Home | History | Annotate | Download | only in Sema
      1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines analysis_warnings::[Policy,Executor].
     11 // Together they are used by Sema to issue warnings based on inexpensive
     12 // static analysis algorithms in libAnalysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "clang/Sema/AnalysisBasedWarnings.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/EvaluatedExprVisitor.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/AST/ParentMap.h"
     23 #include "clang/AST/RecursiveASTVisitor.h"
     24 #include "clang/AST/StmtCXX.h"
     25 #include "clang/AST/StmtObjC.h"
     26 #include "clang/AST/StmtVisitor.h"
     27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
     28 #include "clang/Analysis/Analyses/Consumed.h"
     29 #include "clang/Analysis/Analyses/ReachableCode.h"
     30 #include "clang/Analysis/Analyses/ThreadSafety.h"
     31 #include "clang/Analysis/Analyses/UninitializedValues.h"
     32 #include "clang/Analysis/AnalysisContext.h"
     33 #include "clang/Analysis/CFG.h"
     34 #include "clang/Analysis/CFGStmtMap.h"
     35 #include "clang/Basic/SourceLocation.h"
     36 #include "clang/Basic/SourceManager.h"
     37 #include "clang/Lex/Preprocessor.h"
     38 #include "clang/Sema/ScopeInfo.h"
     39 #include "clang/Sema/SemaInternal.h"
     40 #include "llvm/ADT/ArrayRef.h"
     41 #include "llvm/ADT/BitVector.h"
     42 #include "llvm/ADT/FoldingSet.h"
     43 #include "llvm/ADT/ImmutableMap.h"
     44 #include "llvm/ADT/MapVector.h"
     45 #include "llvm/ADT/PostOrderIterator.h"
     46 #include "llvm/ADT/SmallString.h"
     47 #include "llvm/ADT/SmallVector.h"
     48 #include "llvm/ADT/StringRef.h"
     49 #include "llvm/Support/Casting.h"
     50 #include <algorithm>
     51 #include <deque>
     52 #include <iterator>
     53 #include <vector>
     54 
     55 using namespace clang;
     56 
     57 //===----------------------------------------------------------------------===//
     58 // Unreachable code analysis.
     59 //===----------------------------------------------------------------------===//
     60 
     61 namespace {
     62   class UnreachableCodeHandler : public reachable_code::Callback {
     63     Sema &S;
     64   public:
     65     UnreachableCodeHandler(Sema &s) : S(s) {}
     66 
     67     void HandleUnreachable(reachable_code::UnreachableKind UK,
     68                            SourceLocation L,
     69                            SourceRange SilenceableCondVal,
     70                            SourceRange R1,
     71                            SourceRange R2) override {
     72       unsigned diag = diag::warn_unreachable;
     73       switch (UK) {
     74         case reachable_code::UK_Break:
     75           diag = diag::warn_unreachable_break;
     76           break;
     77         case reachable_code::UK_Return:
     78           diag = diag::warn_unreachable_return;
     79           break;
     80         case reachable_code::UK_Loop_Increment:
     81           diag = diag::warn_unreachable_loop_increment;
     82           break;
     83         case reachable_code::UK_Other:
     84           break;
     85       }
     86 
     87       S.Diag(L, diag) << R1 << R2;
     88 
     89       SourceLocation Open = SilenceableCondVal.getBegin();
     90       if (Open.isValid()) {
     91         SourceLocation Close = SilenceableCondVal.getEnd();
     92         Close = S.getLocForEndOfToken(Close);
     93         if (Close.isValid()) {
     94           S.Diag(Open, diag::note_unreachable_silence)
     95             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
     96             << FixItHint::CreateInsertion(Close, ")");
     97         }
     98       }
     99     }
    100   };
    101 } // anonymous namespace
    102 
    103 /// CheckUnreachable - Check for unreachable code.
    104 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
    105   // As a heuristic prune all diagnostics not in the main file.  Currently
    106   // the majority of warnings in headers are false positives.  These
    107   // are largely caused by configuration state, e.g. preprocessor
    108   // defined code, etc.
    109   //
    110   // Note that this is also a performance optimization.  Analyzing
    111   // headers many times can be expensive.
    112   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
    113     return;
    114 
    115   UnreachableCodeHandler UC(S);
    116   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
    117 }
    118 
    119 namespace {
    120 /// \brief Warn on logical operator errors in CFGBuilder
    121 class LogicalErrorHandler : public CFGCallback {
    122   Sema &S;
    123 
    124 public:
    125   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
    126 
    127   static bool HasMacroID(const Expr *E) {
    128     if (E->getExprLoc().isMacroID())
    129       return true;
    130 
    131     // Recurse to children.
    132     for (const Stmt *SubStmt : E->children())
    133       if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
    134         if (HasMacroID(SubExpr))
    135           return true;
    136 
    137     return false;
    138   }
    139 
    140   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
    141     if (HasMacroID(B))
    142       return;
    143 
    144     SourceRange DiagRange = B->getSourceRange();
    145     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
    146         << DiagRange << isAlwaysTrue;
    147   }
    148 
    149   void compareBitwiseEquality(const BinaryOperator *B,
    150                               bool isAlwaysTrue) override {
    151     if (HasMacroID(B))
    152       return;
    153 
    154     SourceRange DiagRange = B->getSourceRange();
    155     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
    156         << DiagRange << isAlwaysTrue;
    157   }
    158 };
    159 } // anonymous namespace
    160 
    161 //===----------------------------------------------------------------------===//
    162 // Check for infinite self-recursion in functions
    163 //===----------------------------------------------------------------------===//
    164 
    165 // Returns true if the function is called anywhere within the CFGBlock.
    166 // For member functions, the additional condition of being call from the
    167 // this pointer is required.
    168 static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
    169   // Process all the Stmt's in this block to find any calls to FD.
    170   for (const auto &B : Block) {
    171     if (B.getKind() != CFGElement::Statement)
    172       continue;
    173 
    174     const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
    175     if (!CE || !CE->getCalleeDecl() ||
    176         CE->getCalleeDecl()->getCanonicalDecl() != FD)
    177       continue;
    178 
    179     // Skip function calls which are qualified with a templated class.
    180     if (const DeclRefExpr *DRE =
    181             dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
    182       if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
    183         if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
    184             isa<TemplateSpecializationType>(NNS->getAsType())) {
    185           continue;
    186         }
    187       }
    188     }
    189 
    190     const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
    191     if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
    192         !MCE->getMethodDecl()->isVirtual())
    193       return true;
    194   }
    195   return false;
    196 }
    197 
    198 // All blocks are in one of three states.  States are ordered so that blocks
    199 // can only move to higher states.
    200 enum RecursiveState {
    201   FoundNoPath,
    202   FoundPath,
    203   FoundPathWithNoRecursiveCall
    204 };
    205 
    206 // Returns true if there exists a path to the exit block and every path
    207 // to the exit block passes through a call to FD.
    208 static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
    209 
    210   const unsigned ExitID = cfg->getExit().getBlockID();
    211 
    212   // Mark all nodes as FoundNoPath, then set the status of the entry block.
    213   SmallVector<RecursiveState, 16> States(cfg->getNumBlockIDs(), FoundNoPath);
    214   States[cfg->getEntry().getBlockID()] = FoundPathWithNoRecursiveCall;
    215 
    216   // Make the processing stack and seed it with the entry block.
    217   SmallVector<CFGBlock *, 16> Stack;
    218   Stack.push_back(&cfg->getEntry());
    219 
    220   while (!Stack.empty()) {
    221     CFGBlock *CurBlock = Stack.back();
    222     Stack.pop_back();
    223 
    224     unsigned ID = CurBlock->getBlockID();
    225     RecursiveState CurState = States[ID];
    226 
    227     if (CurState == FoundPathWithNoRecursiveCall) {
    228       // Found a path to the exit node without a recursive call.
    229       if (ExitID == ID)
    230         return false;
    231 
    232       // Only change state if the block has a recursive call.
    233       if (hasRecursiveCallInPath(FD, *CurBlock))
    234         CurState = FoundPath;
    235     }
    236 
    237     // Loop over successor blocks and add them to the Stack if their state
    238     // changes.
    239     for (auto I = CurBlock->succ_begin(), E = CurBlock->succ_end(); I != E; ++I)
    240       if (*I) {
    241         unsigned next_ID = (*I)->getBlockID();
    242         if (States[next_ID] < CurState) {
    243           States[next_ID] = CurState;
    244           Stack.push_back(*I);
    245         }
    246       }
    247   }
    248 
    249   // Return true if the exit node is reachable, and only reachable through
    250   // a recursive call.
    251   return States[ExitID] == FoundPath;
    252 }
    253 
    254 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
    255                                    const Stmt *Body, AnalysisDeclContext &AC) {
    256   FD = FD->getCanonicalDecl();
    257 
    258   // Only run on non-templated functions and non-templated members of
    259   // templated classes.
    260   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
    261       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
    262     return;
    263 
    264   CFG *cfg = AC.getCFG();
    265   if (!cfg) return;
    266 
    267   // If the exit block is unreachable, skip processing the function.
    268   if (cfg->getExit().pred_empty())
    269     return;
    270 
    271   // Emit diagnostic if a recursive function call is detected for all paths.
    272   if (checkForRecursiveFunctionCall(FD, cfg))
    273     S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
    274 }
    275 
    276 //===----------------------------------------------------------------------===//
    277 // Check for missing return value.
