Home | History | Annotate | Download | only in Library
      1 /** @file
      2   This library is only intended to be used by UEFI network stack modules.
      3   It provides basic functions for the UEFI network stack.
      4 
      5 Copyright (c) 2005 - 2016, Intel Corporation. All rights reserved.<BR>
      6 This program and the accompanying materials
      7 are licensed and made available under the terms and conditions of the BSD License
      8 which accompanies this distribution.  The full text of the license may be found at<BR>
      9 http://opensource.org/licenses/bsd-license.php
     10 
     11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
     12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
     13 
     14 **/
     15 
     16 #ifndef _NET_LIB_H_
     17 #define _NET_LIB_H_
     18 
     19 #include <Protocol/Ip6.h>
     20 
     21 #include <Library/BaseLib.h>
     22 #include <Library/BaseMemoryLib.h>
     23 
     24 typedef UINT32          IP4_ADDR;
     25 typedef UINT32          TCP_SEQNO;
     26 typedef UINT16          TCP_PORTNO;
     27 
     28 
     29 #define  NET_ETHER_ADDR_LEN    6
     30 #define  NET_IFTYPE_ETHERNET   0x01
     31 
     32 #define  NET_VLAN_TAG_LEN      4
     33 #define  ETHER_TYPE_VLAN       0x8100
     34 
     35 #define  EFI_IP_PROTO_UDP      0x11
     36 #define  EFI_IP_PROTO_TCP      0x06
     37 #define  EFI_IP_PROTO_ICMP     0x01
     38 #define  IP4_PROTO_IGMP        0x02
     39 #define  IP6_ICMP              58
     40 #define  DNS_MAX_NAME_SIZE     255
     41 #define  DNS_MAX_MESSAGE_SIZE  512
     42 
     43 //
     44 // The address classification
     45 //
     46 #define  IP4_ADDR_CLASSA       1     // Deprecated
     47 #define  IP4_ADDR_CLASSB       2     // Deprecated
     48 #define  IP4_ADDR_CLASSC       3     // Deprecated
     49 #define  IP4_ADDR_CLASSD       4
     50 #define  IP4_ADDR_CLASSE       5
     51 
     52 #define  IP4_MASK_NUM          33
     53 #define  IP6_PREFIX_NUM        129
     54 
     55 #define  IP4_MASK_MAX          32
     56 #define  IP6_PREFIX_MAX        128
     57 
     58 #define  IP6_HOP_BY_HOP        0
     59 #define  IP6_DESTINATION       60
     60 #define  IP6_ROUTING           43
     61 #define  IP6_FRAGMENT          44
     62 #define  IP6_AH                51
     63 #define  IP6_ESP               50
     64 #define  IP6_NO_NEXT_HEADER    59
     65 
     66 #define  IP_VERSION_4          4
     67 #define  IP_VERSION_6          6
     68 
     69 #define  IP6_PREFIX_LENGTH     64
     70 
     71 //
     72 // DNS QTYPE values
     73 //
     74 #define  DNS_TYPE_A            1
     75 #define  DNS_TYPE_NS           2
     76 #define  DNS_TYPE_CNAME        5
     77 #define  DNS_TYPE_SOA          6
     78 #define  DNS_TYPE_WKS          11
     79 #define  DNS_TYPE_PTR          12
     80 #define  DNS_TYPE_HINFO        13
     81 #define  DNS_TYPE_MINFO        14
     82 #define  DNS_TYPE_MX           15
     83 #define  DNS_TYPE_TXT          16
     84 #define  DNS_TYPE_AAAA         28
     85 #define  DNS_TYPE_SRV_RR       33
     86 #define  DNS_TYPE_AXFR         252
     87 #define  DNS_TYPE_MAILB        253
     88 #define  DNS_TYPE_ANY          255
     89 
     90 //
     91 // DNS QCLASS values
     92 //
     93 #define  DNS_CLASS_INET        1
     94 #define  DNS_CLASS_CH          3
     95 #define  DNS_CLASS_HS          4
     96 #define  DNS_CLASS_ANY         255
     97 
     98 #pragma pack(1)
     99 
    100 //
    101 // Ethernet head definition
    102 //
    103 typedef struct {
    104   UINT8                 DstMac [NET_ETHER_ADDR_LEN];
    105   UINT8                 SrcMac [NET_ETHER_ADDR_LEN];
    106   UINT16                EtherType;
    107 } ETHER_HEAD;
    108 
    109 //
    110 // 802.1Q VLAN Tag Control Information
    111 //
    112 typedef union {
    113   struct {
    114     UINT16              Vid      : 12;  // Unique VLAN identifier (0 to 4094)
    115     UINT16              Cfi      : 1;   // Canonical Format Indicator
    116     UINT16              Priority : 3;   // 802.1Q priority level (0 to 7)
    117   } Bits;
    118   UINT16                Uint16;
    119 } VLAN_TCI;
    120 
    121 #define VLAN_TCI_CFI_CANONICAL_MAC      0
    122 #define VLAN_TCI_CFI_NON_CANONICAL_MAC  1
    123 
    124 //
    125 // The EFI_IP4_HEADER is hard to use because the source and
    126 // destination address are defined as EFI_IPv4_ADDRESS, which
    127 // is a structure. Two structures can't be compared or masked
    128 // directly. This is why there is an internal representation.
    129 //
    130 typedef struct {
    131   UINT8                 HeadLen : 4;
    132   UINT8                 Ver     : 4;
    133   UINT8                 Tos;
    134   UINT16                TotalLen;
    135   UINT16                Id;
    136   UINT16                Fragment;
    137   UINT8                 Ttl;
    138   UINT8                 Protocol;
    139   UINT16                Checksum;
    140   IP4_ADDR              Src;
    141   IP4_ADDR              Dst;
    142 } IP4_HEAD;
    143 
    144 
    145 //
    146 // ICMP head definition. Each ICMP message is categorized as either an error
    147 // message or query message. Two message types have their own head format.
    148 //
    149 typedef struct {
    150   UINT8                 Type;
    151   UINT8                 Code;
    152   UINT16                Checksum;
    153 } IP4_ICMP_HEAD;
    154 
    155 typedef struct {
    156   IP4_ICMP_HEAD         Head;
    157   UINT32                Fourth; // 4th filed of the head, it depends on Type.
    158   IP4_HEAD              IpHead;
    159 } IP4_ICMP_ERROR_HEAD;
    160 
    161 typedef struct {
    162   IP4_ICMP_HEAD         Head;
    163   UINT16                Id;
    164   UINT16                Seq;
    165 } IP4_ICMP_QUERY_HEAD;
    166 
    167 typedef struct {
    168   UINT8                 Type;
    169   UINT8                 Code;
    170   UINT16                Checksum;
    171 } IP6_ICMP_HEAD;
    172 
    173 typedef struct {
    174   IP6_ICMP_HEAD         Head;
    175   UINT32                Fourth;
    176   EFI_IP6_HEADER        IpHead;
    177 } IP6_ICMP_ERROR_HEAD;
    178 
    179 typedef struct {
    180   IP6_ICMP_HEAD         Head;
    181   UINT32                Fourth;
    182 } IP6_ICMP_INFORMATION_HEAD;
    183 
    184 //
    185 // UDP header definition
    186 //
    187 typedef struct {
    188   UINT16                SrcPort;
    189   UINT16                DstPort;
    190   UINT16                Length;
    191   UINT16                Checksum;
    192 } EFI_UDP_HEADER;
    193 
    194 //
    195 // TCP header definition
    196 //
    197 typedef struct {
    198   TCP_PORTNO            SrcPort;
    199   TCP_PORTNO            DstPort;
    200   TCP_SEQNO             Seq;
    201   TCP_SEQNO             Ack;
    202   UINT8                 Res     : 4;
    203   UINT8                 HeadLen : 4;
    204   UINT8                 Flag;
    205   UINT16                Wnd;
    206   UINT16                Checksum;
    207   UINT16                Urg;
    208 } TCP_HEAD;
    209 
    210 #pragma pack()
    211 
    212 #define NET_MAC_EQUAL(pMac1, pMac2, Len)     \
    213     (CompareMem ((pMac1), (pMac2), Len) == 0)
    214 
    215 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
    216     (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
    217 
    218 #define NTOHL(x)  SwapBytes32 (x)
    219 
    220 #define HTONL(x)  NTOHL(x)
    221 
    222 #define NTOHS(x)  SwapBytes16 (x)
    223 
    224 #define HTONS(x)   NTOHS(x)
    225 #define NTOHLL(x)  SwapBytes64 (x)
    226 #define HTONLL(x)  NTOHLL(x)
    227 #define NTOHLLL(x) Ip6Swap128 (x)
    228 #define HTONLLL(x) NTOHLLL(x)
    229 
    230 //
    231 // Test the IP's attribute, All the IPs are in host byte order.
    232 //
    233 #define IP4_IS_MULTICAST(Ip)              (((Ip) & 0xF0000000) == 0xE0000000)
    234 #define IP4_IS_UNSPECIFIED(Ip)            ((Ip) == 0)
    235 #define IP4_IS_LOCAL_BROADCAST(Ip)        ((Ip) == 0xFFFFFFFF)
    236 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask)  (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
    237 #define IP4_IS_VALID_NETMASK(Ip)          (NetGetMaskLength (Ip) != (IP4_MASK_MAX + 1))
    238 
    239 #define IP6_IS_MULTICAST(Ip6)             (((Ip6)->Addr[0]) == 0xFF)
    240 
    241 //
    242 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
    243 //
    244 #define EFI_IP4(EfiIpAddr)       (*(IP4_ADDR *) ((EfiIpAddr).Addr))
    245 #define EFI_NTOHL(EfiIp)         (NTOHL (EFI_IP4 ((EfiIp))))
    246 #define EFI_IP4_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
    247 
    248 #define EFI_IP6_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
    249 
    250 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
    251 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
    252 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
    253 
    254 //
    255 // The debug level definition. This value is also used as the
    256 // syslog's severity level. Don't change it.
    257 //
    258 #define NETDEBUG_LEVEL_TRACE   5
    259 #define NETDEBUG_LEVEL_WARNING 4
    260 #define NETDEBUG_LEVEL_ERROR   3
    261 
    262 //
    263 // Network debug message is sent out as syslog packet.
