Home | History | Annotate | Download | only in aarch64
      1 // Copyright 2015, VIXL authors
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are met:
      6 //
      7 //   * Redistributions of source code must retain the above copyright notice,
      8 //     this list of conditions and the following disclaimer.
      9 //   * Redistributions in binary form must reproduce the above copyright notice,
     10 //     this list of conditions and the following disclaimer in the documentation
     11 //     and/or other materials provided with the distribution.
     12 //   * Neither the name of ARM Limited nor the names of its contributors may be
     13 //     used to endorse or promote products derived from this software without
     14 //     specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 
     27 #include "instructions-aarch64.h"
     28 #include "assembler-aarch64.h"
     29 
     30 namespace vixl {
     31 namespace aarch64 {
     32 
     33 
     34 // Floating-point infinity values.
     35 const float16 kFP16PositiveInfinity = 0x7c00;
     36 const float16 kFP16NegativeInfinity = 0xfc00;
     37 const float kFP32PositiveInfinity = RawbitsToFloat(0x7f800000);
     38 const float kFP32NegativeInfinity = RawbitsToFloat(0xff800000);
     39 const double kFP64PositiveInfinity =
     40     RawbitsToDouble(UINT64_C(0x7ff0000000000000));
     41 const double kFP64NegativeInfinity =
     42     RawbitsToDouble(UINT64_C(0xfff0000000000000));
     43 
     44 
     45 // The default NaN values (for FPCR.DN=1).
     46 const double kFP64DefaultNaN = RawbitsToDouble(UINT64_C(0x7ff8000000000000));
     47 const float kFP32DefaultNaN = RawbitsToFloat(0x7fc00000);
     48 const float16 kFP16DefaultNaN = 0x7e00;
     49 
     50 
     51 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
     52                                     uint64_t value,
     53                                     unsigned width) {
     54   VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
     55               (width == 32));
     56   VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
     57   uint64_t result = value & ((UINT64_C(1) << width) - 1);
     58   for (unsigned i = width; i < reg_size; i *= 2) {
     59     result |= (result << i);
     60   }
     61   return result;
     62 }
     63 
     64 
     65 bool Instruction::IsLoad() const {
     66   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
     67     return false;
     68   }
     69 
     70   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
     71     return Mask(LoadStorePairLBit) != 0;
     72   } else {
     73     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
     74     switch (op) {
     75       case LDRB_w:
     76       case LDRH_w:
     77       case LDR_w:
     78       case LDR_x:
     79       case LDRSB_w:
     80       case LDRSB_x:
     81       case LDRSH_w:
     82       case LDRSH_x:
     83       case LDRSW_x:
     84       case LDR_b:
     85       case LDR_h:
     86       case LDR_s:
     87       case LDR_d:
     88       case LDR_q:
     89         return true;
     90       default:
     91         return false;
     92     }
     93   }
     94 }
     95 
     96 
     97 bool Instruction::IsStore() const {
     98   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
     99     return false;
    100   }
    101 
    102   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    103     return Mask(LoadStorePairLBit) == 0;
    104   } else {
    105     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
    106     switch (op) {
    107       case STRB_w:
    108       case STRH_w:
    109       case STR_w:
    110       case STR_x:
    111       case STR_b:
    112       case STR_h:
    113       case STR_s:
    114       case STR_d:
    115       case STR_q:
    116         return true;
    117       default:
    118         return false;
    119     }
    120   }
    121 }
    122 
    123 
    124 // Logical immediates can't encode zero, so a return value of zero is used to
    125 // indicate a failure case. Specifically, where the constraints on imm_s are
    126 // not met.
    127 uint64_t Instruction::GetImmLogical() const {
    128   unsigned reg_size = GetSixtyFourBits() ? kXRegSize : kWRegSize;
    129   int32_t n = GetBitN();
    130   int32_t imm_s = GetImmSetBits();
    131   int32_t imm_r = GetImmRotate();
    132 
    133   // An integer is constructed from the n, imm_s and imm_r bits according to
    134   // the following table:
    135   //
    136   //  N   imms    immr    size        S             R
    137   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
    138   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
    139   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
    140   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
    141   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
    142   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
    143   // (s bits must not be all set)
    144   //
    145   // A pattern is constructed of size bits, where the least significant S+1
    146   // bits are set. The pattern is rotated right by R, and repeated across a
    147   // 32 or 64-bit value, depending on destination register width.
