK_Friend) {
   6562     FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
   6563                                             TemplateNameLoc,
   6564                                             WrittenTy,
   6565                                             /*FIXME:*/KWLoc);
   6566     Friend->setAccess(AS_public);
   6567     CurContext->addDecl(Friend);
   6568   } else {
   6569     // Add the specialization into its lexical context, so that it can
   6570     // be seen when iterating through the list of declarations in that
   6571     // context. However, specializations are not found by name lookup.
   6572     CurContext->addDecl(Specialization);
   6573   }
   6574   return Specialization;
   6575 }
   6576 
   6577 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
   6578                               MultiTemplateParamsArg TemplateParameterLists,
   6579                                     Declarator &D) {
   6580   Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
   6581   ActOnDocumentableDecl(NewDecl);
   6582   return NewDecl;
   6583 }
   6584 
   6585 /// \brief Strips various properties off an implicit instantiation
   6586 /// that has just been explicitly specialized.
   6587 static void StripImplicitInstantiation(NamedDecl *D) {
   6588   D->dropAttr<DLLImportAttr>();
   6589   D->dropAttr<DLLExportAttr>();
   6590 
   6591   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   6592     FD->setInlineSpecified(false);
   6593 }
   6594 
   6595 /// \brief Compute the diagnostic location for an explicit instantiation
   6596 //  declaration or definition.
   6597 static SourceLocation DiagLocForExplicitInstantiation(
   6598     NamedDecl* D, SourceLocation PointOfInstantiation) {
   6599   // Explicit instantiations following a specialization have no effect and
   6600   // hence no PointOfInstantiation. In that case, walk decl backwards
   6601   // until a valid name loc is found.
   6602   SourceLocation PrevDiagLoc = PointOfInstantiation;
   6603   for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
   6604        Prev = Prev->getPreviousDecl()) {
   6605     PrevDiagLoc = Prev->getLocation();
   6606   }
   6607   assert(PrevDiagLoc.isValid() &&
   6608          "Explicit instantiation without point of instantiation?");
   6609   return PrevDiagLoc;
   6610 }
   6611 
   6612 /// \brief Diagnose cases where we have an explicit template specialization
   6613 /// before/after an explicit template instantiation, producing diagnostics
   6614 /// for those cases where they are required and determining whether the
   6615 /// new specialization/instantiation will have any effect.
   6616 ///
   6617 /// \param NewLoc the location of the new explicit specialization or
   6618 /// instantiation.
   6619 ///
   6620 /// \param NewTSK the kind of the new explicit specialization or instantiation.
   6621 ///
   6622 /// \param PrevDecl the previous declaration of the entity.
   6623 ///
   6624 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
   6625 ///
   6626 /// \param PrevPointOfInstantiation if valid, indicates where the previus
   6627 /// declaration was instantiated (either implicitly or explicitly).
   6628 ///
   6629 /// \param HasNoEffect will be set to true to indicate that the new
   6630 /// specialization or instantiation has no effect and should be ignored.
   6631 ///
   6632 /// \returns true if there was an error that should prevent the introduction of
   6633 /// the new declaration into the AST, false otherwise.
   6634 bool
   6635 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
   6636                                              TemplateSpecializationKind NewTSK,
   6637                                              NamedDecl *PrevDecl,
   6638                                              TemplateSpecializationKind PrevTSK,
   6639                                         SourceLocation PrevPointOfInstantiation,
   6640                                              bool &HasNoEffect) {
   6641   HasNoEffect = false;
   6642 
   6643   switch (NewTSK) {
   6644   case TSK_Undeclared:
   6645   case TSK_ImplicitInstantiation:
   6646     assert(
   6647         (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
   6648         "previous declaration must be implicit!");
   6649     return false;
   6650 
   6651   case TSK_ExplicitSpecialization:
   6652     switch (PrevTSK) {
   6653     case TSK_Undeclared:
   6654     case TSK_ExplicitSpecialization:
   6655       // Okay, we're just specializing something that is either already
   6656       // explicitly specialized or has merely been mentioned without any
   6657       // instantiation.
   6658       return false;
   6659 
   6660     case TSK_ImplicitInstantiation:
   6661       if (PrevPointOfInstantiation.isInvalid()) {
   6662         // The declaration itself has not actually been instantiated, so it is
   6663         // still okay to specialize it.
   6664         StripImplicitInstantiation(PrevDecl);
   6665         return false;
   6666       }
   6667       // Fall through
   6668 
   6669     case TSK_ExplicitInstantiationDeclaration:
   6670     case TSK_ExplicitInstantiationDefinition:
   6671       assert((PrevTSK == TSK_ImplicitInstantiation ||
   6672               PrevPointOfInstantiation.isValid()) &&
   6673              "Explicit instantiation without point of instantiation?");
   6674 
   6675       // C++ [temp.expl.spec]p6:
   6676       //   If a template, a member template or the member of a class template
   6677       //   is explicitly specialized then that specialization shall be declared
   6678       //   before the first use of that specialization that would cause an
   6679       //   implicit instantiation to take place, in every translation unit in
   6680       //   which such a use occurs; no diagnostic is required.
   6681       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   6682         // Is there any previous explicit specialization declaration?
   6683         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
   6684           return false;
   6685       }
   6686 
   6687       Diag(NewLoc, diag::err_specialization_after_instantiation)
   6688         << PrevDecl;
   6689       Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
   6690         << (PrevTSK != TSK_ImplicitInstantiation);
   6691 
   6692       return true;
   6693     }
   6694 
   6695   case TSK_ExplicitInstantiationDeclaration:
   6696     switch (PrevTSK) {
   6697     case TSK_ExplicitInstantiationDeclaration:
   6698       // This explicit instantiation declaration is redundant (that's okay).
   6699       HasNoEffect = true;
   6700       return false;
   6701 
   6702     case TSK_Undeclared:
   6703     case TSK_ImplicitInstantiation:
   6704       // We're explicitly instantiating something that may have already been
   6705       // implicitly instantiated; that's fine.
   6706       return false;
   6707 
   6708     case TSK_ExplicitSpecialization:
   6709       // C++0x [temp.explicit]p4:
   6710       //   For a given set of template parameters, if an explicit instantiation
   6711       //   of a template appears after a declaration of an explicit
   6712       //   specialization for that template, the explicit instantiation has no
   6713       //   effect.
   6714       HasNoEffect = true;
   6715       return false;
   6716 
   6717     case TSK_ExplicitInstantiationDefinition:
   6718       // C++0x [temp.explicit]p10:
   6719       //   If an entity is the subject of both an explicit instantiation
   6720       //   declaration and an explicit instantiation definition in the same
   6721       //   translation unit, the definition shall follow the declaration.
   6722       Diag(NewLoc,
   6723            diag::err_explicit_instantiation_declaration_after_definition);
   6724 
   6725       // Explicit instantiations following a specialization have no effect and
   6726       // hence no PrevPointOfInstantiation. In that case, walk decl backwards
   6727       // until a valid name loc is found.
   6728       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
   6729            diag::note_explicit_instantiation_definition_here);
   6730       HasNoEffect = true;
   6731       return false;
   6732     }
   6733 
   6734   case TSK_ExplicitInstantiationDefinition:
   6735     switch (PrevTSK) {
   6736     case TSK_Undeclared:
   6737     case TSK_ImplicitInstantiation:
   6738       // We're explicitly instantiating something that may have already been
   6739       // implicitly instantiated; that's fine.
   6740       return false;
   6741 
   6742     case TSK_ExplicitSpecialization:
   6743       // C++ DR 259, C++0x [temp.explicit]p4:
   6744       //   For a given set of template parameters, if an explicit
   6745       //   instantiation of a template appears after a declaration of
   6746       //   an explicit specialization for that template, the explicit
   6747       //   instantiation has no effect.
   6748       //
   6749       // In C++98/03 mode, we only give an extension warning here, because it
   6750       // is not harmful to try to explicitly instantiate something that
   6751       // has been explicitly specialized.
   6752       Diag(NewLoc, getLangOpts().CPlusPlus11 ?
   6753            diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
   6754            diag::ext_explicit_instantiation_after_specialization)
   6755         << PrevDecl;
   6756       Diag(PrevDecl->getLocation(),
   6757            diag::note_previous_template_specialization);
   6758       HasNoEffect = true;
   6759       return false;
   6760 
   6761     case TSK_ExplicitInstantiationDeclaration:
   6762       // We're explicity instantiating a definition for something for which we
   6763       // were previously asked to suppress instantiations. That's fine.
   6764 
   6765       // C++0x [temp.explicit]p4:
   6766       //   For a given set of template parameters, if an explicit instantiation
   6767       //   of a template appears after a declaration of an explicit
   6768       //   specialization for that template, the explicit instantiation has no
   6769       //   effect.
   6770       for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
   6771         // Is there any previous explicit specialization declaration?
   6772         if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
   6773           HasNoEffect = true;
   6774           break;
   6775         }
   6776       }
   6777 
   6778       return false;
   6779 
   6780     case TSK_ExplicitInstantiationDefinition:
   6781       // C++0x [temp.spec]p5:
   6782       //   For a given template and a given set of template-arguments,
   6783       //     - an explicit instantiation definition shall appear at most once
   6784       //       in a program,
   6785 
   6786       // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
   6787       Diag(NewLoc, (getLangOpts().MSVCCompat)
   6788                        ? diag::ext_explicit_instantiation_duplicate
   6789                        : diag::err_explicit_instantiation_duplicate)
   6790           << PrevDecl;
   6791       Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
   6792            diag::note_previous_explicit_instantiation);
   6793       HasNoEffect = true;
   6794       return false;
   6795     }
   6796   }
   6797 
   6798   llvm_unreachable("Missing specialization/instantiation case?");
   6799 }
   6800 
   6801 /// \brief Perform semantic analysis for the given dependent function
   6802 /// template specialization.
   6803 ///
   6804 /// The only possible way to get a dependent function template specialization
   6805 /// is with a friend declaration, like so:
   6806 ///
   6807 /// \code
   6808 ///   template \<class T> void foo(T);
   6809 ///   template \<class T> class A {
   6810 ///     friend void foo<>(T);
   6811 ///   };
   6812 /// \endcode
   6813 ///
   6814 /// There really isn't any useful analysis we can do here, so we
   6815 /// just store the information.
   6816 bool
   6817 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
   6818                    const TemplateArgumentListInfo &ExplicitTemplateArgs,
   6819                                                    LookupResult &Previous) {
   6820   // Remove anything from Previous that isn't a function template in
   6821   // the correct context.
