Home | History | Annotate | Download | only in AST
      1 //===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Defines the clang::ASTContext interface.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
     16 #define LLVM_CLANG_AST_ASTCONTEXT_H
     17 
     18 #include "clang/AST/ASTTypeTraits.h"
     19 #include "clang/AST/CanonicalType.h"
     20 #include "clang/AST/CommentCommandTraits.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/ExternalASTSource.h"
     23 #include "clang/AST/NestedNameSpecifier.h"
     24 #include "clang/AST/PrettyPrinter.h"
     25 #include "clang/AST/RawCommentList.h"
     26 #include "clang/AST/TemplateName.h"
     27 #include "clang/AST/Type.h"
     28 #include "clang/Basic/AddressSpaces.h"
     29 #include "clang/Basic/IdentifierTable.h"
     30 #include "clang/Basic/LangOptions.h"
     31 #include "clang/Basic/Module.h"
     32 #include "clang/Basic/OperatorKinds.h"
     33 #include "clang/Basic/PartialDiagnostic.h"
     34 #include "clang/Basic/SanitizerBlacklist.h"
     35 #include "clang/Basic/VersionTuple.h"
     36 #include "llvm/ADT/DenseMap.h"
     37 #include "llvm/ADT/FoldingSet.h"
     38 #include "llvm/ADT/IntrusiveRefCntPtr.h"
     39 #include "llvm/ADT/MapVector.h"
     40 #include "llvm/ADT/SmallPtrSet.h"
     41 #include "llvm/ADT/TinyPtrVector.h"
     42 #include "llvm/Support/Allocator.h"
     43 #include <memory>
     44 #include <vector>
     45 
     46 namespace llvm {
     47   struct fltSemantics;
     48 }
     49 
     50 namespace clang {
     51   class FileManager;
     52   class AtomicExpr;
     53   class ASTRecordLayout;
     54   class BlockExpr;
     55   class CharUnits;
     56   class DiagnosticsEngine;
     57   class Expr;
     58   class ASTMutationListener;
     59   class IdentifierTable;
     60   class MaterializeTemporaryExpr;
     61   class SelectorTable;
     62   class TargetInfo;
     63   class CXXABI;
     64   class MangleNumberingContext;
     65   // Decls
     66   class MangleContext;
     67   class ObjCIvarDecl;
     68   class ObjCPropertyDecl;
     69   class UnresolvedSetIterator;
     70   class UsingDecl;
     71   class UsingShadowDecl;
     72   class VTableContextBase;
     73 
     74   namespace Builtin { class Context; }
     75   enum BuiltinTemplateKind : int;
     76 
     77   namespace comments {
     78     class FullComment;
     79   }
     80 
     81   struct TypeInfo {
     82     uint64_t Width;
     83     unsigned Align;
     84     bool AlignIsRequired : 1;
     85     TypeInfo() : Width(0), Align(0), AlignIsRequired(false) {}
     86     TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
     87         : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
     88   };
     89 
     90 /// \brief Holds long-lived AST nodes (such as types and decls) that can be
     91 /// referred to throughout the semantic analysis of a file.
     92 class ASTContext : public RefCountedBase<ASTContext> {
     93   ASTContext &this_() { return *this; }
     94 
     95   mutable SmallVector<Type *, 0> Types;
     96   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
     97   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
     98   mutable llvm::FoldingSet<PointerType> PointerTypes;
     99   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
    100   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
    101   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
    102   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
    103   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
    104   mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
    105   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
    106   mutable std::vector<VariableArrayType*> VariableArrayTypes;
    107   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
    108   mutable llvm::FoldingSet<DependentSizedExtVectorType>
    109     DependentSizedExtVectorTypes;
    110   mutable llvm::FoldingSet<VectorType> VectorTypes;
    111   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
    112   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
    113     FunctionProtoTypes;
    114   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
    115   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
    116   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
    117   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
    118     SubstTemplateTypeParmTypes;
    119   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
    120     SubstTemplateTypeParmPackTypes;
    121   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
    122     TemplateSpecializationTypes;
    123   mutable llvm::FoldingSet<ParenType> ParenTypes;
    124   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
    125   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
    126   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
    127                                      ASTContext&>
    128     DependentTemplateSpecializationTypes;
    129   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
    130   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
    131   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
    132   mutable llvm::FoldingSet<DependentUnaryTransformType>
    133     DependentUnaryTransformTypes;
    134   mutable llvm::FoldingSet<AutoType> AutoTypes;
    135   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
    136   llvm::FoldingSet<AttributedType> AttributedTypes;
    137   mutable llvm::FoldingSet<PipeType> PipeTypes;
    138 
    139   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
    140   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
    141   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
    142     SubstTemplateTemplateParms;
    143   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
    144                                      ASTContext&>
    145     SubstTemplateTemplateParmPacks;
    146 
    147   /// \brief The set of nested name specifiers.
    148   ///
    149   /// This set is managed by the NestedNameSpecifier class.
    150   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
    151   mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
    152   friend class NestedNameSpecifier;
    153 
    154   /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
    155   ///
    156   /// This is lazily created.  This is intentionally not serialized.
    157   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
    158     ASTRecordLayouts;
    159   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
    160     ObjCLayouts;
    161 
    162   /// \brief A cache from types to size and alignment information.
    163   typedef llvm::DenseMap<const Type *, struct TypeInfo> TypeInfoMap;
    164   mutable TypeInfoMap MemoizedTypeInfo;
    165 
    166   /// \brief A cache mapping from CXXRecordDecls to key functions.
    167   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
    168 
    169   /// \brief Mapping from ObjCContainers to their ObjCImplementations.
    170   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
    171 
    172   /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
    173   /// interface.
    174   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
    175 
    176   /// \brief Mapping from __block VarDecls to their copy initialization expr.
    177   llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
    178 
    179   /// \brief Mapping from class scope functions specialization to their
    180   /// template patterns.
    181   llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
    182     ClassScopeSpecializationPattern;
    183 
    184   /// \brief Mapping from materialized temporaries with static storage duration
    185   /// that appear in constant initializers to their evaluated values.  These are
    186   /// allocated in a std::map because their address must be stable.
    187   llvm::DenseMap<const MaterializeTemporaryExpr *, APValue *>
    188     MaterializedTemporaryValues;
    189 
    190   /// \brief Representation of a "canonical" template template parameter that
    191   /// is used in canonical template names.