    148   //
    149 
    150   if (n == 1) {
    151     if (imm_s == 0x3f) {
    152       return 0;
    153     }
    154     uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
    155     return RotateRight(bits, imm_r, 64);
    156   } else {
    157     if ((imm_s >> 1) == 0x1f) {
    158       return 0;
    159     }
    160     for (int width = 0x20; width >= 0x2; width >>= 1) {
    161       if ((imm_s & width) == 0) {
    162         int mask = width - 1;
    163         if ((imm_s & mask) == mask) {
    164           return 0;
    165         }
    166         uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
    167         return RepeatBitsAcrossReg(reg_size,
    168                                    RotateRight(bits, imm_r & mask, width),
    169                                    width);
    170       }
    171     }
    172   }
    173   VIXL_UNREACHABLE();
    174   return 0;
    175 }
    176 
    177 
    178 uint32_t Instruction::GetImmNEONabcdefgh() const {
    179   return GetImmNEONabc() << 5 | GetImmNEONdefgh();
    180 }
    181 
    182 
    183 float Instruction::Imm8ToFP32(uint32_t imm8) {
    184   //   Imm8: abcdefgh (8 bits)
    185   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
    186   // where B is b ^ 1
    187   uint32_t bits = imm8;
    188   uint32_t bit7 = (bits >> 7) & 0x1;
    189   uint32_t bit6 = (bits >> 6) & 0x1;
    190   uint32_t bit5_to_0 = bits & 0x3f;
    191   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
    192 
    193   return RawbitsToFloat(result);
    194 }
    195 
    196 
    197 float Instruction::GetImmFP32() const { return Imm8ToFP32(GetImmFP()); }
    198 
    199 
    200 double Instruction::Imm8ToFP64(uint32_t imm8) {
    201   //   Imm8: abcdefgh (8 bits)
    202   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    203   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
    204   // where B is b ^ 1
    205   uint32_t bits = imm8;
    206   uint64_t bit7 = (bits >> 7) & 0x1;
    207   uint64_t bit6 = (bits >> 6) & 0x1;
    208   uint64_t bit5_to_0 = bits & 0x3f;
    209   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
    210 
    211   return RawbitsToDouble(result);
    212 }
    213 
    214 
    215 double Instruction::GetImmFP64() const { return Imm8ToFP64(GetImmFP()); }
    216 
    217 
    218 float Instruction::GetImmNEONFP32() const {
    219   return Imm8ToFP32(GetImmNEONabcdefgh());
    220 }
    221 
    222 
    223 double Instruction::GetImmNEONFP64() const {
    224   return Imm8ToFP64(GetImmNEONabcdefgh());
    225 }
    226 
    227 
    228 unsigned CalcLSDataSize(LoadStoreOp op) {
    229   VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
    230   unsigned size = static_cast<Instr>(op) >> LSSize_offset;
    231   if ((op & LSVector_mask) != 0) {
    232     // Vector register memory operations encode the access size in the "size"
    233     // and "opc" fields.