   6822   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
   6823   LookupResult::Filter F = Previous.makeFilter();
   6824   while (F.hasNext()) {
   6825     NamedDecl *D = F.next()->getUnderlyingDecl();
   6826     if (!isa<FunctionTemplateDecl>(D) ||
   6827         !FDLookupContext->InEnclosingNamespaceSetOf(
   6828                               D->getDeclContext()->getRedeclContext()))
   6829       F.erase();
   6830   }
   6831   F.done();
   6832 
   6833   // Should this be diagnosed here?
   6834   if (Previous.empty()) return true;
   6835 
   6836   FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
   6837                                          ExplicitTemplateArgs);
   6838   return false;
   6839 }
   6840 
   6841 /// \brief Perform semantic analysis for the given function template
   6842 /// specialization.
   6843 ///
   6844 /// This routine performs all of the semantic analysis required for an
   6845 /// explicit function template specialization. On successful completion,
   6846 /// the function declaration \p FD will become a function template
   6847 /// specialization.
   6848 ///
   6849 /// \param FD the function declaration, which will be updated to become a
   6850 /// function template specialization.
   6851 ///
   6852 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
   6853 /// if any. Note that this may be valid info even when 0 arguments are
   6854 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
   6855 /// as it anyway contains info on the angle brackets locations.
   6856 ///
   6857 /// \param Previous the set of declarations that may be specialized by
   6858 /// this function specialization.
   6859 bool Sema::CheckFunctionTemplateSpecialization(
   6860     FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
   6861     LookupResult &Previous) {
   6862   // The set of function template specializations that could match this
   6863   // explicit function template specialization.
   6864   UnresolvedSet<8> Candidates;
   6865   TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
   6866                                             /*ForTakingAddress=*/false);
   6867 
   6868   llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
   6869       ConvertedTemplateArgs;
   6870 
   6871   DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
   6872   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   6873          I != E; ++I) {
   6874     NamedDecl *Ovl = (*I)->getUnderlyingDecl();
   6875     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
   6876       // Only consider templates found within the same semantic lookup scope as
   6877       // FD.
   6878       if (!FDLookupContext->InEnclosingNamespaceSetOf(
   6879                                 Ovl->getDeclContext()->getRedeclContext()))
   6880         continue;
   6881 
   6882       // When matching a constexpr member function template specialization
   6883       // against the primary template, we don't yet know whether the
   6884       // specialization has an implicit 'const' (because we don't know whether
   6885       // it will be a static member function until we know which template it
   6886       // specializes), so adjust it now assuming it specializes this template.
   6887       QualType FT = FD->getType();
   6888       if (FD->isConstexpr()) {
   6889         CXXMethodDecl *OldMD =
   6890           dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
   6891         if (OldMD && OldMD->isConst()) {
   6892           const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
   6893           FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   6894           EPI.TypeQuals |= Qualifiers::Const;
   6895           FT = Context.getFunctionType(FPT->getReturnType(),
   6896                                        FPT->getParamTypes(), EPI);
   6897         }
   6898       }
   6899 
   6900       TemplateArgumentListInfo Args;
   6901       if (ExplicitTemplateArgs)
   6902         Args = *ExplicitTemplateArgs;
   6903 
   6904       // C++ [temp.expl.spec]p11:
   6905       //   A trailing template-argument can be left unspecified in the
   6906       //   template-id naming an explicit function template specialization
   6907       //   provided it can be deduced from the function argument type.
   6908       // Perform template argument deduction to determine whether we may be
   6909       // specializing this template.
   6910       // FIXME: It is somewhat wasteful to build
   6911       TemplateDeductionInfo Info(FailedCandidates.getLocation());
   6912       FunctionDecl *Specialization = nullptr;
   6913       if (TemplateDeductionResult TDK = DeduceTemplateArguments(
   6914               cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
   6915               ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
   6916               Info)) {
   6917         // Template argument deduction failed; record why it failed, so
   6918         // that we can provide nifty diagnostics.
   6919         FailedCandidates.addCandidate().set(
   6920             I.getPair(), FunTmpl->getTemplatedDecl(),
   6921             MakeDeductionFailureInfo(Context, TDK, Info));
   6922         (void)TDK;
   6923         continue;
   6924       }
   6925 
   6926       // Record this candidate.
   6927       if (ExplicitTemplateArgs)
   6928         ConvertedTemplateArgs[Specialization] = std::move(Args);
   6929       Candidates.addDecl(Specialization, I.getAccess());
   6930     }
   6931   }
   6932 
   6933   // Find the most specialized function template.
   6934   UnresolvedSetIterator Result = getMostSpecialized(
   6935       Candidates.begin(), Candidates.end(), FailedCandidates,
   6936       FD->getLocation(),
   6937       PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
   6938       PDiag(diag::err_function_template_spec_ambiguous)
   6939           << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
   6940       PDiag(diag::note_function_template_spec_matched));
   6941 
   6942   if (Result == Candidates.end())
   6943     return true;
   6944 
   6945   // Ignore access information;  it doesn't figure into redeclaration checking.
   6946   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
   6947 
   6948   // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare [...]
   6949   // an explicit specialization (14.8.3) [...] of a concept definition.
   6950   if (Specialization->getPrimaryTemplate()->isConcept()) {
   6951     Diag(FD->getLocation(), diag::err_concept_specialized)
   6952         << 0 /*function*/ << 1 /*explicitly specialized*/;
   6953     Diag(Specialization->getLocation(), diag::note_previous_declaration);
   6954     return true;
   6955   }
   6956 
   6957   FunctionTemplateSpecializationInfo *SpecInfo
   6958     = Specialization->getTemplateSpecializationInfo();
   6959   assert(SpecInfo && "Function template specialization info missing?");
   6960 
   6961   // Note: do not overwrite location info if previous template
   6962   // specialization kind was explicit.
   6963   TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
   6964   if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
   6965     Specialization->setLocation(FD->getLocation());
   6966     // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
   6967     // function can differ from the template declaration with respect to
   6968     // the constexpr specifier.
   6969     Specialization->setConstexpr(FD->isConstexpr());
   6970   }
   6971 
   6972   // FIXME: Check if the prior specialization has a point of instantiation.
   6973   // If so, we have run afoul of .
   6974 
   6975   // If this is a friend declaration, then we're not really declaring
   6976   // an explicit specialization.
   6977   bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
   6978 
   6979   // Check the scope of this explicit specialization.
   6980   if (!isFriend &&
   6981       CheckTemplateSpecializationScope(*this,
   6982                                        Specialization->getPrimaryTemplate(),
   6983                                        Specialization, FD->getLocation(),
   6984                                        false))
   6985     return true;
   6986 
   6987   // C++ [temp.expl.spec]p6:
   6988   //   If a template, a member template or the member of a class template is
   6989   //   explicitly specialized then that specialization shall be declared
   6990   //   before the first use of that specialization that would cause an implicit
   6991   //   instantiation to take place, in every translation unit in which such a
   6992   //   use occurs; no diagnostic is required.
   6993   bool HasNoEffect = false;
   6994   if (!isFriend &&
   6995       CheckSpecializationInstantiationRedecl(FD->getLocation(),
   6996                                              TSK_ExplicitSpecialization,
   6997                                              Specialization,
   6998                                    SpecInfo->getTemplateSpecializationKind(),
   6999                                          SpecInfo->getPointOfInstantiation(),
   7000                                              HasNoEffect))
   7001     return true;
   7002 
   7003   // Mark the prior declaration as an explicit specialization, so that later
   7004   // clients know that this is an explicit specialization.
   7005   if (!isFriend) {
   7006     // Since explicit specializations do not inherit '=delete' from their
   7007     // primary function template - check if the 'specialization' that was
   7008     // implicitly generated (during template argument deduction for partial
   7009     // ordering) from the most specialized of all the function templates that
   7010     // 'FD' could have been specializing, has a 'deleted' definition.  If so,
   7011     // first check that it was implicitly generated during template argument
   7012     // deduction by making sure it wasn't referenced, and then reset the deleted
   7013     // flag to not-deleted, so that we can inherit that information from 'FD'.
   7014     if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
   7015         !Specialization->getCanonicalDecl()->isReferenced()) {
   7016       assert(
   7017           Specialization->getCanonicalDecl() == Specialization &&
   7018           "This must be the only existing declaration of this specialization");
   7019       Specialization->setDeletedAsWritten(false);
   7020     }
   7021     SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
   7022     MarkUnusedFileScopedDecl(Specialization);
   7023   }
   7024 
   7025   // Turn the given function declaration into a function template
   7026   // specialization, with the template arguments from the previous
   7027   // specialization.
   7028   // Take copies of (semantic and syntactic) template argument lists.
   7029   const TemplateArgumentList* TemplArgs = new (Context)
   7030     TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
   7031   FD->setFunctionTemplateSpecialization(
   7032       Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
   7033       SpecInfo->getTemplateSpecializationKind(),
   7034       ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
   7035 
   7036   // The "previous declaration" for this function template specialization is
   7037   // the prior function template specialization.
   7038   Previous.clear();
   7039   Previous.addDecl(Specialization);
   7040   return false;
   7041 }
   7042 
   7043 /// \brief Perform semantic analysis for the given non-template member
   7044 /// specialization.
   7045 ///
   7046 /// This routine performs all of the semantic analysis required for an
   7047 /// explicit member function specialization. On successful completion,
   7048 /// the function declaration \p FD will become a member function
   7049 /// specialization.
   7050 ///
   7051 /// \param Member the member declaration, which will be updated to become a
   7052 /// specialization.
   7053 ///
   7054 /// \param Previous the set of declarations, one of which may be specialized
   7055 /// by this function specialization;  the set will be modified to contain the
   7056 /// redeclared member.
   7057 bool
   7058 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
   7059   assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
   7060 
   7061   // Try to find the member we are instantiating.
   7062   NamedDecl *FoundInstantiation = nullptr;
   7063   NamedDecl *Instantiation = nullptr;
   7064   NamedDecl *InstantiatedFrom = nullptr;
   7065   MemberSpecializationInfo *MSInfo = nullptr;
   7066 
   7067   if (Previous.empty()) {
   7068     // Nowhere to look anyway.