    192   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
    193     TemplateTemplateParmDecl *Parm;
    194 
    195   public:
    196     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
    197       : Parm(Parm) { }
    198 
    199     TemplateTemplateParmDecl *getParam() const { return Parm; }
    200 
    201     void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
    202 
    203     static void Profile(llvm::FoldingSetNodeID &ID,
    204                         TemplateTemplateParmDecl *Parm);
    205   };
    206   mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
    207     CanonTemplateTemplateParms;
    208 
    209   TemplateTemplateParmDecl *
    210     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
    211 
    212   /// \brief The typedef for the __int128_t type.
    213   mutable TypedefDecl *Int128Decl;
    214 
    215   /// \brief The typedef for the __uint128_t type.
    216   mutable TypedefDecl *UInt128Decl;
    217 
    218   /// \brief The typedef for the target specific predefined
    219   /// __builtin_va_list type.
    220   mutable TypedefDecl *BuiltinVaListDecl;
    221 
    222   /// The typedef for the predefined \c __builtin_ms_va_list type.
    223   mutable TypedefDecl *BuiltinMSVaListDecl;
    224 
    225   /// \brief The typedef for the predefined \c id type.
    226   mutable TypedefDecl *ObjCIdDecl;
    227 
    228   /// \brief The typedef for the predefined \c SEL type.
    229   mutable TypedefDecl *ObjCSelDecl;
    230 
    231   /// \brief The typedef for the predefined \c Class type.
    232   mutable TypedefDecl *ObjCClassDecl;
    233 
    234   /// \brief The typedef for the predefined \c Protocol class in Objective-C.
    235   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
    236 
    237   /// \brief The typedef for the predefined 'BOOL' type.
    238   mutable TypedefDecl *BOOLDecl;
    239 
    240   // Typedefs which may be provided defining the structure of Objective-C
    241   // pseudo-builtins
    242   QualType ObjCIdRedefinitionType;
    243   QualType ObjCClassRedefinitionType;
    244   QualType ObjCSelRedefinitionType;
    245 
    246   /// The identifier 'bool'.
    247   mutable IdentifierInfo *BoolName = nullptr;
    248 
    249   /// The identifier 'NSObject'.
    250   IdentifierInfo *NSObjectName = nullptr;
    251 
    252   /// The identifier 'NSCopying'.
    253   IdentifierInfo *NSCopyingName = nullptr;
    254 
    255   /// The identifier '__make_integer_seq'.
    256   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
    257 
    258   /// The identifier '__type_pack_element'.
    259   mutable IdentifierInfo *TypePackElementName = nullptr;
    260 
    261   QualType ObjCConstantStringType;
    262   mutable RecordDecl *CFConstantStringTagDecl;
    263   mutable TypedefDecl *CFConstantStringTypeDecl;
    264 
    265   mutable QualType ObjCSuperType;
    266 
    267   QualType ObjCNSStringType;
    268 
    269   /// \brief The typedef declaration for the Objective-C "instancetype" type.
    270   TypedefDecl *ObjCInstanceTypeDecl;
    271 
    272   /// \brief The type for the C FILE type.
    273   TypeDecl *FILEDecl;
    274 
    275   /// \brief The type for the C jmp_buf type.
    276   TypeDecl *jmp_bufDecl;
    277 
    278   /// \brief The type for the C sigjmp_buf type.
    279   TypeDecl *sigjmp_bufDecl;
    280 
    281   /// \brief The type for the C ucontext_t type.
    282   TypeDecl *ucontext_tDecl;
    283 
    284   /// \brief Type for the Block descriptor for Blocks CodeGen.
    285   ///
    286   /// Since this is only used for generation of debug info, it is not
    287   /// serialized.
    288   mutable RecordDecl *BlockDescriptorType;
    289 
    290   /// \brief Type for the Block descriptor for Blocks CodeGen.
    291   ///
    292   /// Since this is only used for generation of debug info, it is not
    293   /// serialized.
    294   mutable RecordDecl *BlockDescriptorExtendedType;
    295 
    296   /// \brief Declaration for the CUDA cudaConfigureCall function.
    297   FunctionDecl *cudaConfigureCallDecl;
    298 
    299   /// \brief Keeps track of all declaration attributes.
    300   ///
    301   /// Since so few decls have attrs, we keep them in a hash map instead of
    302   /// wasting space in the Decl class.
    303   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
    304 
    305   /// \brief A mapping from non-redeclarable declarations in modules that were
    306   /// merged with other declarations to the canonical declaration that they were
    307   /// merged into.
    308   llvm::DenseMap<Decl*, Decl*> MergedDecls;
    309 
    310   /// \brief A mapping from a defining declaration to a list of modules (other
    311   /// than the owning module of the declaration) that contain merged
    312   /// definitions of that entity.
    313   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
    314 
    315 public:
    316   /// \brief A type synonym for the TemplateOrInstantiation mapping.
    317   typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
    318   TemplateOrSpecializationInfo;
    319 
    320 private:
    321 
    322   /// \brief A mapping to contain the template or declaration that
    323   /// a variable declaration describes or was instantiated from,
    324   /// respectively.
    325   ///
    326   /// For non-templates, this value will be NULL. For variable
    327   /// declarations that describe a variable template, this will be a
    328   /// pointer to a VarTemplateDecl. For static data members
    329   /// of class template specializations, this will be the
    330   /// MemberSpecializationInfo referring to the member variable that was
    331   /// instantiated or specialized. Thus, the mapping will keep track of
    332   /// the static data member templates from which static data members of
    333   /// class template specializations were instantiated.
    334   ///
    335   /// Given the following example:
    336   ///
    337   /// \code
    338   /// template<typename T>
    339   /// struct X {
    340   ///   static T value;
    341   /// };
    342   ///
    343   /// template<typename T>
    344   ///   T X<T>::value = T(17);
    345   ///
    346   /// int *x = &X<int>::value;
    347   /// \endcode
    348   ///
    349   /// This mapping will contain an entry that maps from the VarDecl for
    350   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
    351   /// class template X) and will be marked TSK_ImplicitInstantiation.
    352   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
    353   TemplateOrInstantiation;
    354 
    355   /// \brief Keeps track of the declaration from which a UsingDecl was
    356   /// created during instantiation.
    357   ///
    358   /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
    359   /// or an UnresolvedUsingTypenameDecl.
    360   ///
    361   /// For example:
    362   /// \code
    363   /// template<typename T>
    364   /// struct A {
    365   ///   void f();
    366   /// };
    367   ///
    368   /// template<typename T>
    369   /// struct B : A<T> {
    370   ///   using A<T>::f;
    371   /// };
    372   ///
    373   /// template struct B<int>;
    374   /// \endcode
    375   ///
    376   /// This mapping will contain an entry that maps from the UsingDecl in
    377   /// B<int> to the UnresolvedUsingDecl in B<T>.
