1 Target Independent Opportunities:
2
3 //===---------------------------------------------------------------------===//
4
5 We should recognized various "overflow detection" idioms and translate them into
6 llvm.uadd.with.overflow and similar intrinsics. Here is a multiply idiom:
7
8 unsigned int mul(unsigned int a,unsigned int b) {
9 if ((unsigned long long)a*b>0xffffffff)
10 exit(0);
11 return a*b;
12 }
13
14 The legalization code for mul-with-overflow needs to be made more robust before
15 this can be implemented though.
16
17 //===---------------------------------------------------------------------===//
18
19 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
20 precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
21 safe in general, even on darwin. See the libm implementation of hypot for
22 examples (which special case when x/y are exactly zero to get signed zeros etc
23 right).
24
25 //===---------------------------------------------------------------------===//
26
27 On targets with expensive 64-bit multiply, we could LSR this:
28
29 for (i = ...; ++i) {
30 x = 1ULL << i;
31
32 into:
33 long long tmp = 1;
34 for (i = ...; ++i, tmp+=tmp)
35 x = tmp;
36
37 This would be a win on ppc32, but not x86 or ppc64.
38
39 //===---------------------------------------------------------------------===//
40
41 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
42
43 //===---------------------------------------------------------------------===//
44
45 Reassociate should turn things like:
46
47 int factorial(int X) {
48 return X*X*X*X*X*X*X*X;
49 }
50
51 into llvm.powi calls, allowing the code generator to produce balanced
52 multiplication trees.
53
54 First, the intrinsic needs to be extended to support integers, and second the
55 code generator needs to be enhanced to lower these to multiplication trees.
56
57 //===---------------------------------------------------------------------===//
58
59 Interesting? testcase for add/shift/mul reassoc:
60
61 int bar(int x, int y) {
62 return x*x*x+y+x*x*x*x*x*y*y*y*y;
63 }
64 int foo(int z, int n) {
65 return bar(z, n) + bar(2*z, 2*n);
66 }
67
68 This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue
69 is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X,
70 which is the same number of multiplies and is canonical, because the 2*X has
71 multiple uses. Here's a simple example:
72
73 define i32 @test15(i32 %X1) {
74 %B = mul i32 %X1, 47 ; X1*47
75 %C = mul i32 %B, %B
76 ret i32 %C
77 }
78
79
80 //===---------------------------------------------------------------------===//
81
82 Reassociate should handle the example in GCC PR16157:
83
84 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4;
85 void f () { /* this can be optimized to four additions... */
86 b4 = a4 + a3 + a2 + a1 + a0;
87 b3 = a3 + a2 + a1 + a0;
88 b2 = a2 + a1 + a0;
89 b1 = a1 + a0;
90 }
91
92 This requires reassociating to forms of expressions that are already available,
93 something that reassoc doesn't think about yet.
94
95
96 //===---------------------------------------------------------------------===//
97
98 These two functions should generate the same code on big-endian systems:
99
100 int g(int *j,int *l) { return memcmp(j,l,4); }
101 int h(int *j, int *l) { return *j - *l; }
102
103 this could be done in SelectionDAGISel.cpp, along with other special cases,
104 for 1,2,4,8 bytes.
105
106 //===---------------------------------------------------------------------===//
107
108 It would be nice to revert this patch:
109 http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
110
111 And teach the dag combiner enough to simplify the code expanded before
112 legalize. It seems plausible that this knowledge would let it simplify other
113 stuff too.
114
115 //===---------------------------------------------------------------------===//
116
117 For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal
118 to the type size. It works but can be overly conservative as the alignment of
119 specific vector types are target dependent.
120
121 //===---------------------------------------------------------------------===//
122
123 We should produce an unaligned load from code like this:
124
125 v4sf example(float *P) {
126 return (v4sf){P[0], P[1], P[2], P[3] };
127 }
128
129 //===---------------------------------------------------------------------===//
130
131 Add support for conditional increments, and other related patterns. Instead
132 of:
133
134 movl 136(%esp), %eax
135 cmpl $0, %eax
136 je LBB16_2 #cond_next
137 LBB16_1: #cond_true
138 incl _foo
139 LBB16_2: #cond_next
140
141 emit:
142 movl _foo, %eax
143 cmpl $1, %edi
144 sbbl $-1, %eax
145 movl %eax, _foo
146
147 //===---------------------------------------------------------------------===//
148
149 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
150
151 Expand these to calls of sin/cos and stores:
152 double sincos(double x, double *sin, double *cos);
153 float sincosf(float x, float *sin, float *cos);
154 long double sincosl(long double x, long double *sin, long double *cos);
155
156 Doing so could allow SROA of the destination pointers. See also:
157 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
158
159 This is now easily doable with MRVs. We could even make an intrinsic for this
160 if anyone cared enough about sincos.
161
162 //===---------------------------------------------------------------------===//
163
164 quantum_sigma_x in 462.libquantum contains the following loop:
165
166 for(i=0; i<reg->size; i++)
167 {
168 /* Flip the target bit of each basis state */
169 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
170 }
171
172 Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
173 so cool to turn it into something like:
174
175 long long Res = ((MAX_UNSIGNED) 1 << target);
176 if (target < 32) {
177 for(i=0; i<reg->size; i++)
178 reg->node[i].state ^= Res & 0xFFFFFFFFULL;
179 } else {
180 for(i=0; i<reg->size; i++)
181 reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
182 }
183
184 ... which would only do one 32-bit XOR per loop iteration instead of two.
185
186 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
187 this requires TBAA.
188
189 //===---------------------------------------------------------------------===//
190
191 This isn't recognized as bswap by instcombine (yes, it really is bswap):
192
193 unsigned long reverse(unsigned v) {
194 unsigned t;
195 t = v ^ ((v << 16) | (v >> 16));
196 t &= ~0xff0000;
197 v = (v << 24) | (v >> 8);
198 return v ^ (t >> 8);
199 }
200
201 //===---------------------------------------------------------------------===//
202
203 [LOOP DELETION]
204
205 We don't delete this output free loop, because trip count analysis doesn't
206 realize that it is finite (if it were infinite, it would be undefined). Not
207 having this blocks Loop Idiom from matching strlen and friends.
208
209 void foo(char *C) {
210 int x = 0;
211 while (*C)
212 ++x,++C;
213 }
214
215 //===---------------------------------------------------------------------===//
216
217 [LOOP RECOGNITION]
218
219 These idioms should be recognized as popcount (see PR1488):
220
221 unsigned countbits_slow(unsigned v) {
222 unsigned c;
223 for (c = 0; v; v >>= 1)
224 c += v & 1;
225 return c;
226 }
227
228 unsigned int popcount(unsigned int input) {
229 unsigned int count = 0;
230 for (unsigned int i = 0; i < 4 * 8; i++)
231 count += (input >> i) & i;
232 return count;
233 }
234
235 This should be recognized as CLZ: rdar://8459039
236
237 unsigned clz_a(unsigned a) {
238 int i;
239 for (i=0;i<32;i++)
240 if (a & (1<<(31-i)))
241 return i;
242 return 32;
243 }
244
245 This sort of thing should be added to the loop idiom pass.
246
247 //===---------------------------------------------------------------------===//
248
249 These should turn into single 16-bit (unaligned?) loads on little/big endian
250 processors.
251
252 unsigned short read_16_le(const unsigned char *adr) {
253 return adr[0] | (adr[1] << 8);
254 }
255 unsigned short read_16_be(const unsigned char *adr) {
256 return (adr[0] << 8) | adr[1];
257 }
258
259 //===---------------------------------------------------------------------===//
260
261 -instcombine should handle this transform:
262 icmp pred (sdiv X / C1 ), C2
263 when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
264
265 Currently InstCombine avoids this transform but will do it when the signs of
266 the operands and the sign of the divide match. See the FIXME in
267 InstructionCombining.cpp in the visitSetCondInst method after the switch case
268 for Instruction::UDiv (around line 4447) for more details.
269
270 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
271 this construct.
272
273 //===---------------------------------------------------------------------===//
274
275 [LOOP OPTIMIZATION]
276
277 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
278 opportunities in its double_array_divs_variable function: it needs loop
279 interchange, memory promotion (which LICM already does), vectorization and
280 variable trip count loop unrolling (since it has a constant trip count). ICC
281 apparently produces this very nice code with -ffast-math:
282
283 ..B1.70: # Preds ..B1.70 ..B1.69
284 mulpd %xmm0, %xmm1 #108.2
285 mulpd %xmm0, %xmm1 #108.2
286 mulpd %xmm0, %xmm1 #108.2
287 mulpd %xmm0, %xmm1 #108.2
288 addl $8, %edx #
289 cmpl $131072, %edx #108.2
290 jb ..B1.70 # Prob 99% #108.2
291
292 It would be better to count down to zero, but this is a lot better than what we
293 do.