   7069   } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
   7070     for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   7071            I != E; ++I) {
   7072       NamedDecl *D = (*I)->getUnderlyingDecl();
   7073       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   7074         QualType Adjusted = Function->getType();
   7075         if (!hasExplicitCallingConv(Adjusted))
   7076           Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
   7077         if (Context.hasSameType(Adjusted, Method->getType())) {
   7078           FoundInstantiation = *I;
   7079           Instantiation = Method;
   7080           InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
   7081           MSInfo = Method->getMemberSpecializationInfo();
   7082           break;
   7083         }
   7084       }
   7085     }
   7086   } else if (isa<VarDecl>(Member)) {
   7087     VarDecl *PrevVar;
   7088     if (Previous.isSingleResult() &&
   7089         (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
   7090       if (PrevVar->isStaticDataMember()) {
   7091         FoundInstantiation = Previous.getRepresentativeDecl();
   7092         Instantiation = PrevVar;
   7093         InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
   7094         MSInfo = PrevVar->getMemberSpecializationInfo();
   7095       }
   7096   } else if (isa<RecordDecl>(Member)) {
   7097     CXXRecordDecl *PrevRecord;
   7098     if (Previous.isSingleResult() &&
   7099         (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
   7100       FoundInstantiation = Previous.getRepresentativeDecl();
   7101       Instantiation = PrevRecord;
   7102       InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
   7103       MSInfo = PrevRecord->getMemberSpecializationInfo();
   7104     }
   7105   } else if (isa<EnumDecl>(Member)) {
   7106     EnumDecl *PrevEnum;
   7107     if (Previous.isSingleResult() &&
   7108         (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
   7109       FoundInstantiation = Previous.getRepresentativeDecl();
   7110       Instantiation = PrevEnum;
   7111       InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
   7112       MSInfo = PrevEnum->getMemberSpecializationInfo();
   7113     }
   7114   }
   7115 
   7116   if (!Instantiation) {
   7117     // There is no previous declaration that matches. Since member
   7118     // specializations are always out-of-line, the caller will complain about
   7119     // this mismatch later.
   7120     return false;
   7121   }
   7122 
   7123   // If this is a friend, just bail out here before we start turning
   7124   // things into explicit specializations.
   7125   if (Member->getFriendObjectKind() != Decl::FOK_None) {
   7126     // Preserve instantiation information.
   7127     if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
   7128       cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
   7129                                       cast<CXXMethodDecl>(InstantiatedFrom),
   7130         cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
   7131     } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
   7132       cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
   7133                                       cast<CXXRecordDecl>(InstantiatedFrom),
   7134         cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
   7135     }
   7136 
   7137     Previous.clear();
   7138     Previous.addDecl(FoundInstantiation);
   7139     return false;
   7140   }
   7141 
   7142   // Make sure that this is a specialization of a member.
   7143   if (!InstantiatedFrom) {
   7144     Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
   7145       << Member;
   7146     Diag(Instantiation->getLocation(), diag::note_specialized_decl);
   7147     return true;
   7148   }
   7149 
   7150   // C++ [temp.expl.spec]p6:
   7151   //   If a template, a member template or the member of a class template is
   7152   //   explicitly specialized then that specialization shall be declared
   7153   //   before the first use of that specialization that would cause an implicit
   7154   //   instantiation to take place, in every translation unit in which such a
   7155   //   use occurs; no diagnostic is required.
   7156   assert(MSInfo && "Member specialization info missing?");
   7157 
   7158   bool HasNoEffect = false;
   7159   if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
   7160                                              TSK_ExplicitSpecialization,
   7161                                              Instantiation,
   7162                                      MSInfo->getTemplateSpecializationKind(),
   7163                                            MSInfo->getPointOfInstantiation(),
   7164                                              HasNoEffect))
   7165     return true;
   7166 
   7167   // Check the scope of this explicit specialization.
   7168   if (CheckTemplateSpecializationScope(*this,
   7169                                        InstantiatedFrom,
   7170                                        Instantiation, Member->getLocation(),
   7171                                        false))
   7172     return true;
   7173 
   7174   // Note that this is an explicit instantiation of a member.
   7175   // the original declaration to note that it is an explicit specialization
   7176   // (if it was previously an implicit instantiation). This latter step
   7177   // makes bookkeeping easier.
   7178   if (isa<FunctionDecl>(Member)) {
   7179     FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
   7180     if (InstantiationFunction->getTemplateSpecializationKind() ==
   7181           TSK_ImplicitInstantiation) {
   7182       InstantiationFunction->setTemplateSpecializationKind(
   7183                                                   TSK_ExplicitSpecialization);
   7184       InstantiationFunction->setLocation(Member->getLocation());
   7185       // Explicit specializations of member functions of class templates do not
   7186       // inherit '=delete' from the member function they are specializing.
   7187       if (InstantiationFunction->isDeleted()) {
   7188         assert(InstantiationFunction->getCanonicalDecl() ==
   7189                InstantiationFunction);
   7190         InstantiationFunction->setDeletedAsWritten(false);
   7191       }
   7192     }
   7193 
   7194     cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
   7195                                         cast<CXXMethodDecl>(InstantiatedFrom),
   7196                                                   TSK_ExplicitSpecialization);
   7197     MarkUnusedFileScopedDecl(InstantiationFunction);
   7198   } else if (isa<VarDecl>(Member)) {
   7199     VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
   7200     if (InstantiationVar->getTemplateSpecializationKind() ==
   7201           TSK_ImplicitInstantiation) {
   7202       InstantiationVar->setTemplateSpecializationKind(
   7203                                                   TSK_ExplicitSpecialization);
   7204       InstantiationVar->setLocation(Member->getLocation());
   7205     }
   7206 
   7207     cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
   7208         cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
   7209     MarkUnusedFileScopedDecl(InstantiationVar);
   7210   } else if (isa<CXXRecordDecl>(Member)) {
   7211     CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
   7212     if (InstantiationClass->getTemplateSpecializationKind() ==
   7213           TSK_ImplicitInstantiation) {
   7214       InstantiationClass->setTemplateSpecializationKind(
   7215                                                    TSK_ExplicitSpecialization);
   7216       InstantiationClass->setLocation(Member->getLocation());
   7217     }
   7218 
   7219     cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
   7220                                         cast<CXXRecordDecl>(InstantiatedFrom),
   7221                                                    TSK_ExplicitSpecialization);
   7222   } else {
   7223     assert(isa<EnumDecl>(Member) && "Only member enums remain");
   7224     EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
   7225     if (InstantiationEnum->getTemplateSpecializationKind() ==
   7226           TSK_ImplicitInstantiation) {
   7227       InstantiationEnum->setTemplateSpecializationKind(
   7228                                                    TSK_ExplicitSpecialization);
   7229       InstantiationEnum->setLocation(Member->getLocation());
   7230     }
   7231 
   7232     cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
   7233         cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
   7234   }
   7235 
   7236   // Save the caller the trouble of having to figure out which declaration
   7237   // this specialization matches.
   7238   Previous.clear();
   7239   Previous.addDecl(FoundInstantiation);
   7240   return false;
   7241 }
   7242 
   7243 /// \brief Check the scope of an explicit instantiation.
   7244 ///
   7245 /// \returns true if a serious error occurs, false otherwise.
   7246 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
   7247                                             SourceLocation InstLoc,
   7248                                             bool WasQualifiedName) {
   7249   DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
   7250   DeclContext *CurContext = S.CurContext->getRedeclContext();
   7251 
   7252   if (CurContext->isRecord()) {
   7253     S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
   7254       << D;
   7255     return true;
   7256   }
   7257 
   7258   // C++11 [temp.explicit]p3:
   7259   //   An explicit instantiation shall appear in an enclosing namespace of its
   7260   //   template. If the name declared in the explicit instantiation is an
   7261   //   unqualified name, the explicit instantiation shall appear in the
   7262   //   namespace where its template is declared or, if that namespace is inline
   7263   //   (7.3.1), any namespace from its enclosing namespace set.
   7264   //
   7265   // This is DR275, which we do not retroactively apply to C++98/03.
   7266   if (WasQualifiedName) {
   7267     if (CurContext->Encloses(OrigContext))
   7268       return false;
   7269   } else {
   7270     if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
   7271       return false;
   7272   }
   7273 
   7274   if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
   7275     if (WasQualifiedName)
   7276       S.Diag(InstLoc,
   7277              S.getLangOpts().CPlusPlus11?
   7278                diag::err_explicit_instantiation_out_of_scope :
   7279                diag::warn_explicit_instantiation_out_of_scope_0x)
   7280         << D << NS;
   7281     else
   7282       S.Diag(InstLoc,
   7283              S.getLangOpts().CPlusPlus11?
   7284                diag::err_explicit_instantiation_unqualified_wrong_namespace :
   7285                diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
   7286         << D << NS;
   7287   } else
   7288     S.Diag(InstLoc,
   7289            S.getLangOpts().CPlusPlus11?
   7290              diag::err_explicit_instantiation_must_be_global :
   7291              diag::warn_explicit_instantiation_must_be_global_0x)
   7292       << D;
   7293   S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
   7294   return false;
   7295 }
   7296 
   7297 /// \brief Determine whether the given scope specifier has a template-id in it.
   7298 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
   7299   if (!SS.isSet())
   7300     return false;
   7301 
   7302   // C++11 [temp.explicit]p3:
   7303   //   If the explicit instantiation is for a member function, a member class
   7304   //   or a static data member of a class template specialization, the name of
   7305   //   the class template specialization in the qualified-id for the member
   7306   //   name shall be a simple-template-id.
   7307   //
   7308   // C++98 has the same restriction, just worded differently.
   7309   for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
   7310        NNS = NNS->getPrefix())
   7311     if (const Type *T = NNS->getAsType())
   7312       if (isa<TemplateSpecializationType>(T))
   7313         return true;
   7314 
   7315   return false;
   7316 }
   7317 
   7318 // Explicit instantiation of a class template specialization
   7319 DeclResult
   7320 Sema::ActOnExplicitInstantiation(Scope *S,
   7321                                  SourceLocation ExternLoc,
   7322                                  SourceLocation TemplateLoc,
   7323                                  unsigned TagSpec,
   7324                                  SourceLocation KWLoc,
   7325                                  const CXXScopeSpec &SS,
   7326                                  TemplateTy TemplateD,
   7327                                  SourceLocation TemplateNameLoc,
   7328                                  SourceLocation LAngleLoc,
   7329                                  ASTTemplateArgsPtr TemplateArgsIn,
   7330                                  SourceLocation RAngleLoc,
   7331                                  AttributeList *Attr) {
   7332   // Find the class template we're specializing
   7333   TemplateName Name = TemplateD.get();
   7334   TemplateDecl *TD = Name.getAsTemplateDecl();
   7335   // Check that the specialization uses the same tag kind as the
   7336   // original template.
   7337   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   7338   assert(Kind != TTK_Enum &&
   7339          "Invalid enum tag in class template explicit instantiation!");
   7340 
   7341   ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
   7342 
   7343   if (!ClassTemplate) {
   7344     unsigned ErrorKind = 0;
   7345     if (isa<TypeAliasTemplateDecl>(TD)) {
   7346       ErrorKind = 4;
   7347     } else if (isa<TemplateTemplateParmDecl>(TD)) {
   7348       ErrorKind = 5;
   7349     }
   7350 
   7351     Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << ErrorKind;
   7352     Diag(TD->getLocation(), diag::note_previous_use);
   7353     return true;
   7354   }
   7355 
   7356   if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
   7357                                     Kind, /*isDefinition*/false, KWLoc,
   7358                                     ClassTemplate->getIdentifier())) {
   7359     Diag(KWLoc, diag::err_use_with_wrong_tag)
   7360       << ClassTemplate
   7361       << FixItHint::CreateReplacement(KWLoc,
   7362                             ClassTemplate->getTemplatedDecl()->getKindName());
   7363     Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
   7364          diag::note_previous_use);
   7365     Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
   7366   }
   7367 
   7368   // C++0x [temp.explicit]p2:
   7369   //   There are two forms of explicit instantiation: an explicit instantiation
   7370   //   definition and an explicit instantiation declaration. An explicit
   7371   //   instantiation declaration begins with the extern keyword. [...]