    264 //
    265 #define NET_SYSLOG_FACILITY    16                 // Syslog local facility local use
    266 #define NET_SYSLOG_PACKET_LEN  512
    267 #define NET_SYSLOG_TX_TIMEOUT  (500 * 1000 * 10)  // 500ms
    268 #define NET_DEBUG_MSG_LEN      470                // 512 - (ether+ip4+udp4 head length)
    269 
    270 //
    271 // The debug output expects the ASCII format string, Use %a to print ASCII
    272 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
    273 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
    274 //
    275 #define NET_DEBUG_TRACE(Module, PrintArg) \
    276   NetDebugOutput ( \
    277     NETDEBUG_LEVEL_TRACE, \
    278     Module, \
    279     __FILE__, \
    280     __LINE__, \
    281     NetDebugASPrint PrintArg \
    282     )
    283 
    284 #define NET_DEBUG_WARNING(Module, PrintArg) \
    285   NetDebugOutput ( \
    286     NETDEBUG_LEVEL_WARNING, \
    287     Module, \
    288     __FILE__, \
    289     __LINE__, \
    290     NetDebugASPrint PrintArg \
    291     )
    292 
    293 #define NET_DEBUG_ERROR(Module, PrintArg) \
    294   NetDebugOutput ( \
    295     NETDEBUG_LEVEL_ERROR, \
    296     Module, \
    297     __FILE__, \
    298     __LINE__, \
    299     NetDebugASPrint PrintArg \
    300     )
    301 
    302 /**
    303   Allocate a buffer, then format the message to it. This is a
    304   help function for the NET_DEBUG_XXX macros. The PrintArg of
    305   these macros treats the variable length print parameters as a
    306   single parameter, and pass it to the NetDebugASPrint. For
    307   example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
    308   if extracted to:
    309 
    310          NetDebugOutput (
    311            NETDEBUG_LEVEL_TRACE,
    312            "Tcp",
    313            __FILE__,
    314            __LINE__,
    315            NetDebugASPrint ("State transit to %a\n", Name)
    316          )
    317 
    318   @param Format  The ASCII format string.
    319   @param ...     The variable length parameter whose format is determined
    320                  by the Format string.
    321 
    322   @return        The buffer containing the formatted message,
    323                  or NULL if memory allocation failed.
    324 
    325 **/
    326 CHAR8 *
    327 EFIAPI
    328 NetDebugASPrint (
    329   IN CHAR8                  *Format,
    330   ...
    331   );
    332 
    333 /**
    334   Builds an UDP4 syslog packet and send it using SNP.
    335 
    336   This function will locate a instance of SNP then send the message through it.
    337   Because it isn't open the SNP BY_DRIVER, apply caution when using it.
    338 
    339   @param Level    The severity level of the message.
    340   @param Module   The Module that generates the log.
    341   @param File     The file that contains the log.
    342   @param Line     The exact line that contains the log.
    343   @param Message  The user message to log.
    344 
    345   @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
    346   @retval EFI_OUT_OF_RESOURCES  Failed to allocate memory for the packet
    347   @retval EFI_SUCCESS           The log is discard because that it is more verbose
    348                                 than the mNetDebugLevelMax. Or, it has been sent out.
    349 **/
    350 EFI_STATUS
    351 EFIAPI
    352 NetDebugOutput (
    353   IN UINT32                    Level,
    354   IN UINT8                     *Module,
    355   IN UINT8                     *File,
    356   IN UINT32                    Line,
    357   IN UINT8                     *Message
    358   );
    359 
    360 
    361 /**
    362   Return the length of the mask.
    363 
    364   Return the length of the mask. Valid values are 0 to 32.
    365   If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
    366   NetMask is in the host byte order.
    367 
    368   @param[in]  NetMask              The netmask to get the length from.
    369 
    370   @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
    371 
    372 **/
    373 INTN
    374 EFIAPI
    375 NetGetMaskLength (
    376   IN IP4_ADDR               NetMask
    377   );
    378 
    379 /**
    380   Return the class of the IP address, such as class A, B, C.
    381   Addr is in host byte order.
    382 
    383   [ATTENTION]
    384   Classful addressing (IP class A/B/C) has been deprecated according to RFC4632.
    385   Caller of this function could only check the returned value against
    386   IP4_ADDR_CLASSD (multicast) or IP4_ADDR_CLASSE (reserved) now.
    387 
    388   The address of class A  starts with 0.
    389   If the address belong to class A, return IP4_ADDR_CLASSA.
    390   The address of class B  starts with 10.
    391   If the address belong to class B, return IP4_ADDR_CLASSB.
    392   The address of class C  starts with 110.
    393   If the address belong to class C, return IP4_ADDR_CLASSC.
    394   The address of class D  starts with 1110.
    395   If the address belong to class D, return IP4_ADDR_CLASSD.
    396   The address of class E  starts with 1111.
    397   If the address belong to class E, return IP4_ADDR_CLASSE.
    398 
    399 
    400   @param[in]   Addr                  The address to get the class from.
    401 
    402   @return IP address class, such as IP4_ADDR_CLASSA.
    403 
    404 **/
    405 INTN
    406 EFIAPI
    407 NetGetIpClass (
    408   IN IP4_ADDR               Addr
    409   );
    410 
    411 /**
    412   Check whether the IP is a valid unicast address according to
    413   the netmask.
    414 
    415   ASSERT if NetMask is zero.
    416 
    417   If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address.
    418 
    419   @param[in]  Ip                    The IP to check against.
    420   @param[in]  NetMask               The mask of the IP.
    421 
    422   @return TRUE if IP is a valid unicast address on the network, otherwise FALSE.
    423 
    424 **/
    425 BOOLEAN
    426 EFIAPI
    427 NetIp4IsUnicast (
    428   IN IP4_ADDR               Ip,
    429   IN IP4_ADDR               NetMask
    430   );
    431 
    432 /**
    433   Check whether the incoming IPv6 address is a valid unicast address.
    434 
    435   If the address is a multicast address has binary 0xFF at the start, it is not
    436   a valid unicast address. If the address is unspecified ::, it is not a valid
    437   unicast address to be assigned to any node. If the address is loopback address
    438   ::1, it is also not a valid unicast address to be assigned to any physical
    439   interface.
    440 
    441   @param[in]  Ip6                   The IPv6 address to check against.
    442 
    443   @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
    444 
    445 **/
    446 BOOLEAN
    447 EFIAPI
    448 NetIp6IsValidUnicast (
    449   IN EFI_IPv6_ADDRESS       *Ip6
    450   );
    451 
    452 
    453 /**
    454   Check whether the incoming Ipv6 address is the unspecified address or not.
    455 
    456   @param[in] Ip6   - Ip6 address, in network order.
    457 
    458   @retval TRUE     - Yes, incoming Ipv6 address is the unspecified address.
    459   @retval FALSE    - The incoming Ipv6 address is not the unspecified address
    460 
    461 **/
    462 BOOLEAN
    463 EFIAPI
    464 NetIp6IsUnspecifiedAddr (
    465   IN EFI_IPv6_ADDRESS       *Ip6
    466   );
    467 
    468 /**
    469   Check whether the incoming Ipv6 address is a link-local address.
    470 
    471   @param[in] Ip6   - Ip6 address, in network order.
    472 
    473   @retval TRUE  - The incoming Ipv6 address is a link-local address.
    474   @retval FALSE - The incoming Ipv6 address is not a link-local address.
    475 
    476 **/
    477 BOOLEAN
    478 EFIAPI
    479 NetIp6IsLinkLocalAddr (
    480   IN EFI_IPv6_ADDRESS *Ip6
    481   );
    482 
    483 /**
    484   Check whether the Ipv6 address1 and address2 are on the connected network.
    485 
    486   @param[in] Ip1          - Ip6 address1, in network order.
    487   @param[in] Ip2          - Ip6 address2, in network order.
    488   @param[in] PrefixLength - The prefix length of the checking net.
    489 
    490   @retval TRUE            - Yes, the Ipv6 address1 and address2 are connected.
    491   @retval FALSE           - No the Ipv6 address1 and address2 are not connected.
    492 
    493 **/
    494 BOOLEAN
    495 EFIAPI
    496 NetIp6IsNetEqual (
    497   EFI_IPv6_ADDRESS *Ip1,
    498   EFI_IPv6_ADDRESS *Ip2,
    499   UINT8            PrefixLength
    500   );
    501 
    502 /**
    503   Switches the endianess of an IPv6 address.
    504 
    505   This function swaps the bytes in a 128-bit IPv6 address to switch the value
    506   from little endian to big endian or vice versa. The byte swapped value is
    507   returned.
    508 
    509   @param  Ip6 Points to an IPv6 address.
    510 
    511   @return The byte swapped IPv6 address.
    512 
    513 **/
    514 EFI_IPv6_ADDRESS *
    515 EFIAPI
    516 Ip6Swap128 (
    517   EFI_IPv6_ADDRESS *Ip6
    518   );
    519 
    520 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
    521 
    522 
    523 extern EFI_IPv4_ADDRESS  mZeroIp4Addr;
    524 
    525 #define NET_IS_DIGIT(Ch)            (('0' <= (Ch)) && ((Ch) <= '9'))
    526 #define NET_IS_HEX(Ch)              ((('0' <= (Ch)) && ((Ch) <= '9')) || (('A' <= (Ch)) && ((Ch) <= 'F')) || (('a' <= (Ch)) && ((Ch) <= 'f')))
    527 #define NET_ROUNDUP(size, unit)     (((size) + (unit) - 1) & (~((unit) - 1)))
    528 #define NET_IS_LOWER_CASE_CHAR(Ch)  (('a' <= (Ch)) && ((Ch) <= 'z'))
    529 #define NET_IS_UPPER_CASE_CHAR(Ch)  (('A' <= (Ch)) && ((Ch) <= 'Z'))
    530 
    531 #define TICKS_PER_MS            10000U
    532 #define TICKS_PER_SECOND        10000000U
    533 
    534 #define NET_RANDOM(Seed)        ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
    535 
    536 /**
    537   Extract a UINT32 from a byte stream.
    538 
    539   This function copies a UINT32 from a byte stream, and then converts it from Network
    540   byte order to host byte order. Use this function to avoid alignment error.