294
295 //===---------------------------------------------------------------------===//
296
297 Consider:
298
299 typedef unsigned U32;
300 typedef unsigned long long U64;
301 int test (U32 *inst, U64 *regs) {
302 U64 effective_addr2;
303 U32 temp = *inst;
304 int r1 = (temp >> 20) & 0xf;
305 int b2 = (temp >> 16) & 0xf;
306 effective_addr2 = temp & 0xfff;
307 if (b2) effective_addr2 += regs[b2];
308 b2 = (temp >> 12) & 0xf;
309 if (b2) effective_addr2 += regs[b2];
310 effective_addr2 &= regs[4];
311 if ((effective_addr2 & 3) == 0)
312 return 1;
313 return 0;
314 }
315
316 Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
317 we don't eliminate the computation of the top half of effective_addr2 because
318 we don't have whole-function selection dags. On x86, this means we use one
319 extra register for the function when effective_addr2 is declared as U64 than
320 when it is declared U32.
321
322 PHI Slicing could be extended to do this.
323
324 //===---------------------------------------------------------------------===//
325
326 Tail call elim should be more aggressive, checking to see if the call is
327 followed by an uncond branch to an exit block.
328
329 ; This testcase is due to tail-duplication not wanting to copy the return
330 ; instruction into the terminating blocks because there was other code
331 ; optimized out of the function after the taildup happened.
332 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
333
334 define i32 @t4(i32 %a) {
335 entry:
336 %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
337 %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
338 br i1 %tmp.2, label %then.0, label %else.0
339
340 then.0: ; preds = %entry
341 %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
342 %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
343 br label %return
344
345 else.0: ; preds = %entry
346 %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
347 br i1 %tmp.7, label %then.1, label %return
348
349 then.1: ; preds = %else.0
350 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
351 %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
352 br label %return
353
354 return: ; preds = %then.1, %else.0, %then.0
355 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
356 [ %tmp.9, %then.1 ]
357 ret i32 %result.0
358 }
359
360 //===---------------------------------------------------------------------===//
361
362 Tail recursion elimination should handle:
363
364 int pow2m1(int n) {
365 if (n == 0)
366 return 0;
367 return 2 * pow2m1 (n - 1) + 1;
368 }
369
370 Also, multiplies can be turned into SHL's, so they should be handled as if
371 they were associative. "return foo() << 1" can be tail recursion eliminated.
372
373 //===---------------------------------------------------------------------===//
374
375 Argument promotion should promote arguments for recursive functions, like
376 this:
377
378 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
379
380 define internal i32 @foo(i32* %x) {
381 entry:
382 %tmp = load i32* %x ; <i32> [#uses=0]
383 %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
384 ret i32 %tmp.foo
385 }
386
387 define i32 @bar(i32* %x) {
388 entry:
389 %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
390 ret i32 %tmp3
391 }
392
393 //===---------------------------------------------------------------------===//
394
395 We should investigate an instruction sinking pass. Consider this silly
396 example in pic mode:
397
398 #include <assert.h>
399 void foo(int x) {
400 assert(x);
401 //...
402 }
403
404 we compile this to:
405 _foo:
406 subl $28, %esp
407 call "L1$pb"
408 "L1$pb":
409 popl %eax
410 cmpl $0, 32(%esp)
411 je LBB1_2 # cond_true
412 LBB1_1: # return
413 # ...
414 addl $28, %esp
415 ret
416 LBB1_2: # cond_true
417 ...
418
419 The PIC base computation (call+popl) is only used on one path through the
420 code, but is currently always computed in the entry block. It would be
421 better to sink the picbase computation down into the block for the
422 assertion, as it is the only one that uses it. This happens for a lot of
423 code with early outs.
424
425 Another example is loads of arguments, which are usually emitted into the
426 entry block on targets like x86. If not used in all paths through a
427 function, they should be sunk into the ones that do.
428
429 In this case, whole-function-isel would also handle this.
430
431 //===---------------------------------------------------------------------===//
432
433 Investigate lowering of sparse switch statements into perfect hash tables:
434 http://burtleburtle.net/bob/hash/perfect.html
435
436 //===---------------------------------------------------------------------===//
437
438 We should turn things like "load+fabs+store" and "load+fneg+store" into the
439 corresponding integer operations. On a yonah, this loop:
440
441 double a[256];
442 void foo() {
443 int i, b;
444 for (b = 0; b < 10000000; b++)
445 for (i = 0; i < 256; i++)
446 a[i] = -a[i];
447 }
448
449 is twice as slow as this loop:
450
451 long long a[256];
452 void foo() {
453 int i, b;
454 for (b = 0; b < 10000000; b++)
455 for (i = 0; i < 256; i++)
456 a[i] ^= (1ULL << 63);
457 }
458
459 and I suspect other processors are similar. On X86 in particular this is a
460 big win because doing this with integers allows the use of read/modify/write
461 instructions.
462
463 //===---------------------------------------------------------------------===//
464
465 DAG Combiner should try to combine small loads into larger loads when
466 profitable. For example, we compile this C++ example:
467
468 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
469 extern THotKey m_HotKey;
470 THotKey GetHotKey () { return m_HotKey; }
471
472 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
473
474 __Z9GetHotKeyv: ## @_Z9GetHotKeyv
475 movq _m_HotKey@GOTPCREL(%rip), %rax
476 movzwl (%rax), %ecx
477 movzbl 2(%rax), %edx
478 shlq $16, %rdx
479 orq %rcx, %rdx
480 movzbl 3(%rax), %ecx
481 shlq $24, %rcx
482 orq %rdx, %rcx
483 movzbl 4(%rax), %eax
484 shlq $32, %rax
485 orq %rcx, %rax
486 ret
487
488 //===---------------------------------------------------------------------===//
489
490 We should add an FRINT node to the DAG to model targets that have legal
491 implementations of ceil/floor/rint.
492
493 //===---------------------------------------------------------------------===//
494
495 Consider:
496
497 int test() {
498 long long input[8] = {1,0,1,0,1,0,1,0};
499 foo(input);
500 }
501
502 Clang compiles this into:
503
504 call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
505 %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
506 store i64 1, i64* %0, align 16
507 %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
508 store i64 1, i64* %1, align 16
509 %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
510 store i64 1, i64* %2, align 16
511 %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
512 store i64 1, i64* %3, align 16
513
514 Which gets codegen'd into:
515
516 pxor %xmm0, %xmm0
517 movaps %xmm0, -16(%rbp)
518 movaps %xmm0, -32(%rbp)
519 movaps %xmm0, -48(%rbp)
520 movaps %xmm0, -64(%rbp)
521 movq $1, -64(%rbp)
522 movq $1, -48(%rbp)
523 movq $1, -32(%rbp)
524 movq $1, -16(%rbp)
525
526 It would be better to have 4 movq's of 0 instead of the movaps's.
527
528 //===---------------------------------------------------------------------===//
529
530 http://llvm.org/PR717:
531
532 The following code should compile into "ret int undef". Instead, LLVM
533 produces "ret int 0":
534
535 int f() {
536 int x = 4;
537 int y;
538 if (x == 3) y = 0;
539 return y;
540 }
541
542 //===---------------------------------------------------------------------===//
543
544 The loop unroller should partially unroll loops (instead of peeling them)
545 when code growth isn't too bad and when an unroll count allows simplification
546 of some code within the loop. One trivial example is:
547
548 #include <stdio.h>
549 int main() {
550 int nRet = 17;
551 int nLoop;
552 for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
553 if ( nLoop & 1 )
554 nRet += 2;
555 else
556 nRet -= 1;
557 }
558 return nRet;
559 }
560
561 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
562 reduction in code size. The resultant code would then also be suitable for
563 exit value computation.
564
565 //===---------------------------------------------------------------------===//
566
567 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
568 etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
569 matching code in dag combine doesn't look through truncates aggressively
570 enough. Here are some testcases reduces from GCC PR17886:
571
572 unsigned long long f5(unsigned long long x, unsigned long long y) {
573 return (x << 8) | ((y >> 48) & 0xffull);
574 }
575 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
576 switch(z) {
577 case 1:
578 return (x << 8) | ((y >> 48) & 0xffull);
579 case 2:
580 return (x << 16) | ((y >> 40) & 0xffffull);
581 case 3:
582 return (x << 24) | ((y >> 32) & 0xffffffull);
583 case 4:
584 return (x << 32) | ((y >> 24) & 0xffffffffull);
585 default:
586 return (x << 40) | ((y >> 16) & 0xffffffffffull);
587 }
588 }
589
590 //===---------------------------------------------------------------------===//
591
592 This (and similar related idioms):
593
594 unsigned int foo(unsigned char i) {
595 return i | (i<<8) | (i<<16) | (i<<24);
596 }
597
598 compiles into:
599
600 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
601 entry:
602 %conv = zext i8 %i to i32
603 %shl = shl i32 %conv, 8
604 %shl5 = shl i32 %conv, 16
605 %shl9 = shl i32 %conv, 24
606 %or = or i32 %shl9, %conv
607 %or6 = or i32 %or, %shl5
608 %or10 = or i32 %or6, %shl
609 ret i32 %or10
610 }
611
612 it would be better as:
613
614 unsigned int bar(unsigned char i) {
615 unsigned int j=i | (i << 8);
616 return j | (j<<16);
617 }
618
619 aka:
620
621 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
622 entry:
623 %conv = zext i8 %i to i32
624 %shl = shl i32 %conv, 8
625 %or = or i32 %shl, %conv
626 %shl5 = shl i32 %or, 16
627 %or6 = or i32 %shl5, %or
628 ret i32 %or6
629 }
630
631 or even i*0x01010101, depending on the speed of the multiplier. The best way to
632 handle this is to canonicalize it to a multiply in IR and have codegen handle
633 lowering multiplies to shifts on cpus where shifts are faster.