   7372   TemplateSpecializationKind TSK = ExternLoc.isInvalid()
   7373                                        ? TSK_ExplicitInstantiationDefinition
   7374                                        : TSK_ExplicitInstantiationDeclaration;
   7375 
   7376   if (TSK == TSK_ExplicitInstantiationDeclaration) {
   7377     // Check for dllexport class template instantiation declarations.
   7378     for (AttributeList *A = Attr; A; A = A->getNext()) {
   7379       if (A->getKind() == AttributeList::AT_DLLExport) {
   7380         Diag(ExternLoc,
   7381              diag::warn_attribute_dllexport_explicit_instantiation_decl);
   7382         Diag(A->getLoc(), diag::note_attribute);
   7383         break;
   7384       }
   7385     }
   7386 
   7387     if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
   7388       Diag(ExternLoc,
   7389            diag::warn_attribute_dllexport_explicit_instantiation_decl);
   7390       Diag(A->getLocation(), diag::note_attribute);
   7391     }
   7392   }
   7393 
   7394   // In MSVC mode, dllimported explicit instantiation definitions are treated as
   7395   // instantiation declarations for most purposes.
   7396   bool DLLImportExplicitInstantiationDef = false;
   7397   if (TSK == TSK_ExplicitInstantiationDefinition &&
   7398       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   7399     // Check for dllimport class template instantiation definitions.
   7400     bool DLLImport =
   7401         ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
   7402     for (AttributeList *A = Attr; A; A = A->getNext()) {
   7403       if (A->getKind() == AttributeList::AT_DLLImport)
   7404         DLLImport = true;
   7405       if (A->getKind() == AttributeList::AT_DLLExport) {
   7406         // dllexport trumps dllimport here.
   7407         DLLImport = false;
   7408         break;
   7409       }
   7410     }
   7411     if (DLLImport) {
   7412       TSK = TSK_ExplicitInstantiationDeclaration;
   7413       DLLImportExplicitInstantiationDef = true;
   7414     }
   7415   }
   7416 
   7417   // Translate the parser's template argument list in our AST format.
   7418   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   7419   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   7420 
   7421   // Check that the template argument list is well-formed for this
   7422   // template.
   7423   SmallVector<TemplateArgument, 4> Converted;
   7424   if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
   7425                                 TemplateArgs, false, Converted))
   7426     return true;
   7427 
   7428   // Find the class template specialization declaration that
   7429   // corresponds to these arguments.
   7430   void *InsertPos = nullptr;
   7431   ClassTemplateSpecializationDecl *PrevDecl
   7432     = ClassTemplate->findSpecialization(Converted, InsertPos);
   7433 
   7434   TemplateSpecializationKind PrevDecl_TSK
   7435     = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
   7436 
   7437   // C++0x [temp.explicit]p2:
   7438   //   [...] An explicit instantiation shall appear in an enclosing
   7439   //   namespace of its template. [...]
   7440   //
   7441   // This is C++ DR 275.
   7442   if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
   7443                                       SS.isSet()))
   7444     return true;
   7445 
   7446   ClassTemplateSpecializationDecl *Specialization = nullptr;
   7447 
   7448   bool HasNoEffect = false;
   7449   if (PrevDecl) {
   7450     if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
   7451                                                PrevDecl, PrevDecl_TSK,
   7452                                             PrevDecl->getPointOfInstantiation(),
   7453                                                HasNoEffect))
   7454       return PrevDecl;
   7455 
   7456     // Even though HasNoEffect == true means that this explicit instantiation
   7457     // has no effect on semantics, we go on to put its syntax in the AST.
   7458 
   7459     if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
   7460         PrevDecl_TSK == TSK_Undeclared) {
   7461       // Since the only prior class template specialization with these
   7462       // arguments was referenced but not declared, reuse that
   7463       // declaration node as our own, updating the source location
   7464       // for the template name to reflect our new declaration.
   7465       // (Other source locations will be updated later.)
   7466       Specialization = PrevDecl;
   7467       Specialization->setLocation(TemplateNameLoc);
   7468       PrevDecl = nullptr;
   7469     }
   7470 
   7471     if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
   7472         DLLImportExplicitInstantiationDef) {
   7473       // The new specialization might add a dllimport attribute.
   7474       HasNoEffect = false;
   7475     }
   7476   }
   7477 
   7478   if (!Specialization) {
   7479     // Create a new class template specialization declaration node for
   7480     // this explicit specialization.
   7481     Specialization
   7482       = ClassTemplateSpecializationDecl::Create(Context, Kind,
   7483                                              ClassTemplate->getDeclContext(),
   7484                                                 KWLoc, TemplateNameLoc,
   7485                                                 ClassTemplate,
   7486                                                 Converted,
   7487                                                 PrevDecl);
   7488     SetNestedNameSpecifier(Specialization, SS);
   7489 
   7490     if (!HasNoEffect && !PrevDecl) {
   7491       // Insert the new specialization.
   7492       ClassTemplate->AddSpecialization(Specialization, InsertPos);
   7493     }
   7494   }
   7495 
   7496   // Build the fully-sugared type for this explicit instantiation as
   7497   // the user wrote in the explicit instantiation itself. This means
   7498   // that we'll pretty-print the type retrieved from the
   7499   // specialization's declaration the way that the user actually wrote
   7500   // the explicit instantiation, rather than formatting the name based
   7501   // on the "canonical" representation used to store the template
   7502   // arguments in the specialization.
   7503   TypeSourceInfo *WrittenTy
   7504     = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
   7505                                                 TemplateArgs,
   7506                                   Context.getTypeDeclType(Specialization));
   7507   Specialization->setTypeAsWritten(WrittenTy);
   7508 
   7509   // Set source locations for keywords.
   7510   Specialization->setExternLoc(ExternLoc);
   7511   Specialization->setTemplateKeywordLoc(TemplateLoc);
   7512   Specialization->setRBraceLoc(SourceLocation());
   7513 
   7514   if (Attr)
   7515     ProcessDeclAttributeList(S, Specialization, Attr);
   7516 
   7517   // Add the explicit instantiation into its lexical context. However,
   7518   // since explicit instantiations are never found by name lookup, we
   7519   // just put it into the declaration context directly.
   7520   Specialization->setLexicalDeclContext(CurContext);
   7521   CurContext->addDecl(Specialization);
   7522 
   7523   // Syntax is now OK, so return if it has no other effect on semantics.
   7524   if (HasNoEffect) {
   7525     // Set the template specialization kind.
   7526     Specialization->setTemplateSpecializationKind(TSK);
   7527     return Specialization;
   7528   }
   7529 
   7530   // C++ [temp.explicit]p3:
   7531   //   A definition of a class template or class member template
   7532   //   shall be in scope at the point of the explicit instantiation of
   7533   //   the class template or class member template.
   7534   //
   7535   // This check comes when we actually try to perform the
   7536   // instantiation.
   7537   ClassTemplateSpecializationDecl *Def
   7538     = cast_or_null<ClassTemplateSpecializationDecl>(
   7539                                               Specialization->getDefinition());
   7540   if (!Def)
   7541     InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
   7542   else if (TSK == TSK_ExplicitInstantiationDefinition) {
   7543     MarkVTableUsed(TemplateNameLoc, Specialization, true);
   7544     Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
   7545   }
   7546 
   7547   // Instantiate the members of this class template specialization.
   7548   Def = cast_or_null<ClassTemplateSpecializationDecl>(
   7549                                        Specialization->getDefinition());
   7550   if (Def) {
   7551     TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
   7552     // Fix a TSK_ExplicitInstantiationDeclaration followed by a
   7553     // TSK_ExplicitInstantiationDefinition
   7554     if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
   7555         (TSK == TSK_ExplicitInstantiationDefinition ||
   7556          DLLImportExplicitInstantiationDef)) {
   7557       // FIXME: Need to notify the ASTMutationListener that we did this.
   7558       Def->setTemplateSpecializationKind(TSK);
   7559 
   7560       if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
   7561           Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   7562         // In the MS ABI, an explicit instantiation definition can add a dll
   7563         // attribute to a template with a previous instantiation declaration.
   7564         // MinGW doesn't allow this.
   7565         auto *A = cast<InheritableAttr>(
   7566             getDLLAttr(Specialization)->clone(getASTContext()));
   7567         A->setInherited(true);
   7568         Def->addAttr(A);
   7569 
   7570         // We reject explicit instantiations in class scope, so there should
   7571         // never be any delayed exported classes to worry about.
   7572         assert(DelayedDllExportClasses.empty() &&
   7573                "delayed exports present at explicit instantiation");
   7574         checkClassLevelDLLAttribute(Def);
   7575         referenceDLLExportedClassMethods();
   7576 
   7577         // Propagate attribute to base class templates.
   7578         for (auto &B : Def->bases()) {
   7579           if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
   7580                   B.getType()->getAsCXXRecordDecl()))
   7581             propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart());
   7582         }
   7583       }
   7584     }
   7585 
   7586     // Set the template specialization kind. Make sure it is set before
   7587     // instantiating the members which will trigger ASTConsumer callbacks.
   7588     Specialization->setTemplateSpecializationKind(TSK);
   7589     InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
   7590   } else {
   7591 
   7592     // Set the template specialization kind.
   7593     Specialization->setTemplateSpecializationKind(TSK);
   7594   }
   7595 
   7596   return Specialization;
   7597 }
   7598 
   7599 // Explicit instantiation of a member class of a class template.