    234     if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
    235       size = kQRegSizeInBytesLog2;
    236     }
    237   }
    238   return size;
    239 }
    240 
    241 
    242 unsigned CalcLSPairDataSize(LoadStorePairOp op) {
    243   VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
    244   VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
    245   switch (op) {
    246     case STP_q:
    247     case LDP_q:
    248       return kQRegSizeInBytesLog2;
    249     case STP_x:
    250     case LDP_x:
    251     case STP_d:
    252     case LDP_d:
    253       return kXRegSizeInBytesLog2;
    254     default:
    255       return kWRegSizeInBytesLog2;
    256   }
    257 }
    258 
    259 
    260 int Instruction::GetImmBranchRangeBitwidth(ImmBranchType branch_type) {
    261   switch (branch_type) {
    262     case UncondBranchType:
    263       return ImmUncondBranch_width;
    264     case CondBranchType:
    265       return ImmCondBranch_width;
    266     case CompareBranchType:
    267       return ImmCmpBranch_width;
    268     case TestBranchType:
    269       return ImmTestBranch_width;
    270     default:
    271       VIXL_UNREACHABLE();
    272       return 0;
    273   }
    274 }
    275 
    276 
    277 int32_t Instruction::GetImmBranchForwardRange(ImmBranchType branch_type) {
    278   int32_t encoded_max = 1 << (GetImmBranchRangeBitwidth(branch_type) - 1);
    279   return encoded_max * kInstructionSize;
    280 }
    281 
    282 
    283 bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
    284                                      int64_t offset) {
    285   return IsIntN(GetImmBranchRangeBitwidth(branch_type), offset);
    286 }
    287 
    288 
    289 const Instruction* Instruction::GetImmPCOffsetTarget() const {
    290   const Instruction* base = this;
    291   ptrdiff_t offset;
    292   if (IsPCRelAddressing()) {
    293     // ADR and ADRP.
    294     offset = GetImmPCRel();
    295     if (Mask(PCRelAddressingMask) == ADRP) {
    296       base = AlignDown(base, kPageSize);
    297       offset *= kPageSize;
    298     } else {
    299       VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
    300     }
    301   } else {
    302     // All PC-relative branches.
    303     VIXL_ASSERT(GetBranchType() != UnknownBranchType);
    304     // Relative branch offsets are instruction-size-aligned.
    305     offset = GetImmBranch() * static_cast<int>(kInstructionSize);
    306   }
    307   return base + offset;
    308 }
    309 
    310 
    311 int Instruction::GetImmBranch() const {
    312   switch (GetBranchType()) {
    313     case CondBranchType:
    314       return GetImmCondBranch();
    315     case UncondBranchType:
    316       return GetImmUncondBranch();
    317     case CompareBranchType:
    318       return GetImmCmpBranch();
    319     case TestBranchType:
    320       return GetImmTestBranch();
    321     default:
    322       VIXL_UNREACHABLE();
    323   }
    324   return 0;
    325 }
    326 
    327 
    328 void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
    329   if (IsPCRelAddressing()) {
    330     SetPCRelImmTarget(target);
    331   } else {
    332     SetBranchImmTarget(target);
    333   }
    334 }
    335 
    336 
    337 void Instruction::SetPCRelImmTarget(const Instruction* target) {
    338   ptrdiff_t imm21;
    339   if ((Mask(PCRelAddressingMask) == ADR)) {
    340     imm21 = target - this;
    341   } else {
    342     VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
    343     uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
    344     uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
    345     imm21 = target_page - this_page;
    346   }
    347   Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
    348 
    349   SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
    350 }
    351 
    352 
    353 void Instruction::SetBranchImmTarget(const Instruction* target) {
    354   VIXL_ASSERT(((target - this) & 3) == 0);
    355   Instr branch_imm = 0;
    356   uint32_t imm_mask = 0;
    357   int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
    358   switch (GetBranchType()) {
    359     case CondBranchType: {
    360       branch_imm = Assembler::ImmCondBranch(offset);
    361       imm_mask = ImmCondBranch_mask;
    362       break;
    363     }
    364     case UncondBranchType: {
    365       branch_imm = Assembler::ImmUncondBranch(offset);
    366       imm_mask = ImmUncondBranch_mask;
    367       break;
    368     }
    369     case CompareBranchType: {
    370       branch_imm = Assembler::ImmCmpBranch(offset);
    371       imm_mask = ImmCmpBranch_mask;
    372       break;
    373     }