    278 //===----------------------------------------------------------------------===//
    279 
    280 enum ControlFlowKind {
    281   UnknownFallThrough,
    282   NeverFallThrough,
    283   MaybeFallThrough,
    284   AlwaysFallThrough,
    285   NeverFallThroughOrReturn
    286 };
    287 
    288 /// CheckFallThrough - Check that we don't fall off the end of a
    289 /// Statement that should return a value.
    290 ///
    291 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
    292 /// MaybeFallThrough iff we might or might not fall off the end,
    293 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
    294 /// return.  We assume NeverFallThrough iff we never fall off the end of the
    295 /// statement but we may return.  We assume that functions not marked noreturn
    296 /// will return.
    297 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
    298   CFG *cfg = AC.getCFG();
    299   if (!cfg) return UnknownFallThrough;
    300 
    301   // The CFG leaves in dead things, and we don't want the dead code paths to
    302   // confuse us, so we mark all live things first.
    303   llvm::BitVector live(cfg->getNumBlockIDs());
    304   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
    305                                                           live);
    306 
    307   bool AddEHEdges = AC.getAddEHEdges();
    308   if (!AddEHEdges && count != cfg->getNumBlockIDs())
    309     // When there are things remaining dead, and we didn't add EH edges
    310     // from CallExprs to the catch clauses, we have to go back and
    311     // mark them as live.
    312     for (const auto *B : *cfg) {
    313       if (!live[B->getBlockID()]) {
    314         if (B->pred_begin() == B->pred_end()) {
    315           if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
    316             // When not adding EH edges from calls, catch clauses
    317             // can otherwise seem dead.  Avoid noting them as dead.
    318             count += reachable_code::ScanReachableFromBlock(B, live);
    319           continue;
    320         }
    321       }
    322     }
    323 
    324   // Now we know what is live, we check the live precessors of the exit block
    325   // and look for fall through paths, being careful to ignore normal returns,
    326   // and exceptional paths.
    327   bool HasLiveReturn = false;
    328   bool HasFakeEdge = false;
    329   bool HasPlainEdge = false;
    330   bool HasAbnormalEdge = false;
    331 
    332   // Ignore default cases that aren't likely to be reachable because all
    333   // enums in a switch(X) have explicit case statements.
    334   CFGBlock::FilterOptions FO;
    335   FO.IgnoreDefaultsWithCoveredEnums = 1;
    336 
    337   for (CFGBlock::filtered_pred_iterator
    338 	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
    339     const CFGBlock& B = **I;
    340     if (!live[B.getBlockID()])
    341       continue;
    342 
    343     // Skip blocks which contain an element marked as no-return. They don't
    344     // represent actually viable edges into the exit block, so mark them as
    345     // abnormal.
    346     if (B.hasNoReturnElement()) {
    347       HasAbnormalEdge = true;
    348       continue;
    349     }
    350 
    351     // Destructors can appear after the 'return' in the CFG.  This is
    352     // normal.  We need to look pass the destructors for the return
    353     // statement (if it exists).
    354     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
    355 
    356     for ( ; ri != re ; ++ri)
    357       if (ri->getAs<CFGStmt>())
    358         break;
    359 
    360     // No more CFGElements in the block?
    361     if (ri == re) {
    362       if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
    363         HasAbnormalEdge = true;
    364         continue;
    365       }
    366       // A labeled empty statement, or the entry block...
    367       HasPlainEdge = true;
    368       continue;
    369     }
    370 
    371     CFGStmt CS = ri->castAs<CFGStmt>();
    372     const Stmt *S = CS.getStmt();
    373     if (isa<ReturnStmt>(S)) {
    374       HasLiveReturn = true;
    375       continue;
    376     }
    377     if (isa<ObjCAtThrowStmt>(S)) {
    378       HasFakeEdge = true;
    379       continue;
    380     }
    381     if (isa<CXXThrowExpr>(S)) {
    382       HasFakeEdge = true;
    383       continue;
    384     }
    385     if (isa<MSAsmStmt>(S)) {
    386       // TODO: Verify this is correct.
    387       HasFakeEdge = true;
    388       HasLiveReturn = true;
    389       continue;
    390     }
    391     if (isa<CXXTryStmt>(S)) {
    392       HasAbnormalEdge = true;
    393       continue;
    394     }
    395     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
    396         == B.succ_end()) {
    397       HasAbnormalEdge = true;
    398       continue;
    399     }
    400 
    401     HasPlainEdge = true;
    402   }
    403   if (!HasPlainEdge) {
    404     if (HasLiveReturn)
    405       return NeverFallThrough;
    406     return NeverFallThroughOrReturn;
    407   }
    408   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
    409     return MaybeFallThrough;
    410   // This says AlwaysFallThrough for calls to functions that are not marked
    411   // noreturn, that don't return.  If people would like this warning to be more
    412   // accurate, such functions should be marked as noreturn.
    413   return AlwaysFallThrough;
    414 }
    415 
    416 namespace {
    417 
    418 struct CheckFallThroughDiagnostics {
    419   unsigned diag_MaybeFallThrough_HasNoReturn;
    420   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
    421   unsigned diag_AlwaysFallThrough_HasNoReturn;
    422   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
    423   unsigned diag_NeverFallThroughOrReturn;
    424   enum { Function, Block, Lambda } funMode;
    425   SourceLocation FuncLoc;
    426 
    427   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
    428     CheckFallThroughDiagnostics D;
    429     D.FuncLoc = Func->getLocation();
    430     D.diag_MaybeFallThrough_HasNoReturn =
    431       diag::warn_falloff_noreturn_function;
    432     D.diag_MaybeFallThrough_ReturnsNonVoid =
    433       diag::warn_maybe_falloff_nonvoid_function;
    434     D.diag_AlwaysFallThrough_HasNoReturn =
    435       diag::warn_falloff_noreturn_function;
    436     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    437       diag::warn_falloff_nonvoid_function;
    438 
    439     // Don't suggest that virtual functions be marked "noreturn", since they
    440     // might be overridden by non-noreturn functions.
    441     bool isVirtualMethod = false;
    442     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
    443       isVirtualMethod = Method->isVirtual();
    444 
    445     // Don't suggest that template instantiations be marked "noreturn"
    446     bool isTemplateInstantiation = false;
    447     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
    448       isTemplateInstantiation = Function->isTemplateInstantiation();
    449 
    450     if (!isVirtualMethod && !isTemplateInstantiation)
    451       D.diag_NeverFallThroughOrReturn =
    452         diag::warn_suggest_noreturn_function;
    453     else
    454       D.diag_NeverFallThroughOrReturn = 0;
    455 
    456     D.funMode = Function;
    457     return D;
    458   }
    459 
    460   static CheckFallThroughDiagnostics MakeForBlock() {
    461     CheckFallThroughDiagnostics D;
    462     D.diag_MaybeFallThrough_HasNoReturn =
    463       diag::err_noreturn_block_has_return_expr;
    464     D.diag_MaybeFallThrough_ReturnsNonVoid =
    465       diag::err_maybe_falloff_nonvoid_block;
    466     D.diag_AlwaysFallThrough_HasNoReturn =
    467       diag::err_noreturn_block_has_return_expr;
    468     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    469       diag::err_falloff_nonvoid_block;
    470     D.diag_NeverFallThroughOrReturn = 0;
    471     D.funMode = Block;
    472     return D;
    473   }
    474 
    475   static CheckFallThroughDiagnostics MakeForLambda() {
    476     CheckFallThroughDiagnostics D;
    477     D.diag_MaybeFallThrough_HasNoReturn =
    478       diag::err_noreturn_lambda_has_return_expr;
    479     D.diag_MaybeFallThrough_ReturnsNonVoid =
    480       diag::warn_maybe_falloff_nonvoid_lambda;
    481     D.diag_AlwaysFallThrough_HasNoReturn =
    482       diag::err_noreturn_lambda_has_return_expr;
    483     D.diag_AlwaysFallThrough_ReturnsNonVoid =
    484       diag::warn_falloff_nonvoid_lambda;
    485     D.diag_NeverFallThroughOrReturn = 0;
    486     D.funMode = Lambda;
    487     return D;
    488   }
    489 
    490   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
    491                         bool HasNoReturn) const {
    492     if (funMode == Function) {
    493       return (ReturnsVoid ||
    494               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
    495                           FuncLoc)) &&
    496              (!HasNoReturn ||
    497               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
    498                           FuncLoc)) &&
    499              (!ReturnsVoid ||
    500               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
    501     }
    502 
    503     // For blocks / lambdas.
    504     return ReturnsVoid && !HasNoReturn;
    505   }
    506 };
    507 
    508 } // anonymous namespace
    509 
    510 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
    511 /// function that should return a value.  Check that we don't fall off the end
    512 /// of a noreturn function.  We assume that functions and blocks not marked
    513 /// noreturn will return.
    514 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
    515                                     const BlockExpr *blkExpr,
    516                                     const CheckFallThroughDiagnostics& CD,
    517                                     AnalysisDeclContext &AC) {
    518 
    519   bool ReturnsVoid = false;
    520   bool HasNoReturn = false;
    521 
    522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    523     ReturnsVoid = FD->getReturnType()->isVoidType();
    524     HasNoReturn = FD->isNoReturn();
    525   }
    526   else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    527     ReturnsVoid = MD->getReturnType()->isVoidType();
    528     HasNoReturn = MD->hasAttr<NoReturnAttr>();
    529   }
    530   else if (isa<BlockDecl>(D)) {
    531     QualType BlockTy = blkExpr->getType();
    532     if (const FunctionType *FT =
    533           BlockTy->getPointeeType()->getAs<FunctionType>()) {
    534       if (FT->getReturnType()->isVoidType())
    535         ReturnsVoid = true;
    536       if (FT->getNoReturnAttr())
    537         HasNoReturn = true;
    538     }
    539   }
    540 
    541   DiagnosticsEngine &Diags = S.getDiagnostics();
    542 
    543   // Short circuit for compilation speed.