   7600 DeclResult
   7601 Sema::ActOnExplicitInstantiation(Scope *S,
   7602                                  SourceLocation ExternLoc,
   7603                                  SourceLocation TemplateLoc,
   7604                                  unsigned TagSpec,
   7605                                  SourceLocation KWLoc,
   7606                                  CXXScopeSpec &SS,
   7607                                  IdentifierInfo *Name,
   7608                                  SourceLocation NameLoc,
   7609                                  AttributeList *Attr) {
   7610 
   7611   bool Owned = false;
   7612   bool IsDependent = false;
   7613   Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
   7614                         KWLoc, SS, Name, NameLoc, Attr, AS_none,
   7615                         /*ModulePrivateLoc=*/SourceLocation(),
   7616                         MultiTemplateParamsArg(), Owned, IsDependent,
   7617                         SourceLocation(), false, TypeResult(),
   7618                         /*IsTypeSpecifier*/false);
   7619   assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
   7620 
   7621   if (!TagD)
   7622     return true;
   7623 
   7624   TagDecl *Tag = cast<TagDecl>(TagD);
   7625   assert(!Tag->isEnum() && "shouldn't see enumerations here");
   7626 
   7627   if (Tag->isInvalidDecl())
   7628     return true;
   7629 
   7630   CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
   7631   CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
   7632   if (!Pattern) {
   7633     Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
   7634       << Context.getTypeDeclType(Record);
   7635     Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
   7636     return true;
   7637   }
   7638 
   7639   // C++0x [temp.explicit]p2:
   7640   //   If the explicit instantiation is for a class or member class, the
   7641   //   elaborated-type-specifier in the declaration shall include a
   7642   //   simple-template-id.
   7643   //
   7644   // C++98 has the same restriction, just worded differently.
   7645   if (!ScopeSpecifierHasTemplateId(SS))
   7646     Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
   7647       << Record << SS.getRange();
   7648 
   7649   // C++0x [temp.explicit]p2:
   7650   //   There are two forms of explicit instantiation: an explicit instantiation
   7651   //   definition and an explicit instantiation declaration. An explicit
   7652   //   instantiation declaration begins with the extern keyword. [...]
   7653   TemplateSpecializationKind TSK
   7654     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   7655                            : TSK_ExplicitInstantiationDeclaration;
   7656 
   7657   // C++0x [temp.explicit]p2:
   7658   //   [...] An explicit instantiation shall appear in an enclosing
   7659   //   namespace of its template. [...]
   7660   //
   7661   // This is C++ DR 275.
   7662   CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
   7663 
   7664   // Verify that it is okay to explicitly instantiate here.
   7665   CXXRecordDecl *PrevDecl
   7666     = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
   7667   if (!PrevDecl && Record->getDefinition())
   7668     PrevDecl = Record;
   7669   if (PrevDecl) {
   7670     MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
   7671     bool HasNoEffect = false;
   7672     assert(MSInfo && "No member specialization information?");
   7673     if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
   7674                                                PrevDecl,
   7675                                         MSInfo->getTemplateSpecializationKind(),
   7676                                              MSInfo->getPointOfInstantiation(),
   7677                                                HasNoEffect))
   7678       return true;
   7679     if (HasNoEffect)
   7680       return TagD;
   7681   }
   7682 
   7683   CXXRecordDecl *RecordDef
   7684     = cast_or_null<CXXRecordDecl>(Record->getDefinition());
   7685   if (!RecordDef) {
   7686     // C++ [temp.explicit]p3:
   7687     //   A definition of a member class of a class template shall be in scope
   7688     //   at the point of an explicit instantiation of the member class.
   7689     CXXRecordDecl *Def
   7690       = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
   7691     if (!Def) {
   7692       Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
   7693         << 0 << Record->getDeclName() << Record->getDeclContext();
   7694       Diag(Pattern->getLocation(), diag::note_forward_declaration)
   7695         << Pattern;
   7696       return true;
   7697     } else {
   7698       if (InstantiateClass(NameLoc, Record, Def,
   7699                            getTemplateInstantiationArgs(Record),
   7700                            TSK))
   7701         return true;
   7702 
   7703       RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
   7704       if (!RecordDef)
   7705         return true;
   7706     }
   7707   }
   7708 
   7709   // Instantiate all of the members of the class.
   7710   InstantiateClassMembers(NameLoc, RecordDef,
   7711                           getTemplateInstantiationArgs(Record), TSK);
   7712 
   7713   if (TSK == TSK_ExplicitInstantiationDefinition)
   7714     MarkVTableUsed(NameLoc, RecordDef, true);
   7715 
   7716   // FIXME: We don't have any representation for explicit instantiations of
   7717   // member classes. Such a representation is not needed for compilation, but it
   7718   // should be available for clients that want to see all of the declarations in
   7719   // the source code.
   7720   return TagD;
   7721 }
   7722 
   7723 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
   7724                                             SourceLocation ExternLoc,
   7725                                             SourceLocation TemplateLoc,
   7726                                             Declarator &D) {
   7727   // Explicit instantiations always require a name.
   7728   // TODO: check if/when DNInfo should replace Name.
   7729   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   7730   DeclarationName Name = NameInfo.getName();
   7731   if (!Name) {
   7732     if (!D.isInvalidType())
   7733       Diag(D.getDeclSpec().getLocStart(),
   7734            diag::err_explicit_instantiation_requires_name)
   7735         << D.getDeclSpec().getSourceRange()
   7736         << D.getSourceRange();
   7737 
   7738     return true;
   7739   }
   7740 
   7741   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   7742   // we find one that is.
   7743   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   7744          (S->getFlags() & Scope::TemplateParamScope) != 0)
   7745     S = S->getParent();
   7746 
   7747   // Determine the type of the declaration.
   7748   TypeSourceInfo *T = GetTypeForDeclarator(D, S);
   7749   QualType R = T->getType();
   7750   if (R.isNull())
   7751     return true;
   7752 
   7753   // C++ [dcl.stc]p1:
   7754   //   A storage-class-specifier shall not be specified in [...] an explicit
   7755   //   instantiation (14.7.2) directive.
   7756   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   7757     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
   7758       << Name;
   7759     return true;
   7760   } else if (D.getDeclSpec().getStorageClassSpec()
   7761                                                 != DeclSpec::SCS_unspecified) {
   7762     // Complain about then remove the storage class specifier.
   7763     Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
   7764       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   7765 
   7766     D.getMutableDeclSpec().ClearStorageClassSpecs();
   7767   }
   7768 
   7769   // C++0x [temp.explicit]p1:
   7770   //   [...] An explicit instantiation of a function template shall not use the
   7771   //   inline or constexpr specifiers.
   7772   // Presumably, this also applies to member functions of class templates as
   7773   // well.
   7774   if (D.getDeclSpec().isInlineSpecified())
   7775     Diag(D.getDeclSpec().getInlineSpecLoc(),
   7776          getLangOpts().CPlusPlus11 ?
   7777            diag::err_explicit_instantiation_inline :
   7778            diag::warn_explicit_instantiation_inline_0x)
   7779       << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   7780   if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
   7781     // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
   7782     // not already specified.
   7783     Diag(D.getDeclSpec().getConstexprSpecLoc(),
   7784          diag::err_explicit_instantiation_constexpr);
   7785 
   7786   // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
   7787   // applied only to the definition of a function template or variable template,
   7788   // declared in namespace scope.
   7789   if (D.getDeclSpec().isConceptSpecified()) {
   7790     Diag(D.getDeclSpec().getConceptSpecLoc(),
   7791          diag::err_concept_specified_specialization) << 0;
   7792     return true;
   7793   }
   7794 
   7795   // C++0x [temp.explicit]p2:
   7796   //   There are two forms of explicit instantiation: an explicit instantiation
   7797   //   definition and an explicit instantiation declaration. An explicit
   7798   //   instantiation declaration begins with the extern keyword. [...]
   7799   TemplateSpecializationKind TSK
   7800     = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
   7801                            : TSK_ExplicitInstantiationDeclaration;
   7802 
   7803   LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
   7804   LookupParsedName(Previous, S, &D.getCXXScopeSpec());
   7805 
   7806   if (!R->isFunctionType()) {
   7807     // C++ [temp.explicit]p1:
   7808     //   A [...] static data member of a class template can be explicitly
   7809     //   instantiated from the member definition associated with its class
   7810     //   template.
   7811     // C++1y [temp.explicit]p1:
   7812     //   A [...] variable [...] template specialization can be explicitly
   7813     //   instantiated from its template.
   7814     if (Previous.isAmbiguous())
   7815       return true;
   7816 
   7817     VarDecl *Prev = Previous.getAsSingle<VarDecl>();
   7818     VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
   7819 
   7820     if (!PrevTemplate) {
   7821       if (!Prev || !Prev->isStaticDataMember()) {
   7822         // We expect to see a data data member here.
   7823         Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
   7824             << Name;
   7825         for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
   7826              P != PEnd; ++P)
   7827           Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
   7828         return true;
   7829       }
   7830 
   7831       if (!Prev->getInstantiatedFromStaticDataMember()) {
   7832         // FIXME: Check for explicit specialization?
   7833         Diag(D.getIdentifierLoc(),
   7834              diag::err_explicit_instantiation_data_member_not_instantiated)
   7835             << Prev;
   7836         Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
   7837         // FIXME: Can we provide a note showing where this was declared?
   7838         return true;
   7839       }
   7840     } else {
   7841       // Explicitly instantiate a variable template.
   7842 
   7843       // C++1y [dcl.spec.auto]p6:
   7844       //   ... A program that uses auto or decltype(auto) in a context not
   7845       //   explicitly allowed in this section is ill-formed.
   7846       //
   7847       // This includes auto-typed variable template instantiations.
   7848       if (R->isUndeducedType()) {
   7849         Diag(T->getTypeLoc().getLocStart(),
   7850              diag::err_auto_not_allowed_var_inst);
   7851         return true;
   7852       }
   7853 
   7854       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   7855         // C++1y [temp.explicit]p3:
   7856         //   If the explicit instantiation is for a variable, the unqualified-id
   7857         //   in the declaration shall be a template-id.
   7858         Diag(D.getIdentifierLoc(),
   7859              diag::err_explicit_instantiation_without_template_id)
   7860           << PrevTemplate;
   7861         Diag(PrevTemplate->getLocation(),
   7862              diag::note_explicit_instantiation_here);
   7863         return true;
   7864       }
   7865 
   7866       // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare an
   7867       // explicit instantiation (14.8.2) [...] of a concept definition.
   7868       if (PrevTemplate->isConcept()) {
   7869         Diag(D.getIdentifierLoc(), diag::err_concept_specialized)
   7870             << 1 /*variable*/ << 0 /*explicitly instantiated*/;
   7871         Diag(PrevTemplate->getLocation(), diag::note_previous_declaration);
   7872         return true;
   7873       }
   7874 
   7875       // Translate the parser's template argument list into our AST format.
   7876       TemplateArgumentListInfo TemplateArgs =
   7877           makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
   7878 
   7879       DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
   7880                                           D.getIdentifierLoc(), TemplateArgs);
   7881       if (Res.isInvalid())
   7882         return true;
   7883 
   7884       // Ignore access control bits, we don't need them for redeclaration
   7885       // checking.
   7886       Prev = cast<VarDecl>(Res.get());
   7887     }
   7888 
   7889     // C++0x [temp.explicit]p2:
   7890     //   If the explicit instantiation is for a member function, a member class
   7891     //   or a static data member of a class template specialization, the name of
   7892     //   the class template specialization in the qualified-id for the member
   7893     //   name shall be a simple-template-id.