634
635 //===---------------------------------------------------------------------===//
636
637 We do a number of simplifications in simplify libcalls to strength reduce
638 standard library functions, but we don't currently merge them together. For
639 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
640 be done safely if "b" isn't modified between the strlen and memcpy of course.
641
642 //===---------------------------------------------------------------------===//
643
644 We compile this program: (from GCC PR11680)
645 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
646
647 Into code that runs the same speed in fast/slow modes, but both modes run 2x
648 slower than when compile with GCC (either 4.0 or 4.2):
649
650 $ llvm-g++ perf.cpp -O3 -fno-exceptions
651 $ time ./a.out fast
652 1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
653
654 $ g++ perf.cpp -O3 -fno-exceptions
655 $ time ./a.out fast
656 0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
657
658 It looks like we are making the same inlining decisions, so this may be raw
659 codegen badness or something else (haven't investigated).
660
661 //===---------------------------------------------------------------------===//
662
663 Divisibility by constant can be simplified (according to GCC PR12849) from
664 being a mulhi to being a mul lo (cheaper). Testcase:
665
666 void bar(unsigned n) {
667 if (n % 3 == 0)
668 true();
669 }
670
671 This is equivalent to the following, where 2863311531 is the multiplicative
672 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
673 void bar(unsigned n) {
674 if (n * 2863311531U < 1431655766U)
675 true();
676 }
677
678 The same transformation can work with an even modulo with the addition of a
679 rotate: rotate the result of the multiply to the right by the number of bits
680 which need to be zero for the condition to be true, and shrink the compare RHS
681 by the same amount. Unless the target supports rotates, though, that
682 transformation probably isn't worthwhile.
683
684 The transformation can also easily be made to work with non-zero equality
685 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
686
687 //===---------------------------------------------------------------------===//
688
689 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
690 bunch of other stuff from this example (see PR1604):
691
692 #include <cstdio>
693 struct test {
694 int val;
695 virtual ~test() {}
696 };
697
698 int main() {
699 test t;
700 std::scanf("%d", &t.val);
701 std::printf("%d\n", t.val);
702 }
703
704 //===---------------------------------------------------------------------===//
705
706 These functions perform the same computation, but produce different assembly.
707
708 define i8 @select(i8 %x) readnone nounwind {
709 %A = icmp ult i8 %x, 250
710 %B = select i1 %A, i8 0, i8 1
711 ret i8 %B
712 }
713
714 define i8 @addshr(i8 %x) readnone nounwind {
715 %A = zext i8 %x to i9
716 %B = add i9 %A, 6 ;; 256 - 250 == 6
717 %C = lshr i9 %B, 8
718 %D = trunc i9 %C to i8
719 ret i8 %D
720 }
721
722 //===---------------------------------------------------------------------===//
723
724 From gcc bug 24696:
725 int
726 f (unsigned long a, unsigned long b, unsigned long c)
727 {
728 return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
729 }
730 int
731 f (unsigned long a, unsigned long b, unsigned long c)
732 {
733 return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
734 }
735 Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with
736 "clang -emit-llvm-bc | opt -O3".
737
738 //===---------------------------------------------------------------------===//
739
740 From GCC Bug 20192:
741 #define PMD_MASK (~((1UL << 23) - 1))
742 void clear_pmd_range(unsigned long start, unsigned long end)
743 {
744 if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
745 f();
746 }
747 The expression should optimize to something like
748 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
749 -emit-llvm-bc | opt -O3".
750
751 //===---------------------------------------------------------------------===//
752
753 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
754 i;}
755 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
756 These should combine to the same thing. Currently, the first function
757 produces better code on X86.
758
759 //===---------------------------------------------------------------------===//
760
761 From GCC Bug 15784:
762 #define abs(x) x>0?x:-x
763 int f(int x, int y)
764 {
765 return (abs(x)) >= 0;
766 }
767 This should optimize to x == INT_MIN. (With -fwrapv.) Currently not
768 optimized with "clang -emit-llvm-bc | opt -O3".
769
770 //===---------------------------------------------------------------------===//
771
772 From GCC Bug 14753:
773 void
774 rotate_cst (unsigned int a)
775 {
776 a = (a << 10) | (a >> 22);
777 if (a == 123)
778 bar ();
779 }
780 void
781 minus_cst (unsigned int a)
782 {
783 unsigned int tem;
784
785 tem = 20 - a;
786 if (tem == 5)
787 bar ();
788 }
789 void
790 mask_gt (unsigned int a)
791 {
792 /* This is equivalent to a > 15. */
793 if ((a & ~7) > 8)
794 bar ();
795 }
796 void
797 rshift_gt (unsigned int a)
798 {
799 /* This is equivalent to a > 23. */
800 if ((a >> 2) > 5)
801 bar ();
802 }
803
804 All should simplify to a single comparison. All of these are
805 currently not optimized with "clang -emit-llvm-bc | opt
806 -O3".
807
808 //===---------------------------------------------------------------------===//
809
810 From GCC Bug 32605:
811 int c(int* x) {return (char*)x+2 == (char*)x;}
812 Should combine to 0. Currently not optimized with "clang
813 -emit-llvm-bc | opt -O3" (although llc can optimize it).
814
815 //===---------------------------------------------------------------------===//
816
817 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
818 Should be combined to "((b >> 1) | b) & 1". Currently not optimized
819 with "clang -emit-llvm-bc | opt -O3".
820
821 //===---------------------------------------------------------------------===//
822
823 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
824 Should combine to "x | (y & 3)". Currently not optimized with "clang
825 -emit-llvm-bc | opt -O3".
826
827 //===---------------------------------------------------------------------===//
828
829 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
830 Should fold to "(~a & c) | (a & b)". Currently not optimized with
831 "clang -emit-llvm-bc | opt -O3".
832
833 //===---------------------------------------------------------------------===//
834
835 int a(int a,int b) {return (~(a|b))|a;}
836 Should fold to "a|~b". Currently not optimized with "clang
837 -emit-llvm-bc | opt -O3".
838
839 //===---------------------------------------------------------------------===//
840
841 int a(int a, int b) {return (a&&b) || (a&&!b);}
842 Should fold to "a". Currently not optimized with "clang -emit-llvm-bc
843 | opt -O3".
844
845 //===---------------------------------------------------------------------===//
846
847 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
848 Should fold to "a ? b : c", or at least something sane. Currently not
849 optimized with "clang -emit-llvm-bc | opt -O3".
850
851 //===---------------------------------------------------------------------===//
852
853 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
854 Should fold to a && (b || c). Currently not optimized with "clang
855 -emit-llvm-bc | opt -O3".
856
857 //===---------------------------------------------------------------------===//
858
859 int a(int x) {return x | ((x & 8) ^ 8);}
860 Should combine to x | 8. Currently not optimized with "clang
861 -emit-llvm-bc | opt -O3".
862
863 //===---------------------------------------------------------------------===//
864
865 int a(int x) {return x ^ ((x & 8) ^ 8);}
866 Should also combine to x | 8. Currently not optimized with "clang
867 -emit-llvm-bc | opt -O3".
868
869 //===---------------------------------------------------------------------===//
870
871 int a(int x) {return ((x | -9) ^ 8) & x;}
872 Should combine to x & -9. Currently not optimized with "clang
873 -emit-llvm-bc | opt -O3".
874
875 //===---------------------------------------------------------------------===//
876
877 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
878 Should combine to "a * 0x88888888 >> 31". Currently not optimized
879 with "clang -emit-llvm-bc | opt -O3".
880
881 //===---------------------------------------------------------------------===//
882
883 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
884 There's an unnecessary zext in the generated code with "clang
885 -emit-llvm-bc | opt -O3".