    544   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
    545       return;
    546 
    547   SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
    548   // Either in a function body compound statement, or a function-try-block.
    549   switch (CheckFallThrough(AC)) {
    550     case UnknownFallThrough:
    551       break;
    552 
    553     case MaybeFallThrough:
    554       if (HasNoReturn)
    555         S.Diag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
    556       else if (!ReturnsVoid)
    557         S.Diag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
    558       break;
    559     case AlwaysFallThrough:
    560       if (HasNoReturn)
    561         S.Diag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
    562       else if (!ReturnsVoid)
    563         S.Diag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
    564       break;
    565     case NeverFallThroughOrReturn:
    566       if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
    567         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    568           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
    569         } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    570           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
    571         } else {
    572           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
    573         }
    574       }
    575       break;
    576     case NeverFallThrough:
    577       break;
    578   }
    579 }
    580 
    581 //===----------------------------------------------------------------------===//
    582 // -Wuninitialized
    583 //===----------------------------------------------------------------------===//
    584 
    585 namespace {
    586 /// ContainsReference - A visitor class to search for references to
    587 /// a particular declaration (the needle) within any evaluated component of an
    588 /// expression (recursively).
    589 class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
    590   bool FoundReference;
    591   const DeclRefExpr *Needle;
    592 
    593 public:
    594   typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
    595 
    596   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
    597     : Inherited(Context), FoundReference(false), Needle(Needle) {}
    598 
    599   void VisitExpr(const Expr *E) {
    600     // Stop evaluating if we already have a reference.
    601     if (FoundReference)
    602       return;
    603 
    604     Inherited::VisitExpr(E);
    605   }
    606 
    607   void VisitDeclRefExpr(const DeclRefExpr *E) {
    608     if (E == Needle)
    609       FoundReference = true;
    610     else
    611       Inherited::VisitDeclRefExpr(E);
    612   }
    613 
    614   bool doesContainReference() const { return FoundReference; }
    615 };
    616 } // anonymous namespace
    617 
    618 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
    619   QualType VariableTy = VD->getType().getCanonicalType();
    620   if (VariableTy->isBlockPointerType() &&
    621       !VD->hasAttr<BlocksAttr>()) {
    622     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
    623         << VD->getDeclName()
    624         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
    625     return true;
    626   }
    627 
    628   // Don't issue a fixit if there is already an initializer.
    629   if (VD->getInit())
    630     return false;
    631 
    632   // Don't suggest a fixit inside macros.
    633   if (VD->getLocEnd().isMacroID())
    634     return false;
    635 
    636   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
    637 
    638   // Suggest possible initialization (if any).
    639   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
    640   if (Init.empty())
    641     return false;
    642 
    643   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
    644     << FixItHint::CreateInsertion(Loc, Init);
    645   return true;
    646 }
    647 
    648 /// Create a fixit to remove an if-like statement, on the assumption that its
    649 /// condition is CondVal.
    650 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
    651                           const Stmt *Else, bool CondVal,
    652                           FixItHint &Fixit1, FixItHint &Fixit2) {
    653   if (CondVal) {
    654     // If condition is always true, remove all but the 'then'.
    655     Fixit1 = FixItHint::CreateRemoval(
    656         CharSourceRange::getCharRange(If->getLocStart(),
    657                                       Then->getLocStart()));
    658     if (Else) {
    659       SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getLocEnd());
    660       Fixit2 = FixItHint::CreateRemoval(
    661           SourceRange(ElseKwLoc, Else->getLocEnd()));
    662     }
    663   } else {
    664     // If condition is always false, remove all but the 'else'.
    665     if (Else)
    666       Fixit1 = FixItHint::CreateRemoval(
    667           CharSourceRange::getCharRange(If->getLocStart(),
    668                                         Else->getLocStart()));
    669     else
    670       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
    671   }
    672 }
    673 
    674 /// DiagUninitUse -- Helper function to produce a diagnostic for an
    675 /// uninitialized use of a variable.
    676 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
    677                           bool IsCapturedByBlock) {
    678   bool Diagnosed = false;
    679 
    680   switch (Use.getKind()) {
    681   case UninitUse::Always:
    682     S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
    683         << VD->getDeclName() << IsCapturedByBlock
    684         << Use.getUser()->getSourceRange();
    685     return;
    686 
    687   case UninitUse::AfterDecl:
    688   case UninitUse::AfterCall:
    689     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
    690       << VD->getDeclName() << IsCapturedByBlock
    691       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
    692       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
    693       << VD->getSourceRange();
    694     S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
    695       << IsCapturedByBlock << Use.getUser()->getSourceRange();
    696     return;
    697 
    698   case UninitUse::Maybe:
    699   case UninitUse::Sometimes:
    700     // Carry on to report sometimes-uninitialized branches, if possible,
    701     // or a 'may be used uninitialized' diagnostic otherwise.
    702     break;
    703   }
    704 
    705   // Diagnose each branch which leads to a sometimes-uninitialized use.
    706   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
    707        I != E; ++I) {
    708     assert(Use.getKind() == UninitUse::Sometimes);
    709 
    710     const Expr *User = Use.getUser();
    711     const Stmt *Term = I->Terminator;
    712 
    713     // Information used when building the diagnostic.
    714     unsigned DiagKind;
    715     StringRef Str;
    716     SourceRange Range;
    717 
    718     // FixIts to suppress the diagnostic by removing the dead condition.
    719     // For all binary terminators, branch 0 is taken if the condition is true,
    720     // and branch 1 is taken if the condition is false.
    721     int RemoveDiagKind = -1;
    722     const char *FixitStr =
    723         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
    724                                   : (I->Output ? "1" : "0");
    725     FixItHint Fixit1, Fixit2;
    726 
    727     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
    728     default:
    729       // Don't know how to report this. Just fall back to 'may be used
    730       // uninitialized'. FIXME: Can this happen?
    731       continue;
    732 
    733     // "condition is true / condition is false".
    734     case Stmt::IfStmtClass: {
    735       const IfStmt *IS = cast<IfStmt>(Term);
    736       DiagKind = 0;
    737       Str = "if";
    738       Range = IS->getCond()->getSourceRange();
    739       RemoveDiagKind = 0;
    740       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
    741                     I->Output, Fixit1, Fixit2);
    742       break;
    743     }
    744     case Stmt::ConditionalOperatorClass: {
    745       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
    746       DiagKind = 0;
    747       Str = "?:";
    748       Range = CO->getCond()->getSourceRange();
    749       RemoveDiagKind = 0;
    750       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
    751                     I->Output, Fixit1, Fixit2);
    752       break;
    753     }
    754     case Stmt::BinaryOperatorClass: {
    755       const BinaryOperator *BO = cast<BinaryOperator>(Term);
    756       if (!BO->isLogicalOp())
    757         continue;
    758       DiagKind = 0;
    759       Str = BO->getOpcodeStr();
    760       Range = BO->getLHS()->getSourceRange();
    761       RemoveDiagKind = 0;
    762       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
    763           (BO->getOpcode() == BO_LOr && !I->Output))
    764         // true && y -> y, false || y -> y.
    765         Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
    766                                                       BO->getOperatorLoc()));
    767       else
    768         // false && y -> false, true || y -> true.
    769         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
    770       break;
    771     }
    772 
    773     // "loop is entered / loop is exited".
    774     case Stmt::WhileStmtClass:
    775       DiagKind = 1;
    776       Str = "while";
    777       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
    778       RemoveDiagKind = 1;
    779       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    780       break;
    781     case Stmt::ForStmtClass:
    782       DiagKind = 1;
    783       Str = "for";
    784       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
    785       RemoveDiagKind = 1;
    786       if (I->Output)
    787         Fixit1 = FixItHint::CreateRemoval(Range);
    788       else
    789         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    790       break;
    791     case Stmt::CXXForRangeStmtClass:
    792       if (I->Output == 1) {
    793         // The use occurs if a range-based for loop's body never executes.
    794         // That may be impossible, and there's no syntactic fix for this,
    795         // so treat it as a 'may be uninitialized' case.
    796         continue;
    797       }
    798       DiagKind = 1;
    799       Str = "for";
    800       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
    801       break;
    802 
    803     // "condition is true / loop is exited".
    804     case Stmt::DoStmtClass:
    805       DiagKind = 2;
    806       Str = "do";
    807       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
    808       RemoveDiagKind = 1;
    809       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
    810       break;
    811 
    812     // "switch case is taken".