   7894     //
   7895     // C++98 has the same restriction, just worded differently.
   7896     //
   7897     // This does not apply to variable template specializations, where the
   7898     // template-id is in the unqualified-id instead.
   7899     if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
   7900       Diag(D.getIdentifierLoc(),
   7901            diag::ext_explicit_instantiation_without_qualified_id)
   7902         << Prev << D.getCXXScopeSpec().getRange();
   7903 
   7904     // Check the scope of this explicit instantiation.
   7905     CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
   7906 
   7907     // Verify that it is okay to explicitly instantiate here.
   7908     TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
   7909     SourceLocation POI = Prev->getPointOfInstantiation();
   7910     bool HasNoEffect = false;
   7911     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
   7912                                                PrevTSK, POI, HasNoEffect))
   7913       return true;
   7914 
   7915     if (!HasNoEffect) {
   7916       // Instantiate static data member or variable template.
   7917 
   7918       Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
   7919       if (PrevTemplate) {
   7920         // Merge attributes.
   7921         if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
   7922           ProcessDeclAttributeList(S, Prev, Attr);
   7923       }
   7924       if (TSK == TSK_ExplicitInstantiationDefinition)
   7925         InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
   7926     }
   7927 
   7928     // Check the new variable specialization against the parsed input.
   7929     if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
   7930       Diag(T->getTypeLoc().getLocStart(),
   7931            diag::err_invalid_var_template_spec_type)
   7932           << 0 << PrevTemplate << R << Prev->getType();
   7933       Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
   7934           << 2 << PrevTemplate->getDeclName();
   7935       return true;
   7936     }
   7937 
   7938     // FIXME: Create an ExplicitInstantiation node?
   7939     return (Decl*) nullptr;
   7940   }
   7941 
   7942   // If the declarator is a template-id, translate the parser's template
   7943   // argument list into our AST format.
   7944   bool HasExplicitTemplateArgs = false;
   7945   TemplateArgumentListInfo TemplateArgs;
   7946   if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   7947     TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
   7948     HasExplicitTemplateArgs = true;
   7949   }
   7950 
   7951   // C++ [temp.explicit]p1:
   7952   //   A [...] function [...] can be explicitly instantiated from its template.
   7953   //   A member function [...] of a class template can be explicitly
   7954   //  instantiated from the member definition associated with its class
   7955   //  template.
   7956   UnresolvedSet<8> Matches;
   7957   TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
   7958   for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
   7959        P != PEnd; ++P) {
   7960     NamedDecl *Prev = *P;
   7961     if (!HasExplicitTemplateArgs) {
   7962       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
   7963         QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
   7964         if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
   7965           Matches.clear();
   7966 
   7967           Matches.addDecl(Method, P.getAccess());
   7968           if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
   7969             break;
   7970         }
   7971       }
   7972     }
   7973 
   7974     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
   7975     if (!FunTmpl)
   7976       continue;
   7977 
   7978     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   7979     FunctionDecl *Specialization = nullptr;
   7980     if (TemplateDeductionResult TDK
   7981           = DeduceTemplateArguments(FunTmpl,
   7982                                (HasExplicitTemplateArgs ? &TemplateArgs
   7983                                                         : nullptr),
   7984                                     R, Specialization, Info)) {
   7985       // Keep track of almost-matches.
   7986       FailedCandidates.addCandidate()
   7987           .set(P.getPair(), FunTmpl->getTemplatedDecl(),
   7988                MakeDeductionFailureInfo(Context, TDK, Info));
   7989       (void)TDK;
   7990       continue;
   7991     }
   7992 
   7993     Matches.addDecl(Specialization, P.getAccess());
   7994   }
   7995 
   7996   // Find the most specialized function template specialization.
   7997   UnresolvedSetIterator Result = getMostSpecialized(
   7998       Matches.begin(), Matches.end(), FailedCandidates,
   7999       D.getIdentifierLoc(),
   8000       PDiag(diag::err_explicit_instantiation_not_known) << Name,
   8001       PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
   8002       PDiag(diag::note_explicit_instantiation_candidate));
   8003 
   8004   if (Result == Matches.end())
   8005     return true;
   8006 
   8007   // Ignore access control bits, we don't need them for redeclaration checking.
   8008   FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
   8009 
   8010   // C++11 [except.spec]p4
   8011   // In an explicit instantiation an exception-specification may be specified,
   8012   // but is not required.
   8013   // If an exception-specification is specified in an explicit instantiation
   8014   // directive, it shall be compatible with the exception-specifications of
   8015   // other declarations of that function.
   8016   if (auto *FPT = R->getAs<FunctionProtoType>())
   8017     if (FPT->hasExceptionSpec()) {
   8018       unsigned DiagID =
   8019           diag::err_mismatched_exception_spec_explicit_instantiation;
   8020       if (getLangOpts().MicrosoftExt)
   8021         DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
   8022       bool Result = CheckEquivalentExceptionSpec(
   8023           PDiag(DiagID) << Specialization->getType(),
   8024           PDiag(diag::note_explicit_instantiation_here),
   8025           Specialization->getType()->getAs<FunctionProtoType>(),
   8026           Specialization->getLocation(), FPT, D.getLocStart());
   8027       // In Microsoft mode, mismatching exception specifications just cause a
   8028       // warning.
   8029       if (!getLangOpts().MicrosoftExt && Result)
   8030         return true;
   8031     }
   8032 
   8033   if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
   8034     Diag(D.getIdentifierLoc(),
   8035          diag::err_explicit_instantiation_member_function_not_instantiated)
   8036       << Specialization
   8037       << (Specialization->getTemplateSpecializationKind() ==
   8038           TSK_ExplicitSpecialization);
   8039     Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
   8040     return true;
   8041   }
   8042 
   8043   FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
   8044   if (!PrevDecl && Specialization->isThisDeclarationADefinition())
   8045     PrevDecl = Specialization;
   8046 
   8047   if (PrevDecl) {
   8048     bool HasNoEffect = false;
   8049     if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
   8050                                                PrevDecl,
   8051                                      PrevDecl->getTemplateSpecializationKind(),
   8052                                           PrevDecl->getPointOfInstantiation(),
   8053                                                HasNoEffect))
   8054       return true;
   8055 
   8056     // FIXME: We may still want to build some representation of this
   8057     // explicit specialization.
   8058     if (HasNoEffect)
   8059       return (Decl*) nullptr;
   8060   }
   8061 
   8062   Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
   8063   AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
   8064   if (Attr)
   8065     ProcessDeclAttributeList(S, Specialization, Attr);
   8066 
   8067   if (Specialization->isDefined()) {
   8068     // Let the ASTConsumer know that this function has been explicitly
   8069     // instantiated now, and its linkage might have changed.
   8070     Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
   8071   } else if (TSK == TSK_ExplicitInstantiationDefinition)
   8072     InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
   8073 
   8074   // C++0x [temp.explicit]p2:
   8075   //   If the explicit instantiation is for a member function, a member class
   8076   //   or a static data member of a class template specialization, the name of
   8077   //   the class template specialization in the qualified-id for the member
   8078   //   name shall be a simple-template-id.
   8079   //
   8080   // C++98 has the same restriction, just worded differently.
   8081   FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
   8082   if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
   8083       D.getCXXScopeSpec().isSet() &&
   8084       !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
   8085     Diag(D.getIdentifierLoc(),
   8086          diag::ext_explicit_instantiation_without_qualified_id)
   8087     << Specialization << D.getCXXScopeSpec().getRange();
   8088 
   8089   // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare an
   8090   // explicit instantiation (14.8.2) [...] of a concept definition.
   8091   if (FunTmpl && FunTmpl->isConcept() &&
   8092       !D.getDeclSpec().isConceptSpecified()) {
   8093     Diag(D.getIdentifierLoc(), diag::err_concept_specialized)
   8094         << 0 /*function*/ << 0 /*explicitly instantiated*/;
   8095     Diag(FunTmpl->getLocation(), diag::note_previous_declaration);
   8096     return true;
   8097   }
   8098 
   8099   CheckExplicitInstantiationScope(*this,
   8100                    FunTmpl? (NamedDecl *)FunTmpl
   8101                           : Specialization->getInstantiatedFromMemberFunction(),
   8102                                   D.getIdentifierLoc(),
   8103                                   D.getCXXScopeSpec().isSet());
   8104 
   8105   // FIXME: Create some kind of ExplicitInstantiationDecl here.
   8106   return (Decl*) nullptr;
   8107 }
   8108 
   8109 TypeResult
   8110 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   8111                         const CXXScopeSpec &SS, IdentifierInfo *Name,
   8112                         SourceLocation TagLoc, SourceLocation NameLoc) {
   8113   // This has to hold, because SS is expected to be defined.
   8114   assert(Name && "Expected a name in a dependent tag");
   8115 
   8116   NestedNameSpecifier *NNS = SS.getScopeRep();
   8117   if (!NNS)
   8118     return true;
   8119 
   8120   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   8121 
   8122   if (TUK == TUK_Declaration || TUK == TUK_Definition) {
   8123     Diag(NameLoc, diag::err_dependent_tag_decl)
   8124       << (TUK == TUK_Definition) << Kind << SS.getRange();
   8125     return true;
   8126   }
   8127 
   8128   // Create the resulting type.
   8129   ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
   8130   QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
   8131 
   8132   // Create type-source location information for this type.
   8133   TypeLocBuilder TLB;
   8134   DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
   8135   TL.setElaboratedKeywordLoc(TagLoc);
   8136   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   8137   TL.setNameLoc(NameLoc);
   8138   return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
   8139 }
   8140 
   8141 TypeResult
   8142 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
   8143                         const CXXScopeSpec &SS, const IdentifierInfo &II,
   8144                         SourceLocation IdLoc) {
   8145   if (SS.isInvalid())
   8146     return true;
   8147 
   8148   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
   8149     Diag(TypenameLoc,
   8150          getLangOpts().CPlusPlus11 ?