    541 
    542   @param[in]  Buf                 The buffer to extract the UINT32.
    543 
    544   @return The UINT32 extracted.
    545 
    546 **/
    547 UINT32
    548 EFIAPI
    549 NetGetUint32 (
    550   IN UINT8                  *Buf
    551   );
    552 
    553 /**
    554   Puts a UINT32 into the byte stream in network byte order.
    555 
    556   Converts a UINT32 from host byte order to network byte order, then copies it to the
    557   byte stream.
    558 
    559   @param[in, out]  Buf          The buffer in which to put the UINT32.
    560   @param[in]       Data         The data to be converted and put into the byte stream.
    561 
    562 **/
    563 VOID
    564 EFIAPI
    565 NetPutUint32 (
    566   IN OUT UINT8                 *Buf,
    567   IN     UINT32                Data
    568   );
    569 
    570 /**
    571   Initialize a random seed using current time and monotonic count.
    572 
    573   Get current time and monotonic count first. Then initialize a random seed
    574   based on some basic mathematics operation on the hour, day, minute, second,
    575   nanosecond and year of the current time and the monotonic count value.
    576 
    577   @return The random seed initialized with current time.
    578 
    579 **/
    580 UINT32
    581 EFIAPI
    582 NetRandomInitSeed (
    583   VOID
    584   );
    585 
    586 
    587 #define NET_LIST_USER_STRUCT(Entry, Type, Field)        \
    588           BASE_CR(Entry, Type, Field)
    589 
    590 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig)  \
    591           CR(Entry, Type, Field, Sig)
    592 
    593 //
    594 // Iterate through the double linked list. It is NOT delete safe
    595 //
    596 #define NET_LIST_FOR_EACH(Entry, ListHead) \
    597   for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
    598 
    599 //
    600 // Iterate through the double linked list. This is delete-safe.
    601 // Don't touch NextEntry. Also, don't use this macro if list
    602 // entries other than the Entry may be deleted when processing
    603 // the current Entry.
    604 //
    605 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
    606   for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
    607       Entry != (ListHead); \
    608       Entry = NextEntry, NextEntry = Entry->ForwardLink \
    609      )
    610 
    611 //
    612 // Make sure the list isn't empty before getting the first/last record.
    613 //
    614 #define NET_LIST_HEAD(ListHead, Type, Field)  \
    615           NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
    616 
    617 #define NET_LIST_TAIL(ListHead, Type, Field)  \
    618           NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
    619 
    620 
    621 /**
    622   Remove the first node entry on the list, and return the removed node entry.
    623 
    624   Removes the first node entry from a doubly linked list. It is up to the caller of
    625   this function to release the memory used by the first node, if that is required. On
    626   exit, the removed node is returned.
    627 
    628   If Head is NULL, then ASSERT().
    629   If Head was not initialized, then ASSERT().
    630   If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
    631   linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
    632   then ASSERT().
    633 
    634   @param[in, out]  Head                  The list header.
    635 
    636   @return The first node entry that is removed from the list, NULL if the list is empty.
    637 
    638 **/
    639 LIST_ENTRY *
    640 EFIAPI
    641 NetListRemoveHead (
    642   IN OUT LIST_ENTRY            *Head
    643   );
    644 
    645 /**
    646   Remove the last node entry on the list and return the removed node entry.
    647 
    648   Removes the last node entry from a doubly linked list. It is up to the caller of
    649   this function to release the memory used by the first node, if that is required. On
    650   exit, the removed node is returned.
    651 
    652   If Head is NULL, then ASSERT().
    653   If Head was not initialized, then ASSERT().
    654   If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
    655   linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
    656   then ASSERT().
    657 
    658   @param[in, out]  Head                  The list head.
    659 
    660   @return The last node entry that is removed from the list, NULL if the list is empty.
    661 
    662 **/
    663 LIST_ENTRY *
    664 EFIAPI
    665 NetListRemoveTail (
    666   IN OUT LIST_ENTRY            *Head
    667   );
    668 
    669 /**
    670   Insert a new node entry after a designated node entry of a doubly linked list.
    671 
    672   Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
    673   of the doubly linked list.
    674 
    675   @param[in, out]  PrevEntry             The entry after which to insert.
    676   @param[in, out]  NewEntry              The new entry to insert.
    677 
    678 **/
    679 VOID
    680 EFIAPI
    681 NetListInsertAfter (
    682   IN OUT LIST_ENTRY         *PrevEntry,
    683   IN OUT LIST_ENTRY         *NewEntry
    684   );
    685 
    686 /**
    687   Insert a new node entry before a designated node entry of a doubly linked list.
    688 
    689   Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
    690   of the doubly linked list.
    691 
    692   @param[in, out]  PostEntry             The entry to insert before.
    693   @param[in, out]  NewEntry              The new entry to insert.
    694 
    695 **/
    696 VOID
    697 EFIAPI
    698 NetListInsertBefore (
    699   IN OUT LIST_ENTRY     *PostEntry,
    700   IN OUT LIST_ENTRY     *NewEntry
    701   );
    702 
    703 /**
    704   Callback function which provided by user to remove one node in NetDestroyLinkList process.
    705 
    706   @param[in]    Entry           The entry to be removed.
    707   @param[in]    Context         Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
    708 
    709   @retval EFI_SUCCESS           The entry has been removed successfully.
    710   @retval Others                Fail to remove the entry.
    711 
    712 **/
    713 typedef
    714 EFI_STATUS
    715 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
    716   IN LIST_ENTRY         *Entry,
    717   IN VOID               *Context   OPTIONAL
    718   );
    719 
    720 /**
    721   Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
    722 
    723   Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
    724   This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
    725   has been removed from the list or not.
    726   If it has been removed, then restart the traversal from the head.
    727   If it hasn't been removed, then continue with the next node directly.
    728   This function will end the iterate and return the CallBack's last return value if error happens,
    729   or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
    730 
    731   @param[in]    List             The head of the list.
    732   @param[in]    CallBack         Pointer to the callback function to destroy one node in the list.
    733   @param[in]    Context          Pointer to the callback function's context: corresponds to the
    734                                  parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
    735   @param[out]   ListLength       The length of the link list if the function returns successfully.
    736 
    737   @retval EFI_SUCCESS            Two complete passes are made with no changes in the number of children.
    738   @retval EFI_INVALID_PARAMETER  The input parameter is invalid.
    739   @retval Others                 Return the CallBack's last return value.
    740 
    741 **/
    742 EFI_STATUS
    743 EFIAPI
    744 NetDestroyLinkList (
    745   IN   LIST_ENTRY                       *List,
    746   IN   NET_DESTROY_LINK_LIST_CALLBACK   CallBack,
    747   IN   VOID                             *Context,    OPTIONAL
    748   OUT  UINTN                            *ListLength  OPTIONAL
    749   );
    750 
    751 /**
    752   This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
    753 
    754   @param[in]  Handle             Handle to be checked.
    755   @param[in]  NumberOfChildren   Number of Handles in ChildHandleBuffer.
    756   @param[in]  ChildHandleBuffer  An array of child handles to be freed. May be NULL
    757                                  if NumberOfChildren is 0.
    758 
    759   @retval TRUE                   Found the input Handle in ChildHandleBuffer.
    760   @retval FALSE                  Can't find the input Handle in ChildHandleBuffer.
    761 
    762 **/
    763 BOOLEAN
    764 EFIAPI
    765 NetIsInHandleBuffer (
    766   IN  EFI_HANDLE          Handle,
    767   IN  UINTN               NumberOfChildren,
    768   IN  EFI_HANDLE          *ChildHandleBuffer OPTIONAL
    769   );
    770 
    771 //
    772 // Object container: EFI network stack spec defines various kinds of
    773 // tokens. The drivers can share code to manage those objects.
    774 //
    775 typedef struct {
    776   LIST_ENTRY                Link;
    777   VOID                      *Key;
    778   VOID                      *Value;
    779 } NET_MAP_ITEM;
    780 
    781 typedef struct {
    782   LIST_ENTRY                Used;
    783   LIST_ENTRY                Recycled;
    784   UINTN                     Count;
    785 } NET_MAP;
    786 
    787 #define NET_MAP_INCREAMENT  64
    788 
    789 /**
    790   Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
    791 
    792   Initialize the forward and backward links of two head nodes donated by Map->Used
    793   and Map->Recycled of two doubly linked lists.
    794   Initializes the count of the <Key, Value> pairs in the netmap to zero.
    795 
    796   If Map is NULL, then ASSERT().
    797   If the address of Map->Used is NULL, then ASSERT().
    798   If the address of Map->Recycled is NULl, then ASSERT().
    799 
    800   @param[in, out]  Map                   The netmap to initialize.
    801 
    802 **/
    803 VOID
    804 EFIAPI
    805 NetMapInit (
    806   IN OUT NET_MAP                *Map
    807   );
    808 
    809 /**
    810   To clean up the netmap, that is, release allocated memories.
    811 
    812   Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
    813   Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
    814   The number of the <Key, Value> pairs in the netmap is set to zero.
    815 
    816   If Map is NULL, then ASSERT().
    817 
    818   @param[in, out]  Map                   The netmap to clean up.
    819 
    820 **/
    821 VOID
    822 EFIAPI
    823 NetMapClean (
    824   IN OUT NET_MAP            *Map
    825   );
    826 
    827 /**
    828   Test whether the netmap is empty and return true if it is.
    829 
    830   If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
    831 
    832   If Map is NULL, then ASSERT().
    833 
    834 
    835   @param[in]  Map                   The net map to test.
    836 
    837   @return TRUE if the netmap is empty, otherwise FALSE.
    838 
    839 **/
    840 BOOLEAN
    841 EFIAPI
    842 NetMapIsEmpty (
    843   IN NET_MAP                *Map
    844   );
    845 
    846 /**
    847   Return the number of the <Key, Value> pairs in the netmap.
    848 
    849   @param[in]  Map                   The netmap to get the entry number.
    850 
    851   @return The entry number in the netmap.
    852 
    853 **/
    854 UINTN
    855 EFIAPI
    856 NetMapGetCount (
    857   IN NET_MAP                *Map
    858   );
    859 
    860 /**
    861   Allocate an item to save the <Key, Value> pair to the head of the netmap.
    862 
    863   Allocate an item to save the <Key, Value> pair and add corresponding node entry
    864   to the beginning of the Used doubly linked list. The number of the <Key, Value>
    865   pairs in the netmap increase by 1.