    374     case TestBranchType: {
    375       branch_imm = Assembler::ImmTestBranch(offset);
    376       imm_mask = ImmTestBranch_mask;
    377       break;
    378     }
    379     default:
    380       VIXL_UNREACHABLE();
    381   }
    382   SetInstructionBits(Mask(~imm_mask) | branch_imm);
    383 }
    384 
    385 
    386 void Instruction::SetImmLLiteral(const Instruction* source) {
    387   VIXL_ASSERT(IsWordAligned(source));
    388   ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
    389   Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
    390   Instr mask = ImmLLiteral_mask;
    391 
    392   SetInstructionBits(Mask(~mask) | imm);
    393 }
    394 
    395 
    396 VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
    397   VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
    398               vform == kFormatH || vform == kFormatS || vform == kFormatD);
    399   switch (vform) {
    400     case kFormat8H:
    401       return kFormat8B;
    402     case kFormat4S:
    403       return kFormat4H;
    404     case kFormat2D:
    405       return kFormat2S;
    406     case kFormatH:
    407       return kFormatB;
    408     case kFormatS:
    409       return kFormatH;
    410     case kFormatD:
    411       return kFormatS;
    412     default:
    413       VIXL_UNREACHABLE();
    414       return kFormatUndefined;
    415   }
    416 }
    417 
    418 
    419 VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
    420   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
    421               vform == kFormatB || vform == kFormatH || vform == kFormatS);
    422   switch (vform) {
    423     case kFormat8B:
    424       return kFormat8H;
    425     case kFormat4H:
    426       return kFormat4S;
    427     case kFormat2S:
    428       return kFormat2D;
    429     case kFormatB:
    430       return kFormatH;
    431     case kFormatH:
    432       return kFormatS;
    433     case kFormatS:
    434       return kFormatD;
    435     default:
    436       VIXL_UNREACHABLE();
    437       return kFormatUndefined;
    438   }
    439 }
    440 
    441 
    442 VectorFormat VectorFormatFillQ(VectorFormat vform) {
    443   switch (vform) {
    444     case kFormatB:
    445     case kFormat8B:
    446     case kFormat16B:
    447       return kFormat16B;
    448     case kFormatH:
    449     case kFormat4H:
    450     case kFormat8H:
    451       return kFormat8H;
    452     case kFormatS:
    453     case kFormat2S:
    454     case kFormat4S:
    455       return kFormat4S;
    456     case kFormatD:
    457     case kFormat1D:
    458     case kFormat2D:
    459       return kFormat2D;
    460     default:
    461       VIXL_UNREACHABLE();
    462       return kFormatUndefined;
    463   }
    464 }
    465 
    466 VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
    467   switch (vform) {
    468     case kFormat4H:
    469       return kFormat8B;
    470     case kFormat8H:
    471       return kFormat16B;
    472     case kFormat2S:
    473       return kFormat4H;
    474     case kFormat4S:
    475       return kFormat8H;
    476     case kFormat1D:
    477       return kFormat2S;
    478     case kFormat2D:
    479       return kFormat4S;
    480     default:
    481       VIXL_UNREACHABLE();
    482       return kFormatUndefined;
    483   }
    484 }
    485 
    486 VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
    487   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
    488   switch (vform) {
    489     case kFormat8B:
    490       return kFormat16B;
    491     case kFormat4H:
    492       return kFormat8H;
    493     case kFormat2S:
    494       return kFormat4S;
    495     default:
    496       VIXL_UNREACHABLE();
    497       return kFormatUndefined;
    498   }
    499 }
    500 
    501 
    502 VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
    503   VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
    504   switch (vform) {
    505     case kFormat16B:
    506       return kFormat8B;
    507     case kFormat8H:
    508       return kFormat4H;
    509     case kFormat4S:
    510       return kFormat2S;
    511     default:
    512       VIXL_UNREACHABLE();
    513       return kFormatUndefined;
    514   }
    515 }
    516 
    517 
    518 VectorFormat ScalarFormatFromLaneSize(int laneSize) {
    519   switch (laneSize) {
    520     case 8:
    521       return kFormatB;
    522     case 16:
    523       return kFormatH;
    524     case 32:
    525       return kFormatS;
    526     case 64:
    527       return kFormatD;
    528     default:
    529       VIXL_UNREACHABLE();
    530       return kFormatUndefined;
    531   }
    532 }
    533 
    534 