    378   llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
    379 
    380   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
    381     InstantiatedFromUsingShadowDecl;
    382 
    383   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
    384 
    385   /// \brief Mapping that stores the methods overridden by a given C++
    386   /// member function.
    387   ///
    388   /// Since most C++ member functions aren't virtual and therefore
    389   /// don't override anything, we store the overridden functions in
    390   /// this map on the side rather than within the CXXMethodDecl structure.
    391   typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
    392   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
    393 
    394   /// \brief Mapping from each declaration context to its corresponding
    395   /// mangling numbering context (used for constructs like lambdas which
    396   /// need to be consistently numbered for the mangler).
    397   llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
    398       MangleNumberingContexts;
    399 
    400   /// \brief Side-table of mangling numbers for declarations which rarely
    401   /// need them (like static local vars).
    402   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
    403   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
    404 
    405   /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
    406   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
    407   typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
    408   ParameterIndexTable ParamIndices;
    409 
    410   ImportDecl *FirstLocalImport;
    411   ImportDecl *LastLocalImport;
    412 
    413   TranslationUnitDecl *TUDecl;
    414   mutable ExternCContextDecl *ExternCContext;
    415   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl;
    416   mutable BuiltinTemplateDecl *TypePackElementDecl;
    417 
    418   /// \brief The associated SourceManager object.a
    419   SourceManager &SourceMgr;
    420 
    421   /// \brief The language options used to create the AST associated with
    422   ///  this ASTContext object.
    423   LangOptions &LangOpts;
    424 
    425   /// \brief Blacklist object that is used by sanitizers to decide which
    426   /// entities should not be instrumented.
    427   std::unique_ptr<SanitizerBlacklist> SanitizerBL;
    428 
    429   /// \brief The allocator used to create AST objects.
    430   ///
    431   /// AST objects are never destructed; rather, all memory associated with the
    432   /// AST objects will be released when the ASTContext itself is destroyed.
    433   mutable llvm::BumpPtrAllocator BumpAlloc;
    434 
    435   /// \brief Allocator for partial diagnostics.
    436   PartialDiagnostic::StorageAllocator DiagAllocator;
    437 
    438   /// \brief The current C++ ABI.
    439   std::unique_ptr<CXXABI> ABI;
    440   CXXABI *createCXXABI(const TargetInfo &T);
    441 
    442   /// \brief The logical -> physical address space map.
    443   const LangAS::Map *AddrSpaceMap;
    444 
    445   /// \brief Address space map mangling must be used with language specific
    446   /// address spaces (e.g. OpenCL/CUDA)
    447   bool AddrSpaceMapMangling;
    448 
    449   friend class ASTDeclReader;
    450   friend class ASTReader;
    451   friend class ASTWriter;
    452   friend class CXXRecordDecl;
    453 
    454   const TargetInfo *Target;
    455   const TargetInfo *AuxTarget;
    456   clang::PrintingPolicy PrintingPolicy;
    457 
    458 public:
    459   IdentifierTable &Idents;
    460   SelectorTable &Selectors;
    461   Builtin::Context &BuiltinInfo;
    462   mutable DeclarationNameTable DeclarationNames;
    463   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
    464   ASTMutationListener *Listener;
    465 
    466   /// \brief Contains parents of a node.
    467   typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 2> ParentVector;
    468 
    469   /// \brief Maps from a node to its parents. This is used for nodes that have
    470   /// pointer identity only, which are more common and we can save space by
    471   /// only storing a unique pointer to them.
    472   typedef llvm::DenseMap<const void *,
    473                          llvm::PointerUnion4<const Decl *, const Stmt *,
    474                                              ast_type_traits::DynTypedNode *,
    475                                              ParentVector *>> ParentMapPointers;
    476 
    477   /// Parent map for nodes without pointer identity. We store a full
    478   /// DynTypedNode for all keys.
    479   typedef llvm::DenseMap<
    480       ast_type_traits::DynTypedNode,
    481       llvm::PointerUnion4<const Decl *, const Stmt *,
    482                           ast_type_traits::DynTypedNode *, ParentVector *>>
    483       ParentMapOtherNodes;
    484 
    485   /// Container for either a single DynTypedNode or for an ArrayRef to
    486   /// DynTypedNode. For use with ParentMap.
    487   class DynTypedNodeList {
    488     typedef ast_type_traits::DynTypedNode DynTypedNode;
    489     llvm::AlignedCharArrayUnion<ast_type_traits::DynTypedNode,
    490                                 ArrayRef<DynTypedNode>> Storage;
    491     bool IsSingleNode;
    492 
    493   public:
    494     DynTypedNodeList(const DynTypedNode &N) : IsSingleNode(true) {
    495       new (Storage.buffer) DynTypedNode(N);
    496     }
    497     DynTypedNodeList(ArrayRef<DynTypedNode> A) : IsSingleNode(false) {
    498       new (Storage.buffer) ArrayRef<DynTypedNode>(A);
    499     }
    500 
    501     const ast_type_traits::DynTypedNode *begin() const {
    502       if (!IsSingleNode)
    503         return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
    504             ->begin();
    505       return reinterpret_cast<const DynTypedNode *>(Storage.buffer);
    506     }
    507 
    508     const ast_type_traits::DynTypedNode *end() const {
    509       if (!IsSingleNode)
    510         return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
    511             ->end();
    512       return reinterpret_cast<const DynTypedNode *>(Storage.buffer) + 1;
    513     }
    514 
    515     size_t size() const { return end() - begin(); }
    516     bool empty() const { return begin() == end(); }
    517     const DynTypedNode &operator[](size_t N) const {
    518       assert(N < size() && "Out of bounds!");
    519       return *(begin() + N);
    520     }
    521   };
    522 
    523   /// \brief Returns the parents of the given node.
    524   ///
    525   /// Note that this will lazily compute the parents of all nodes
    526   /// and store them for later retrieval. Thus, the first call is O(n)
    527   /// in the number of AST nodes.
    528   ///
    529   /// Caveats and FIXMEs:
    530   /// Calculating the parent map over all AST nodes will need to load the
    531   /// full AST. This can be undesirable in the case where the full AST is
    532   /// expensive to create (for example, when using precompiled header
    533   /// preambles). Thus, there are good opportunities for optimization here.
    534   /// One idea is to walk the given node downwards, looking for references
    535   /// to declaration contexts - once a declaration context is found, compute
    536   /// the parent map for the declaration context; if that can satisfy the
    537   /// request, loading the whole AST can be avoided. Note that this is made
    538   /// more complex by statements in templates having multiple parents - those
    539   /// problems can be solved by building closure over the templated parts of
    540   /// the AST, which also avoids touching large parts of the AST.