886
887 //===---------------------------------------------------------------------===//
888
889 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
890 Should combine to "20 * (((unsigned)x) & -2)". Currently not
891 optimized with "clang -emit-llvm-bc | opt -O3".
892
893 //===---------------------------------------------------------------------===//
894
895 int g(int x) { return (x - 10) < 0; }
896 Should combine to "x <= 9" (the sub has nsw). Currently not
897 optimized with "clang -emit-llvm-bc | opt -O3".
898
899 //===---------------------------------------------------------------------===//
900
901 int g(int x) { return (x + 10) < 0; }
902 Should combine to "x < -10" (the add has nsw). Currently not
903 optimized with "clang -emit-llvm-bc | opt -O3".
904
905 //===---------------------------------------------------------------------===//
906
907 int f(int i, int j) { return i < j + 1; }
908 int g(int i, int j) { return j > i - 1; }
909 Should combine to "i <= j" (the add/sub has nsw). Currently not
910 optimized with "clang -emit-llvm-bc | opt -O3".
911
912 //===---------------------------------------------------------------------===//
913
914 unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
915 The & 15 part should be optimized away, it doesn't change the result. Currently
916 not optimized with "clang -emit-llvm-bc | opt -O3".
917
918 //===---------------------------------------------------------------------===//
919
920 This was noticed in the entryblock for grokdeclarator in 403.gcc:
921
922 %tmp = icmp eq i32 %decl_context, 4
923 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
924 %tmp1 = icmp eq i32 %decl_context_addr.0, 1
925 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
926
927 tmp1 should be simplified to something like:
928 (!tmp || decl_context == 1)
929
930 This allows recursive simplifications, tmp1 is used all over the place in
931 the function, e.g. by:
932
933 %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1]
934 %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1]
935 %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1]
936
937 later.
938
939 //===---------------------------------------------------------------------===//
940
941 [STORE SINKING]
942
943 Store sinking: This code:
944
945 void f (int n, int *cond, int *res) {
946 int i;
947 *res = 0;
948 for (i = 0; i < n; i++)
949 if (*cond)
950 *res ^= 234; /* (*) */
951 }
952
953 On this function GVN hoists the fully redundant value of *res, but nothing
954 moves the store out. This gives us this code:
955
956 bb: ; preds = %bb2, %entry
957 %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
958 %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
959 %1 = load i32* %cond, align 4
960 %2 = icmp eq i32 %1, 0
961 br i1 %2, label %bb2, label %bb1
962
963 bb1: ; preds = %bb
964 %3 = xor i32 %.rle, 234
965 store i32 %3, i32* %res, align 4
966 br label %bb2
967
968 bb2: ; preds = %bb, %bb1
969 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
970 %indvar.next = add i32 %i.05, 1
971 %exitcond = icmp eq i32 %indvar.next, %n
972 br i1 %exitcond, label %return, label %bb
973
974 DSE should sink partially dead stores to get the store out of the loop.
975
976 Here's another partial dead case:
977 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
978
979 //===---------------------------------------------------------------------===//
980
981 Scalar PRE hoists the mul in the common block up to the else:
982
983 int test (int a, int b, int c, int g) {
984 int d, e;
985 if (a)
986 d = b * c;
987 else
988 d = b - c;
989 e = b * c + g;
990 return d + e;
991 }
992
993 It would be better to do the mul once to reduce codesize above the if.
994 This is GCC PR38204.
995
996
997 //===---------------------------------------------------------------------===//
998 This simple function from 179.art:
999
1000 int winner, numf2s;
1001 struct { double y; int reset; } *Y;
1002
1003 void find_match() {
1004 int i;
1005 winner = 0;
1006 for (i=0;i<numf2s;i++)
1007 if (Y[i].y > Y[winner].y)
1008 winner =i;
1009 }
1010
1011 Compiles into (with clang TBAA):
1012
1013 for.body: ; preds = %for.inc, %bb.nph
1014 %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
1015 %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
1016 %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
1017 %tmp5 = load double* %tmp4, align 8, !tbaa !4
1018 %idxprom7 = sext i32 %i.01718 to i64
1019 %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
1020 %tmp11 = load double* %tmp10, align 8, !tbaa !4
1021 %cmp12 = fcmp ogt double %tmp5, %tmp11
1022 br i1 %cmp12, label %if.then, label %for.inc
1023
1024 if.then: ; preds = %for.body
1025 %i.017 = trunc i64 %indvar to i32
1026 br label %for.inc
1027
1028 for.inc: ; preds = %for.body, %if.then
1029 %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
1030 %indvar.next = add i64 %indvar, 1
1031 %exitcond = icmp eq i64 %indvar.next, %tmp22
1032 br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
1033
1034
1035 It is good that we hoisted the reloads of numf2's, and Y out of the loop and
1036 sunk the store to winner out.
1037
1038 However, this is awful on several levels: the conditional truncate in the loop
1039 (-indvars at fault? why can't we completely promote the IV to i64?).
1040
1041 Beyond that, we have a partially redundant load in the loop: if "winner" (aka
1042 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
1043 Similarly, the addressing that feeds it (including the sext) is redundant. In
1044 the end we get this generated assembly:
1045
1046 LBB0_2: ## %for.body
1047 ## =>This Inner Loop Header: Depth=1
1048 movsd (%rdi), %xmm0
1049 movslq %edx, %r8
1050 shlq $4, %r8
1051 ucomisd (%rcx,%r8), %xmm0
1052 jbe LBB0_4
1053 movl %esi, %edx
1054 LBB0_4: ## %for.inc
1055 addq $16, %rdi
1056 incq %rsi
1057 cmpq %rsi, %rax
1058 jne LBB0_2
1059
1060 All things considered this isn't too bad, but we shouldn't need the movslq or
1061 the shlq instruction, or the load folded into ucomisd every time through the
1062 loop.
1063
1064 On an x86-specific topic, if the loop can't be restructure, the movl should be a
1065 cmov.
1066
1067 //===---------------------------------------------------------------------===//
1068
1069 [STORE SINKING]
1070
1071 GCC PR37810 is an interesting case where we should sink load/store reload
1072 into the if block and outside the loop, so we don't reload/store it on the
1073 non-call path.
1074
1075 for () {
1076 *P += 1;
1077 if ()
1078 call();
1079 else
1080 ...
1081 ->
1082 tmp = *P
1083 for () {
1084 tmp += 1;
1085 if () {
1086 *P = tmp;
1087 call();
1088 tmp = *P;
1089 } else ...
1090 }
1091 *P = tmp;
1092
1093 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1094 we don't sink the store. We need partially dead store sinking.
1095
1096 //===---------------------------------------------------------------------===//
1097
1098 [LOAD PRE CRIT EDGE SPLITTING]
1099
1100 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1101 leading to excess stack traffic. This could be handled by GVN with some crazy
1102 symbolic phi translation. The code we get looks like (g is on the stack):
1103
1104 bb2: ; preds = %bb1
1105 ..
1106 %9 = getelementptr %struct.f* %g, i32 0, i32 0
1107 store i32 %8, i32* %9, align bel %bb3
1108
1109 bb3: ; preds = %bb1, %bb2, %bb
1110 %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1111 %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1112 %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1113 %11 = load i32* %10, align 4
1114
1115 %11 is partially redundant, an in BB2 it should have the value %8.
1116
1117 GCC PR33344 and PR35287 are similar cases.
1118
1119
1120 //===---------------------------------------------------------------------===//
1121
1122 [LOAD PRE]
1123
1124 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1125 GCC testsuite, ones we don't get yet are (checked through loadpre25):
1126
1127 [CRIT EDGE BREAKING]
1128 predcom-4.c
1129
1130 [PRE OF READONLY CALL]
1131 loadpre5.c
1132
1133 [TURN SELECT INTO BRANCH]
1134 loadpre14.c loadpre15.c
1135
1136 actually a conditional increment: loadpre18.c loadpre19.c
1137
1138 //===---------------------------------------------------------------------===//
1139
1140 [LOAD PRE / STORE SINKING / SPEC HACK]
1141
1142 This is a chunk of code from 456.hmmer:
1143
1144 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
1145 int *tpdm, int xmb, int *bp, int *ms) {
1146 int k, sc;
1147 for (k = 1; k <= M; k++) {
1148 mc[k] = mpp[k-1] + tpmm[k-1];
1149 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
1150 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
1151 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
1152 mc[k] += ms[k];
1153 }
1154 }
1155
1156 It is very profitable for this benchmark to turn the conditional stores to mc[k]
1157 into a conditional move (select instr in IR) and allow the final store to do the
1158 store. See GCC PR27313 for more details. Note that this is valid to xform even
1159 with the new C++ memory model, since mc[k] is previously loaded and later
1160 stored.