    535 VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
    536   return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
    537 }
    538 
    539 
    540 unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
    541   VIXL_ASSERT(vform != kFormatUndefined);
    542   switch (vform) {
    543     case kFormatB:
    544       return kBRegSize;
    545     case kFormatH:
    546       return kHRegSize;
    547     case kFormatS:
    548       return kSRegSize;
    549     case kFormatD:
    550       return kDRegSize;
    551     case kFormat8B:
    552     case kFormat4H:
    553     case kFormat2S:
    554     case kFormat1D:
    555       return kDRegSize;
    556     default:
    557       return kQRegSize;
    558   }
    559 }
    560 
    561 
    562 unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
    563   return RegisterSizeInBitsFromFormat(vform) / 8;
    564 }
    565 
    566 
    567 unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
    568   VIXL_ASSERT(vform != kFormatUndefined);
    569   switch (vform) {
    570     case kFormatB:
    571     case kFormat8B:
    572     case kFormat16B:
    573       return 8;
    574     case kFormatH:
    575     case kFormat4H:
    576     case kFormat8H:
    577       return 16;
    578     case kFormatS:
    579     case kFormat2S:
    580     case kFormat4S:
    581       return 32;
    582     case kFormatD:
    583     case kFormat1D:
    584     case kFormat2D:
    585       return 64;
    586     default:
    587       VIXL_UNREACHABLE();
    588       return 0;
    589   }
    590 }
    591 
    592 
    593 int LaneSizeInBytesFromFormat(VectorFormat vform) {
    594   return LaneSizeInBitsFromFormat(vform) / 8;
    595 }
    596 
    597 
    598 int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
    599   VIXL_ASSERT(vform != kFormatUndefined);
    600   switch (vform) {
    601     case kFormatB:
    602     case kFormat8B:
    603     case kFormat16B:
    604       return 0;
    605     case kFormatH:
    606     case kFormat4H:
    607     case kFormat8H:
    608       return 1;
    609     case kFormatS:
    610     case kFormat2S:
    611     case kFormat4S:
    612       return 2;
    613     case kFormatD:
    614     case kFormat1D:
    615     case kFormat2D:
    616       return 3;
    617     default:
    618       VIXL_UNREACHABLE();
    619       return 0;
    620   }
    621 }
    622 
    623 
    624 int LaneCountFromFormat(VectorFormat vform) {
    625   VIXL_ASSERT(vform != kFormatUndefined);
    626   switch (vform) {
    627     case kFormat16B:
    628       return 16;
    629     case kFormat8B:
    630     case kFormat8H:
    631       return 8;
    632     case kFormat4H:
    633     case kFormat4S:
    634       return 4;
    635     case kFormat2S:
    636     case kFormat2D:
    637       return 2;
    638     case kFormat1D:
    639     case kFormatB:
    640     case kFormatH:
    641     case kFormatS:
    642     case kFormatD:
    643       return 1;
    644     default:
    645       VIXL_UNREACHABLE();
    646       return 0;
    647   }
    648 }
    649 
    650 
    651 int MaxLaneCountFromFormat(VectorFormat vform) {
    652   VIXL_ASSERT(vform != kFormatUndefined);
    653   switch (vform) {
    654     case kFormatB:
    655     case kFormat8B:
    656     case kFormat16B:
    657       return 16;
    658     case kFormatH:
    659     case kFormat4H:
    660     case kFormat8H:
    661       return 8;
    662     case kFormatS:
    663     case kFormat2S:
    664     case kFormat4S:
    665       return 4;
    666     case kFormatD:
    667     case kFormat1D:
    668     case kFormat2D:
    669       return 2;
    670     default:
    671       VIXL_UNREACHABLE();
    672       return 0;
    673   }
    674 }
    675 
    676 
    677 // Does 'vform' indicate a vector format or a scalar format?
    678 bool IsVectorFormat(VectorFormat vform) {
    679   VIXL_ASSERT(vform != kFormatUndefined);
    680   switch (vform) {
    681     case kFormatB:
    682     case kFormatH:
    683     case kFormatS:
    684     case kFormatD:
    685       return false;
    686     default:
    687       return true;
    688   }
    689 }
    690 
    691 
    692 int64_t MaxIntFromFormat(VectorFormat vform) {
    693   return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
    694 }
    695 
    696 
    697 int64_t MinIntFromFormat(VectorFormat vform) {
    698   return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
    699 }
    700 
    701 
    702 uint64_t MaxUintFromFormat(VectorFormat vform) {
    703   return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
    704 }
    705 }  // namespace aarch64
    706 }  // namespace vixl
    707