1 //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Define several functions to decode x86 specific shuffle semantics into a 11 // generic vector mask. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86ShuffleDecode.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/CodeGen/MachineValueType.h" 18 19 //===----------------------------------------------------------------------===// 20 // Vector Mask Decoding 21 //===----------------------------------------------------------------------===// 22 23 namespace llvm { 24 25 void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 26 // Defaults the copying the dest value. 27 ShuffleMask.push_back(0); 28 ShuffleMask.push_back(1); 29 ShuffleMask.push_back(2); 30 ShuffleMask.push_back(3); 31 32 // Decode the immediate. 33 unsigned ZMask = Imm & 15; 34 unsigned CountD = (Imm >> 4) & 3; 35 unsigned CountS = (Imm >> 6) & 3; 36 37 // CountS selects which input element to use. 38 unsigned InVal = 4 + CountS; 39 // CountD specifies which element of destination to update. 40 ShuffleMask[CountD] = InVal; 41 // ZMask zaps values, potentially overriding the CountD elt. 42 if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; 43 if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; 44 if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; 45 if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; 46 } 47 48 void DecodeInsertElementMask(MVT VT, unsigned Idx, unsigned Len, 49 SmallVectorImpl<int> &ShuffleMask) { 50 unsigned NumElts = VT.getVectorNumElements(); 51 assert((Idx + Len) <= NumElts && "Insertion out of range"); 52 53 for (unsigned i = 0; i != NumElts; ++i) 54 ShuffleMask.push_back(i); 55 for (unsigned i = 0; i != Len; ++i) 56 ShuffleMask[Idx + i] = NumElts + i; 57 } 58 59 // <3,1> or <6,7,2,3> 60 void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { 61 for (unsigned i = NElts / 2; i != NElts; ++i) 62 ShuffleMask.push_back(NElts + i); 63 64 for (unsigned i = NElts / 2; i != NElts; ++i) 65 ShuffleMask.push_back(i); 66 } 67 68 // <0,2> or <0,1,4,5> 69 void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { 70 for (unsigned i = 0; i != NElts / 2; ++i) 71 ShuffleMask.push_back(i); 72 73 for (unsigned i = 0; i != NElts / 2; ++i) 74 ShuffleMask.push_back(NElts + i); 75 } 76 77 void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { 78 unsigned NumElts = VT.getVectorNumElements(); 79 for (int i = 0, e = NumElts / 2; i < e; ++i) { 80 ShuffleMask.push_back(2 * i); 81 ShuffleMask.push_back(2 * i); 82 } 83 } 84 85 void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { 86 unsigned NumElts = VT.getVectorNumElements(); 87 for (int i = 0, e = NumElts / 2; i < e; ++i) { 88 ShuffleMask.push_back(2 * i + 1); 89 ShuffleMask.push_back(2 * i + 1); 90 } 91 } 92 93 void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { 94 unsigned VectorSizeInBits = VT.getSizeInBits(); 95 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 96 unsigned NumElts = VT.getVectorNumElements(); 97 unsigned NumLanes = VectorSizeInBits / 128; 98 unsigned NumLaneElts = NumElts / NumLanes; 99 unsigned NumLaneSubElts = 64 / ScalarSizeInBits; 100 101 for (unsigned l = 0; l < NumElts; l += NumLaneElts) 102 for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts) 103 for (unsigned s = 0; s != NumLaneSubElts; s++) 104 ShuffleMask.push_back(l + s); 105 } 106 107 void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 