1161
1162 //===---------------------------------------------------------------------===//
1163
1164 [SCALAR PRE]
1165 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
1166 GCC testsuite.
1167
1168 //===---------------------------------------------------------------------===//
1169
1170 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1171 GCC testsuite. For example, we get the first example in predcom-1.c, but
1172 miss the second one:
1173
1174 unsigned fib[1000];
1175 unsigned avg[1000];
1176
1177 __attribute__ ((noinline))
1178 void count_averages(int n) {
1179 int i;
1180 for (i = 1; i < n; i++)
1181 avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
1182 }
1183
1184 which compiles into two loads instead of one in the loop.
1185
1186 predcom-2.c is the same as predcom-1.c
1187
1188 predcom-3.c is very similar but needs loads feeding each other instead of
1189 store->load.
1190
1191
1192 //===---------------------------------------------------------------------===//
1193
1194 [ALIAS ANALYSIS]
1195
1196 Type based alias analysis:
1197 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1198
1199 We should do better analysis of posix_memalign. At the least it should
1200 no-capture its pointer argument, at best, we should know that the out-value
1201 result doesn't point to anything (like malloc). One example of this is in
1202 SingleSource/Benchmarks/Misc/dt.c
1203
1204 //===---------------------------------------------------------------------===//
1205
1206 Interesting missed case because of control flow flattening (should be 2 loads):
1207 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1208 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
1209 opt -mem2reg -gvn -instcombine | llvm-dis
1210 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
1211 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1212
1213 //===---------------------------------------------------------------------===//
1214
1215 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1216 We could eliminate the branch condition here, loading from null is undefined:
1217
1218 struct S { int w, x, y, z; };
1219 struct T { int r; struct S s; };
1220 void bar (struct S, int);
1221 void foo (int a, struct T b)
1222 {
1223 struct S *c = 0;
1224 if (a)
1225 c = &b.s;
1226 bar (*c, a);
1227 }
1228
1229 //===---------------------------------------------------------------------===//
1230
1231 simplifylibcalls should do several optimizations for strspn/strcspn:
1232
1233 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1234
1235 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1236 int __reject3) {
1237 register size_t __result = 0;
1238 while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1239 __s[__result] != __reject2 && __s[__result] != __reject3)
1240 ++__result;
1241 return __result;
1242 }
1243
1244 This should turn into a switch on the character. See PR3253 for some notes on
1245 codegen.
1246
1247 456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn.
1248
1249 //===---------------------------------------------------------------------===//
1250
1251 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
1252
1253 char buf1[6], buf2[6], buf3[4], buf4[4];
1254 int i;
1255
1256 int foo (void) {
1257 int ret = snprintf (buf1, sizeof buf1, "abcde");
1258 ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
1259 ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
1260 ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
1261 return ret;
1262 }
1263
1264 //===---------------------------------------------------------------------===//
1265
1266 "gas" uses this idiom:
1267 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1268 ..
1269 else if (strchr ("<>", *intel_parser.op_string)
1270
1271 Those should be turned into a switch. SimplifyLibCalls only gets the second
1272 case.
1273
1274 //===---------------------------------------------------------------------===//
1275
1276 252.eon contains this interesting code:
1277
1278 %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1279 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1280 %strlen = call i32 @strlen(i8* %3072) ; uses = 1
1281 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1282 call void @llvm.memcpy.i32(i8* %endptr,
1283 i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1284 %3074 = call i32 @strlen(i8* %endptr) nounwind readonly
1285
1286 This is interesting for a couple reasons. First, in this:
1287
1288 The memcpy+strlen strlen can be replaced with:
1289
1290 %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
1291
1292 Because the destination was just copied into the specified memory buffer. This,
1293 in turn, can be constant folded to "4".
1294
1295 In other code, it contains:
1296
1297 %endptr6978 = bitcast i8* %endptr69 to i32*
1298 store i32 7107374, i32* %endptr6978, align 1
1299 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
1300
1301 Which could also be constant folded. Whatever is producing this should probably
1302 be fixed to leave this as a memcpy from a string.
1303
1304 Further, eon also has an interesting partially redundant strlen call:
1305
1306 bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1307 %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2]
1308 %683 = load i8** %682, align 4 ; <i8*> [#uses=4]
1309 %684 = load i8* %683, align 1 ; <i8> [#uses=1]
1310 %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1]
1311 br i1 %685, label %bb10, label %bb9
1312
1313 bb9: ; preds = %bb8
1314 %686 = call i32 @strlen(i8* %683) nounwind readonly
1315 %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1]
1316 br i1 %687, label %bb10, label %bb11
1317
1318 bb10: ; preds = %bb9, %bb8
1319 %688 = call i32 @strlen(i8* %683) nounwind readonly
1320
1321 This could be eliminated by doing the strlen once in bb8, saving code size and
1322 improving perf on the bb8->9->10 path.
1323
1324 //===---------------------------------------------------------------------===//
1325
1326 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1327 which looks like:
1328 %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
1329
1330
1331 bb62: ; preds = %bb55, %bb53
1332 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
1333 %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1334 %172 = add i32 %171, -1 ; <i32> [#uses=1]
1335 %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
1336
1337 ... no stores ...
1338 br i1 %or.cond, label %bb65, label %bb72
1339
1340 bb65: ; preds = %bb62
1341 store i8 0, i8* %173, align 1
1342 br label %bb72
1343
1344 bb72: ; preds = %bb65, %bb62
1345 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
1346 %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1347
1348 Note that on the bb62->bb72 path, that the %177 strlen call is partially
1349 redundant with the %171 call. At worst, we could shove the %177 strlen call
1350 up into the bb65 block moving it out of the bb62->bb72 path. However, note
1351 that bb65 stores to the string, zeroing out the last byte. This means that on
1352 that path the value of %177 is actually just %171-1. A sub is cheaper than a
1353 strlen!
1354
1355 This pattern repeats several times, basically doing:
1356
1357 A = strlen(P);
1358 P[A-1] = 0;
1359 B = strlen(P);
1360 where it is "obvious" that B = A-1.
1361
1362 //===---------------------------------------------------------------------===//
1363
1364 186.crafty has this interesting pattern with the "out.4543" variable:
1365
1366 call void @llvm.memcpy.i32(
1367 i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1368 i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
1369 %101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind
1370
1371 It is basically doing:
1372
1373 memcpy(globalarray, "string");
1374 printf(..., globalarray);
1375
1376 Anyway, by knowing that printf just reads the memory and forward substituting
1377 the string directly into the printf, this eliminates reads from globalarray.
1378 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1379 other similar functions) there are many stores to "out". Once all the printfs
1380 stop using "out", all that is left is the memcpy's into it. This should allow
1381 globalopt to remove the "stored only" global.
1382
1383 //===---------------------------------------------------------------------===//
1384
1385 This code:
1386
1387 define inreg i32 @foo(i8* inreg %p) nounwind {
1388 %tmp0 = load i8* %p
1389 %tmp1 = ashr i8 %tmp0, 5
1390 %tmp2 = sext i8 %tmp1 to i32
1391 ret i32 %tmp2
1392 }
1393
1394 could be dagcombine'd to a sign-extending load with a shift.
1395 For example, on x86 this currently gets this:
1396
1397 movb (%eax), %al
1398 sarb $5, %al
1399 movsbl %al, %eax
1400
1401 while it could get this:
1402
1403 movsbl (%eax), %eax
1404 sarl $5, %eax
1405
1406 //===---------------------------------------------------------------------===//
1407
1408 GCC PR31029:
1409
1410 int test(int x) { return 1-x == x; } // --> return false
1411 int test2(int x) { return 2-x == x; } // --> return x == 1 ?
1412
1413 Always foldable for odd constants, what is the rule for even?
1414
1415 //===---------------------------------------------------------------------===//
1416
1417 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1418 for next field in struct (which is at same address).
1419
1420 For example: store of float into { {{}}, float } could be turned into a store to
1421 the float directly.
1422
1423 //===---------------------------------------------------------------------===//
1424
1425 The arg promotion pass should make use of nocapture to make its alias analysis
1426 stuff much more precise.