    866 
    867   If Map is NULL, then ASSERT().
    868 
    869   @param[in, out]  Map                   The netmap to insert into.
    870   @param[in]       Key                   The user's key.
    871   @param[in]       Value                 The user's value for the key.
    872 
    873   @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
    874   @retval EFI_SUCCESS           The item is inserted to the head.
    875 
    876 **/
    877 EFI_STATUS
    878 EFIAPI
    879 NetMapInsertHead (
    880   IN OUT NET_MAP            *Map,
    881   IN VOID                   *Key,
    882   IN VOID                   *Value    OPTIONAL
    883   );
    884 
    885 /**
    886   Allocate an item to save the <Key, Value> pair to the tail of the netmap.
    887 
    888   Allocate an item to save the <Key, Value> pair and add corresponding node entry
    889   to the tail of the Used doubly linked list. The number of the <Key, Value>
    890   pairs in the netmap increase by 1.
    891 
    892   If Map is NULL, then ASSERT().
    893 
    894   @param[in, out]  Map                   The netmap to insert into.
    895   @param[in]       Key                   The user's key.
    896   @param[in]       Value                 The user's value for the key.
    897 
    898   @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
    899   @retval EFI_SUCCESS           The item is inserted to the tail.
    900 
    901 **/
    902 EFI_STATUS
    903 EFIAPI
    904 NetMapInsertTail (
    905   IN OUT NET_MAP            *Map,
    906   IN VOID                   *Key,
    907   IN VOID                   *Value    OPTIONAL
    908   );
    909 
    910 /**
    911   Finds the key in the netmap and returns the point to the item containing the Key.
    912 
    913   Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
    914   item with the key to search. It returns the point to the item contains the Key if found.
    915 
    916   If Map is NULL, then ASSERT().
    917 
    918   @param[in]  Map                   The netmap to search within.
    919   @param[in]  Key                   The key to search.
    920 
    921   @return The point to the item contains the Key, or NULL if Key isn't in the map.
    922 
    923 **/
    924 NET_MAP_ITEM *
    925 EFIAPI
    926 NetMapFindKey (
    927   IN  NET_MAP               *Map,
    928   IN  VOID                  *Key
    929   );
    930 
    931 /**
    932   Remove the node entry of the item from the netmap and return the key of the removed item.
    933 
    934   Remove the node entry of the item from the Used doubly linked list of the netmap.
    935   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
    936   entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
    937   Value will point to the value of the item. It returns the key of the removed item.
    938 
    939   If Map is NULL, then ASSERT().
    940   If Item is NULL, then ASSERT().
    941   if item in not in the netmap, then ASSERT().
    942 
    943   @param[in, out]  Map                   The netmap to remove the item from.
    944   @param[in, out]  Item                  The item to remove.
    945   @param[out]      Value                 The variable to receive the value if not NULL.
    946 
    947   @return                                The key of the removed item.
    948 
    949 **/
    950 VOID *
    951 EFIAPI
    952 NetMapRemoveItem (
    953   IN  OUT NET_MAP             *Map,
    954   IN  OUT NET_MAP_ITEM        *Item,
    955   OUT VOID                    **Value           OPTIONAL
    956   );
    957 
    958 /**
    959   Remove the first node entry on the netmap and return the key of the removed item.
    960 
    961   Remove the first node entry from the Used doubly linked list of the netmap.
    962   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
    963   entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
    964   parameter Value will point to the value of the item. It returns the key of the removed item.
    965 
    966   If Map is NULL, then ASSERT().
    967   If the Used doubly linked list is empty, then ASSERT().
    968 
    969   @param[in, out]  Map                   The netmap to remove the head from.
    970   @param[out]      Value                 The variable to receive the value if not NULL.
    971 
    972   @return                                The key of the item removed.
    973 
    974 **/
    975 VOID *
    976 EFIAPI
    977 NetMapRemoveHead (
    978   IN OUT NET_MAP            *Map,
    979   OUT VOID                  **Value         OPTIONAL
    980   );
    981 
    982 /**
    983   Remove the last node entry on the netmap and return the key of the removed item.
    984 
    985   Remove the last node entry from the Used doubly linked list of the netmap.
    986   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
    987   entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
    988   parameter Value will point to the value of the item. It returns the key of the removed item.
    989 
    990   If Map is NULL, then ASSERT().
    991   If the Used doubly linked list is empty, then ASSERT().
    992 
    993   @param[in, out]  Map                   The netmap to remove the tail from.
    994   @param[out]      Value                 The variable to receive the value if not NULL.
    995 
    996   @return                                The key of the item removed.
    997 
    998 **/
    999 VOID *
   1000 EFIAPI
   1001 NetMapRemoveTail (
   1002   IN OUT NET_MAP            *Map,
   1003   OUT VOID                  **Value       OPTIONAL
   1004   );
   1005 
   1006 typedef
   1007 EFI_STATUS
   1008 (EFIAPI *NET_MAP_CALLBACK) (
   1009   IN NET_MAP                *Map,
   1010   IN NET_MAP_ITEM           *Item,
   1011   IN VOID                   *Arg
   1012   );
   1013 
   1014 /**
   1015   Iterate through the netmap and call CallBack for each item.
   1016 
   1017   It will continue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
   1018   from the loop. It returns the CallBack's last return value. This function is
   1019   delete safe for the current item.
   1020 
   1021   If Map is NULL, then ASSERT().
   1022   If CallBack is NULL, then ASSERT().
   1023 
   1024   @param[in]  Map                   The Map to iterate through.
   1025   @param[in]  CallBack              The callback function to call for each item.
   1026   @param[in]  Arg                   The opaque parameter to the callback.
   1027 
   1028   @retval EFI_SUCCESS            There is no item in the netmap, or CallBack for each item
   1029                                  returns EFI_SUCCESS.
   1030   @retval Others                 It returns the CallBack's last return value.
   1031 
   1032 **/
   1033 EFI_STATUS
   1034 EFIAPI
   1035 NetMapIterate (
   1036   IN NET_MAP                *Map,
   1037   IN NET_MAP_CALLBACK       CallBack,
   1038   IN VOID                   *Arg      OPTIONAL
   1039   );
   1040 
   1041 
   1042 //
   1043 // Helper functions to implement driver binding and service binding protocols.
   1044 //
   1045 /**
   1046   Create a child of the service that is identified by ServiceBindingGuid.
   1047 
   1048   Get the ServiceBinding Protocol first, then use it to create a child.
   1049 
   1050   If ServiceBindingGuid is NULL, then ASSERT().
   1051   If ChildHandle is NULL, then ASSERT().
   1052 
   1053   @param[in]       Controller            The controller which has the service installed.
   1054   @param[in]       Image                 The image handle used to open service.
   1055   @param[in]       ServiceBindingGuid    The service's Guid.
   1056   @param[in, out]  ChildHandle           The handle to receive the created child.
   1057 
   1058   @retval EFI_SUCCESS           The child was successfully created.
   1059   @retval Others                Failed to create the child.
   1060 
   1061 **/
   1062 EFI_STATUS
   1063 EFIAPI
   1064 NetLibCreateServiceChild (
   1065   IN  EFI_HANDLE            Controller,
   1066   IN  EFI_HANDLE            Image,
   1067   IN  EFI_GUID              *ServiceBindingGuid,
   1068   IN  OUT EFI_HANDLE        *ChildHandle
   1069   );
   1070 
   1071 /**
   1072   Destroy a child of the service that is identified by ServiceBindingGuid.
   1073 
   1074   Get the ServiceBinding Protocol first, then use it to destroy a child.
   1075 
   1076   If ServiceBindingGuid is NULL, then ASSERT().
   1077 
   1078   @param[in]   Controller            The controller which has the service installed.
   1079   @param[in]   Image                 The image handle used to open service.
   1080   @param[in]   ServiceBindingGuid    The service's Guid.
   1081   @param[in]   ChildHandle           The child to destroy.
   1082 
   1083   @retval EFI_SUCCESS           The child was destroyed.
   1084   @retval Others                Failed to destroy the child.
   1085 
   1086 **/
   1087 EFI_STATUS
   1088 EFIAPI
   1089 NetLibDestroyServiceChild (
   1090   IN  EFI_HANDLE            Controller,
   1091   IN  EFI_HANDLE            Image,
   1092   IN  EFI_GUID              *ServiceBindingGuid,
   1093   IN  EFI_HANDLE            ChildHandle
   1094   );
   1095 
   1096 /**
   1097   Get handle with Simple Network Protocol installed on it.
   1098 
   1099   There should be MNP Service Binding Protocol installed on the input ServiceHandle.
   1100   If Simple Network Protocol is already installed on the ServiceHandle, the
   1101   ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
   1102   try to find its parent handle with SNP installed.
   1103 
   1104   @param[in]   ServiceHandle    The handle where network service binding protocols are
   1105                                 installed on.
   1106   @param[out]  Snp              The pointer to store the address of the SNP instance.
   1107                                 This is an optional parameter that may be NULL.
   1108 
   1109   @return The SNP handle, or NULL if not found.
   1110 
   1111 **/
   1112 EFI_HANDLE
   1113 EFIAPI
   1114 NetLibGetSnpHandle (
   1115   IN   EFI_HANDLE                  ServiceHandle,
   1116   OUT  EFI_SIMPLE_NETWORK_PROTOCOL **Snp  OPTIONAL
   1117   );
   1118 
   1119 /**
   1120   Retrieve VLAN ID of a VLAN device handle.
   1121 
   1122   Search VLAN device path node in Device Path of specified ServiceHandle and
   1123   return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
   1124   is not a VLAN device handle, and 0 will be returned.
   1125 
   1126   @param[in]   ServiceHandle    The handle where network service binding protocols are
   1127                                 installed on.
   1128 
   1129   @return VLAN ID of the device handle, or 0 if not a VLAN device.
   1130 
   1131 **/
   1132 UINT16
   1133 EFIAPI
   1134 NetLibGetVlanId (
   1135   IN EFI_HANDLE             ServiceHandle
   1136   );
   1137 
   1138 /**
   1139   Find VLAN device handle with specified VLAN ID.
   1140 
   1141   The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
   1142   This function will append VLAN device path node to the parent device path,
   1143   and then use LocateDevicePath() to find the correct VLAN device handle.