   8151            diag::warn_cxx98_compat_typename_outside_of_template :
   8152            diag::ext_typename_outside_of_template)
   8153       << FixItHint::CreateRemoval(TypenameLoc);
   8154 
   8155   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   8156   QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
   8157                                  TypenameLoc, QualifierLoc, II, IdLoc);
   8158   if (T.isNull())
   8159     return true;
   8160 
   8161   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
   8162   if (isa<DependentNameType>(T)) {
   8163     DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
   8164     TL.setElaboratedKeywordLoc(TypenameLoc);
   8165     TL.setQualifierLoc(QualifierLoc);
   8166     TL.setNameLoc(IdLoc);
   8167   } else {
   8168     ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
   8169     TL.setElaboratedKeywordLoc(TypenameLoc);
   8170     TL.setQualifierLoc(QualifierLoc);
   8171     TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
   8172   }
   8173 
   8174   return CreateParsedType(T, TSI);
   8175 }
   8176 
   8177 TypeResult
   8178 Sema::ActOnTypenameType(Scope *S,
   8179                         SourceLocation TypenameLoc,
   8180                         const CXXScopeSpec &SS,
   8181                         SourceLocation TemplateKWLoc,
   8182                         TemplateTy TemplateIn,
   8183                         SourceLocation TemplateNameLoc,
   8184                         SourceLocation LAngleLoc,
   8185                         ASTTemplateArgsPtr TemplateArgsIn,
   8186                         SourceLocation RAngleLoc) {
   8187   if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
   8188     Diag(TypenameLoc,
   8189          getLangOpts().CPlusPlus11 ?
   8190            diag::warn_cxx98_compat_typename_outside_of_template :
   8191            diag::ext_typename_outside_of_template)
   8192       << FixItHint::CreateRemoval(TypenameLoc);
   8193 
   8194   // Translate the parser's template argument list in our AST format.
   8195   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
   8196   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
   8197 
   8198   TemplateName Template = TemplateIn.get();
   8199   if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
   8200     // Construct a dependent template specialization type.
   8201     assert(DTN && "dependent template has non-dependent name?");
   8202     assert(DTN->getQualifier() == SS.getScopeRep());
   8203     QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
   8204                                                           DTN->getQualifier(),
   8205                                                           DTN->getIdentifier(),
   8206                                                                 TemplateArgs);
   8207 
   8208     // Create source-location information for this type.
   8209     TypeLocBuilder Builder;
   8210     DependentTemplateSpecializationTypeLoc SpecTL
   8211     = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
   8212     SpecTL.setElaboratedKeywordLoc(TypenameLoc);
   8213     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
   8214     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   8215     SpecTL.setTemplateNameLoc(TemplateNameLoc);
   8216     SpecTL.setLAngleLoc(LAngleLoc);
   8217     SpecTL.setRAngleLoc(RAngleLoc);
   8218     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   8219       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   8220     return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
   8221   }
   8222 
   8223   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
   8224   if (T.isNull())
   8225     return true;
   8226 
   8227   // Provide source-location information for the template specialization type.
   8228   TypeLocBuilder Builder;
   8229   TemplateSpecializationTypeLoc SpecTL
   8230     = Builder.push<TemplateSpecializationTypeLoc>(T);
   8231   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
   8232   SpecTL.setTemplateNameLoc(TemplateNameLoc);
   8233   SpecTL.setLAngleLoc(LAngleLoc);
   8234   SpecTL.setRAngleLoc(RAngleLoc);
   8235   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   8236     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
   8237 
   8238   T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
   8239   ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
   8240   TL.setElaboratedKeywordLoc(TypenameLoc);
   8241   TL.setQualifierLoc(SS.getWithLocInContext(Context));
   8242 
   8243   TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
   8244   return CreateParsedType(T, TSI);
   8245 }
   8246 
   8247 
   8248 /// Determine whether this failed name lookup should be treated as being
   8249 /// disabled by a usage of std::enable_if.
   8250 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
   8251                        SourceRange &CondRange) {
   8252   // We must be looking for a ::type...
   8253   if (!II.isStr("type"))
   8254     return false;
   8255 
   8256   // ... within an explicitly-written template specialization...
   8257   if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
   8258     return false;
   8259   TypeLoc EnableIfTy = NNS.getTypeLoc();
   8260   TemplateSpecializationTypeLoc EnableIfTSTLoc =
   8261       EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
   8262   if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
   8263     return false;
   8264   const TemplateSpecializationType *EnableIfTST =
   8265     cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
   8266 
   8267   // ... which names a complete class template declaration...
   8268   const TemplateDecl *EnableIfDecl =
   8269     EnableIfTST->getTemplateName().getAsTemplateDecl();
   8270   if (!EnableIfDecl || EnableIfTST->isIncompleteType())
   8271     return false;
   8272 
   8273   // ... called "enable_if".
   8274   const IdentifierInfo *EnableIfII =
   8275     EnableIfDecl->getDeclName().getAsIdentifierInfo();
   8276   if (!EnableIfII || !EnableIfII->isStr("enable_if"))
   8277     return false;
   8278 
   8279   // Assume the first template argument is the condition.
   8280   CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
   8281   return true;
   8282 }
   8283 
   8284 /// \brief Build the type that describes a C++ typename specifier,
   8285 /// e.g., "typename T::type".
   8286 QualType
   8287 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
   8288                         SourceLocation KeywordLoc,
   8289                         NestedNameSpecifierLoc QualifierLoc,
   8290                         const IdentifierInfo &II,
   8291                         SourceLocation IILoc) {
   8292   CXXScopeSpec SS;
   8293   SS.Adopt(QualifierLoc);
   8294 
   8295   DeclContext *Ctx = computeDeclContext(SS);
   8296   if (!Ctx) {
   8297     // If the nested-name-specifier is dependent and couldn't be
   8298     // resolved to a type, build a typename type.
   8299     assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
   8300     return Context.getDependentNameType(Keyword,
   8301                                         QualifierLoc.getNestedNameSpecifier(),
   8302                                         &II);
   8303   }
   8304 
   8305   // If the nested-name-specifier refers to the current instantiation,
   8306   // the "typename" keyword itself is superfluous. In C++03, the
   8307   // program is actually ill-formed. However, DR 382 (in C++0x CD1)
   8308   // allows such extraneous "typename" keywords, and we retroactively
   8309   // apply this DR to C++03 code with only a warning. In any case we continue.
   8310 
   8311   if (RequireCompleteDeclContext(SS, Ctx))
   8312     return QualType();
   8313 
   8314   DeclarationName Name(&II);
   8315   LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
   8316   LookupQualifiedName(Result, Ctx, SS);
   8317   unsigned DiagID = 0;
   8318   Decl *Referenced = nullptr;
   8319   switch (Result.getResultKind()) {
   8320   case LookupResult::NotFound: {
   8321     // If we're looking up 'type' within a template named 'enable_if', produce
   8322     // a more specific diagnostic.
   8323     SourceRange CondRange;
   8324     if (isEnableIf(QualifierLoc, II, CondRange)) {
   8325       Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
   8326         << Ctx << CondRange;
   8327       return QualType();
   8328     }
   8329 
   8330     DiagID = diag::err_typename_nested_not_found;
   8331     break;
   8332   }
   8333 
   8334   case LookupResult::FoundUnresolvedValue: {
   8335     // We found a using declaration that is a value. Most likely, the using
   8336     // declaration itself is meant to have the 'typename' keyword.
   8337     SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
   8338                           IILoc);
   8339     Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
   8340       << Name << Ctx << FullRange;
   8341     if (UnresolvedUsingValueDecl *Using
   8342           = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
   8343       SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
   8344       Diag(Loc, diag::note_using_value_decl_missing_typename)
   8345         << FixItHint::CreateInsertion(Loc, "typename ");
   8346     }
   8347   }
   8348   // Fall through to create a dependent typename type, from which we can recover
   8349   // better.
   8350 
   8351   case LookupResult::NotFoundInCurrentInstantiation:
   8352     // Okay, it's a member of an unknown instantiation.
   8353     return Context.getDependentNameType(Keyword,
   8354                                         QualifierLoc.getNestedNameSpecifier(),
   8355                                         &II);
   8356 
   8357   case LookupResult::Found:
   8358     if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
   8359       // We found a type. Build an ElaboratedType, since the
   8360       // typename-specifier was just sugar.
   8361       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
   8362       return Context.getElaboratedType(ETK_Typename,
   8363                                        QualifierLoc.getNestedNameSpecifier(),
   8364                                        Context.getTypeDeclType(Type));
   8365     }
   8366 
   8367     DiagID = diag::err_typename_nested_not_type;
   8368     Referenced = Result.getFoundDecl();
   8369     break;
   8370 
   8371   case LookupResult::FoundOverloaded:
   8372     DiagID = diag::err_typename_nested_not_type;
   8373     Referenced = *Result.begin();
   8374     break;
   8375 
   8376   case LookupResult::Ambiguous:
   8377     return QualType();
   8378   }
   8379 
   8380   // If we get here, it's because name lookup did not find a
   8381   // type. Emit an appropriate diagnostic and return an error.
   8382   SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
   8383                         IILoc);
   8384   Diag(IILoc, DiagID) << FullRange << Name << Ctx;
   8385   if (Referenced)
   8386     Diag(Referenced->getLocation(), diag::note_typename_refers_here)
   8387       << Name;
   8388   return QualType();
   8389 }
   8390 
   8391 namespace {
   8392   // See Sema::RebuildTypeInCurrentInstantiation
   8393   class CurrentInstantiationRebuilder
   8394     : public TreeTransform<CurrentInstantiationRebuilder> {
   8395     SourceLocation Loc;
   8396     DeclarationName Entity;
   8397 
   8398   public:
   8399     typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
   8400 
   8401     CurrentInstantiationRebuilder(Sema &SemaRef,
   8402                                   SourceLocation Loc,
   8403                                   DeclarationName Entity)
   8404     : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
   8405       Loc(Loc), Entity(Entity) { }
   8406 
   8407     /// \brief Determine whether the given type \p T has already been
   8408     /// transformed.
   8409     ///
   8410     /// For the purposes of type reconstruction, a type has already been
   8411     /// transformed if it is NULL or if it is not dependent.
   8412     bool AlreadyTransformed(QualType T) {
   8413       return T.isNull() || !T->isDependentType();
   8414     }
   8415 
   8416     /// \brief Returns the location of the entity whose type is being
   8417     /// rebuilt.
   8418     SourceLocation getBaseLocation() { return Loc; }
   8419 
   8420     /// \brief Returns the name of the entity whose type is being rebuilt.
   8421     DeclarationName getBaseEntity() { return Entity; }
   8422 
   8423     /// \brief Sets the "base" location and entity when that
   8424     /// information is known based on another transformation.
   8425     void setBase(SourceLocation Loc, DeclarationName Entity) {
   8426       this->Loc = Loc;
   8427       this->Entity = Entity;
   8428     }
   8429 
   8430     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   8431       // Lambdas never need to be transformed.
   8432       return E;
   8433     }
   8434   };
   8435 } // end anonymous namespace
   8436 
   8437 /// \brief Rebuilds a type within the context of the current instantiation.