108 unsigned VectorSizeInBits = VT.getSizeInBits(); 109 unsigned NumElts = VectorSizeInBits / 8; 110 unsigned NumLanes = VectorSizeInBits / 128; 111 unsigned NumLaneElts = NumElts / NumLanes; 112 113 for (unsigned l = 0; l < NumElts; l += NumLaneElts) 114 for (unsigned i = 0; i < NumLaneElts; ++i) { 115 int M = SM_SentinelZero; 116 if (i >= Imm) M = i - Imm + l; 117 ShuffleMask.push_back(M); 118 } 119 } 120 121 void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 122 unsigned VectorSizeInBits = VT.getSizeInBits(); 123 unsigned NumElts = VectorSizeInBits / 8; 124 unsigned NumLanes = VectorSizeInBits / 128; 125 unsigned NumLaneElts = NumElts / NumLanes; 126 127 for (unsigned l = 0; l < NumElts; l += NumLaneElts) 128 for (unsigned i = 0; i < NumLaneElts; ++i) { 129 unsigned Base = i + Imm; 130 int M = Base + l; 131 if (Base >= NumLaneElts) M = SM_SentinelZero; 132 ShuffleMask.push_back(M); 133 } 134 } 135 136 void DecodePALIGNRMask(MVT VT, unsigned Imm, 137 SmallVectorImpl<int> &ShuffleMask) { 138 unsigned NumElts = VT.getVectorNumElements(); 139 unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8); 140 141 unsigned NumLanes = VT.getSizeInBits() / 128; 142 unsigned NumLaneElts = NumElts / NumLanes; 143 144 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 145 for (unsigned i = 0; i != NumLaneElts; ++i) { 146 unsigned Base = i + Offset; 147 // if i+offset is out of this lane then we actually need the other source 148 if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; 149 ShuffleMask.push_back(Base + l); 150 } 151 } 152 } 153 154 /// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*. 155 /// VT indicates the type of the vector allowing it to handle different 156 /// datatypes and vector widths. 157 void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 158 unsigned NumElts = VT.getVectorNumElements(); 159 160 unsigned NumLanes = VT.getSizeInBits() / 128; 161 if (NumLanes == 0) NumLanes = 1; // Handle MMX 162 unsigned NumLaneElts = NumElts / NumLanes; 163 164 unsigned NewImm = Imm; 165 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 166 for (unsigned i = 0; i != NumLaneElts; ++i) { 167 ShuffleMask.push_back(NewImm % NumLaneElts + l); 168 NewImm /= NumLaneElts; 169 } 170 if (NumLaneElts == 4) NewImm = Imm; // reload imm 171 } 172 } 173 174 void DecodePSHUFHWMask(MVT VT, unsigned Imm, 175 SmallVectorImpl<int> &ShuffleMask) { 176 unsigned NumElts = VT.getVectorNumElements(); 177 178 for (unsigned l = 0; l != NumElts; l += 8) { 179 unsigned NewImm = Imm; 180 for (unsigned i = 0, e = 4; i != e; ++i) { 181 ShuffleMask.push_back(l + i); 182 } 183 for (unsigned i = 4, e = 8; i != e; ++i) { 184 ShuffleMask.push_back(l + 4 + (NewImm & 3)); 185 NewImm >>= 2; 186 } 187 } 188 } 189 190 void DecodePSHUFLWMask(MVT VT, unsigned Imm, 191 SmallVectorImpl<int> &ShuffleMask) { 192 unsigned NumElts = VT.getVectorNumElements(); 193 194 for (unsigned l = 0; l != NumElts; l += 8) { 195 unsigned NewImm = Imm; 196 for (unsigned i = 0, e = 4; i != e; ++i) { 197 ShuffleMask.push_back(l + (NewImm & 3)); 198 NewImm >>= 2; 199 } 200 for (unsigned i = 4, e = 8; i != e; ++i) { 201 ShuffleMask.push_back(l + i); 202 } 203 } 204 } 205 206 void DecodePSWAPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { 207 unsigned NumElts = VT.getVectorNumElements(); 208 unsigned NumHalfElts = NumElts / 2; 209 210 for (unsigned l = 0; l != NumHalfElts; ++l) 211 ShuffleMask.push_back(l + NumHalfElts); 212 for (unsigned h = 0; h != NumHalfElts; ++h) 213 ShuffleMask.push_back(h); 214 } 215 216 /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates 217 /// the type of the vector allowing it to handle different datatypes and vector 218 /// widths. 