    813     case Stmt::CaseStmtClass:
    814       DiagKind = 3;
    815       Str = "case";
    816       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
    817       break;
    818     case Stmt::DefaultStmtClass:
    819       DiagKind = 3;
    820       Str = "default";
    821       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
    822       break;
    823     }
    824 
    825     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
    826       << VD->getDeclName() << IsCapturedByBlock << DiagKind
    827       << Str << I->Output << Range;
    828     S.Diag(User->getLocStart(), diag::note_uninit_var_use)
    829       << IsCapturedByBlock << User->getSourceRange();
    830     if (RemoveDiagKind != -1)
    831       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
    832         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
    833 
    834     Diagnosed = true;
    835   }
    836 
    837   if (!Diagnosed)
    838     S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
    839         << VD->getDeclName() << IsCapturedByBlock
    840         << Use.getUser()->getSourceRange();
    841 }
    842 
    843 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
    844 /// uninitialized variable. This manages the different forms of diagnostic
    845 /// emitted for particular types of uses. Returns true if the use was diagnosed
    846 /// as a warning. If a particular use is one we omit warnings for, returns
    847 /// false.
    848 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
    849                                      const UninitUse &Use,
    850                                      bool alwaysReportSelfInit = false) {
    851   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
    852     // Inspect the initializer of the variable declaration which is
    853     // being referenced prior to its initialization. We emit
    854     // specialized diagnostics for self-initialization, and we
    855     // specifically avoid warning about self references which take the
    856     // form of:
    857     //
    858     //   int x = x;
    859     //
    860     // This is used to indicate to GCC that 'x' is intentionally left
    861     // uninitialized. Proven code paths which access 'x' in
    862     // an uninitialized state after this will still warn.
    863     if (const Expr *Initializer = VD->getInit()) {
    864       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
    865         return false;
    866 
    867       ContainsReference CR(S.Context, DRE);
    868       CR.Visit(Initializer);
    869       if (CR.doesContainReference()) {
    870         S.Diag(DRE->getLocStart(),
    871                diag::warn_uninit_self_reference_in_init)
    872           << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
    873         return true;
    874       }
    875     }
    876 
    877     DiagUninitUse(S, VD, Use, false);
    878   } else {
    879     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
    880     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
    881       S.Diag(BE->getLocStart(),
    882              diag::warn_uninit_byref_blockvar_captured_by_block)
    883         << VD->getDeclName();
    884     else
    885       DiagUninitUse(S, VD, Use, true);
    886   }
    887 
    888   // Report where the variable was declared when the use wasn't within
    889   // the initializer of that declaration & we didn't already suggest
    890   // an initialization fixit.
    891   if (!SuggestInitializationFixit(S, VD))
    892     S.Diag(VD->getLocStart(), diag::note_var_declared_here)
    893       << VD->getDeclName();
    894 
    895   return true;
    896 }
    897 
    898 namespace {
    899   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
    900   public:
    901     FallthroughMapper(Sema &S)
    902       : FoundSwitchStatements(false),
    903         S(S) {
    904     }
    905 
    906     bool foundSwitchStatements() const { return FoundSwitchStatements; }
    907 
    908     void markFallthroughVisited(const AttributedStmt *Stmt) {
    909       bool Found = FallthroughStmts.erase(Stmt);
    910       assert(Found);
    911       (void)Found;
    912     }
    913 
    914     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
    915 
    916     const AttrStmts &getFallthroughStmts() const {
    917       return FallthroughStmts;
    918     }
    919 
    920     void fillReachableBlocks(CFG *Cfg) {
    921       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
    922       std::deque<const CFGBlock *> BlockQueue;
    923 
    924       ReachableBlocks.insert(&Cfg->getEntry());
    925       BlockQueue.push_back(&Cfg->getEntry());
    926       // Mark all case blocks reachable to avoid problems with switching on
    927       // constants, covered enums, etc.
    928       // These blocks can contain fall-through annotations, and we don't want to
    929       // issue a warn_fallthrough_attr_unreachable for them.
    930       for (const auto *B : *Cfg) {
    931         const Stmt *L = B->getLabel();
    932         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
    933           BlockQueue.push_back(B);
    934       }
    935 
    936       while (!BlockQueue.empty()) {
    937         const CFGBlock *P = BlockQueue.front();
    938         BlockQueue.pop_front();
    939         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
    940                                            E = P->succ_end();
    941              I != E; ++I) {
    942           if (*I && ReachableBlocks.insert(*I).second)
    943             BlockQueue.push_back(*I);
    944         }
    945       }
    946     }
    947 
    948     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
    949       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
    950 
    951       int UnannotatedCnt = 0;
    952       AnnotatedCnt = 0;
    953 
    954       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
    955       while (!BlockQueue.empty()) {
    956         const CFGBlock *P = BlockQueue.front();
    957         BlockQueue.pop_front();
    958         if (!P) continue;
    959 
    960         const Stmt *Term = P->getTerminator();
    961         if (Term && isa<SwitchStmt>(Term))
    962           continue; // Switch statement, good.
    963 
    964         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
    965         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
    966           continue; // Previous case label has no statements, good.
    967 
    968         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
    969         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
    970           continue; // Case label is preceded with a normal label, good.
    971 
    972         if (!ReachableBlocks.count(P)) {
    973           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
    974                                                 ElemEnd = P->rend();
    975                ElemIt != ElemEnd; ++ElemIt) {
    976             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
    977               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
    978                 S.Diag(AS->getLocStart(),
    979                        diag::warn_fallthrough_attr_unreachable);
    980                 markFallthroughVisited(AS);
    981                 ++AnnotatedCnt;
    982                 break;
    983               }
    984               // Don't care about other unreachable statements.
    985             }
    986           }
    987           // If there are no unreachable statements, this may be a special
    988           // case in CFG:
    989           // case X: {
    990           //    A a;  // A has a destructor.
    991           //    break;
    992           // }
    993           // // <<<< This place is represented by a 'hanging' CFG block.
    994           // case Y:
    995           continue;
    996         }
    997 
    998         const Stmt *LastStmt = getLastStmt(*P);
    999         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
   1000           markFallthroughVisited(AS);
   1001           ++AnnotatedCnt;
   1002           continue; // Fallthrough annotation, good.
   1003         }
   1004 
   1005         if (!LastStmt) { // This block contains no executable statements.
   1006           // Traverse its predecessors.
   1007           std::copy(P->pred_begin(), P->pred_end(),
   1008                     std::back_inserter(BlockQueue));
   1009           continue;
   1010         }
   1011 
   1012         ++UnannotatedCnt;
   1013       }
   1014       return !!UnannotatedCnt;
   1015     }
   1016 
   1017     // RecursiveASTVisitor setup.
   1018     bool shouldWalkTypesOfTypeLocs() const { return false; }
   1019 
   1020     bool VisitAttributedStmt(AttributedStmt *S) {
   1021       if (asFallThroughAttr(S))
   1022         FallthroughStmts.insert(S);
   1023       return true;
   1024     }
   1025 
   1026     bool VisitSwitchStmt(SwitchStmt *S) {
   1027       FoundSwitchStatements = true;
   1028       return true;
   1029     }
   1030 
   1031     // We don't want to traverse local type declarations. We analyze their
   1032     // methods separately.
   1033     bool TraverseDecl(Decl *D) { return true; }
   1034 
   1035     // We analyze lambda bodies separately. Skip them here.
   1036     bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
   1037 
   1038   private:
   1039 
   1040     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
   1041       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
   1042         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
   1043           return AS;
   1044       }
   1045       return nullptr;
   1046     }
   1047 
   1048     static const Stmt *getLastStmt(const CFGBlock &B) {
   1049       if (const Stmt *Term = B.getTerminator())
   1050         return Term;
   1051       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
   1052                                             ElemEnd = B.rend();
   1053                                             ElemIt != ElemEnd; ++ElemIt) {
   1054         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
   1055           return CS->getStmt();
   1056       }
   1057       // Workaround to detect a statement thrown out by CFGBuilder:
   1058       //   case X: {} case Y:
   1059       //   case X: ; case Y:
   1060       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
   1061         if (!isa<SwitchCase>(SW->getSubStmt()))
   1062           return SW->getSubStmt();
   1063 
   1064       return nullptr;
   1065     }
   1066 
   1067     bool FoundSwitchStatements;
   1068     AttrStmts FallthroughStmts;
   1069     Sema &S;
   1070     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
   1071   };
   1072 } // anonymous namespace
   1073 
   1074 static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
   1075                                             SourceLocation Loc) {
   1076   TokenValue FallthroughTokens[] = {
   1077     tok::l_square, tok::l_square,
   1078     PP.getIdentifierInfo("fallthrough"),
   1079     tok::r_square, tok::r_square
   1080   };
   1081 
   1082   TokenValue ClangFallthroughTokens[] = {
   1083     tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
   1084     tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
   1085     tok::r_square, tok::r_square
   1086   };
   1087 
   1088   bool PreferClangAttr = !PP.getLangOpts().CPlusPlus1z;
   1089 
   1090   StringRef MacroName;
   1091   if (PreferClangAttr)
   1092     MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
   1093   if (MacroName.empty())
   1094     MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
   1095   if (MacroName.empty() && !PreferClangAttr)
   1096     MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
   1097   if (MacroName.empty())
   1098     MacroName = PreferClangAttr ? "[[clang::fallthrough]]" : "[[fallthrough]]";
   1099   return MacroName;
   1100 }
   1101 
   1102 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
   1103                                             bool PerFunction) {
   1104   // Only perform this analysis when using C++11.  There is no good workflow
   1105   // for this warning when not using C++11.  There is no good way to silence
   1106   // the warning (no attribute is available) unless we are using C++11's support
   1107   // for generalized attributes.  Once could use pragmas to silence the warning,
   1108   // but as a general solution that is gross and not in the spirit of this
   1109   // warning.