1427
1428 //===---------------------------------------------------------------------===//
1429
1430 The following functions should be optimized to use a select instead of a
1431 branch (from gcc PR40072):
1432
1433 char char_int(int m) {if(m>7) return 0; return m;}
1434 int int_char(char m) {if(m>7) return 0; return m;}
1435
1436 //===---------------------------------------------------------------------===//
1437
1438 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
1439
1440 Generates this:
1441
1442 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1443 entry:
1444 %0 = and i32 %a, 128 ; <i32> [#uses=1]
1445 %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1]
1446 %2 = or i32 %b, 128 ; <i32> [#uses=1]
1447 %3 = and i32 %b, -129 ; <i32> [#uses=1]
1448 %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1]
1449 ret i32 %b_addr.0
1450 }
1451
1452 However, it's functionally equivalent to:
1453
1454 b = (b & ~0x80) | (a & 0x80);
1455
1456 Which generates this:
1457
1458 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1459 entry:
1460 %0 = and i32 %b, -129 ; <i32> [#uses=1]
1461 %1 = and i32 %a, 128 ; <i32> [#uses=1]
1462 %2 = or i32 %0, %1 ; <i32> [#uses=1]
1463 ret i32 %2
1464 }
1465
1466 This can be generalized for other forms:
1467
1468 b = (b & ~0x80) | (a & 0x40) << 1;
1469
1470 //===---------------------------------------------------------------------===//
1471
1472 These two functions produce different code. They shouldn't:
1473
1474 #include <stdint.h>
1475
1476 uint8_t p1(uint8_t b, uint8_t a) {
1477 b = (b & ~0xc0) | (a & 0xc0);
1478 return (b);
1479 }
1480
1481 uint8_t p2(uint8_t b, uint8_t a) {
1482 b = (b & ~0x40) | (a & 0x40);
1483 b = (b & ~0x80) | (a & 0x80);
1484 return (b);
1485 }
1486
1487 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1488 entry:
1489 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1490 %1 = and i8 %a, -64 ; <i8> [#uses=1]
1491 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1492 ret i8 %2
1493 }
1494
1495 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1496 entry:
1497 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1498 %.masked = and i8 %a, 64 ; <i8> [#uses=1]
1499 %1 = and i8 %a, -128 ; <i8> [#uses=1]
1500 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1501 %3 = or i8 %2, %.masked ; <i8> [#uses=1]
1502 ret i8 %3
1503 }
1504
1505 //===---------------------------------------------------------------------===//
1506
1507 IPSCCP does not currently propagate argument dependent constants through
1508 functions where it does not not all of the callers. This includes functions
1509 with normal external linkage as well as templates, C99 inline functions etc.
1510 Specifically, it does nothing to:
1511
1512 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
1513 entry:
1514 %0 = add nsw i32 %y, %z
1515 %1 = mul i32 %0, %x
1516 %2 = mul i32 %y, %z
1517 %3 = add nsw i32 %1, %2
1518 ret i32 %3
1519 }
1520
1521 define i32 @test2() nounwind {
1522 entry:
1523 %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
1524 ret i32 %0
1525 }
1526
1527 It would be interesting extend IPSCCP to be able to handle simple cases like
1528 this, where all of the arguments to a call are constant. Because IPSCCP runs
1529 before inlining, trivial templates and inline functions are not yet inlined.
1530 The results for a function + set of constant arguments should be memoized in a
1531 map.
1532
1533 //===---------------------------------------------------------------------===//
1534
1535 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
1536 libanalysis' constantfolding logic. This would allow IPSCCP to be able to
1537 handle simple things like this:
1538
1539 static int foo(const char *X) { return strlen(X); }
1540 int bar() { return foo("abcd"); }
1541
1542 //===---------------------------------------------------------------------===//
1543
1544 functionattrs doesn't know much about memcpy/memset. This function should be
1545 marked readnone rather than readonly, since it only twiddles local memory, but
1546 functionattrs doesn't handle memset/memcpy/memmove aggressively:
1547
1548 struct X { int *p; int *q; };
1549 int foo() {
1550 int i = 0, j = 1;
1551 struct X x, y;
1552 int **p;
1553 y.p = &i;
1554 x.q = &j;
1555 p = __builtin_memcpy (&x, &y, sizeof (int *));
1556 return **p;
1557 }
1558
1559 This can be seen at:
1560 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
1561
1562
1563 //===---------------------------------------------------------------------===//
1564
1565 Missed instcombine transformation:
1566 define i1 @a(i32 %x) nounwind readnone {
1567 entry:
1568 %cmp = icmp eq i32 %x, 30
1569 %sub = add i32 %x, -30
1570 %cmp2 = icmp ugt i32 %sub, 9
1571 %or = or i1 %cmp, %cmp2
1572 ret i1 %or
1573 }
1574 This should be optimized to a single compare. Testcase derived from gcc.
1575
1576 //===---------------------------------------------------------------------===//
1577
1578 Missed instcombine or reassociate transformation:
1579 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
1580
1581 The sgt and slt should be combined into a single comparison. Testcase derived
1582 from gcc.
1583
1584 //===---------------------------------------------------------------------===//
1585
1586 Missed instcombine transformation:
1587
1588 %382 = srem i32 %tmp14.i, 64 ; [#uses=1]
1589 %383 = zext i32 %382 to i64 ; [#uses=1]
1590 %384 = shl i64 %381, %383 ; [#uses=1]
1591 %385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1]
1592
1593 The srem can be transformed to an and because if %tmp14.i is negative, the
1594 shift is undefined. Testcase derived from 403.gcc.
1595
1596 //===---------------------------------------------------------------------===//
1597
1598 This is a range comparison on a divided result (from 403.gcc):
1599
1600 %1337 = sdiv i32 %1336, 8 ; [#uses=1]
1601 %.off.i208 = add i32 %1336, 7 ; [#uses=1]
1602 %1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1]
1603
1604 We already catch this (removing the sdiv) if there isn't an add, we should
1605 handle the 'add' as well. This is a common idiom with it's builtin_alloca code.
1606 C testcase:
1607
1608 int a(int x) { return (unsigned)(x/16+7) < 15; }
1609
1610 Another similar case involves truncations on 64-bit targets:
1611
1612 %361 = sdiv i64 %.046, 8 ; [#uses=1]
1613 %362 = trunc i64 %361 to i32 ; [#uses=2]
1614 ...
1615 %367 = icmp eq i32 %362, 0 ; [#uses=1]
1616
1617 //===---------------------------------------------------------------------===//
1618
1619 Missed instcombine/dagcombine transformation:
1620 define void @lshift_lt(i8 zeroext %a) nounwind {
1621 entry:
1622 %conv = zext i8 %a to i32
1623 %shl = shl i32 %conv, 3
1624 %cmp = icmp ult i32 %shl, 33
1625 br i1 %cmp, label %if.then, label %if.end
1626
1627 if.then:
1628 tail call void @bar() nounwind
1629 ret void
1630
1631 if.end:
1632 ret void
1633 }
1634 declare void @bar() nounwind
1635
1636 The shift should be eliminated. Testcase derived from gcc.
1637
1638 //===---------------------------------------------------------------------===//
1639
1640 These compile into different code, one gets recognized as a switch and the
1641 other doesn't due to phase ordering issues (PR6212):
1642
1643 int test1(int mainType, int subType) {
1644 if (mainType == 7)
1645 subType = 4;
1646 else if (mainType == 9)
1647 subType = 6;
1648 else if (mainType == 11)
1649 subType = 9;
1650 return subType;
1651 }
1652
1653 int test2(int mainType, int subType) {
1654 if (mainType == 7)
1655 subType = 4;
1656 if (mainType == 9)
1657 subType = 6;
1658 if (mainType == 11)
1659 subType = 9;
1660 return subType;
1661 }
1662
1663 //===---------------------------------------------------------------------===//
1664
1665 The following test case (from PR6576):
1666
1667 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1668 entry:
1669 %cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1]
1670 br i1 %cond1, label %exit, label %bb.nph
1671 bb.nph: ; preds = %entry
1672 %tmp = mul i32 %b, %a ; <i32> [#uses=1]
1673 ret i32 %tmp
1674 exit: ; preds = %entry
1675 ret i32 0
1676 }
1677
1678 could be reduced to:
1679
1680 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1681 entry:
1682 %tmp = mul i32 %b, %a
1683 ret i32 %tmp
1684 }
1685
1686 //===---------------------------------------------------------------------===//
1687
1688 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
1689 See GCC PR34949
1690
1691 Another interesting case is that something related could be used for variables
1692 that go const after their ctor has finished. In these cases, globalopt (which
1693 can statically run the constructor) could mark the global const (so it gets put
1694 in the readonly section). A testcase would be:
1695
1696 #include <complex>
1697 using namespace std;
1698 const complex<char> should_be_in_rodata (42,-42);
1699 complex<char> should_be_in_data (42,-42);
1700 complex<char> should_be_in_bss;
1701
1702 Where we currently evaluate the ctors but the globals don't become const because
1703 the optimizer doesn't know they "become const" after the ctor is done. See
1704 GCC PR4131 for more examples.
1705
1706 //===---------------------------------------------------------------------===//
1707
1708 In this code:
1709
1710 long foo(long x) {
1711 return x > 1 ? x : 1;
1712 }
1713
1714 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
1715 and cheaper on most targets.
1716
1717 LLVM prefers comparisons with zero over non-zero in general, but in this
1718 case it choses instead to keep the max operation obvious.