219 void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 220 unsigned NumElts = VT.getVectorNumElements(); 221 222 unsigned NumLanes = VT.getSizeInBits() / 128; 223 unsigned NumLaneElts = NumElts / NumLanes; 224 225 unsigned NewImm = Imm; 226 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 227 // each half of a lane comes from different source 228 for (unsigned s = 0; s != NumElts * 2; s += NumElts) { 229 for (unsigned i = 0; i != NumLaneElts / 2; ++i) { 230 ShuffleMask.push_back(NewImm % NumLaneElts + s + l); 231 NewImm /= NumLaneElts; 232 } 233 } 234 if (NumLaneElts == 4) NewImm = Imm; // reload imm 235 } 236 } 237 238 /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd 239 /// and punpckh*. VT indicates the type of the vector allowing it to handle 240 /// different datatypes and vector widths. 241 void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { 242 unsigned NumElts = VT.getVectorNumElements(); 243 244 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate 245 // independently on 128-bit lanes. 246 unsigned NumLanes = VT.getSizeInBits() / 128; 247 if (NumLanes == 0) NumLanes = 1; // Handle MMX 248 unsigned NumLaneElts = NumElts / NumLanes; 249 250 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 251 for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) { 252 ShuffleMask.push_back(i); // Reads from dest/src1 253 ShuffleMask.push_back(i + NumElts); // Reads from src/src2 254 } 255 } 256 } 257 258 /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd 259 /// and punpckl*. VT indicates the type of the vector allowing it to handle 260 /// different datatypes and vector widths. 261 void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { 262 unsigned NumElts = VT.getVectorNumElements(); 263 264 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate 265 // independently on 128-bit lanes. 266 unsigned NumLanes = VT.getSizeInBits() / 128; 267 if (NumLanes == 0 ) NumLanes = 1; // Handle MMX 268 unsigned NumLaneElts = NumElts / NumLanes; 269 270 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 271 for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) { 272 ShuffleMask.push_back(i); // Reads from dest/src1 273 ShuffleMask.push_back(i + NumElts); // Reads from src/src2 274 } 275 } 276 } 277 278 /// Decodes a broadcast of a subvector to a larger vector type. 279 void DecodeSubVectorBroadcast(MVT DstVT, MVT SrcVT, 280 SmallVectorImpl<int> &ShuffleMask) { 281 assert(SrcVT.getScalarType() == DstVT.getScalarType() && 282 "Non matching vector element types"); 283 unsigned NumElts = SrcVT.getVectorNumElements(); 284 unsigned Scale = DstVT.getSizeInBits() / SrcVT.getSizeInBits(); 285 286 for (unsigned i = 0; i != Scale; ++i) 287 for (unsigned j = 0; j != NumElts; ++j) 288 ShuffleMask.push_back(j); 289 } 290 291 /// \brief Decode a shuffle packed values at 128-bit granularity 292 /// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2) 293 /// immediate mask into a shuffle mask. 294 void decodeVSHUF64x2FamilyMask(MVT VT, unsigned Imm, 295 SmallVectorImpl<int> &ShuffleMask) { 296 unsigned NumLanes = VT.getSizeInBits() / 128; 297 unsigned NumElementsInLane = 128 / VT.getScalarSizeInBits(); 298 unsigned ControlBitsMask = NumLanes - 1; 299 unsigned NumControlBits = NumLanes / 2; 300 301 for (unsigned l = 0; l != NumLanes; ++l) { 302 unsigned LaneMask = (Imm >> (l * NumControlBits)) & ControlBitsMask; 303 // We actually need the other source. 