   1144 
   1145   @param[in]   ControllerHandle The handle where network service binding protocols are
   1146                                 installed on.
   1147   @param[in]   VlanId           The configured VLAN ID for the VLAN device.
   1148 
   1149   @return The VLAN device handle, or NULL if not found.
   1150 
   1151 **/
   1152 EFI_HANDLE
   1153 EFIAPI
   1154 NetLibGetVlanHandle (
   1155   IN EFI_HANDLE             ControllerHandle,
   1156   IN UINT16                 VlanId
   1157   );
   1158 
   1159 /**
   1160   Get MAC address associated with the network service handle.
   1161 
   1162   There should be MNP Service Binding Protocol installed on the input ServiceHandle.
   1163   If SNP is installed on the ServiceHandle or its parent handle, MAC address will
   1164   be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
   1165 
   1166   @param[in]   ServiceHandle    The handle where network service binding protocols are
   1167                                 installed on.
   1168   @param[out]  MacAddress       The pointer to store the returned MAC address.
   1169   @param[out]  AddressSize      The length of returned MAC address.
   1170 
   1171   @retval EFI_SUCCESS           MAC address was returned successfully.
   1172   @retval Others                Failed to get SNP mode data.
   1173 
   1174 **/
   1175 EFI_STATUS
   1176 EFIAPI
   1177 NetLibGetMacAddress (
   1178   IN  EFI_HANDLE            ServiceHandle,
   1179   OUT EFI_MAC_ADDRESS       *MacAddress,
   1180   OUT UINTN                 *AddressSize
   1181   );
   1182 
   1183 /**
   1184   Convert MAC address of the NIC associated with specified Service Binding Handle
   1185   to a unicode string. Callers are responsible for freeing the string storage.
   1186 
   1187   Locate simple network protocol associated with the Service Binding Handle and
   1188   get the mac address from SNP. Then convert the mac address into a unicode
   1189   string. It takes 2 unicode characters to represent a 1 byte binary buffer.
   1190   Plus one unicode character for the null-terminator.
   1191 
   1192   @param[in]   ServiceHandle         The handle where network service binding protocol is
   1193                                      installed.
   1194   @param[in]   ImageHandle           The image handle used to act as the agent handle to
   1195                                      get the simple network protocol. This parameter is
   1196                                      optional and may be NULL.
   1197   @param[out]  MacString             The pointer to store the address of the string
   1198                                      representation of  the mac address.
   1199 
   1200   @retval EFI_SUCCESS           Converted the mac address a unicode string successfully.
   1201   @retval EFI_OUT_OF_RESOURCES  There are not enough memory resources.
   1202   @retval Others                Failed to open the simple network protocol.
   1203 
   1204 **/
   1205 EFI_STATUS
   1206 EFIAPI
   1207 NetLibGetMacString (
   1208   IN  EFI_HANDLE            ServiceHandle,
   1209   IN  EFI_HANDLE            ImageHandle, OPTIONAL
   1210   OUT CHAR16                **MacString
   1211   );
   1212 
   1213 /**
   1214   Detect media status for specified network device.
   1215 
   1216   The underlying UNDI driver may or may not support reporting media status from
   1217   GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
   1218   will try to invoke Snp->GetStatus() to get the media status. If media is already
   1219   present, it returns directly. If media is not present, it will stop SNP and then
   1220   restart SNP to get the latest media status. This provides an opportunity to get
   1221   the correct media status for old UNDI driver, which doesn't support reporting
   1222   media status from GET_STATUS command.
   1223   Note: there are two limitations for the current algorithm:
   1224   1) For UNDI with this capability, when the cable is not attached, there will
   1225      be an redundant Stop/Start() process.
   1226   2) for UNDI without this capability, in case that network cable is attached when
   1227      Snp->Initialize() is invoked while network cable is unattached later,
   1228      NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
   1229      apps to wait for timeout time.
   1230 
   1231   @param[in]   ServiceHandle    The handle where network service binding protocols are
   1232                                 installed.
   1233   @param[out]  MediaPresent     The pointer to store the media status.
   1234 
   1235   @retval EFI_SUCCESS           Media detection success.
   1236   @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
   1237   @retval EFI_UNSUPPORTED       The network device does not support media detection.
   1238   @retval EFI_DEVICE_ERROR      SNP is in an unknown state.
   1239 
   1240 **/
   1241 EFI_STATUS
   1242 EFIAPI
   1243 NetLibDetectMedia (
   1244   IN  EFI_HANDLE            ServiceHandle,
   1245   OUT BOOLEAN               *MediaPresent
   1246   );
   1247 
   1248 /**
   1249   Create an IPv4 device path node.
   1250 
   1251   The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
   1252   The header subtype of IPv4 device path node is MSG_IPv4_DP.
   1253   The length of the IPv4 device path node in bytes is 19.
   1254   Get other information from parameters to make up the whole IPv4 device path node.
   1255 
   1256   @param[in, out]  Node                  The pointer to the IPv4 device path node.
   1257   @param[in]       Controller            The controller handle.
   1258   @param[in]       LocalIp               The local IPv4 address.
   1259   @param[in]       LocalPort             The local port.
   1260   @param[in]       RemoteIp              The remote IPv4 address.
   1261   @param[in]       RemotePort            The remote port.
   1262   @param[in]       Protocol              The protocol type in the IP header.
   1263   @param[in]       UseDefaultAddress     Whether this instance is using default address or not.
   1264 
   1265 **/
   1266 VOID
   1267 EFIAPI
   1268 NetLibCreateIPv4DPathNode (
   1269   IN OUT IPv4_DEVICE_PATH  *Node,
   1270   IN EFI_HANDLE            Controller,
   1271   IN IP4_ADDR              LocalIp,
   1272   IN UINT16                LocalPort,
   1273   IN IP4_ADDR              RemoteIp,
   1274   IN UINT16                RemotePort,
   1275   IN UINT16                Protocol,
   1276   IN BOOLEAN               UseDefaultAddress
   1277   );
   1278 
   1279 /**
   1280   Create an IPv6 device path node.
   1281 
   1282   The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
   1283   The header subtype of IPv6 device path node is MSG_IPv6_DP.
   1284   The length of the IPv6 device path node in bytes is 43.
   1285   Get other information from parameters to make up the whole IPv6 device path node.
   1286 
   1287   @param[in, out]  Node                  The pointer to the IPv6 device path node.
   1288   @param[in]       Controller            The controller handle.
   1289   @param[in]       LocalIp               The local IPv6 address.
   1290   @param[in]       LocalPort             The local port.
   1291   @param[in]       RemoteIp              The remote IPv6 address.
   1292   @param[in]       RemotePort            The remote port.
   1293   @param[in]       Protocol              The protocol type in the IP header.
   1294 
   1295 **/
   1296 VOID
   1297 EFIAPI
   1298 NetLibCreateIPv6DPathNode (
   1299   IN OUT IPv6_DEVICE_PATH  *Node,
   1300   IN EFI_HANDLE            Controller,
   1301   IN EFI_IPv6_ADDRESS      *LocalIp,
   1302   IN UINT16                LocalPort,
   1303   IN EFI_IPv6_ADDRESS      *RemoteIp,
   1304   IN UINT16                RemotePort,
   1305   IN UINT16                Protocol
   1306   );
   1307 
   1308 
   1309 /**
   1310   Find the UNDI/SNP handle from controller and protocol GUID.
   1311 
   1312   For example, IP will open an MNP child to transmit/receive
   1313   packets. When MNP is stopped, IP should also be stopped. IP
   1314   needs to find its own private data that is related the IP's
   1315   service binding instance that is installed on the UNDI/SNP handle.
   1316   The controller is then either an MNP or an ARP child handle. Note that
   1317   IP opens these handles using BY_DRIVER. Use that information to get the
   1318   UNDI/SNP handle.
   1319 
   1320   @param[in]  Controller            The protocol handle to check.
   1321   @param[in]  ProtocolGuid          The protocol that is related with the handle.
   1322 
   1323   @return The UNDI/SNP handle or NULL for errors.
   1324 
   1325 **/
   1326 EFI_HANDLE
   1327 EFIAPI
   1328 NetLibGetNicHandle (
   1329   IN EFI_HANDLE             Controller,
   1330   IN EFI_GUID               *ProtocolGuid
   1331   );
   1332 
   1333 /**
   1334   This is the default unload handle for all the network drivers.
   1335 
   1336   Disconnect the driver specified by ImageHandle from all the devices in the handle database.
   1337   Uninstall all the protocols installed in the driver entry point.
   1338 
   1339   @param[in]  ImageHandle       The drivers' driver image.
   1340 
   1341   @retval EFI_SUCCESS           The image is unloaded.
   1342   @retval Others                Failed to unload the image.
   1343 
   1344 **/
   1345 EFI_STATUS
   1346 EFIAPI
   1347 NetLibDefaultUnload (
   1348   IN EFI_HANDLE             ImageHandle
   1349   );
   1350 
   1351 /**
   1352   Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
   1353 
   1354   @param[in]      String         The pointer to the Ascii string.
   1355   @param[out]     Ip4Address     The pointer to the converted IPv4 address.
   1356 
   1357   @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
   1358   @retval EFI_INVALID_PARAMETER  The string is malformatted, or Ip4Address is NULL.
   1359 
   1360 **/
   1361 EFI_STATUS
   1362 EFIAPI
   1363 NetLibAsciiStrToIp4 (
   1364   IN CONST CHAR8                 *String,
   1365   OUT      EFI_IPv4_ADDRESS      *Ip4Address
   1366   );
   1367 
   1368 /**
   1369   Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
   1370   string is defined in RFC 4291 - Text Representation of Addresses.
   1371 
   1372   @param[in]      String         The pointer to the Ascii string.
   1373   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
   1374 
   1375   @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
   1376   @retval EFI_INVALID_PARAMETER  The string is malformatted, or Ip6Address is NULL.
   1377 
   1378 **/
   1379 EFI_STATUS
   1380 EFIAPI
   1381 NetLibAsciiStrToIp6 (
   1382   IN CONST CHAR8                 *String,
   1383   OUT      EFI_IPv6_ADDRESS      *Ip6Address
   1384   );
   1385 
   1386 /**
   1387   Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
   1388 
   1389   @param[in]      String         The pointer to the Ascii string.