    541   /// Additionally, we will want to add an interface to already give a hint
    542   /// where to search for the parents, for example when looking at a statement
    543   /// inside a certain function.
    544   ///
    545   /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
    546   /// NestedNameSpecifier or NestedNameSpecifierLoc.
    547   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node) {
    548     return getParents(ast_type_traits::DynTypedNode::create(Node));
    549   }
    550 
    551   DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node);
    552 
    553   const clang::PrintingPolicy &getPrintingPolicy() const {
    554     return PrintingPolicy;
    555   }
    556 
    557   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
    558     PrintingPolicy = Policy;
    559   }
    560 
    561   SourceManager& getSourceManager() { return SourceMgr; }
    562   const SourceManager& getSourceManager() const { return SourceMgr; }
    563 
    564   llvm::BumpPtrAllocator &getAllocator() const {
    565     return BumpAlloc;
    566   }
    567 
    568   void *Allocate(size_t Size, unsigned Align = 8) const {
    569     return BumpAlloc.Allocate(Size, Align);
    570   }
    571   template <typename T> T *Allocate(size_t Num = 1) const {
    572     return static_cast<T *>(Allocate(Num * sizeof(T), llvm::alignOf<T>()));
    573   }
    574   void Deallocate(void *Ptr) const { }
    575 
    576   /// Return the total amount of physical memory allocated for representing
    577   /// AST nodes and type information.
    578   size_t getASTAllocatedMemory() const {
    579     return BumpAlloc.getTotalMemory();
    580   }
    581   /// Return the total memory used for various side tables.
    582   size_t getSideTableAllocatedMemory() const;
    583 
    584   PartialDiagnostic::StorageAllocator &getDiagAllocator() {
    585     return DiagAllocator;
    586   }
    587 
    588   const TargetInfo &getTargetInfo() const { return *Target; }
    589   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
    590 
    591   /// getIntTypeForBitwidth -
    592   /// sets integer QualTy according to specified details:
    593   /// bitwidth, signed/unsigned.
    594   /// Returns empty type if there is no appropriate target types.
    595   QualType getIntTypeForBitwidth(unsigned DestWidth,
    596                                  unsigned Signed) const;
    597   /// getRealTypeForBitwidth -
    598   /// sets floating point QualTy according to specified bitwidth.
    599   /// Returns empty type if there is no appropriate target types.
    600   QualType getRealTypeForBitwidth(unsigned DestWidth) const;
    601 
    602   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
    603 
    604   const LangOptions& getLangOpts() const { return LangOpts; }
    605 
    606   const SanitizerBlacklist &getSanitizerBlacklist() const {
    607     return *SanitizerBL;
    608   }
    609 
    610   DiagnosticsEngine &getDiagnostics() const;
    611 
    612   FullSourceLoc getFullLoc(SourceLocation Loc) const {
    613     return FullSourceLoc(Loc,SourceMgr);
    614   }
    615 
    616   /// \brief All comments in this translation unit.
    617   RawCommentList Comments;
    618 
    619   /// \brief True if comments are already loaded from ExternalASTSource.
    620   mutable bool CommentsLoaded;
    621 
    622   class RawCommentAndCacheFlags {
    623   public:
    624     enum Kind {
    625       /// We searched for a comment attached to the particular declaration, but
    626       /// didn't find any.
    627       ///
    628       /// getRaw() == 0.
    629       NoCommentInDecl = 0,
    630 
    631       /// We have found a comment attached to this particular declaration.
    632       ///
    633       /// getRaw() != 0.
    634       FromDecl,
    635 
    636       /// This declaration does not have an attached comment, and we have
    637       /// searched the redeclaration chain.
    638       ///
    639       /// If getRaw() == 0, the whole redeclaration chain does not have any
    640       /// comments.
    641       ///
    642       /// If getRaw() != 0, it is a comment propagated from other
    643       /// redeclaration.
    644       FromRedecl
    645     };
    646 
    647     Kind getKind() const LLVM_READONLY {
    648       return Data.getInt();
    649     }
    650 
    651     void setKind(Kind K) {
    652       Data.setInt(K);
    653     }
    654 
    655     const RawComment *getRaw() const LLVM_READONLY {
    656       return Data.getPointer();
    657     }
    658 
    659     void setRaw(const RawComment *RC) {
    660       Data.setPointer(RC);
    661     }
    662 
    663     const Decl *getOriginalDecl() const LLVM_READONLY {
    664       return OriginalDecl;
    665     }
    666 
    667     void setOriginalDecl(const Decl *Orig) {
    668       OriginalDecl = Orig;
    669     }
    670 
    671   private:
    672     llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
    673     const Decl *OriginalDecl;
    674   };
    675 
    676   /// \brief Mapping from declarations to comments attached to any
    677   /// redeclaration.
    678   ///
    679   /// Raw comments are owned by Comments list.  This mapping is populated
    680   /// lazily.
    681   mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
    682 
    683   /// \brief Mapping from declarations to parsed comments attached to any
    684   /// redeclaration.
    685   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
    686 
    687   /// \brief Return the documentation comment attached to a given declaration,
    688   /// without looking into cache.
    689   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
    690 
    691 public:
    692   RawCommentList &getRawCommentList() {
    693     return Comments;
    694   }
    695 
    696   void addComment(const RawComment &RC) {
    697     assert(LangOpts.RetainCommentsFromSystemHeaders ||
    698            !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
    699     Comments.addComment(RC, BumpAlloc);
    700   }
    701 
    702   /// \brief Return the documentation comment attached to a given declaration.
    703   /// Returns NULL if no comment is attached.
    704   ///
    705   /// \param OriginalDecl if not NULL, is set to declaration AST node that had
    706   /// the comment, if the comment we found comes from a redeclaration.
    707   const RawComment *
    708   getRawCommentForAnyRedecl(const Decl *D,
    709                             const Decl **OriginalDecl = nullptr) const;
    710 
    711   /// Return parsed documentation comment attached to a given declaration.
    712   /// Returns NULL if no comment is attached.
    713   ///
    714   /// \param PP the Preprocessor used with this TU.  Could be NULL if
    715   /// preprocessor is not available.
    716   comments::FullComment *getCommentForDecl(const Decl *D,
    717                                            const Preprocessor *PP) const;
    718 
    719   /// Return parsed documentation comment attached to a given declaration.
    720   /// Returns NULL if no comment is attached. Does not look at any
    721   /// redeclarations of the declaration.