   1110   //
   1111   // NOTE: This an intermediate solution.  There are on-going discussions on
   1112   // how to properly support this warning outside of C++11 with an annotation.
   1113   if (!AC.getASTContext().getLangOpts().CPlusPlus11)
   1114     return;
   1115 
   1116   FallthroughMapper FM(S);
   1117   FM.TraverseStmt(AC.getBody());
   1118 
   1119   if (!FM.foundSwitchStatements())
   1120     return;
   1121 
   1122   if (PerFunction && FM.getFallthroughStmts().empty())
   1123     return;
   1124 
   1125   CFG *Cfg = AC.getCFG();
   1126 
   1127   if (!Cfg)
   1128     return;
   1129 
   1130   FM.fillReachableBlocks(Cfg);
   1131 
   1132   for (const CFGBlock *B : llvm::reverse(*Cfg)) {
   1133     const Stmt *Label = B->getLabel();
   1134 
   1135     if (!Label || !isa<SwitchCase>(Label))
   1136       continue;
   1137 
   1138     int AnnotatedCnt;
   1139 
   1140     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
   1141       continue;
   1142 
   1143     S.Diag(Label->getLocStart(),
   1144         PerFunction ? diag::warn_unannotated_fallthrough_per_function
   1145                     : diag::warn_unannotated_fallthrough);
   1146 
   1147     if (!AnnotatedCnt) {
   1148       SourceLocation L = Label->getLocStart();
   1149       if (L.isMacroID())
   1150         continue;
   1151       if (S.getLangOpts().CPlusPlus11) {
   1152         const Stmt *Term = B->getTerminator();
   1153         // Skip empty cases.
   1154         while (B->empty() && !Term && B->succ_size() == 1) {
   1155           B = *B->succ_begin();
   1156           Term = B->getTerminator();
   1157         }
   1158         if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
   1159           Preprocessor &PP = S.getPreprocessor();
   1160           StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
   1161           SmallString<64> TextToInsert(AnnotationSpelling);
   1162           TextToInsert += "; ";
   1163           S.Diag(L, diag::note_insert_fallthrough_fixit) <<
   1164               AnnotationSpelling <<
   1165               FixItHint::CreateInsertion(L, TextToInsert);
   1166         }
   1167       }
   1168       S.Diag(L, diag::note_insert_break_fixit) <<
   1169         FixItHint::CreateInsertion(L, "break; ");
   1170     }
   1171   }
   1172 
   1173   for (const auto *F : FM.getFallthroughStmts())
   1174     S.Diag(F->getLocStart(), diag::err_fallthrough_attr_invalid_placement);
   1175 }
   1176 
   1177 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
   1178                      const Stmt *S) {
   1179   assert(S);
   1180 
   1181   do {
   1182     switch (S->getStmtClass()) {
   1183     case Stmt::ForStmtClass:
   1184     case Stmt::WhileStmtClass:
   1185     case Stmt::CXXForRangeStmtClass:
   1186     case Stmt::ObjCForCollectionStmtClass:
   1187       return true;
   1188     case Stmt::DoStmtClass: {
   1189       const Expr *Cond = cast<DoStmt>(S)->getCond();
   1190       llvm::APSInt Val;
   1191       if (!Cond->EvaluateAsInt(Val, Ctx))
   1192         return true;
   1193       return Val.getBoolValue();
   1194     }
   1195     default:
   1196       break;
   1197     }
   1198   } while ((S = PM.getParent(S)));
   1199 
   1200   return false;
   1201 }
   1202 
   1203 static void diagnoseRepeatedUseOfWeak(Sema &S,
   1204                                       const sema::FunctionScopeInfo *CurFn,
   1205                                       const Decl *D,
   1206                                       const ParentMap &PM) {
   1207   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
   1208   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
   1209   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
   1210   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
   1211   StmtUsesPair;
   1212 
   1213   ASTContext &Ctx = S.getASTContext();
   1214 
   1215   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
   1216 
   1217   // Extract all weak objects that are referenced more than once.
   1218   SmallVector<StmtUsesPair, 8> UsesByStmt;
   1219   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
   1220        I != E; ++I) {
   1221     const WeakUseVector &Uses = I->second;
   1222 
   1223     // Find the first read of the weak object.
   1224     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
   1225     for ( ; UI != UE; ++UI) {
   1226       if (UI->isUnsafe())
   1227         break;
   1228     }
   1229 
   1230     // If there were only writes to this object, don't warn.
   1231     if (UI == UE)
   1232       continue;
   1233 
   1234     // If there was only one read, followed by any number of writes, and the
   1235     // read is not within a loop, don't warn. Additionally, don't warn in a
   1236     // loop if the base object is a local variable -- local variables are often
   1237     // changed in loops.
   1238     if (UI == Uses.begin()) {
   1239       WeakUseVector::const_iterator UI2 = UI;
   1240       for (++UI2; UI2 != UE; ++UI2)
   1241         if (UI2->isUnsafe())
   1242           break;
   1243 
   1244       if (UI2 == UE) {
   1245         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
   1246           continue;
   1247 
   1248         const WeakObjectProfileTy &Profile = I->first;
   1249         if (!Profile.isExactProfile())
   1250           continue;
   1251 
   1252         const NamedDecl *Base = Profile.getBase();
   1253         if (!Base)
   1254           Base = Profile.getProperty();
   1255         assert(Base && "A profile always has a base or property.");
   1256 
   1257         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
   1258           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
   1259             continue;
   1260       }
   1261     }
   1262 
   1263     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
   1264   }
   1265 
   1266   if (UsesByStmt.empty())
   1267     return;
   1268 
   1269   // Sort by first use so that we emit the warnings in a deterministic order.
   1270   SourceManager &SM = S.getSourceManager();
   1271   std::sort(UsesByStmt.begin(), UsesByStmt.end(),
   1272             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
   1273     return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
   1274                                         RHS.first->getLocStart());
   1275   });
   1276 
   1277   // Classify the current code body for better warning text.
   1278   // This enum should stay in sync with the cases in
   1279   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
   1280   // FIXME: Should we use a common classification enum and the same set of
   1281   // possibilities all throughout Sema?
   1282   enum {
   1283     Function,
   1284     Method,
   1285     Block,
   1286     Lambda
   1287   } FunctionKind;
   1288 
   1289   if (isa<sema::BlockScopeInfo>(CurFn))
   1290     FunctionKind = Block;
   1291   else if (isa<sema::LambdaScopeInfo>(CurFn))
   1292     FunctionKind = Lambda;
   1293   else if (isa<ObjCMethodDecl>(D))
   1294     FunctionKind = Method;
   1295   else
   1296     FunctionKind = Function;
   1297 
   1298   // Iterate through the sorted problems and emit warnings for each.
   1299   for (const auto &P : UsesByStmt) {
   1300     const Stmt *FirstRead = P.first;
   1301     const WeakObjectProfileTy &Key = P.second->first;
   1302     const WeakUseVector &Uses = P.second->second;
   1303 
   1304     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
   1305     // may not contain enough information to determine that these are different
   1306     // properties. We can only be 100% sure of a repeated use in certain cases,
   1307     // and we adjust the diagnostic kind accordingly so that the less certain
   1308     // case can be turned off if it is too noisy.
   1309     unsigned DiagKind;
   1310     if (Key.isExactProfile())
   1311       DiagKind = diag::warn_arc_repeated_use_of_weak;
   1312     else
   1313       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
   1314 
   1315     // Classify the weak object being accessed for better warning text.
   1316     // This enum should stay in sync with the cases in
   1317     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
   1318     enum {
   1319       Variable,
   1320       Property,
   1321       ImplicitProperty,
   1322       Ivar
   1323     } ObjectKind;
   1324 
   1325     const NamedDecl *KeyProp = Key.getProperty();
   1326     if (isa<VarDecl>(KeyProp))
   1327       ObjectKind = Variable;
   1328     else if (isa<ObjCPropertyDecl>(KeyProp))
   1329       ObjectKind = Property;
   1330     else if (isa<ObjCMethodDecl>(KeyProp))
   1331       ObjectKind = ImplicitProperty;
   1332     else if (isa<ObjCIvarDecl>(KeyProp))
   1333       ObjectKind = Ivar;
   1334     else
   1335       llvm_unreachable("Unexpected weak object kind!");
   1336 
   1337     // Do not warn about IBOutlet weak property receivers being set to null
   1338     // since they are typically only used from the main thread.
   1339     if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
   1340       if (Prop->hasAttr<IBOutletAttr>())
   1341         continue;
   1342 
   1343     // Show the first time the object was read.
   1344     S.Diag(FirstRead->getLocStart(), DiagKind)
   1345       << int(ObjectKind) << KeyProp << int(FunctionKind)
   1346       << FirstRead->getSourceRange();
   1347 
   1348     // Print all the other accesses as notes.
   1349     for (const auto &Use : Uses) {
   1350       if (Use.getUseExpr() == FirstRead)
   1351         continue;
   1352       S.Diag(Use.getUseExpr()->getLocStart(),
   1353              diag::note_arc_weak_also_accessed_here)
   1354           << Use.getUseExpr()->getSourceRange();
   1355     }
   1356   }
   1357 }
   1358 
   1359 namespace {
   1360 class UninitValsDiagReporter : public UninitVariablesHandler {
   1361   Sema &S;
   1362   typedef SmallVector<UninitUse, 2> UsesVec;
   1363   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
   1364   // Prefer using MapVector to DenseMap, so that iteration order will be
   1365   // the same as insertion order. This is needed to obtain a deterministic
   1366   // order of diagnostics when calling flushDiagnostics().