   8438 ///
   8439 /// The type \p T is part of the type of an out-of-line member definition of
   8440 /// a class template (or class template partial specialization) that was parsed
   8441 /// and constructed before we entered the scope of the class template (or
   8442 /// partial specialization thereof). This routine will rebuild that type now
   8443 /// that we have entered the declarator's scope, which may produce different
   8444 /// canonical types, e.g.,
   8445 ///
   8446 /// \code
   8447 /// template<typename T>
   8448 /// struct X {
   8449 ///   typedef T* pointer;
   8450 ///   pointer data();
   8451 /// };
   8452 ///
   8453 /// template<typename T>
   8454 /// typename X<T>::pointer X<T>::data() { ... }
   8455 /// \endcode
   8456 ///
   8457 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
   8458 /// since we do not know that we can look into X<T> when we parsed the type.
   8459 /// This function will rebuild the type, performing the lookup of "pointer"
   8460 /// in X<T> and returning an ElaboratedType whose canonical type is the same
   8461 /// as the canonical type of T*, allowing the return types of the out-of-line
   8462 /// definition and the declaration to match.
   8463 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
   8464                                                         SourceLocation Loc,
   8465                                                         DeclarationName Name) {
   8466   if (!T || !T->getType()->isDependentType())
   8467     return T;
   8468 
   8469   CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
   8470   return Rebuilder.TransformType(T);
   8471 }
   8472 
   8473 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
   8474   CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
   8475                                           DeclarationName());
   8476   return Rebuilder.TransformExpr(E);
   8477 }
   8478 
   8479 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
   8480   if (SS.isInvalid())
   8481     return true;
   8482 
   8483   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
   8484   CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
   8485                                           DeclarationName());
   8486   NestedNameSpecifierLoc Rebuilt
   8487     = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
   8488   if (!Rebuilt)
   8489     return true;
   8490 
   8491   SS.Adopt(Rebuilt);
   8492   return false;
   8493 }
   8494 
   8495 /// \brief Rebuild the template parameters now that we know we're in a current
   8496 /// instantiation.
   8497 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
   8498                                                TemplateParameterList *Params) {
   8499   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   8500     Decl *Param = Params->getParam(I);
   8501 
   8502     // There is nothing to rebuild in a type parameter.
   8503     if (isa<TemplateTypeParmDecl>(Param))
   8504       continue;
   8505 
   8506     // Rebuild the template parameter list of a template template parameter.
   8507     if (TemplateTemplateParmDecl *TTP
   8508         = dyn_cast<TemplateTemplateParmDecl>(Param)) {
   8509       if (RebuildTemplateParamsInCurrentInstantiation(
   8510             TTP->getTemplateParameters()))
   8511         return true;
   8512 
   8513       continue;
   8514     }
   8515 
   8516     // Rebuild the type of a non-type template parameter.
   8517     NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
   8518     TypeSourceInfo *NewTSI
   8519       = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
   8520                                           NTTP->getLocation(),
   8521                                           NTTP->getDeclName());
   8522     if (!NewTSI)
   8523       return true;
   8524 
   8525     if (NewTSI != NTTP->getTypeSourceInfo()) {
   8526       NTTP->setTypeSourceInfo(NewTSI);
   8527       NTTP->setType(NewTSI->getType());
   8528     }
   8529   }
   8530 
   8531   return false;
   8532 }
   8533 
   8534 /// \brief Produces a formatted string that describes the binding of
   8535 /// template parameters to template arguments.
   8536 std::string
   8537 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
   8538                                       const TemplateArgumentList &Args) {
   8539   return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
   8540 }
   8541 
   8542 std::string
   8543 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
   8544                                       const TemplateArgument *Args,
   8545                                       unsigned NumArgs) {
   8546   SmallString<128> Str;
   8547   llvm::raw_svector_ostream Out(Str);
   8548 
   8549   if (!Params || Params->size() == 0 || NumArgs == 0)
   8550     return std::string();
   8551 
   8552   for (unsigned I = 0, N = Params->size(); I != N; ++I) {
   8553     if (I >= NumArgs)
   8554       break;
   8555 
   8556     if (I == 0)
   8557       Out << "[with ";
   8558     else
   8559       Out << ", ";
   8560 
   8561     if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
   8562       Out << Id->getName();
   8563     } else {
   8564       Out << '$' << I;
   8565     }
   8566 
   8567     Out << " = ";
   8568     Args[I].print(getPrintingPolicy(), Out);
   8569   }
   8570 
   8571   Out << ']';
   8572   return Out.str();
   8573 }
   8574 
   8575 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
   8576                                     CachedTokens &Toks) {
   8577   if (!FD)
   8578     return;
   8579 
   8580   LateParsedTemplate *LPT = new LateParsedTemplate;
   8581 
   8582   // Take tokens to avoid allocations
   8583   LPT->Toks.swap(Toks);
   8584   LPT->D = FnD;
   8585   LateParsedTemplateMap.insert(std::make_pair(FD, LPT));
   8586 
   8587   FD->setLateTemplateParsed(true);
   8588 }
   8589 
   8590 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
   8591   if (!FD)
   8592     return;
   8593   FD->setLateTemplateParsed(false);
   8594 }
   8595 
   8596 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
   8597   DeclContext *DC = CurContext;
   8598 
   8599   while (DC) {
   8600     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
   8601       const FunctionDecl *FD = RD->isLocalClass();
   8602       return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
   8603     } else if (DC->isTranslationUnit() || DC->isNamespace())
   8604       return false;
   8605 
   8606     DC = DC->getParent();
   8607   }
   8608   return false;
   8609 }
   8610 
   8611 /// \brief Walk the path from which a declaration was instantiated, and check
   8612 /// that every explicit specialization along that path is visible. This enforces
   8613 /// C++ [temp.expl.spec]/6:
   8614 ///
   8615 ///   If a template, a member template or a member of a class template is
   8616 ///   explicitly specialized then that specialization shall be declared before
   8617 ///   the first use of that specialization that would cause an implicit
   8618 ///   instantiation to take place, in every translation unit in which such a
   8619 ///   use occurs; no diagnostic is required.
   8620 ///
   8621 /// and also C++ [temp.class.spec]/1:
   8622 ///
   8623 ///   A partial specialization shall be declared before the first use of a
   8624 ///   class template specialization that would make use of the partial
   8625 ///   specialization as the result of an implicit or explicit instantiation
   8626 ///   in every translation unit in which such a use occurs; no diagnostic is
   8627 ///   required.
   8628 class ExplicitSpecializationVisibilityChecker {
   8629   Sema &S;
   8630   SourceLocation Loc;
   8631   llvm::SmallVector<Module *, 8> Modules;
   8632 
   8633 public:
   8634   ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
   8635       : S(S), Loc(Loc) {}
   8636 
   8637   void check(NamedDecl *ND) {
   8638     if (auto *FD = dyn_cast<FunctionDecl>(ND))
   8639       return checkImpl(FD);
   8640     if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
   8641       return checkImpl(RD);
   8642     if (auto *VD = dyn_cast<VarDecl>(ND))
   8643       return checkImpl(VD);
   8644     if (auto *ED = dyn_cast<EnumDecl>(ND))
   8645       return checkImpl(ED);
   8646   }
   8647 
   8648 private:
   8649   void diagnose(NamedDecl *D, bool IsPartialSpec) {
   8650     auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
   8651                               : Sema::MissingImportKind::ExplicitSpecialization;
   8652     const bool Recover = true;
   8653 
   8654     // If we got a custom set of modules (because only a subset of the
   8655     // declarations are interesting), use them, otherwise let
   8656     // diagnoseMissingImport intelligently pick some.
   8657     if (Modules.empty())
   8658       S.diagnoseMissingImport(Loc, D, Kind, Recover);
   8659     else
   8660       S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
   8661   }
   8662 
   8663   // Check a specific declaration. There are three problematic cases:
   8664   //
   8665   //  1) The declaration is an explicit specialization of a template
   8666   //     specialization.
   8667   //  2) The declaration is an explicit specialization of a member of an
   8668   //     templated class.
   8669   //  3) The declaration is an instantiation of a template, and that template
   8670   //     is an explicit specialization of a member of a templated class.
   8671   //
   8672   // We don't need to go any deeper than that, as the instantiation of the
   8673   // surrounding class / etc is not triggered by whatever triggered this
   8674   // instantiation, and thus should be checked elsewhere.
   8675   template<typename SpecDecl>
   8676   void checkImpl(SpecDecl *Spec) {
   8677     bool IsHiddenExplicitSpecialization = false;
   8678     if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
   8679       IsHiddenExplicitSpecialization =
   8680           Spec->getMemberSpecializationInfo()
   8681               ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
   8682               : !S.hasVisibleDeclaration(Spec);
   8683     } else {
   8684       checkInstantiated(Spec);
   8685     }
   8686 
   8687     if (IsHiddenExplicitSpecialization)
   8688       diagnose(Spec->getMostRecentDecl(), false);
   8689   }
   8690 
   8691   void checkInstantiated(FunctionDecl *FD) {
   8692     if (auto *TD = FD->getPrimaryTemplate())
   8693       checkTemplate(TD);
   8694   }
   8695 
   8696   void checkInstantiated(CXXRecordDecl *RD) {
   8697     auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
   8698     if (!SD)
   8699       return;
   8700 
   8701     auto From = SD->getSpecializedTemplateOrPartial();
   8702     if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
   8703       checkTemplate(TD);
   8704     else if (auto *TD =
   8705                  From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
   8706       if (!S.hasVisibleDeclaration(TD))
   8707         diagnose(TD, true);
   8708       checkTemplate(TD);
   8709     }
   8710   }
   8711 
   8712   void checkInstantiated(VarDecl *RD) {
   8713     auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
   8714     if (!SD)
   8715       return;
   8716 
   8717     auto From = SD->getSpecializedTemplateOrPartial();
   8718     if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
   8719       checkTemplate(TD);
   8720     else if (auto *TD =
   8721                  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
   8722       if (!S.hasVisibleDeclaration(TD))
   8723         diagnose(TD, true);
   8724       checkTemplate(TD);
   8725     }
   8726   }
   8727 
   8728   void checkInstantiated(EnumDecl *FD) {}
   8729 
   8730   template<typename TemplDecl>
   8731   void checkTemplate(TemplDecl *TD) {
   8732     if (TD->isMemberSpecialization()) {
   8733       if (!S.hasVisibleMemberSpecialization(TD, &Modules))
   8734         diagnose(TD->getMostRecentDecl(), false);
   8735     }
   8736   }
   8737 };
   8738 
   8739 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
   8740   if (!getLangOpts().Modules)
   8741     return;
   8742 
   8743   ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
   8744 }
   8745 
   8746 /// \brief Check whether a template partial specialization that we've discovered
   8747 /// is hidden, and produce suitable diagnostics if so.
   8748 void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
   8749                                                 NamedDecl *Spec) {
   8750   llvm::SmallVector<Module *, 8> Modules;
   8751   if (!hasVisibleDeclaration(Spec, &Modules))
   8752     diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
   8753                           MissingImportKind::PartialSpecialization,
   8754                           /*Recover*/true);
   8755 }
   8756