304 if (l >= NumLanes / 2) 305 LaneMask += NumLanes; 306 for (unsigned i = 0; i != NumElementsInLane; ++i) 307 ShuffleMask.push_back(LaneMask * NumElementsInLane + i); 308 } 309 } 310 311 void DecodeVPERM2X128Mask(MVT VT, unsigned Imm, 312 SmallVectorImpl<int> &ShuffleMask) { 313 unsigned HalfSize = VT.getVectorNumElements() / 2; 314 315 for (unsigned l = 0; l != 2; ++l) { 316 unsigned HalfMask = Imm >> (l * 4); 317 unsigned HalfBegin = (HalfMask & 0x3) * HalfSize; 318 for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i) 319 ShuffleMask.push_back(HalfMask & 8 ? SM_SentinelZero : (int)i); 320 } 321 } 322 323 void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, 324 SmallVectorImpl<int> &ShuffleMask) { 325 for (int i = 0, e = RawMask.size(); i < e; ++i) { 326 uint64_t M = RawMask[i]; 327 if (M == (uint64_t)SM_SentinelUndef) { 328 ShuffleMask.push_back(M); 329 continue; 330 } 331 // For 256/512-bit vectors the base of the shuffle is the 128-bit 332 // subvector we're inside. 333 int Base = (i / 16) * 16; 334 // If the high bit (7) of the byte is set, the element is zeroed. 335 if (M & (1 << 7)) 336 ShuffleMask.push_back(SM_SentinelZero); 337 else { 338 // Only the least significant 4 bits of the byte are used. 339 int Index = Base + (M & 0xf); 340 ShuffleMask.push_back(Index); 341 } 342 } 343 } 344 345 void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 346 int ElementBits = VT.getScalarSizeInBits(); 347 int NumElements = VT.getVectorNumElements(); 348 for (int i = 0; i < NumElements; ++i) { 349 // If there are more than 8 elements in the vector, then any immediate blend 350 // mask applies to each 128-bit lane. There can never be more than 351 // 8 elements in a 128-bit lane with an immediate blend. 352 int Bit = NumElements > 8 ? i % (128 / ElementBits) : i; 353 assert(Bit < 8 && 354 "Immediate blends only operate over 8 elements at a time!"); 355 ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i); 356 } 357 } 358 359 void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, 360 SmallVectorImpl<int> &ShuffleMask) { 361 assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size"); 362 363 // VPPERM Operation 364 // Bits[4:0] - Byte Index (0 - 31) 365 // Bits[7:5] - Permute Operation 366 // 367 // Permute Operation: 368 // 0 - Source byte (no logical operation). 369 // 1 - Invert source byte. 370 // 2 - Bit reverse of source byte. 371 // 3 - Bit reverse of inverted source byte. 372 // 4 - 00h (zero - fill). 373 // 5 - FFh (ones - fill). 374 // 6 - Most significant bit of source byte replicated in all bit positions. 375 // 7 - Invert most significant bit of source byte and replicate in all bit positions. 