    722   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
    723 
    724   comments::FullComment *cloneFullComment(comments::FullComment *FC,
    725                                          const Decl *D) const;
    726 
    727 private:
    728   mutable comments::CommandTraits CommentCommandTraits;
    729 
    730   /// \brief Iterator that visits import declarations.
    731   class import_iterator {
    732     ImportDecl *Import;
    733 
    734   public:
    735     typedef ImportDecl               *value_type;
    736     typedef ImportDecl               *reference;
    737     typedef ImportDecl               *pointer;
    738     typedef int                       difference_type;
    739     typedef std::forward_iterator_tag iterator_category;
    740 
    741     import_iterator() : Import() {}
    742     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
    743 
    744     reference operator*() const { return Import; }
    745     pointer operator->() const { return Import; }
    746 
    747     import_iterator &operator++() {
    748       Import = ASTContext::getNextLocalImport(Import);
    749       return *this;
    750     }
    751 
    752     import_iterator operator++(int) {
    753       import_iterator Other(*this);
    754       ++(*this);
    755       return Other;
    756     }
    757 
    758     friend bool operator==(import_iterator X, import_iterator Y) {
    759       return X.Import == Y.Import;
    760     }
    761 
    762     friend bool operator!=(import_iterator X, import_iterator Y) {
    763       return X.Import != Y.Import;
    764     }
    765   };
    766 
    767 public:
    768   comments::CommandTraits &getCommentCommandTraits() const {
    769     return CommentCommandTraits;
    770   }
    771 
    772   /// \brief Retrieve the attributes for the given declaration.
    773   AttrVec& getDeclAttrs(const Decl *D);
    774 
    775   /// \brief Erase the attributes corresponding to the given declaration.
    776   void eraseDeclAttrs(const Decl *D);
    777 
    778   /// \brief If this variable is an instantiated static data member of a
    779   /// class template specialization, returns the templated static data member
    780   /// from which it was instantiated.
    781   // FIXME: Remove ?
    782   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
    783                                                            const VarDecl *Var);
    784 
    785   TemplateOrSpecializationInfo
    786   getTemplateOrSpecializationInfo(const VarDecl *Var);
    787 
    788   FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
    789 
    790   void setClassScopeSpecializationPattern(FunctionDecl *FD,
    791                                           FunctionDecl *Pattern);
    792 
    793   /// \brief Note that the static data member \p Inst is an instantiation of
    794   /// the static data member template \p Tmpl of a class template.
    795   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
    796                                            TemplateSpecializationKind TSK,
    797                         SourceLocation PointOfInstantiation = SourceLocation());
    798 
    799   void setTemplateOrSpecializationInfo(VarDecl *Inst,
    800                                        TemplateOrSpecializationInfo TSI);
    801 
    802   /// \brief If the given using decl \p Inst is an instantiation of a
    803   /// (possibly unresolved) using decl from a template instantiation,
    804   /// return it.
    805   NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
    806 
    807   /// \brief Remember that the using decl \p Inst is an instantiation
    808   /// of the using decl \p Pattern of a class template.
    809   void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
    810 
    811   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
    812                                           UsingShadowDecl *Pattern);
    813   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
    814 
    815   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
    816 
    817   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
    818 
    819   // Access to the set of methods overridden by the given C++ method.
    820   typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
    821   overridden_cxx_method_iterator
    822   overridden_methods_begin(const CXXMethodDecl *Method) const;
    823 
    824   overridden_cxx_method_iterator
    825   overridden_methods_end(const CXXMethodDecl *Method) const;
    826 
    827   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
    828   typedef llvm::iterator_range<overridden_cxx_method_iterator>
    829       overridden_method_range;
    830   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
    831 
    832   /// \brief Note that the given C++ \p Method overrides the given \p
    833   /// Overridden method.
    834   void addOverriddenMethod(const CXXMethodDecl *Method,
    835                            const CXXMethodDecl *Overridden);
    836 
    837   /// \brief Return C++ or ObjC overridden methods for the given \p Method.
    838   ///
    839   /// An ObjC method is considered to override any method in the class's
    840   /// base classes, its protocols, or its categories' protocols, that has
    841   /// the same selector and is of the same kind (class or instance).
    842   /// A method in an implementation is not considered as overriding the same
    843   /// method in the interface or its categories.
    844   void getOverriddenMethods(
    845                         const NamedDecl *Method,
    846                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
    847 
    848   /// \brief Notify the AST context that a new import declaration has been
    849   /// parsed or implicitly created within this translation unit.
    850   void addedLocalImportDecl(ImportDecl *Import);
    851 
    852   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
    853     return Import->NextLocalImport;
    854   }
    855 
    856   typedef llvm::iterator_range<import_iterator> import_range;
    857   import_range local_imports() const {
    858     return import_range(import_iterator(FirstLocalImport), import_iterator());
    859   }
    860 
    861   Decl *getPrimaryMergedDecl(Decl *D) {
    862     Decl *Result = MergedDecls.lookup(D);
    863     return Result ? Result : D;
    864   }
    865   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
    866     MergedDecls[D] = Primary;
    867   }
    868 
    869   /// \brief Note that the definition \p ND has been merged into module \p M,
    870   /// and should be visible whenever \p M is visible.
    871   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
    872                                  bool NotifyListeners = true);
    873   /// \brief Clean up the merged definition list. Call this if you might have
    874   /// added duplicates into the list.
    875   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
    876 
    877   /// \brief Get the additional modules in which the definition \p Def has
    878   /// been merged.
    879   ArrayRef<Module*> getModulesWithMergedDefinition(NamedDecl *Def) {
    880     auto MergedIt = MergedDefModules.find(Def);
    881     if (MergedIt == MergedDefModules.end())
    882       return None;
    883     return MergedIt->second;
    884   }
    885 
    886   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
    887 
    888   ExternCContextDecl *getExternCContextDecl() const;
    889   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
    890   BuiltinTemplateDecl *getTypePackElementDecl() const;
    891 
    892   // Builtin Types.
    893   CanQualType VoidTy;
    894   CanQualType BoolTy;
    895   CanQualType CharTy;
    896   CanQualType WCharTy;  // [C++ 3.9.1p5].
    897   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
    898   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
    899   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
    900   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
    901   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
    902   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
    903   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
    904   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
    905   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
    906   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
    907   CanQualType Float128ComplexTy;
    908   CanQualType VoidPtrTy, NullPtrTy;
    909   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
    910   CanQualType BuiltinFnTy;
    911   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
    912   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
    913   CanQualType ObjCBuiltinBoolTy;
    914 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
    915   CanQualType SingletonId;
    916 #include "clang/Basic/OpenCLImageTypes.def"
    917   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
    918   CanQualType OCLQueueTy, OCLNDRangeTy, OCLReserveIDTy;
    919   CanQualType OMPArraySectionTy;
    920 
    921   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
    922   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
    923   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
    924 
    925   // Decl used to help define __builtin_va_list for some targets.