   1367   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
   1368   UsesMap uses;
   1369 
   1370 public:
   1371   UninitValsDiagReporter(Sema &S) : S(S) {}
   1372   ~UninitValsDiagReporter() override { flushDiagnostics(); }
   1373 
   1374   MappedType &getUses(const VarDecl *vd) {
   1375     MappedType &V = uses[vd];
   1376     if (!V.getPointer())
   1377       V.setPointer(new UsesVec());
   1378     return V;
   1379   }
   1380 
   1381   void handleUseOfUninitVariable(const VarDecl *vd,
   1382                                  const UninitUse &use) override {
   1383     getUses(vd).getPointer()->push_back(use);
   1384   }
   1385 
   1386   void handleSelfInit(const VarDecl *vd) override {
   1387     getUses(vd).setInt(true);
   1388   }
   1389 
   1390   void flushDiagnostics() {
   1391     for (const auto &P : uses) {
   1392       const VarDecl *vd = P.first;
   1393       const MappedType &V = P.second;
   1394 
   1395       UsesVec *vec = V.getPointer();
   1396       bool hasSelfInit = V.getInt();
   1397 
   1398       // Specially handle the case where we have uses of an uninitialized
   1399       // variable, but the root cause is an idiomatic self-init.  We want
   1400       // to report the diagnostic at the self-init since that is the root cause.
   1401       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
   1402         DiagnoseUninitializedUse(S, vd,
   1403                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
   1404                                            /* isAlwaysUninit */ true),
   1405                                  /* alwaysReportSelfInit */ true);
   1406       else {
   1407         // Sort the uses by their SourceLocations.  While not strictly
   1408         // guaranteed to produce them in line/column order, this will provide
   1409         // a stable ordering.
   1410         std::sort(vec->begin(), vec->end(),
   1411                   [](const UninitUse &a, const UninitUse &b) {
   1412           // Prefer a more confident report over a less confident one.
   1413           if (a.getKind() != b.getKind())
   1414             return a.getKind() > b.getKind();
   1415           return a.getUser()->getLocStart() < b.getUser()->getLocStart();
   1416         });
   1417 
   1418         for (const auto &U : *vec) {
   1419           // If we have self-init, downgrade all uses to 'may be uninitialized'.
   1420           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
   1421 
   1422           if (DiagnoseUninitializedUse(S, vd, Use))
   1423             // Skip further diagnostics for this variable. We try to warn only
   1424             // on the first point at which a variable is used uninitialized.
   1425             break;
   1426         }
   1427       }
   1428 
   1429       // Release the uses vector.
   1430       delete vec;
   1431     }
   1432 
   1433     uses.clear();
   1434   }
   1435 
   1436 private:
   1437   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
   1438     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
   1439       return U.getKind() == UninitUse::Always ||
   1440              U.getKind() == UninitUse::AfterCall ||
   1441              U.getKind() == UninitUse::AfterDecl;
   1442     });
   1443   }
   1444 };
   1445 } // anonymous namespace
   1446 
   1447 namespace clang {
   1448 namespace {
   1449 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
   1450 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
   1451 typedef std::list<DelayedDiag> DiagList;
   1452 
   1453 struct SortDiagBySourceLocation {
   1454   SourceManager &SM;
   1455   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
   1456 
   1457   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
   1458     // Although this call will be slow, this is only called when outputting
   1459     // multiple warnings.
   1460     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
   1461   }
   1462 };
   1463 } // anonymous namespace
   1464 } // namespace clang
   1465 
   1466 //===----------------------------------------------------------------------===//
   1467 // -Wthread-safety
   1468 //===----------------------------------------------------------------------===//
   1469 namespace clang {
   1470 namespace threadSafety {
   1471 namespace {
   1472 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
   1473   Sema &S;
   1474   DiagList Warnings;
   1475   SourceLocation FunLocation, FunEndLocation;
   1476 
   1477   const FunctionDecl *CurrentFunction;
   1478   bool Verbose;
   1479 
   1480   OptionalNotes getNotes() const {
   1481     if (Verbose && CurrentFunction) {
   1482       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
   1483                                 S.PDiag(diag::note_thread_warning_in_fun)
   1484                                     << CurrentFunction->getNameAsString());
   1485       return OptionalNotes(1, FNote);
   1486     }
   1487     return OptionalNotes();
   1488   }
   1489 
   1490   OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
   1491     OptionalNotes ONS(1, Note);
   1492     if (Verbose && CurrentFunction) {
   1493       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
   1494                                 S.PDiag(diag::note_thread_warning_in_fun)
   1495                                     << CurrentFunction->getNameAsString());
   1496       ONS.push_back(std::move(FNote));
   1497     }
   1498     return ONS;
   1499   }
   1500 
   1501   OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
   1502                          const PartialDiagnosticAt &Note2) const {
   1503     OptionalNotes ONS;
   1504     ONS.push_back(Note1);
   1505     ONS.push_back(Note2);
   1506     if (Verbose && CurrentFunction) {
   1507       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
   1508                                 S.PDiag(diag::note_thread_warning_in_fun)
   1509                                     << CurrentFunction->getNameAsString());
   1510       ONS.push_back(std::move(FNote));
   1511     }
   1512     return ONS;
   1513   }
   1514 
   1515   // Helper functions
   1516   void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
   1517                         SourceLocation Loc) {
   1518     // Gracefully handle rare cases when the analysis can't get a more
   1519     // precise source location.
   1520     if (!Loc.isValid())
   1521       Loc = FunLocation;
   1522     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
   1523     Warnings.emplace_back(std::move(Warning), getNotes());
   1524   }
   1525 
   1526  public:
   1527   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
   1528     : S(S), FunLocation(FL), FunEndLocation(FEL),
   1529       CurrentFunction(nullptr), Verbose(false) {}
   1530 
   1531   void setVerbose(bool b) { Verbose = b; }
   1532 
   1533   /// \brief Emit all buffered diagnostics in order of sourcelocation.
   1534   /// We need to output diagnostics produced while iterating through
   1535   /// the lockset in deterministic order, so this function orders diagnostics
   1536   /// and outputs them.
   1537   void emitDiagnostics() {
   1538     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
   1539     for (const auto &Diag : Warnings) {
   1540       S.Diag(Diag.first.first, Diag.first.second);
   1541       for (const auto &Note : Diag.second)
   1542         S.Diag(Note.first, Note.second);
   1543     }
   1544   }
   1545 
   1546   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
   1547     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
   1548                                          << Loc);
   1549     Warnings.emplace_back(std::move(Warning), getNotes());
   1550   }
   1551 
   1552   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
   1553                              SourceLocation Loc) override {
   1554     warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
   1555   }
   1556 
   1557   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
   1558                                  LockKind Expected, LockKind Received,
   1559                                  SourceLocation Loc) override {
   1560     if (Loc.isInvalid())
   1561       Loc = FunLocation;
   1562     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
   1563                                          << Kind << LockName << Received
   1564                                          << Expected);
   1565     Warnings.emplace_back(std::move(Warning), getNotes());
   1566   }
   1567 
   1568   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
   1569     warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
   1570   }
   1571 
   1572   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
   1573                                  SourceLocation LocLocked,
   1574                                  SourceLocation LocEndOfScope,
   1575                                  LockErrorKind LEK) override {
   1576     unsigned DiagID = 0;
   1577     switch (LEK) {
   1578       case LEK_LockedSomePredecessors:
   1579         DiagID = diag::warn_lock_some_predecessors;
   1580         break;
   1581       case LEK_LockedSomeLoopIterations:
   1582         DiagID = diag::warn_expecting_lock_held_on_loop;
   1583         break;
   1584       case LEK_LockedAtEndOfFunction:
   1585         DiagID = diag::warn_no_unlock;
   1586         break;
   1587       case LEK_NotLockedAtEndOfFunction:
   1588         DiagID = diag::warn_expecting_locked;
   1589         break;
   1590     }
   1591     if (LocEndOfScope.isInvalid())
   1592       LocEndOfScope = FunEndLocation;
   1593 
   1594     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
   1595                                                                << LockName);
   1596     if (LocLocked.isValid()) {
   1597       PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
   1598                                               << Kind);
   1599       Warnings.emplace_back(std::move(Warning), getNotes(Note));
   1600       return;
   1601     }
   1602     Warnings.emplace_back(std::move(Warning), getNotes());
   1603   }
   1604 
   1605   void handleExclusiveAndShared(StringRef Kind, Name LockName,
   1606                                 SourceLocation Loc1,
   1607                                 SourceLocation Loc2) override {
   1608     PartialDiagnosticAt Warning(Loc1,
   1609                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
   1610                                     << Kind << LockName);
   1611     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
   1612                                        << Kind << LockName);
   1613     Warnings.emplace_back(std::move(Warning), getNotes(Note));
   1614   }
   1615 
   1616   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
   1617                          ProtectedOperationKind POK, AccessKind AK,
   1618                          SourceLocation Loc) override {
   1619     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
   1620            "Only works for variables");
   1621     unsigned DiagID = POK == POK_VarAccess?