   1390   @param[out]     Ip4Address     The pointer to the converted IPv4 address.
   1391 
   1392   @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
   1393   @retval EFI_INVALID_PARAMETER  The string is mal-formatted or Ip4Address is NULL.
   1394   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to lack of resources.
   1395 
   1396 **/
   1397 EFI_STATUS
   1398 EFIAPI
   1399 NetLibStrToIp4 (
   1400   IN CONST CHAR16                *String,
   1401   OUT      EFI_IPv4_ADDRESS      *Ip4Address
   1402   );
   1403 
   1404 /**
   1405   Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS.  The format of
   1406   the string is defined in RFC 4291 - Text Representation of Addresses.
   1407 
   1408   @param[in]      String         The pointer to the Ascii string.
   1409   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
   1410 
   1411   @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
   1412   @retval EFI_INVALID_PARAMETER  The string is malformatted or Ip6Address is NULL.
   1413   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
   1414 
   1415 **/
   1416 EFI_STATUS
   1417 EFIAPI
   1418 NetLibStrToIp6 (
   1419   IN CONST CHAR16                *String,
   1420   OUT      EFI_IPv6_ADDRESS      *Ip6Address
   1421   );
   1422 
   1423 /**
   1424   Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
   1425   The format of the string is defined in RFC 4291 - Text Representation of Addresses
   1426   Prefixes: ipv6-address/prefix-length.
   1427 
   1428   @param[in]      String         The pointer to the Ascii string.
   1429   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
   1430   @param[out]     PrefixLength   The pointer to the converted prefix length.
   1431 
   1432   @retval EFI_SUCCESS            Converted to an  IPv6 address successfully.
   1433   @retval EFI_INVALID_PARAMETER  The string is malformatted, or Ip6Address is NULL.
   1434   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
   1435 
   1436 **/
   1437 EFI_STATUS
   1438 EFIAPI
   1439 NetLibStrToIp6andPrefix (
   1440   IN CONST CHAR16                *String,
   1441   OUT      EFI_IPv6_ADDRESS      *Ip6Address,
   1442   OUT      UINT8                 *PrefixLength
   1443   );
   1444 
   1445 /**
   1446 
   1447   Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
   1448   The text representation of address is defined in RFC 4291.
   1449 
   1450   @param[in]       Ip6Address     The pointer to the IPv6 address.
   1451   @param[out]      String         The buffer to return the converted string.
   1452   @param[in]       StringSize     The length in bytes of the input String.
   1453 
   1454   @retval EFI_SUCCESS             Convert to string successfully.
   1455   @retval EFI_INVALID_PARAMETER   The input parameter is invalid.
   1456   @retval EFI_BUFFER_TOO_SMALL    The BufferSize is too small for the result. BufferSize has been
   1457                                   updated with the size needed to complete the request.
   1458 **/
   1459 EFI_STATUS
   1460 EFIAPI
   1461 NetLibIp6ToStr (
   1462   IN         EFI_IPv6_ADDRESS      *Ip6Address,
   1463   OUT        CHAR16                *String,
   1464   IN         UINTN                 StringSize
   1465   );
   1466 
   1467 //
   1468 // Various signatures
   1469 //
   1470 #define  NET_BUF_SIGNATURE    SIGNATURE_32 ('n', 'b', 'u', 'f')
   1471 #define  NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
   1472 #define  NET_QUE_SIGNATURE    SIGNATURE_32 ('n', 'b', 'q', 'u')
   1473 
   1474 
   1475 #define  NET_PROTO_DATA       64   // Opaque buffer for protocols
   1476 #define  NET_BUF_HEAD         1    // Trim or allocate space from head
   1477 #define  NET_BUF_TAIL         0    // Trim or allocate space from tail
   1478 #define  NET_VECTOR_OWN_FIRST 0x01  // We allocated the 1st block in the vector
   1479 
   1480 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
   1481   ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
   1482 
   1483 //
   1484 // Single memory block in the vector.
   1485 //
   1486 typedef struct {
   1487   UINT32              Len;        // The block's length
   1488   UINT8               *Bulk;      // The block's Data
   1489 } NET_BLOCK;
   1490 
   1491 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
   1492 
   1493 //
   1494 //NET_VECTOR contains several blocks to hold all packet's
   1495 //fragments and other house-keeping stuff for sharing. It
   1496 //doesn't specify the where actual packet fragment begins.
   1497 //
   1498 typedef struct {
   1499   UINT32              Signature;
   1500   INTN                RefCnt;  // Reference count to share NET_VECTOR.
   1501   NET_VECTOR_EXT_FREE Free;    // external function to free NET_VECTOR
   1502   VOID                *Arg;    // opaque argument to Free
   1503   UINT32              Flag;    // Flags, NET_VECTOR_OWN_FIRST
   1504   UINT32              Len;     // Total length of the associated BLOCKs
   1505 
   1506   UINT32              BlockNum;
   1507   NET_BLOCK           Block[1];
   1508 } NET_VECTOR;
   1509 
   1510 //
   1511 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
   1512 //where the actual fragment begins and ends
   1513 //
   1514 typedef struct {
   1515   UINT8               *BlockHead;   // Block's head, or the smallest valid Head
   1516   UINT8               *BlockTail;   // Block's tail. BlockTail-BlockHead=block length
   1517   UINT8               *Head;        // 1st byte of the data in the block
   1518   UINT8               *Tail;        // Tail of the data in the block, Tail-Head=Size
   1519   UINT32              Size;         // The size of the data
   1520 } NET_BLOCK_OP;
   1521 
   1522 typedef union {
   1523   IP4_HEAD          *Ip4;
   1524   EFI_IP6_HEADER    *Ip6;
   1525 } NET_IP_HEAD;
   1526 
   1527 //
   1528 //NET_BUF is the buffer manage structure used by the
   1529 //network stack. Every network packet may be fragmented. The Vector points to
   1530 //memory blocks used by each fragment, and BlockOp
   1531 //specifies where each fragment begins and ends.
   1532 //
   1533 //It also contains an opaque area for the protocol to store
   1534 //per-packet information. Protocol must be careful not
   1535 //to overwrite the members after that.
   1536 //
   1537 typedef struct {
   1538   UINT32         Signature;
   1539   INTN           RefCnt;
   1540   LIST_ENTRY     List;                       // The List this NET_BUF is on
   1541 
   1542   NET_IP_HEAD    Ip;                         // Network layer header, for fast access
   1543   TCP_HEAD       *Tcp;                       // Transport layer header, for fast access
   1544   EFI_UDP_HEADER *Udp;                       // User Datagram Protocol header
   1545   UINT8          ProtoData [NET_PROTO_DATA]; //Protocol specific data
   1546 
   1547   NET_VECTOR     *Vector;                    // The vector containing the packet
   1548 
   1549   UINT32         BlockOpNum;                 // Total number of BlockOp in the buffer
   1550   UINT32         TotalSize;                  // Total size of the actual packet
   1551   NET_BLOCK_OP   BlockOp[1];                 // Specify the position of actual packet
   1552 } NET_BUF;
   1553 
   1554 //
   1555 //A queue of NET_BUFs. It is a thin extension of
   1556 //NET_BUF functions.
   1557 //
   1558 typedef struct {
   1559   UINT32              Signature;
   1560   INTN                RefCnt;
   1561   LIST_ENTRY          List;       // The List this buffer queue is on
   1562 
   1563   LIST_ENTRY          BufList;    // list of queued buffers
   1564   UINT32              BufSize;    // total length of DATA in the buffers
   1565   UINT32              BufNum;     // total number of buffers on the chain
   1566 } NET_BUF_QUEUE;
   1567 
   1568 //
   1569 // Pseudo header for TCP and UDP checksum
   1570 //
   1571 #pragma pack(1)
   1572 typedef struct {
   1573   IP4_ADDR            SrcIp;
   1574   IP4_ADDR            DstIp;
   1575   UINT8               Reserved;
   1576   UINT8               Protocol;
   1577   UINT16              Len;
   1578 } NET_PSEUDO_HDR;
   1579 
   1580 typedef struct {
   1581   EFI_IPv6_ADDRESS    SrcIp;
   1582   EFI_IPv6_ADDRESS    DstIp;
   1583   UINT32              Len;
   1584   UINT32              Reserved:24;
   1585   UINT32              NextHeader:8;
   1586 } NET_IP6_PSEUDO_HDR;
   1587 #pragma pack()
   1588 
   1589 //
   1590 // The fragment entry table used in network interfaces. This is
   1591 // the same as NET_BLOCK now. Use two different to distinguish
   1592 // the two in case that NET_BLOCK be enhanced later.
   1593 //
   1594 typedef struct {
   1595   UINT32              Len;
   1596   UINT8               *Bulk;
   1597 } NET_FRAGMENT;
   1598 
   1599 #define NET_GET_REF(PData)      ((PData)->RefCnt++)
   1600 #define NET_PUT_REF(PData)      ((PData)->RefCnt--)
   1601 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
   1602 
   1603 #define NET_BUF_SHARED(Buf) \
   1604   (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
   1605 
   1606 #define NET_VECTOR_SIZE(BlockNum) \
   1607   (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
   1608 
   1609 #define NET_BUF_SIZE(BlockOpNum)  \
   1610   (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
   1611 
   1612 #define NET_HEADSPACE(BlockOp)  \
   1613   (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
   1614 
   1615 #define NET_TAILSPACE(BlockOp)  \
   1616   (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
   1617 
   1618 /**
   1619   Allocate a single block NET_BUF. Upon allocation, all the
   1620   free space is in the tail room.
   1621 
   1622   @param[in]  Len              The length of the block.
   1623 
   1624   @return                      The pointer to the allocated NET_BUF, or NULL if the
   1625                                allocation failed due to resource limitations.
   1626 
   1627 **/
   1628 NET_BUF  *
   1629 EFIAPI
   1630 NetbufAlloc (
   1631   IN UINT32                 Len
   1632   );
   1633 
   1634 /**
   1635   Free the net buffer and its associated NET_VECTOR.
   1636 
   1637   Decrease the reference count of the net buffer by one. Free the associated net
   1638   vector and itself if the reference count of the net buffer is decreased to 0.