    926   // The decl is built when constructing 'BuiltinVaListDecl'.
    927   mutable Decl *VaListTagDecl;
    928 
    929   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
    930              SelectorTable &sels, Builtin::Context &builtins);
    931 
    932   ~ASTContext();
    933 
    934   /// \brief Attach an external AST source to the AST context.
    935   ///
    936   /// The external AST source provides the ability to load parts of
    937   /// the abstract syntax tree as needed from some external storage,
    938   /// e.g., a precompiled header.
    939   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
    940 
    941   /// \brief Retrieve a pointer to the external AST source associated
    942   /// with this AST context, if any.
    943   ExternalASTSource *getExternalSource() const {
    944     return ExternalSource.get();
    945   }
    946 
    947   /// \brief Attach an AST mutation listener to the AST context.
    948   ///
    949   /// The AST mutation listener provides the ability to track modifications to
    950   /// the abstract syntax tree entities committed after they were initially
    951   /// created.
    952   void setASTMutationListener(ASTMutationListener *Listener) {
    953     this->Listener = Listener;
    954   }
    955 
    956   /// \brief Retrieve a pointer to the AST mutation listener associated
    957   /// with this AST context, if any.
    958   ASTMutationListener *getASTMutationListener() const { return Listener; }
    959 
    960   void PrintStats() const;
    961   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
    962 
    963   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
    964                                                 const IdentifierInfo *II) const;
    965 
    966   /// \brief Create a new implicit TU-level CXXRecordDecl or RecordDecl
    967   /// declaration.
    968   RecordDecl *buildImplicitRecord(StringRef Name,
    969                                   RecordDecl::TagKind TK = TTK_Struct) const;
    970 
    971   /// \brief Create a new implicit TU-level typedef declaration.
    972   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
    973 
    974   /// \brief Retrieve the declaration for the 128-bit signed integer type.
    975   TypedefDecl *getInt128Decl() const;
    976 
    977   /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
    978   TypedefDecl *getUInt128Decl() const;
    979 
    980   //===--------------------------------------------------------------------===//
    981   //                           Type Constructors
    982   //===--------------------------------------------------------------------===//
    983 
    984 private:
    985   /// \brief Return a type with extended qualifiers.
    986   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
    987 
    988   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
    989 
    990 public:
    991   /// \brief Return the uniqued reference to the type for an address space
    992   /// qualified type with the specified type and address space.
    993   ///
    994   /// The resulting type has a union of the qualifiers from T and the address
    995   /// space. If T already has an address space specifier, it is silently
    996   /// replaced.
    997   QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
    998 
    999   /// \brief Return the uniqued reference to the type for an Objective-C
   1000   /// gc-qualified type.
   1001   ///
   1002   /// The retulting type has a union of the qualifiers from T and the gc
   1003   /// attribute.
   1004   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
   1005 
   1006   /// \brief Return the uniqued reference to the type for a \c restrict
   1007   /// qualified type.
   1008   ///
   1009   /// The resulting type has a union of the qualifiers from \p T and
   1010   /// \c restrict.
   1011   QualType getRestrictType(QualType T) const {
   1012     return T.withFastQualifiers(Qualifiers::Restrict);
   1013   }
   1014 
   1015   /// \brief Return the uniqued reference to the type for a \c volatile
   1016   /// qualified type.
   1017   ///
   1018   /// The resulting type has a union of the qualifiers from \p T and
   1019   /// \c volatile.
   1020   QualType getVolatileType(QualType T) const {
   1021     return T.withFastQualifiers(Qualifiers::Volatile);
   1022   }
   1023 
   1024   /// \brief Return the uniqued reference to the type for a \c const
   1025   /// qualified type.
   1026   ///
   1027   /// The resulting type has a union of the qualifiers from \p T and \c const.
   1028   ///
   1029   /// It can be reasonably expected that this will always be equivalent to
   1030   /// calling T.withConst().
   1031   QualType getConstType(QualType T) const { return T.withConst(); }
   1032 
   1033   /// \brief Change the ExtInfo on a function type.
   1034   const FunctionType *adjustFunctionType(const FunctionType *Fn,
   1035                                          FunctionType::ExtInfo EInfo);
   1036 
   1037   /// Adjust the given function result type.
   1038   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
   1039 
   1040   /// \brief Change the result type of a function type once it is deduced.
   1041   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
   1042 
   1043   /// \brief Change the exception specification on a function once it is
   1044   /// delay-parsed, instantiated, or computed.
   1045   void adjustExceptionSpec(FunctionDecl *FD,
   1046                            const FunctionProtoType::ExceptionSpecInfo &ESI,
   1047                            bool AsWritten = false);
   1048 
   1049   /// \brief Return the uniqued reference to the type for a complex
   1050   /// number with the specified element type.
   1051   QualType getComplexType(QualType T) const;
   1052   CanQualType getComplexType(CanQualType T) const {
   1053     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
   1054   }
   1055 
   1056   /// \brief Return the uniqued reference to the type for a pointer to
   1057   /// the specified type.
   1058   QualType getPointerType(QualType T) const;
   1059   CanQualType getPointerType(CanQualType T) const {
   1060     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
   1061   }
   1062 
   1063   /// \brief Return the uniqued reference to a type adjusted from the original
   1064   /// type to a new type.
   1065   QualType getAdjustedType(QualType Orig, QualType New) const;
   1066   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
   1067     return CanQualType::CreateUnsafe(
   1068         getAdjustedType((QualType)Orig, (QualType)New));
   1069   }
   1070 
   1071   /// \brief Return the uniqued reference to the decayed version of the given
   1072   /// type.  Can only be called on array and function types which decay to
   1073   /// pointer types.
   1074   QualType getDecayedType(QualType T) const;
   1075   CanQualType getDecayedType(CanQualType T) const {
   1076     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
   1077   }
   1078 
   1079   /// \brief Return the uniqued reference to the atomic type for the specified
   1080   /// type.
   1081   QualType getAtomicType(QualType T) const;
   1082 
   1083   /// \brief Return the uniqued reference to the type for a block of the
   1084   /// specified type.
   1085   QualType getBlockPointerType(QualType T) const;
   1086 
   1087   /// Gets the struct used to keep track of the descriptor for pointer to
   1088   /// blocks.
   1089   QualType getBlockDescriptorType() const;
   1090 
   1091   /// \brief Return pipe type for the specified type.