1719
1720 //===---------------------------------------------------------------------===//
1721
1722 define void @a(i32 %x) nounwind {
1723 entry:
1724 switch i32 %x, label %if.end [
1725 i32 0, label %if.then
1726 i32 1, label %if.then
1727 i32 2, label %if.then
1728 i32 3, label %if.then
1729 i32 5, label %if.then
1730 ]
1731 if.then:
1732 tail call void @foo() nounwind
1733 ret void
1734 if.end:
1735 ret void
1736 }
1737 declare void @foo()
1738
1739 Generated code on x86-64 (other platforms give similar results):
1740 a:
1741 cmpl $5, %edi
1742 ja LBB2_2
1743 cmpl $4, %edi
1744 jne LBB2_3
1745 .LBB0_2:
1746 ret
1747 .LBB0_3:
1748 jmp foo # TAILCALL
1749
1750 If we wanted to be really clever, we could simplify the whole thing to
1751 something like the following, which eliminates a branch:
1752 xorl $1, %edi
1753 cmpl $4, %edi
1754 ja .LBB0_2
1755 ret
1756 .LBB0_2:
1757 jmp foo # TAILCALL
1758
1759 //===---------------------------------------------------------------------===//
1760
1761 We compile this:
1762
1763 int foo(int a) { return (a & (~15)) / 16; }
1764
1765 Into:
1766
1767 define i32 @foo(i32 %a) nounwind readnone ssp {
1768 entry:
1769 %and = and i32 %a, -16
1770 %div = sdiv i32 %and, 16
1771 ret i32 %div
1772 }
1773
1774 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
1775 should be instcombined into just "a >> 4".
1776
1777 We do get this at the codegen level, so something knows about it, but
1778 instcombine should catch it earlier:
1779
1780 _foo: ## @foo
1781 ## BB#0: ## %entry
1782 movl %edi, %eax
1783 sarl $4, %eax
1784 ret
1785
1786 //===---------------------------------------------------------------------===//
1787
1788 This code (from GCC PR28685):
1789
1790 int test(int a, int b) {
1791 int lt = a < b;
1792 int eq = a == b;
1793 if (lt)
1794 return 1;
1795 return eq;
1796 }
1797
1798 Is compiled to:
1799
1800 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
1801 entry:
1802 %cmp = icmp slt i32 %a, %b
1803 br i1 %cmp, label %return, label %if.end
1804
1805 if.end: ; preds = %entry
1806 %cmp5 = icmp eq i32 %a, %b
1807 %conv6 = zext i1 %cmp5 to i32
1808 ret i32 %conv6
1809
1810 return: ; preds = %entry
1811 ret i32 1
1812 }
1813
1814 it could be:
1815
1816 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
1817 entry:
1818 %0 = icmp sle i32 %a, %b
1819 %retval = zext i1 %0 to i32
1820 ret i32 %retval
1821 }
1822
1823 //===---------------------------------------------------------------------===//
1824
1825 This code can be seen in viterbi:
1826
1827 %64 = call noalias i8* @malloc(i64 %62) nounwind
1828 ...
1829 %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
1830 %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
1831
1832 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
1833 fold to %62. This is a security win (overflows of malloc will get caught)
1834 and also a performance win by exposing more memsets to the optimizer.
1835
1836 This occurs several times in viterbi.
1837
1838 Note that this would change the semantics of @llvm.objectsize which by its
1839 current definition always folds to a constant. We also should make sure that
1840 we remove checking in code like
1841
1842 char *p = malloc(strlen(s)+1);
1843 __strcpy_chk(p, s, __builtin_objectsize(p, 0));
1844
1845 //===---------------------------------------------------------------------===//
1846
1847 clang -O3 currently compiles this code
1848
1849 int g(unsigned int a) {
1850 unsigned int c[100];
1851 c[10] = a;
1852 c[11] = a;
1853 unsigned int b = c[10] + c[11];
1854 if(b > a*2) a = 4;
1855 else a = 8;
1856 return a + 7;
1857 }
1858
1859 into
1860
1861 define i32 @g(i32 a) nounwind readnone {
1862 %add = shl i32 %a, 1
1863 %mul = shl i32 %a, 1
1864 %cmp = icmp ugt i32 %add, %mul
1865 %a.addr.0 = select i1 %cmp, i32 11, i32 15
1866 ret i32 %a.addr.0
1867 }
1868
1869 The icmp should fold to false. This CSE opportunity is only available
1870 after GVN and InstCombine have run.
1871
1872 //===---------------------------------------------------------------------===//
1873
1874 memcpyopt should turn this:
1875
1876 define i8* @test10(i32 %x) {
1877 %alloc = call noalias i8* @malloc(i32 %x) nounwind
1878 call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
1879 ret i8* %alloc
1880 }
1881
1882 into a call to calloc. We should make sure that we analyze calloc as
1883 aggressively as malloc though.
1884
1885 //===---------------------------------------------------------------------===//
1886
1887 clang -O3 doesn't optimize this:
1888
1889 void f1(int* begin, int* end) {
1890 std::fill(begin, end, 0);
1891 }
1892
1893 into a memset. This is PR8942.
1894
1895 //===---------------------------------------------------------------------===//
1896
1897 clang -O3 -fno-exceptions currently compiles this code:
1898
1899 void f(int N) {
1900 std::vector<int> v(N);
1901
1902 extern void sink(void*); sink(&v);
1903 }
1904
1905 into
1906
1907 define void @_Z1fi(i32 %N) nounwind {
1908 entry:
1909 %v2 = alloca [3 x i32*], align 8
1910 %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
1911 %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
1912 %conv = sext i32 %N to i64
1913 store i32* null, i32** %v2.sub, align 8, !tbaa !0
1914 %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
1915 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1916 %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
1917 store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1918 %cmp.i.i.i.i = icmp eq i32 %N, 0
1919 br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
1920
1921 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
1922 store i32* null, i32** %v2.sub, align 8, !tbaa !0
1923 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1924 %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
1925 store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1926 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
1927
1928 cond.true.i.i.i.i: ; preds = %entry
1929 %cmp.i.i.i.i.i = icmp slt i32 %N, 0
1930 br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
1931
1932 if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i
1933 call void @_ZSt17__throw_bad_allocv() noreturn nounwind
1934 unreachable
1935
1936 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i
1937 %mul.i.i.i.i.i = shl i64 %conv, 2
1938 %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
1939 %0 = bitcast i8* %call3.i.i.i.i.i to i32*
1940 store i32* %0, i32** %v2.sub, align 8, !tbaa !0
1941 store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1942 %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
1943 store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1944 call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
1945 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
1946
1947 This is just the handling the construction of the vector. Most surprising here
1948 is the fact that all three null stores in %entry are dead (because we do no
1949 cross-block DSE).
1950
1951 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
1952 This is a because the client of LazyValueInfo doesn't simplify all instruction
1953 operands, just selected ones.
1954
1955 //===---------------------------------------------------------------------===//
1956
1957 clang -O3 -fno-exceptions currently compiles this code:
1958
1959 void f(char* a, int n) {
1960 __builtin_memset(a, 0, n);
1961 for (int i = 0; i < n; ++i)
1962 a[i] = 0;
1963 }
1964
1965 into:
1966
1967 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
1968 entry:
1969 %conv = sext i32 %n to i64
1970 tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
1971 %cmp8 = icmp sgt i32 %n, 0
1972 br i1 %cmp8, label %for.body.lr.ph, label %for.end
1973
1974 for.body.lr.ph: ; preds = %entry
1975 %tmp10 = add i32 %n, -1
1976 %tmp11 = zext i32 %tmp10 to i64
1977 %tmp12 = add i64 %tmp11, 1
1978 call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
1979 ret void
1980
1981 for.end: ; preds = %entry
1982 ret void
1983 }
1984
1985 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
1986 the two memset's together.
1987
1988 The issue with the addition only occurs in 64-bit mode, and appears to be at
1989 least partially caused by Scalar Evolution not keeping its cache updated: it
1990 returns the "wrong" result immediately after indvars runs, but figures out the
1991 expected result if it is run from scratch on IR resulting from running indvars.
1992
1993 //===---------------------------------------------------------------------===//
1994
1995 clang -O3 -fno-exceptions currently compiles this code:
1996
1997 struct S {
1998 unsigned short m1, m2;
1999 unsigned char m3, m4;
2000 };
2001
2002 void f(int N) {
2003 std::vector<S> v(N);
2004 extern void sink(void*); sink(&v);
2005 }
2006
2007 into poor code for zero-initializing 'v' when N is >0. The problem is that
2008 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
2009 4 stores on each iteration. If the struct were 8 bytes, this gets turned into
2010 a memset.
2011
2012 In order to handle this we have to:
2013 A) Teach clang to generate metadata for memsets of structs that have holes in
2014 them.
2015 B) Teach clang to use such a memset for zero init of this struct (since it has
2016 a hole), instead of doing elementwise zeroing.