   1639   The net vector free operation decreases the reference count of the net
   1640   vector by one, and performs the resource free operation when the reference count
   1641   of the net vector is 0.
   1642 
   1643   @param[in]  Nbuf                  The pointer to the NET_BUF to be freed.
   1644 
   1645 **/
   1646 VOID
   1647 EFIAPI
   1648 NetbufFree (
   1649   IN NET_BUF                *Nbuf
   1650   );
   1651 
   1652 /**
   1653   Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
   1654   buffer.
   1655 
   1656   For example, this function can be used to retrieve the IP header in the packet. It
   1657   also can be used to get the fragment that contains the byte used
   1658   mainly by the library implementation itself.
   1659 
   1660   @param[in]   Nbuf      The pointer to the net buffer.
   1661   @param[in]   Offset    The offset of the byte.
   1662   @param[out]  Index     Index of the NET_BLOCK_OP that contains the byte at
   1663                          Offset.
   1664 
   1665   @return       The pointer to the Offset'th byte of data in the net buffer, or NULL
   1666                 if there is no such data in the net buffer.
   1667 
   1668 **/
   1669 UINT8  *
   1670 EFIAPI
   1671 NetbufGetByte (
   1672   IN  NET_BUF               *Nbuf,
   1673   IN  UINT32                Offset,
   1674   OUT UINT32                *Index  OPTIONAL
   1675   );
   1676 
   1677 /**
   1678   Create a copy of the net buffer that shares the associated net vector.
   1679 
   1680   The reference count of the newly created net buffer is set to 1. The reference
   1681   count of the associated net vector is increased by one.
   1682 
   1683   @param[in]  Nbuf              The pointer to the net buffer to be cloned.
   1684 
   1685   @return                       The pointer to the cloned net buffer, or NULL if the
   1686                                 allocation failed due to resource limitations.
   1687 
   1688 **/
   1689 NET_BUF *
   1690 EFIAPI
   1691 NetbufClone (
   1692   IN NET_BUF                *Nbuf
   1693   );
   1694 
   1695 /**
   1696   Create a duplicated copy of the net buffer with data copied and HeadSpace
   1697   bytes of head space reserved.
   1698 
   1699   The duplicated net buffer will allocate its own memory to hold the data of the
   1700   source net buffer.
   1701 
   1702   @param[in]       Nbuf         The pointer to the net buffer to be duplicated from.
   1703   @param[in, out]  Duplicate    The pointer to the net buffer to duplicate to. If
   1704                                 NULL, a new net buffer is allocated.
   1705   @param[in]      HeadSpace     The length of the head space to reserve.
   1706 
   1707   @return                       The pointer to the duplicated net buffer, or NULL if
   1708                                 the allocation failed due to resource limitations.
   1709 
   1710 **/
   1711 NET_BUF  *
   1712 EFIAPI
   1713 NetbufDuplicate (
   1714   IN NET_BUF                *Nbuf,
   1715   IN OUT NET_BUF            *Duplicate        OPTIONAL,
   1716   IN UINT32                 HeadSpace
   1717   );
   1718 
   1719 /**
   1720   Create a NET_BUF structure which contains Len byte data of Nbuf starting from
   1721   Offset.
   1722 
   1723   A new NET_BUF structure will be created but the associated data in NET_VECTOR
   1724   is shared. This function exists to perform IP packet fragmentation.
   1725 
   1726   @param[in]  Nbuf         The pointer to the net buffer to be extracted.
   1727   @param[in]  Offset       Starting point of the data to be included in the new
   1728                            net buffer.
   1729   @param[in]  Len          The bytes of data to be included in the new net buffer.
   1730   @param[in]  HeadSpace    The bytes of the head space to reserve for the protocol header.
   1731 
   1732   @return                  The pointer to the cloned net buffer, or NULL if the
   1733                            allocation failed due to resource limitations.
   1734 
   1735 **/
   1736 NET_BUF  *
   1737 EFIAPI
   1738 NetbufGetFragment (
   1739   IN NET_BUF                *Nbuf,
   1740   IN UINT32                 Offset,
   1741   IN UINT32                 Len,
   1742   IN UINT32                 HeadSpace
   1743   );
   1744 
   1745 /**
   1746   Reserve some space in the header room of the net buffer.
   1747 
   1748   Upon allocation, all the space is in the tail room of the buffer. Call this
   1749   function to move space to the header room. This function is quite limited
   1750   in that it can only reserve space from the first block of an empty NET_BUF not
   1751   built from the external. However, it should be enough for the network stack.
   1752 
   1753   @param[in, out]  Nbuf     The pointer to the net buffer.
   1754   @param[in]       Len      The length of buffer to be reserved from the header.
   1755 
   1756 **/
   1757 VOID
   1758 EFIAPI
   1759 NetbufReserve (
   1760   IN OUT NET_BUF            *Nbuf,
   1761   IN UINT32                 Len
   1762   );
   1763 
   1764 /**
   1765   Allocate Len bytes of space from the header or tail of the buffer.
   1766 
   1767   @param[in, out]  Nbuf       The pointer to the net buffer.
   1768   @param[in]       Len        The length of the buffer to be allocated.
   1769   @param[in]       FromHead   The flag to indicate whether to reserve the data
   1770                               from head (TRUE) or tail (FALSE).
   1771 
   1772   @return                     The pointer to the first byte of the allocated buffer,
   1773                               or NULL, if there is no sufficient space.
   1774 
   1775 **/
   1776 UINT8*
   1777 EFIAPI
   1778 NetbufAllocSpace (
   1779   IN OUT NET_BUF            *Nbuf,
   1780   IN UINT32                 Len,
   1781   IN BOOLEAN                FromHead
   1782   );
   1783 
   1784 /**
   1785   Trim Len bytes from the header or the tail of the net buffer.
   1786 
   1787   @param[in, out]  Nbuf         The pointer to the net buffer.
   1788   @param[in]       Len          The length of the data to be trimmed.
   1789   @param[in]      FromHead      The flag to indicate whether trim data is from the
   1790                                 head (TRUE) or the tail (FALSE).
   1791 
   1792   @return    The length of the actual trimmed data, which may be less
   1793              than Len if the TotalSize of Nbuf is less than Len.
   1794 
   1795 **/
   1796 UINT32
   1797 EFIAPI
   1798 NetbufTrim (
   1799   IN OUT NET_BUF            *Nbuf,
   1800   IN UINT32                 Len,
   1801   IN BOOLEAN                FromHead
   1802   );
   1803 
   1804 /**
   1805   Copy Len bytes of data from the specific offset of the net buffer to the
   1806   destination memory.
   1807 
   1808   The Len bytes of data may cross several fragments of the net buffer.
   1809 
   1810   @param[in]   Nbuf         The pointer to the net buffer.
   1811   @param[in]   Offset       The sequence number of the first byte to copy.
   1812   @param[in]   Len          The length of the data to copy.
   1813   @param[in]   Dest         The destination of the data to copy to.
   1814 
   1815   @return           The length of the actual copied data, or 0 if the offset
   1816                     specified exceeds the total size of net buffer.
   1817 
   1818 **/
   1819 UINT32
   1820 EFIAPI
   1821 NetbufCopy (
   1822   IN NET_BUF                *Nbuf,
   1823   IN UINT32                 Offset,
   1824   IN UINT32                 Len,
   1825   IN UINT8                  *Dest
   1826   );
   1827 
   1828 /**
   1829   Build a NET_BUF from external blocks.
   1830 
   1831   A new NET_BUF structure will be created from external blocks. An additional block
   1832   of memory will be allocated to hold reserved HeadSpace bytes of header room
   1833   and existing HeadLen bytes of header, but the external blocks are shared by the
   1834   net buffer to avoid data copying.
   1835 
   1836   @param[in]  ExtFragment           The pointer to the data block.
   1837   @param[in]  ExtNum                The number of the data blocks.
   1838   @param[in]  HeadSpace             The head space to be reserved.
   1839   @param[in]  HeadLen               The length of the protocol header. The function
   1840                                     pulls this amount of data into a linear block.
   1841   @param[in]  ExtFree               The pointer to the caller-provided free function.
   1842   @param[in]  Arg                   The argument passed to ExtFree when ExtFree is
   1843                                     called.
   1844 
   1845   @return                  The pointer to the net buffer built from the data blocks,
   1846                            or NULL if the allocation failed due to resource
   1847                            limit.
   1848 
   1849 **/
   1850 NET_BUF  *
   1851 EFIAPI
   1852 NetbufFromExt (
   1853   IN NET_FRAGMENT           *ExtFragment,
   1854   IN UINT32                 ExtNum,
   1855   IN UINT32                 HeadSpace,
   1856   IN UINT32                 HeadLen,
   1857   IN NET_VECTOR_EXT_FREE    ExtFree,
   1858   IN VOID                   *Arg          OPTIONAL
   1859   );
   1860 
   1861 /**
   1862   Build a fragment table to contain the fragments in the net buffer. This is the
   1863   opposite operation of the NetbufFromExt.
   1864 
   1865   @param[in]       Nbuf                  Points to the net buffer.
   1866   @param[in, out]  ExtFragment           The pointer to the data block.
   1867   @param[in, out]  ExtNum                The number of the data blocks.
   1868 
   1869   @retval EFI_BUFFER_TOO_SMALL  The number of non-empty blocks is bigger than
   1870                                 ExtNum.
   1871   @retval EFI_SUCCESS           The fragment table was built successfully.
   1872 
   1873 **/
   1874 EFI_STATUS
   1875 EFIAPI
   1876 NetbufBuildExt (
   1877   IN NET_BUF                *Nbuf,
   1878   IN OUT NET_FRAGMENT       *ExtFragment,
   1879   IN OUT UINT32             *ExtNum
   1880   );
   1881 
   1882 /**
   1883   Build a net buffer from a list of net buffers.
   1884 
   1885   All the fragments will be collected from the list of NEW_BUF, and then a new
   1886   net buffer will be created through NetbufFromExt.
   1887 
   1888   @param[in]   BufList    A List of the net buffer.
   1889   @param[in]   HeadSpace  The head space to be reserved.
   1890   @param[in]   HeaderLen  The length of the protocol header. The function
   1891                           pulls this amount of data into a linear block.
   1892   @param[in]   ExtFree    The pointer to the caller provided free function.