   1092   QualType getPipeType(QualType T) const;
   1093 
   1094   /// Gets the struct used to keep track of the extended descriptor for
   1095   /// pointer to blocks.
   1096   QualType getBlockDescriptorExtendedType() const;
   1097 
   1098   void setcudaConfigureCallDecl(FunctionDecl *FD) {
   1099     cudaConfigureCallDecl = FD;
   1100   }
   1101   FunctionDecl *getcudaConfigureCallDecl() {
   1102     return cudaConfigureCallDecl;
   1103   }
   1104 
   1105   /// Returns true iff we need copy/dispose helpers for the given type.
   1106   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
   1107 
   1108 
   1109   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
   1110   /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
   1111   /// has extended lifetime.
   1112   bool getByrefLifetime(QualType Ty,
   1113                         Qualifiers::ObjCLifetime &Lifetime,
   1114                         bool &HasByrefExtendedLayout) const;
   1115 
   1116   /// \brief Return the uniqued reference to the type for an lvalue reference
   1117   /// to the specified type.
   1118   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
   1119     const;
   1120 
   1121   /// \brief Return the uniqued reference to the type for an rvalue reference
   1122   /// to the specified type.
   1123   QualType getRValueReferenceType(QualType T) const;
   1124 
   1125   /// \brief Return the uniqued reference to the type for a member pointer to
   1126   /// the specified type in the specified class.
   1127   ///
   1128   /// The class \p Cls is a \c Type because it could be a dependent name.
   1129   QualType getMemberPointerType(QualType T, const Type *Cls) const;
   1130 
   1131   /// \brief Return a non-unique reference to the type for a variable array of
   1132   /// the specified element type.
   1133   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
   1134                                 ArrayType::ArraySizeModifier ASM,
   1135                                 unsigned IndexTypeQuals,
   1136                                 SourceRange Brackets) const;
   1137 
   1138   /// \brief Return a non-unique reference to the type for a dependently-sized
   1139   /// array of the specified element type.
   1140   ///
   1141   /// FIXME: We will need these to be uniqued, or at least comparable, at some
   1142   /// point.
   1143   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
   1144                                       ArrayType::ArraySizeModifier ASM,
   1145                                       unsigned IndexTypeQuals,
   1146                                       SourceRange Brackets) const;
   1147 
   1148   /// \brief Return a unique reference to the type for an incomplete array of
   1149   /// the specified element type.
   1150   QualType getIncompleteArrayType(QualType EltTy,
   1151                                   ArrayType::ArraySizeModifier ASM,
   1152                                   unsigned IndexTypeQuals) const;
   1153 
   1154   /// \brief Return the unique reference to the type for a constant array of
   1155   /// the specified element type.
   1156   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
   1157                                 ArrayType::ArraySizeModifier ASM,
   1158                                 unsigned IndexTypeQuals) const;
   1159 
   1160   /// \brief Returns a vla type where known sizes are replaced with [*].
   1161   QualType getVariableArrayDecayedType(QualType Ty) const;
   1162 
   1163   /// \brief Return the unique reference to a vector type of the specified
   1164   /// element type and size.
   1165   ///
   1166   /// \pre \p VectorType must be a built-in type.
   1167   QualType getVectorType(QualType VectorType, unsigned NumElts,
   1168                          VectorType::VectorKind VecKind) const;
   1169 
   1170   /// \brief Return the unique reference to an extended vector type
   1171   /// of the specified element type and size.
   1172   ///
   1173   /// \pre \p VectorType must be a built-in type.
   1174   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
   1175 
   1176   /// \pre Return a non-unique reference to the type for a dependently-sized
   1177   /// vector of the specified element type.
   1178   ///
   1179   /// FIXME: We will need these to be uniqued, or at least comparable, at some
   1180   /// point.
   1181   QualType getDependentSizedExtVectorType(QualType VectorType,
   1182                                           Expr *SizeExpr,
   1183                                           SourceLocation AttrLoc) const;
   1184 
   1185   /// \brief Return a K&R style C function type like 'int()'.
   1186   QualType getFunctionNoProtoType(QualType ResultTy,
   1187                                   const FunctionType::ExtInfo &Info) const;
   1188 
   1189   QualType getFunctionNoProtoType(QualType ResultTy) const {
   1190     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
   1191   }
   1192 
   1193   /// \brief Return a normal function type with a typed argument list.
   1194   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
   1195                            const FunctionProtoType::ExtProtoInfo &EPI) const;
   1196 
   1197   /// \brief Return the unique reference to the type for the specified type
   1198   /// declaration.
   1199   QualType getTypeDeclType(const TypeDecl *Decl,
   1200                            const TypeDecl *PrevDecl = nullptr) const {
   1201     assert(Decl && "Passed null for Decl param");
   1202     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   1203 
   1204     if (PrevDecl) {
   1205       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
   1206       Decl->TypeForDecl = PrevDecl->TypeForDecl;
   1207       return QualType(PrevDecl->TypeForDecl, 0);
   1208     }
   1209 
   1210     return getTypeDeclTypeSlow(Decl);
   1211   }
   1212 
   1213   /// \brief Return the unique reference to the type for the specified
   1214   /// typedef-name decl.
   1215   QualType getTypedefType(const TypedefNameDecl *Decl,
   1216                           QualType Canon = QualType()) const;
   1217 
   1218   QualType getRecordType(const RecordDecl *Decl) const;
   1219 
   1220   QualType getEnumType(const EnumDecl *Decl) const;
   1221 
   1222   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
   1223 
   1224   QualType getAttributedType(AttributedType::Kind attrKind,
   1225                              QualType modifiedType,
   1226                              QualType equivalentType);
   1227 
   1228   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
   1229                                         QualType Replacement) const;
   1230   QualType getSubstTemplateTypeParmPackType(
   1231                                           const TemplateTypeParmType *Replaced,
   1232                                             const TemplateArgument &ArgPack);
   1233 
   1234   QualType
   1235   getTemplateTypeParmType(unsigned Depth, unsigned Index,
   1236                           bool ParameterPack,
   1237                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
   1238 
   1239   QualType getTemplateSpecializationType(TemplateName T,
   1240                                          ArrayRef<TemplateArgument> Args,
   1241                                          QualType Canon = QualType()) const;
   1242 
   1243   QualType
   1244   getCanonicalTemplateSpecializationType(TemplateName T,
   1245                                          ArrayRef<TemplateArgument> Args) const;
   1246 
   1247   QualType getTemplateSpecializationType(TemplateName T,
   1248                                          const TemplateArgumentListInfo &Args,
   1249                                          QualType Canon = QualType()) const;
   1250 
   1251   TypeSourceInfo *
   1252   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
   1253                                     const TemplateArgumentListInfo &Args,
   1254                                     QualType Canon = QualType()) const;
   1255 
   1256   QualType getParenType(QualType NamedType) const;
   1257 
   1258   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
   1259                              NestedNameSpecifier *NNS,
   1260                              QualType NamedType) const;
   1261   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
   1262                                 NestedNameSpecifier *NNS,
   1263                                 const IdentifierInfo *Name,
   1264                                 QualType Canon = QualType()) const;
   1265 
   1266   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   1267                                                   NestedNameSpecifier *NNS,
   1268                                                   const IdentifierInfo *Name,
   1269                                     const TemplateArgumentListInfo &Args) const;
   1270   QualType getDependentTemplateSpecializationType(
   1271       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   1272       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
   1273 
   1274   QualType getPackExpansionType(QualType Pattern,
   1275                                 Optional<unsigned> NumExpansions);
   1276 
   1277   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
   1278                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
   1279 
   1280   /// Legacy interface: cannot provide type arguments or __kindof.