376 for (int i = 0, e = RawMask.size(); i < e; ++i) { 377 uint64_t M = RawMask[i]; 378 if (M == (uint64_t)SM_SentinelUndef) { 379 ShuffleMask.push_back(M); 380 continue; 381 } 382 383 uint64_t PermuteOp = (M >> 5) & 0x7; 384 if (PermuteOp == 4) { 385 ShuffleMask.push_back(SM_SentinelZero); 386 continue; 387 } 388 if (PermuteOp != 0) { 389 ShuffleMask.clear(); 390 return; 391 } 392 393 uint64_t Index = M & 0x1F; 394 ShuffleMask.push_back((int)Index); 395 } 396 } 397 398 /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD. 399 void DecodeVPERMMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) { 400 assert((VT.is256BitVector() || VT.is512BitVector()) && 401 (VT.getScalarSizeInBits() == 64) && "Unexpected vector value type"); 402 unsigned NumElts = VT.getVectorNumElements(); 403 for (unsigned l = 0; l != NumElts; l += 4) 404 for (unsigned i = 0; i != 4; ++i) 405 ShuffleMask.push_back(l + ((Imm >> (2 * i)) & 3)); 406 } 407 408 void DecodeZeroExtendMask(MVT SrcScalarVT, MVT DstVT, SmallVectorImpl<int> &Mask) { 409 unsigned NumDstElts = DstVT.getVectorNumElements(); 410 unsigned SrcScalarBits = SrcScalarVT.getSizeInBits(); 411 unsigned DstScalarBits = DstVT.getScalarSizeInBits(); 412 unsigned Scale = DstScalarBits / SrcScalarBits; 413 assert(SrcScalarBits < DstScalarBits && 414 "Expected zero extension mask to increase scalar size"); 415 416 for (unsigned i = 0; i != NumDstElts; i++) { 417 Mask.push_back(i); 418 for (unsigned j = 1; j != Scale; j++) 419 Mask.push_back(SM_SentinelZero); 420 } 421 } 422 423 void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) { 424 unsigned NumElts = VT.getVectorNumElements(); 425 ShuffleMask.push_back(0); 426 for (unsigned i = 1; i < NumElts; i++) 427 ShuffleMask.push_back(SM_SentinelZero); 428 } 429 430 void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) { 431 // First element comes from the first element of second source. 432 // Remaining elements: Load zero extends / Move copies from first source. 433 unsigned NumElts = VT.getVectorNumElements(); 434 Mask.push_back(NumElts); 435 for (unsigned i = 1; i < NumElts; i++) 436 Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i); 437 } 438 439 void DecodeEXTRQIMask(int Len, int Idx, 440 SmallVectorImpl<int> &ShuffleMask) { 441 // Only the bottom 6 bits are valid for each immediate. 442 Len &= 0x3F; 443 Idx &= 0x3F; 444 445 // We can only decode this bit extraction instruction as a shuffle if both the 446 // length and index work with whole bytes. 447 if (0 != (Len % 8) || 0 != (Idx % 8)) 448 return; 449 450 // A length of zero is equivalent to a bit length of 64. 451 if (Len == 0) 452 Len = 64; 453 454 // If the length + index exceeds the bottom 64 bits the result is undefined. 455 if ((Len + Idx) > 64) { 456 ShuffleMask.append(16, SM_SentinelUndef); 457 return; 458 } 459 460 // Convert index and index to work with bytes. 461 Len /= 8; 462 Idx /= 8; 463 464 // EXTRQ: Extract Len bytes starting from Idx. Zero pad the remaining bytes 465 // of the lower 64-bits. The upper 64-bits are undefined. 466 for (int i = 0; i != Len; ++i) 467 ShuffleMask.push_back(i + Idx); 468 for (int i = Len; i != 8; ++i) 469 ShuffleMask.push_back(SM_SentinelZero); 470 for (int i = 8; i != 16; ++i) 471 ShuffleMask.push_back(SM_SentinelUndef); 472 } 473 474 void DecodeINSERTQIMask(int Len, int Idx, 475 SmallVectorImpl<int> &ShuffleMask) { 476 // Only the bottom 6 bits are valid for each immediate. 477 Len &= 0x3F; 478 Idx &= 0x3F; 479 480 // We can only decode this bit insertion instruction as a shuffle if both the 481 // length and index work with whole bytes. 482 if (0 != (Len % 8) || 0 != (Idx % 8)) 483 return; 484 485 // A length of zero is equivalent to a bit length of 64. 