2017
2018 //===---------------------------------------------------------------------===//
2019
2020 clang -O3 currently compiles this code:
2021
2022 extern const int magic;
2023 double f() { return 0.0 * magic; }
2024
2025 into
2026
2027 @magic = external constant i32
2028
2029 define double @_Z1fv() nounwind readnone {
2030 entry:
2031 %tmp = load i32* @magic, align 4, !tbaa !0
2032 %conv = sitofp i32 %tmp to double
2033 %mul = fmul double %conv, 0.000000e+00
2034 ret double %mul
2035 }
2036
2037 We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0)
2038 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
2039 not an INF. The CannotBeNegativeZero predicate in value tracking should be
2040 extended to support general "fpclassify" operations that can return
2041 yes/no/unknown for each of these predicates.
2042
2043 In this predicate, we know that uitofp is trivially never NaN or -0.0, and
2044 we know that it isn't +/-Inf if the floating point type has enough exponent bits
2045 to represent the largest integer value as < inf.
2046
2047 //===---------------------------------------------------------------------===//
2048
2049 When optimizing a transformation that can change the sign of 0.0 (such as the
2050 0.0*val -> 0.0 transformation above), it might be provable that the sign of the
2051 expression doesn't matter. For example, by the above rules, we can't transform
2052 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
2053 expression is defined to be -0.0.
2054
2055 If we look at the uses of the fmul for example, we might be able to prove that
2056 all uses don't care about the sign of zero. For example, if we have:
2057
2058 fadd(fmul(sitofp(x), 0.0), 2.0)
2059
2060 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
2061 transform the fmul to 0.0, and then the fadd to 2.0.
2062
2063 //===---------------------------------------------------------------------===//
2064
2065 We should enhance memcpy/memcpy/memset to allow a metadata node on them
2066 indicating that some bytes of the transfer are undefined. This is useful for
2067 frontends like clang when lowering struct copies, when some elements of the
2068 struct are undefined. Consider something like this:
2069
2070 struct x {
2071 char a;
2072 int b[4];
2073 };
2074 void foo(struct x*P);
2075 struct x testfunc() {
2076 struct x V1, V2;
2077 foo(&V1);
2078 V2 = V1;
2079
2080 return V2;
2081 }
2082
2083 We currently compile this to:
2084 $ clang t.c -S -o - -O0 -emit-llvm | opt -sroa -S
2085
2086
2087 %struct.x = type { i8, [4 x i32] }
2088
2089 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
2090 entry:
2091 %V1 = alloca %struct.x, align 4
2092 call void @foo(%struct.x* %V1)
2093 %tmp1 = bitcast %struct.x* %V1 to i8*
2094 %0 = bitcast %struct.x* %V1 to i160*
2095 %srcval1 = load i160* %0, align 4
2096 %tmp2 = bitcast %struct.x* %agg.result to i8*
2097 %1 = bitcast %struct.x* %agg.result to i160*
2098 store i160 %srcval1, i160* %1, align 4
2099 ret void
2100 }
2101
2102 This happens because SRoA sees that the temp alloca has is being memcpy'd into
2103 and out of and it has holes and it has to be conservative. If we knew about the
2104 holes, then this could be much much better.
2105
2106 Having information about these holes would also improve memcpy (etc) lowering at
2107 llc time when it gets inlined, because we can use smaller transfers. This also
2108 avoids partial register stalls in some important cases.
2109
2110 //===---------------------------------------------------------------------===//
2111
2112 We don't fold (icmp (add) (add)) unless the two adds only have a single use.
2113 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
2114 example:
2115
2116 %indvar.next90 = add i64 %indvar89, 1 ;; Has 2 uses
2117 %tmp96 = add i64 %tmp95, 1 ;; Has 1 use
2118 %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
2119
2120 We don't fold this because we don't want to introduce an overlapped live range
2121 of the ivar. However if we can make this more aggressive without causing
2122 performance issues in two ways:
2123
2124 1. If *either* the LHS or RHS has a single use, we can definitely do the
2125 transformation. In the overlapping liverange case we're trading one register
2126 use for one fewer operation, which is a reasonable trade. Before doing this
2127 we should verify that the llc output actually shrinks for some benchmarks.
2128 2. If both ops have multiple uses, we can still fold it if the operations are
2129 both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
2130 increase register pressure.
2131
2132 There are a ton of icmp's we aren't simplifying because of the reg pressure
2133 concern. Care is warranted here though because many of these are induction
2134 variables and other cases that matter a lot to performance, like the above.
2135 Here's a blob of code that you can drop into the bottom of visitICmp to see some
2136 missed cases:
2137
2138 { Value *A, *B, *C, *D;
2139 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2140 match(Op1, m_Add(m_Value(C), m_Value(D))) &&
2141 (A == C || A == D || B == C || B == D)) {
2142 errs() << "OP0 = " << *Op0 << " U=" << Op0->getNumUses() << "\n";
2143 errs() << "OP1 = " << *Op1 << " U=" << Op1->getNumUses() << "\n";
2144 errs() << "CMP = " << I << "\n\n";
2145 }
2146 }
2147
2148 //===---------------------------------------------------------------------===//
2149
2150 define i1 @test1(i32 %x) nounwind {
2151 %and = and i32 %x, 3
2152 %cmp = icmp ult i32 %and, 2
2153 ret i1 %cmp
2154 }
2155
2156 Can be folded to (x & 2) == 0.
2157
2158 define i1 @test2(i32 %x) nounwind {
2159 %and = and i32 %x, 3
2160 %cmp = icmp ugt i32 %and, 1
2161 ret i1 %cmp
2162 }
2163
2164 Can be folded to (x & 2) != 0.
2165
2166 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
2167 icmp transform.
2168
2169 //===---------------------------------------------------------------------===//
2170
2171 This code:
2172
2173 typedef struct {
2174 int f1:1;
2175 int f2:1;
2176 int f3:1;
2177 int f4:29;
2178 } t1;
2179
2180 typedef struct {
2181 int f1:1;
2182 int f2:1;
2183 int f3:30;
2184 } t2;
2185
2186 t1 s1;
2187 t2 s2;
2188
2189 void func1(void)
2190 {
2191 s1.f1 = s2.f1;
2192 s1.f2 = s2.f2;
2193 }
2194
2195 Compiles into this IR (on x86-64 at least):
2196
2197 %struct.t1 = type { i8, [3 x i8] }
2198 @s2 = global %struct.t1 zeroinitializer, align 4
2199 @s1 = global %struct.t1 zeroinitializer, align 4
2200 define void @func1() nounwind ssp noredzone {
2201 entry:
2202 %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
2203 %bf.val.sext5 = and i32 %0, 1
2204 %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
2205 %2 = and i32 %1, -4
2206 %3 = or i32 %2, %bf.val.sext5
2207 %bf.val.sext26 = and i32 %0, 2
2208 %4 = or i32 %3, %bf.val.sext26
2209 store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
2210 ret void
2211 }
2212
2213 The two or/and's should be merged into one each.
2214
2215 //===---------------------------------------------------------------------===//
2216
2217 Machine level code hoisting can be useful in some cases. For example, PR9408
2218 is about:
2219
2220 typedef union {
2221 void (*f1)(int);
2222 void (*f2)(long);
2223 } funcs;
2224
2225 void foo(funcs f, int which) {
2226 int a = 5;
2227 if (which) {
2228 f.f1(a);
2229 } else {
2230 f.f2(a);
2231 }
2232 }
2233
2234 which we compile to:
2235
2236 foo: # @foo
2237 # BB#0: # %entry
2238 pushq %rbp
2239 movq %rsp, %rbp
2240 testl %esi, %esi
2241 movq %rdi, %rax
2242 je .LBB0_2
2243 # BB#1: # %if.then
2244 movl $5, %edi
2245 callq *%rax
2246 popq %rbp
2247 ret
2248 .LBB0_2: # %if.else
2249 movl $5, %edi
2250 callq *%rax
2251 popq %rbp
2252 ret
2253
2254 Note that bb1 and bb2 are the same. This doesn't happen at the IR level
2255 because one call is passing an i32 and the other is passing an i64.
2256
2257 //===---------------------------------------------------------------------===//
2258
2259 I see this sort of pattern in 176.gcc in a few places (e.g. the start of
2260 store_bit_field). The rem should be replaced with a multiply and subtract:
2261
2262 %3 = sdiv i32 %A, %B
2263 %4 = srem i32 %A, %B
2264
2265 Similarly for udiv/urem. Note that this shouldn't be done on X86 or ARM,
2266 which can do this in a single operation (instruction or libcall). It is
2267 probably best to do this in the code generator.
2268
2269 //===---------------------------------------------------------------------===//
2270
2271 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
2272 should fold to (x & y) == 0.
2273
2274 //===---------------------------------------------------------------------===//
2275
2276 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
2277 should fold to x > y.
2278
2279 //===---------------------------------------------------------------------===//
2280