   1893   @param[in]   Arg        The argument passed to ExtFree when ExtFree is called.
   1894 
   1895   @return                 The pointer to the net buffer built from the list of net
   1896                           buffers.
   1897 
   1898 **/
   1899 NET_BUF  *
   1900 EFIAPI
   1901 NetbufFromBufList (
   1902   IN LIST_ENTRY             *BufList,
   1903   IN UINT32                 HeadSpace,
   1904   IN UINT32                 HeaderLen,
   1905   IN NET_VECTOR_EXT_FREE    ExtFree,
   1906   IN VOID                   *Arg              OPTIONAL
   1907   );
   1908 
   1909 /**
   1910   Free a list of net buffers.
   1911 
   1912   @param[in, out]  Head              The pointer to the head of linked net buffers.
   1913 
   1914 **/
   1915 VOID
   1916 EFIAPI
   1917 NetbufFreeList (
   1918   IN OUT LIST_ENTRY         *Head
   1919   );
   1920 
   1921 /**
   1922   Initiate the net buffer queue.
   1923 
   1924   @param[in, out]  NbufQue   The pointer to the net buffer queue to be initialized.
   1925 
   1926 **/
   1927 VOID
   1928 EFIAPI
   1929 NetbufQueInit (
   1930   IN OUT NET_BUF_QUEUE          *NbufQue
   1931   );
   1932 
   1933 /**
   1934   Allocate and initialize a net buffer queue.
   1935 
   1936   @return         The pointer to the allocated net buffer queue, or NULL if the
   1937                   allocation failed due to resource limit.
   1938 
   1939 **/
   1940 NET_BUF_QUEUE  *
   1941 EFIAPI
   1942 NetbufQueAlloc (
   1943   VOID
   1944   );
   1945 
   1946 /**
   1947   Free a net buffer queue.
   1948 
   1949   Decrease the reference count of the net buffer queue by one. The real resource
   1950   free operation isn't performed until the reference count of the net buffer
   1951   queue is decreased to 0.
   1952 
   1953   @param[in]  NbufQue               The pointer to the net buffer queue to be freed.
   1954 
   1955 **/
   1956 VOID
   1957 EFIAPI
   1958 NetbufQueFree (
   1959   IN NET_BUF_QUEUE          *NbufQue
   1960   );
   1961 
   1962 /**
   1963   Remove a net buffer from the head in the specific queue and return it.
   1964 
   1965   @param[in, out]  NbufQue               The pointer to the net buffer queue.
   1966 
   1967   @return           The pointer to the net buffer removed from the specific queue,
   1968                     or NULL if there is no net buffer in the specific queue.
   1969 
   1970 **/
   1971 NET_BUF  *
   1972 EFIAPI
   1973 NetbufQueRemove (
   1974   IN OUT NET_BUF_QUEUE          *NbufQue
   1975   );
   1976 
   1977 /**
   1978   Append a net buffer to the net buffer queue.
   1979 
   1980   @param[in, out]  NbufQue            The pointer to the net buffer queue.
   1981   @param[in, out]  Nbuf               The pointer to the net buffer to be appended.
   1982 
   1983 **/
   1984 VOID
   1985 EFIAPI
   1986 NetbufQueAppend (
   1987   IN OUT NET_BUF_QUEUE          *NbufQue,
   1988   IN OUT NET_BUF                *Nbuf
   1989   );
   1990 
   1991 /**
   1992   Copy Len bytes of data from the net buffer queue at the specific offset to the
   1993   destination memory.
   1994 
   1995   The copying operation is the same as NetbufCopy, but applies to the net buffer
   1996   queue instead of the net buffer.
   1997 
   1998   @param[in]   NbufQue         The pointer to the net buffer queue.
   1999   @param[in]   Offset          The sequence number of the first byte to copy.
   2000   @param[in]   Len             The length of the data to copy.
   2001   @param[out]  Dest            The destination of the data to copy to.
   2002 
   2003   @return       The length of the actual copied data, or 0 if the offset
   2004                 specified exceeds the total size of net buffer queue.
   2005 
   2006 **/
   2007 UINT32
   2008 EFIAPI
   2009 NetbufQueCopy (
   2010   IN NET_BUF_QUEUE          *NbufQue,
   2011   IN UINT32                 Offset,
   2012   IN UINT32                 Len,
   2013   OUT UINT8                 *Dest
   2014   );
   2015 
   2016 /**
   2017   Trim Len bytes of data from the buffer queue and free any net buffer
   2018   that is completely trimmed.
   2019 
   2020   The trimming operation is the same as NetbufTrim but applies to the net buffer
   2021   queue instead of the net buffer.
   2022 
   2023   @param[in, out]  NbufQue               The pointer to the net buffer queue.
   2024   @param[in]       Len                   The length of the data to trim.
   2025 
   2026   @return   The actual length of the data trimmed.
   2027 
   2028 **/
   2029 UINT32
   2030 EFIAPI
   2031 NetbufQueTrim (
   2032   IN OUT NET_BUF_QUEUE      *NbufQue,
   2033   IN UINT32                 Len
   2034   );
   2035 
   2036 
   2037 /**
   2038   Flush the net buffer queue.
   2039 
   2040   @param[in, out]  NbufQue               The pointer to the queue to be flushed.
   2041 
   2042 **/
   2043 VOID
   2044 EFIAPI
   2045 NetbufQueFlush (
   2046   IN OUT NET_BUF_QUEUE          *NbufQue
   2047   );
   2048 
   2049 /**
   2050   Compute the checksum for a bulk of data.
   2051 
   2052   @param[in]   Bulk                  The pointer to the data.
   2053   @param[in]   Len                   The length of the data, in bytes.
   2054 
   2055   @return    The computed checksum.
   2056 
   2057 **/
   2058 UINT16
   2059 EFIAPI
   2060 NetblockChecksum (
   2061   IN UINT8                  *Bulk,
   2062   IN UINT32                 Len
   2063   );
   2064 
   2065 /**
   2066   Add two checksums.
   2067 
   2068   @param[in]   Checksum1             The first checksum to be added.
   2069   @param[in]   Checksum2             The second checksum to be added.
   2070 
   2071   @return         The new checksum.
   2072 
   2073 **/
   2074 UINT16
   2075 EFIAPI
   2076 NetAddChecksum (
   2077   IN UINT16                 Checksum1,
   2078   IN UINT16                 Checksum2
   2079   );
   2080 
   2081 /**
   2082   Compute the checksum for a NET_BUF.
   2083 
   2084   @param[in]   Nbuf                  The pointer to the net buffer.
   2085 
   2086   @return    The computed checksum.
   2087 
   2088 **/
   2089 UINT16
   2090 EFIAPI
   2091 NetbufChecksum (
   2092   IN NET_BUF                *Nbuf
   2093   );
   2094 
   2095 /**
   2096   Compute the checksum for TCP/UDP pseudo header.
   2097 
   2098   Src and Dst are in network byte order, and Len is in host byte order.
   2099 
   2100   @param[in]   Src                   The source address of the packet.
   2101   @param[in]   Dst                   The destination address of the packet.
   2102   @param[in]   Proto                 The protocol type of the packet.
   2103   @param[in]   Len                   The length of the packet.
   2104 
   2105   @return   The computed checksum.
   2106 
   2107 **/
   2108 UINT16
   2109 EFIAPI
   2110 NetPseudoHeadChecksum (
   2111   IN IP4_ADDR               Src,
   2112   IN IP4_ADDR               Dst,
   2113   IN UINT8                  Proto,
   2114   IN UINT16                 Len
   2115   );
   2116 
   2117 /**
   2118   Compute the checksum for the TCP6/UDP6 pseudo header.
   2119 
   2120   Src and Dst are in network byte order, and Len is in host byte order.
   2121 
   2122   @param[in]   Src                   The source address of the packet.
   2123   @param[in]   Dst                   The destination address of the packet.
   2124   @param[in]   NextHeader            The protocol type of the packet.
   2125   @param[in]   Len                   The length of the packet.
   2126 
   2127   @return   The computed checksum.
   2128 
   2129 **/
   2130 UINT16
   2131 EFIAPI
   2132 NetIp6PseudoHeadChecksum (
   2133   IN EFI_IPv6_ADDRESS       *Src,
   2134   IN EFI_IPv6_ADDRESS       *Dst,
   2135   IN UINT8                  NextHeader,
   2136   IN UINT32                 Len
   2137   );
   2138 
   2139 /**
   2140   The function frees the net buffer which allocated by the IP protocol. It releases
   2141   only the net buffer and doesn't call the external free function.
   2142 
   2143   This function should be called after finishing the process of mIpSec->ProcessExt()
   2144   for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
   2145   buffer for the ESP, so there needs a function to free the old net buffer.
   2146 
   2147   @param[in]  Nbuf       The network buffer to be freed.
   2148 
   2149 **/
   2150 VOID
   2151 NetIpSecNetbufFree (
   2152   NET_BUF   *Nbuf
   2153   );
   2154 
   2155 /**
   2156   This function obtains the system guid from the smbios table.
   2157 
   2158   @param[out]  SystemGuid     The pointer of the returned system guid.
   2159 
   2160   @retval EFI_SUCCESS         Successfully obtained the system guid.
   2161   @retval EFI_NOT_FOUND       Did not find the SMBIOS table.
   2162 
   2163 **/
   2164 EFI_STATUS
   2165 EFIAPI
   2166 NetLibGetSystemGuid (
   2167   OUT EFI_GUID              *SystemGuid
   2168   );
   2169 
   2170 /**
   2171   Create Dns QName according the queried domain name.
   2172   QName is a domain name represented as a sequence of labels,
   2173   where each label consists of a length octet followed by that
   2174   number of octets. The QName terminates with the zero
   2175   length octet for the null label of the root. Caller should
   2176   take responsibility to free the buffer in returned pointer.
   2177 
   2178   @param  DomainName    The pointer to the queried domain name string.
   2179 
   2180   @retval NULL          Failed to fill QName.
   2181   @return               QName filled successfully.
   2182 
   2183 **/
   2184 CHAR8 *
   2185 EFIAPI
   2186 NetLibCreateDnsQName (
   2187   IN  CHAR16              *DomainName
   2188   );
   2189 
   2190 #endif
   2191