486 if (Len == 0) 487 Len = 64; 488 489 // If the length + index exceeds the bottom 64 bits the result is undefined. 490 if ((Len + Idx) > 64) { 491 ShuffleMask.append(16, SM_SentinelUndef); 492 return; 493 } 494 495 // Convert index and index to work with bytes. 496 Len /= 8; 497 Idx /= 8; 498 499 // INSERTQ: Extract lowest Len bytes from lower half of second source and 500 // insert over first source starting at Idx byte. The upper 64-bits are 501 // undefined. 502 for (int i = 0; i != Idx; ++i) 503 ShuffleMask.push_back(i); 504 for (int i = 0; i != Len; ++i) 505 ShuffleMask.push_back(i + 16); 506 for (int i = Idx + Len; i != 8; ++i) 507 ShuffleMask.push_back(i); 508 for (int i = 8; i != 16; ++i) 509 ShuffleMask.push_back(SM_SentinelUndef); 510 } 511 512 void DecodeVPERMILPMask(MVT VT, ArrayRef<uint64_t> RawMask, 513 SmallVectorImpl<int> &ShuffleMask) { 514 unsigned VecSize = VT.getSizeInBits(); 515 unsigned EltSize = VT.getScalarSizeInBits(); 516 unsigned NumLanes = VecSize / 128; 517 unsigned NumEltsPerLane = VT.getVectorNumElements() / NumLanes; 518 assert((VecSize == 128 || VecSize == 256 || VecSize == 512) && 519 "Unexpected vector size"); 520 assert((EltSize == 32 || EltSize == 64) && "Unexpected element size"); 521 522 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) { 523 uint64_t M = RawMask[i]; 524 M = (EltSize == 64 ? ((M >> 1) & 0x1) : (M & 0x3)); 525 unsigned LaneOffset = i & ~(NumEltsPerLane - 1); 526 ShuffleMask.push_back((int)(LaneOffset + M)); 527 } 528 } 529 530 void DecodeVPERMIL2PMask(MVT VT, unsigned M2Z, ArrayRef<uint64_t> RawMask, 531 SmallVectorImpl<int> &ShuffleMask) { 532 unsigned VecSize = VT.getSizeInBits(); 533 unsigned EltSize = VT.getScalarSizeInBits(); 534 unsigned NumLanes = VecSize / 128; 535 unsigned NumEltsPerLane = VT.getVectorNumElements() / NumLanes; 536 assert((VecSize == 128 || VecSize == 256) && 537 "Unexpected vector size"); 538 assert((EltSize == 32 || EltSize == 64) && "Unexpected element size"); 539 540 for (unsigned i = 0, e = RawMask.size(); i < e; ++i) { 541 // VPERMIL2 Operation. 542 // Bits[3] - Match Bit. 543 // Bits[2:1] - (Per Lane) PD Shuffle Mask. 544 // Bits[2:0] - (Per Lane) PS Shuffle Mask. 545 uint64_t Selector = RawMask[i]; 546 unsigned MatchBit = (Selector >> 3) & 0x1; 547 548 // M2Z[0:1] MatchBit 549 // 0Xb X Source selected by Selector index. 550 // 10b 0 Source selected by Selector index. 551 // 10b 1 Zero. 552 // 11b 0 Zero. 553 // 11b 1 Source selected by Selector index. 554 if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) { 555 ShuffleMask.push_back(SM_SentinelZero); 556 continue; 557 } 558 559 unsigned Index = i & ~(NumEltsPerLane - 1); 560 if (EltSize == 64) 561 Index += (Selector >> 1) & 0x1; 562 else 563 Index += Selector & 0x3; 564 565 unsigned SrcOffset = (Selector >> 2) & 1; 566 ShuffleMask.push_back((int)(SrcOffset + Index)); 567 } 568 } 569 570 void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, 571 SmallVectorImpl<int> &ShuffleMask) { 572 uint64_t EltMaskSize = RawMask.size() - 1; 573 for (auto M : RawMask) { 574 M &= EltMaskSize; 575 ShuffleMask.push_back((int)M); 576 } 577 } 578 579 void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, 580 SmallVectorImpl<int> &ShuffleMask) { 581 uint64_t EltMaskSize = (RawMask.size() * 2) - 1; 582 for (auto M : RawMask) { 583 M &= EltMaskSize; 584 ShuffleMask.push_back((int)M); 585 } 586 } 587 588 } // llvm namespace 589