   1622                         diag::warn_variable_requires_any_lock:
   1623                         diag::warn_var_deref_requires_any_lock;
   1624     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
   1625       << D->getNameAsString() << getLockKindFromAccessKind(AK));
   1626     Warnings.emplace_back(std::move(Warning), getNotes());
   1627   }
   1628 
   1629   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
   1630                           ProtectedOperationKind POK, Name LockName,
   1631                           LockKind LK, SourceLocation Loc,
   1632                           Name *PossibleMatch) override {
   1633     unsigned DiagID = 0;
   1634     if (PossibleMatch) {
   1635       switch (POK) {
   1636         case POK_VarAccess:
   1637           DiagID = diag::warn_variable_requires_lock_precise;
   1638           break;
   1639         case POK_VarDereference:
   1640           DiagID = diag::warn_var_deref_requires_lock_precise;
   1641           break;
   1642         case POK_FunctionCall:
   1643           DiagID = diag::warn_fun_requires_lock_precise;
   1644           break;
   1645         case POK_PassByRef:
   1646           DiagID = diag::warn_guarded_pass_by_reference;
   1647           break;
   1648         case POK_PtPassByRef:
   1649           DiagID = diag::warn_pt_guarded_pass_by_reference;
   1650           break;
   1651       }
   1652       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
   1653                                                        << D->getNameAsString()
   1654                                                        << LockName << LK);
   1655       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
   1656                                         << *PossibleMatch);
   1657       if (Verbose && POK == POK_VarAccess) {
   1658         PartialDiagnosticAt VNote(D->getLocation(),
   1659                                  S.PDiag(diag::note_guarded_by_declared_here)
   1660                                      << D->getNameAsString());
   1661         Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
   1662       } else
   1663         Warnings.emplace_back(std::move(Warning), getNotes(Note));
   1664     } else {
   1665       switch (POK) {
   1666         case POK_VarAccess:
   1667           DiagID = diag::warn_variable_requires_lock;
   1668           break;
   1669         case POK_VarDereference:
   1670           DiagID = diag::warn_var_deref_requires_lock;
   1671           break;
   1672         case POK_FunctionCall:
   1673           DiagID = diag::warn_fun_requires_lock;
   1674           break;
   1675         case POK_PassByRef:
   1676           DiagID = diag::warn_guarded_pass_by_reference;
   1677           break;
   1678         case POK_PtPassByRef:
   1679           DiagID = diag::warn_pt_guarded_pass_by_reference;
   1680           break;
   1681       }
   1682       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
   1683                                                        << D->getNameAsString()
   1684                                                        << LockName << LK);
   1685       if (Verbose && POK == POK_VarAccess) {
   1686         PartialDiagnosticAt Note(D->getLocation(),
   1687                                  S.PDiag(diag::note_guarded_by_declared_here)
   1688                                      << D->getNameAsString());
   1689         Warnings.emplace_back(std::move(Warning), getNotes(Note));
   1690       } else
   1691         Warnings.emplace_back(std::move(Warning), getNotes());
   1692     }
   1693   }
   1694 
   1695   void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
   1696                              SourceLocation Loc) override {
   1697     PartialDiagnosticAt Warning(Loc,
   1698         S.PDiag(diag::warn_acquire_requires_negative_cap)
   1699         << Kind << LockName << Neg);
   1700     Warnings.emplace_back(std::move(Warning), getNotes());
   1701   }
   1702 
   1703   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
   1704                              SourceLocation Loc) override {
   1705     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
   1706                                          << Kind << FunName << LockName);
   1707     Warnings.emplace_back(std::move(Warning), getNotes());
   1708   }
   1709 
   1710   void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
   1711                                 SourceLocation Loc) override {
   1712     PartialDiagnosticAt Warning(Loc,
   1713       S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
   1714     Warnings.emplace_back(std::move(Warning), getNotes());
   1715   }
   1716 
   1717   void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
   1718     PartialDiagnosticAt Warning(Loc,
   1719       S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
   1720     Warnings.emplace_back(std::move(Warning), getNotes());
   1721   }
   1722 
   1723   void enterFunction(const FunctionDecl* FD) override {
   1724     CurrentFunction = FD;
   1725   }
   1726 
   1727   void leaveFunction(const FunctionDecl* FD) override {
   1728     CurrentFunction = nullptr;
   1729   }
   1730 };
   1731 } // anonymous namespace
   1732 } // namespace threadSafety
   1733 } // namespace clang
   1734 
   1735 //===----------------------------------------------------------------------===//
   1736 // -Wconsumed
   1737 //===----------------------------------------------------------------------===//
   1738 
   1739 namespace clang {
   1740 namespace consumed {
   1741 namespace {
   1742 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
   1743 
   1744   Sema &S;
   1745   DiagList Warnings;
   1746 
   1747 public:
   1748 
   1749   ConsumedWarningsHandler(Sema &S) : S(S) {}
   1750 
   1751   void emitDiagnostics() override {
   1752     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
   1753     for (const auto &Diag : Warnings) {
   1754       S.Diag(Diag.first.first, Diag.first.second);
   1755       for (const auto &Note : Diag.second)
   1756         S.Diag(Note.first, Note.second);
   1757     }
   1758   }
   1759 
   1760   void warnLoopStateMismatch(SourceLocation Loc,
   1761                              StringRef VariableName) override {
   1762     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
   1763       VariableName);
   1764 
   1765     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1766   }
   1767 
   1768   void warnParamReturnTypestateMismatch(SourceLocation Loc,
   1769                                         StringRef VariableName,
   1770                                         StringRef ExpectedState,
   1771                                         StringRef ObservedState) override {
   1772 
   1773     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1774       diag::warn_param_return_typestate_mismatch) << VariableName <<
   1775         ExpectedState << ObservedState);
   1776 
   1777     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1778   }
   1779 
   1780   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
   1781                                   StringRef ObservedState) override {
   1782 
   1783     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1784       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
   1785 
   1786     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1787   }
   1788 
   1789   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
   1790                                               StringRef TypeName) override {
   1791     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1792       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
   1793 
   1794     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1795   }
   1796 
   1797   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
   1798                                    StringRef ObservedState) override {
   1799 
   1800     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1801       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
   1802 
   1803     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1804   }
   1805 
   1806   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
   1807                                    SourceLocation Loc) override {
   1808 
   1809     PartialDiagnosticAt Warning(Loc, S.PDiag(
   1810       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
   1811 
   1812     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1813   }
   1814 
   1815   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
   1816                              StringRef State, SourceLocation Loc) override {
   1817 
   1818     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
   1819                                 MethodName << VariableName << State);
   1820 
   1821     Warnings.emplace_back(std::move(Warning), OptionalNotes());
   1822   }
   1823 };
   1824 } // anonymous namespace
   1825 } // namespace consumed
   1826 } // namespace clang
   1827 
   1828 //===----------------------------------------------------------------------===//
   1829 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
   1830 //  warnings on a function, method, or block.
   1831 //===----------------------------------------------------------------------===//
   1832 
   1833 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
   1834   enableCheckFallThrough = 1;
   1835   enableCheckUnreachable = 0;
   1836   enableThreadSafetyAnalysis = 0;
   1837   enableConsumedAnalysis = 0;
   1838 }
   1839 
   1840 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
   1841   return (unsigned)!D.isIgnored(diag, SourceLocation());
   1842 }
   1843 
   1844 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
   1845   : S(s),
   1846     NumFunctionsAnalyzed(0),
   1847     NumFunctionsWithBadCFGs(0),
   1848     NumCFGBlocks(0),
   1849     MaxCFGBlocksPerFunction(0),
   1850     NumUninitAnalysisFunctions(0),
   1851     NumUninitAnalysisVariables(0),
   1852     MaxUninitAnalysisVariablesPerFunction(0),
   1853     NumUninitAnalysisBlockVisits(0),
   1854     MaxUninitAnalysisBlockVisitsPerFunction(0) {
   1855 
   1856   using namespace diag;
   1857   DiagnosticsEngine &D = S.getDiagnostics();
   1858 
   1859   DefaultPolicy.enableCheckUnreachable =
   1860     isEnabled(D, warn_unreachable) ||
   1861     isEnabled(D, warn_unreachable_break) ||
   1862     isEnabled(D, warn_unreachable_return) ||
   1863     isEnabled(D, warn_unreachable_loop_increment);
   1864 
   1865   DefaultPolicy.enableThreadSafetyAnalysis =
   1866     isEnabled(D, warn_double_lock);
   1867 
   1868   DefaultPolicy.enableConsumedAnalysis =
   1869     isEnabled(D, warn_use_in_invalid_state);
   1870 }
   1871 
   1872 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
   1873   for (const auto &D : fscope->PossiblyUnreachableDiags)
   1874     S.Diag(D.Loc, D.PD);
   1875 }
   1876 
   1877 void clang::sema::
   1878 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
   1879                                      sema::FunctionScopeInfo *fscope,
   1880                                      const Decl *D, const BlockExpr *blkExpr) {
   1881 
   1882   // We avoid doing analysis-based warnings when there are errors for
   1883   // two reasons:
   1884   // (1) The CFGs often can't be constructed (if the body is invalid), so
   1885   //     don't bother trying.
   1886   // (2) The code already has problems; running the analysis just takes more
   1887   //     time.
   1888   DiagnosticsEngine &Diags = S.getDiagnostics();
   1889 
   1890   // Do not do any analysis for declarations in system headers if we are
   1891   // going to just ignore them.
   1892   if (Diags.getSuppressSystemWarnings() &&
   1893       S.SourceMgr.isInSystemHeader(D->getLocation()))
   1894     return;
   1895 
   1896   // For code in dependent contexts, we'll do this at instantiation time.
   1897   if (cast<DeclContext>(D)->isDependentContext())
   1898     return;
   1899 
   1900   if (Diags.hasUncompilableErrorOccurred()) {
   1901     // Flush out any possibly unreachable diagnostics.
   1902     flushDiagnostics(S, fscope);
   1903     return;
   1904   }
   1905 
   1906   const Stmt *Body = D->getBody();
   1907   assert(Body);
   1908 
   1909   // Construct the analysis context with the specified CFG build options.
   1910   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
   1911 
   1912   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
   1913   // explosion for destructors that can result and the compile time hit.
   1914   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
   1915   AC.getCFGBuildOptions().AddEHEdges = false;
   1916   AC.getCFGBuildOptions().AddInitializers = true;
   1917   AC.getCFGBuildOptions().AddImplicitDtors = true;
   1918   AC.getCFGBuildOptions().AddTemporaryDtors = true;
   1919   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
   1920   AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
   1921 
   1922   // Force that certain expressions appear as CFGElements in the CFG.  This
   1923   // is used to speed up various analyses.
   1924   // FIXME: This isn't the right factoring.  This is here for initial
   1925   // prototyping, but we need a way for analyses to say what expressions they
   1926   // expect to always be CFGElements and then fill in the BuildOptions
   1927   // appropriately.  This is essentially a layering violation.
   1928   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
   1929       P.enableConsumedAnalysis) {
   1930     // Unreachable code analysis and thread safety require a linearized CFG.
   1931     AC.getCFGBuildOptions().setAllAlwaysAdd();
   1932   }
   1933   else {
   1934     AC.getCFGBuildOptions()
   1935       .setAlwaysAdd(Stmt::BinaryOperatorClass)
   1936       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
   1937       .setAlwaysAdd(Stmt::BlockExprClass)
   1938       .setAlwaysAdd(Stmt::CStyleCastExprClass)
   1939       .setAlwaysAdd(Stmt::DeclRefExprClass)
   1940       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
   1941       .setAlwaysAdd(Stmt::UnaryOperatorClass)
   1942       .setAlwaysAdd(Stmt::AttributedStmtClass);
   1943   }
   1944 
   1945   // Install the logical handler for -Wtautological-overlap-compare
   1946   std::unique_ptr<LogicalErrorHandler> LEH;
   1947   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
   1948                        D->getLocStart())) {
   1949     LEH.reset(new LogicalErrorHandler(S));
   1950     AC.getCFGBuildOptions().Observer = LEH.get();
   1951   }
   1952 
   1953   // Emit delayed diagnostics.
   1954   if (!fscope->PossiblyUnreachableDiags.empty()) {
   1955     bool analyzed = false;
   1956 
   1957     // Register the expressions with the CFGBuilder.
   1958     for (const auto &D : fscope->PossiblyUnreachableDiags) {
   1959       if (D.stmt)
   1960         AC.registerForcedBlockExpression(D.stmt);
   1961     }
   1962 
   1963     if (AC.getCFG()) {
   1964       analyzed = true;
   1965       for (const auto &D : fscope->PossiblyUnreachableDiags) {
   1966         bool processed = false;
   1967         if (D.stmt) {
   1968           const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
   1969           CFGReverseBlockReachabilityAnalysis *cra =
   1970               AC.getCFGReachablityAnalysis();
   1971           // FIXME: We should be able to assert that block is non-null, but
   1972           // the CFG analysis can skip potentially-evaluated expressions in
   1973           // edge cases; see test/Sema/vla-2.c.
   1974           if (block && cra) {
   1975             // Can this block be reached from the entrance?
   1976             if (cra->isReachable(&AC.getCFG()->getEntry(), block))
   1977               S.Diag(D.Loc, D.PD);
   1978             processed = true;
   1979           }
   1980         }
   1981         if (!processed) {
   1982           // Emit the warning anyway if we cannot map to a basic block.
   1983           S.Diag(D.Loc, D.PD);
   1984         }
   1985       }
   1986     }
   1987 
   1988     if (!analyzed)
   1989       flushDiagnostics(S, fscope);
   1990   }
   1991 
   1992   // Warning: check missing 'return'
   1993   if (P.enableCheckFallThrough) {
   1994     const CheckFallThroughDiagnostics &CD =
   1995       (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
   1996        : (isa<CXXMethodDecl>(D) &&
   1997           cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
   1998           cast<CXXMethodDecl>(D)->getParent()->isLambda())
   1999             ? CheckFallThroughDiagnostics::MakeForLambda()
   2000             : CheckFallThroughDiagnostics::MakeForFunction(D));
   2001     CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
   2002   }
   2003 
   2004   // Warning: check for unreachable code
   2005   if (P.enableCheckUnreachable) {
   2006     // Only check for unreachable code on non-template instantiations.
   2007     // Different template instantiations can effectively change the control-flow
   2008     // and it is very difficult to prove that a snippet of code in a template
   2009     // is unreachable for all instantiations.
   2010     bool isTemplateInstantiation = false;
   2011     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
   2012       isTemplateInstantiation = Function->isTemplateInstantiation();
   2013     if (!isTemplateInstantiation)
   2014       CheckUnreachable(S, AC);
   2015   }
   2016 
   2017   // Check for thread safety violations
   2018   if (P.enableThreadSafetyAnalysis) {
   2019     SourceLocation FL = AC.getDecl()->getLocation();
   2020     SourceLocation FEL = AC.getDecl()->getLocEnd();
   2021     threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
   2022     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
   2023       Reporter.setIssueBetaWarnings(true);
   2024     if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
   2025       Reporter.setVerbose(true);
   2026 
   2027     threadSafety::runThreadSafetyAnalysis(AC, Reporter,
   2028                                           &S.ThreadSafetyDeclCache);
   2029     Reporter.emitDiagnostics();
   2030   }
   2031 
   2032   // Check for violations of consumed properties.
   2033   if (P.enableConsumedAnalysis) {
   2034     consumed::ConsumedWarningsHandler WarningHandler(S);
   2035     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
   2036     Analyzer.run(AC);
   2037   }
   2038 
   2039   if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
   2040       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
   2041       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
   2042     if (CFG *cfg = AC.getCFG()) {
   2043       UninitValsDiagReporter reporter(S);
   2044       UninitVariablesAnalysisStats stats;
   2045       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
   2046       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
   2047                                         reporter, stats);
   2048 
   2049       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
   2050         ++NumUninitAnalysisFunctions;
   2051         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
   2052         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
   2053         MaxUninitAnalysisVariablesPerFunction =
   2054             std::max(MaxUninitAnalysisVariablesPerFunction,
   2055                      stats.NumVariablesAnalyzed);
   2056         MaxUninitAnalysisBlockVisitsPerFunction =
   2057             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
   2058                      stats.NumBlockVisits);
   2059       }
   2060     }
   2061   }
   2062 
   2063   bool FallThroughDiagFull =
   2064       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
   2065   bool FallThroughDiagPerFunction = !Diags.isIgnored(
   2066       diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
   2067   if (FallThroughDiagFull || FallThroughDiagPerFunction ||
   2068       fscope->HasFallthroughStmt) {
   2069     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
   2070   }
   2071 
   2072   if (S.getLangOpts().ObjCWeak &&
   2073       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
   2074     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
   2075 
   2076 
   2077   // Check for infinite self-recursion in functions
   2078   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
   2079                        D->getLocStart())) {
   2080     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   2081       checkRecursiveFunction(S, FD, Body, AC);
   2082     }
   2083   }
   2084 
   2085   // If none of the previous checks caused a CFG build, trigger one here
   2086   // for -Wtautological-overlap-compare
   2087   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
   2088                                D->getLocStart())) {
   2089     AC.getCFG();
   2090   }
   2091 
   2092   // Collect statistics about the CFG if it was built.
   2093   if (S.CollectStats && AC.isCFGBuilt()) {
   2094     ++NumFunctionsAnalyzed;
   2095     if (CFG *cfg = AC.getCFG()) {
   2096       // If we successfully built a CFG for this context, record some more
   2097       // detail information about it.
   2098       NumCFGBlocks += cfg->getNumBlockIDs();
   2099       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
   2100                                          cfg->getNumBlockIDs());
   2101     } else {
   2102       ++NumFunctionsWithBadCFGs;
   2103     }
   2104   }
   2105 }
   2106 
   2107 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
   2108   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
   2109 
   2110   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
   2111   unsigned AvgCFGBlocksPerFunction =
   2112       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
   2113   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
   2114                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
   2115                << "  " << NumCFGBlocks << " CFG blocks built.\n"
   2116                << "  " << AvgCFGBlocksPerFunction
   2117                << " average CFG blocks per function.\n"
   2118                << "  " << MaxCFGBlocksPerFunction
   2119                << " max CFG blocks per function.\n";
   2120 
   2121   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
   2122       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
   2123   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
   2124       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
   2125   llvm::errs() << NumUninitAnalysisFunctions
   2126                << " functions analyzed for uninitialiazed variables\n"
   2127                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
   2128                << "  " << AvgUninitVariablesPerFunction
   2129                << " average variables per function.\n"
   2130                << "  " << MaxUninitAnalysisVariablesPerFunction
   2131                << " max variables per function.\n"
   2132                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
   2133                << "  " << AvgUninitBlockVisitsPerFunction
   2134                << " average block visits per function.\n"
   2135                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
   2136                << " max block visits per function.\n";
   2137 }
   2138