   1281   QualType getObjCObjectType(QualType Base,
   1282                              ObjCProtocolDecl * const *Protocols,
   1283                              unsigned NumProtocols) const;
   1284 
   1285   QualType getObjCObjectType(QualType Base,
   1286                              ArrayRef<QualType> typeArgs,
   1287                              ArrayRef<ObjCProtocolDecl *> protocols,
   1288                              bool isKindOf) const;
   1289 
   1290   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
   1291   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
   1292   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
   1293   /// of protocols.
   1294   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
   1295                                             ObjCInterfaceDecl *IDecl);
   1296 
   1297   /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
   1298   QualType getObjCObjectPointerType(QualType OIT) const;
   1299 
   1300   /// \brief GCC extension.
   1301   QualType getTypeOfExprType(Expr *e) const;
   1302   QualType getTypeOfType(QualType t) const;
   1303 
   1304   /// \brief C++11 decltype.
   1305   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
   1306 
   1307   /// \brief Unary type transforms
   1308   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
   1309                                  UnaryTransformType::UTTKind UKind) const;
   1310 
   1311   /// \brief C++11 deduced auto type.
   1312   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
   1313                        bool IsDependent) const;
   1314 
   1315   /// \brief C++11 deduction pattern for 'auto' type.
   1316   QualType getAutoDeductType() const;
   1317 
   1318   /// \brief C++11 deduction pattern for 'auto &&' type.
   1319   QualType getAutoRRefDeductType() const;
   1320 
   1321   /// \brief Return the unique reference to the type for the specified TagDecl
   1322   /// (struct/union/class/enum) decl.
   1323   QualType getTagDeclType(const TagDecl *Decl) const;
   1324 
   1325   /// \brief Return the unique type for "size_t" (C99 7.17), defined in
   1326   /// <stddef.h>.
   1327   ///
   1328   /// The sizeof operator requires this (C99 6.5.3.4p4).
   1329   CanQualType getSizeType() const;
   1330 
   1331   /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
   1332   /// <stdint.h>.
   1333   CanQualType getIntMaxType() const;
   1334 
   1335   /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
   1336   /// <stdint.h>.
   1337   CanQualType getUIntMaxType() const;
   1338 
   1339   /// \brief Return the unique wchar_t type available in C++ (and available as
   1340   /// __wchar_t as a Microsoft extension).
   1341   QualType getWCharType() const { return WCharTy; }
   1342 
   1343   /// \brief Return the type of wide characters. In C++, this returns the
   1344   /// unique wchar_t type. In C99, this returns a type compatible with the type
   1345   /// defined in <stddef.h> as defined by the target.
   1346   QualType getWideCharType() const { return WideCharTy; }
   1347 
   1348   /// \brief Return the type of "signed wchar_t".
   1349   ///
   1350   /// Used when in C++, as a GCC extension.
   1351   QualType getSignedWCharType() const;
   1352 
   1353   /// \brief Return the type of "unsigned wchar_t".
   1354   ///
   1355   /// Used when in C++, as a GCC extension.
   1356   QualType getUnsignedWCharType() const;
   1357 
   1358   /// \brief In C99, this returns a type compatible with the type
   1359   /// defined in <stddef.h> as defined by the target.
   1360   QualType getWIntType() const { return WIntTy; }
   1361 
   1362   /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
   1363   /// as defined by the target.
   1364   QualType getIntPtrType() const;
   1365 
   1366   /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
   1367   /// as defined by the target.
   1368   QualType getUIntPtrType() const;
   1369 
   1370   /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
   1371   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
   1372   QualType getPointerDiffType() const;
   1373 
   1374   /// \brief Return the unique type for "pid_t" defined in
   1375   /// <sys/types.h>. We need this to compute the correct type for vfork().
   1376   QualType getProcessIDType() const;
   1377 
   1378   /// \brief Return the C structure type used to represent constant CFStrings.
   1379   QualType getCFConstantStringType() const;
   1380 
   1381   /// \brief Returns the C struct type for objc_super
   1382   QualType getObjCSuperType() const;
   1383   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
   1384 
   1385   /// Get the structure type used to representation CFStrings, or NULL
   1386   /// if it hasn't yet been built.
   1387   QualType getRawCFConstantStringType() const {
   1388     if (CFConstantStringTypeDecl)
   1389       return getTypedefType(CFConstantStringTypeDecl);
   1390     return QualType();
   1391   }
   1392   void setCFConstantStringType(QualType T);
   1393   TypedefDecl *getCFConstantStringDecl() const;
   1394   RecordDecl *getCFConstantStringTagDecl() const;
   1395 
   1396   // This setter/getter represents the ObjC type for an NSConstantString.
   1397   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
   1398   QualType getObjCConstantStringInterface() const {
   1399     return ObjCConstantStringType;
   1400   }
   1401 
   1402   QualType getObjCNSStringType() const {
   1403     return ObjCNSStringType;
   1404   }
   1405 
   1406   void setObjCNSStringType(QualType T) {
   1407     ObjCNSStringType = T;
   1408   }
   1409 
   1410   /// \brief Retrieve the type that \c id has been defined to, which may be
   1411   /// different from the built-in \c id if \c id has been typedef'd.
   1412   QualType getObjCIdRedefinitionType() const {
   1413     if (ObjCIdRedefinitionType.isNull())
   1414       return getObjCIdType();
   1415     return ObjCIdRedefinitionType;
   1416   }
   1417 
   1418   /// \brief Set the user-written type that redefines \c id.
   1419   void setObjCIdRedefinitionType(QualType RedefType) {
   1420     ObjCIdRedefinitionType = RedefType;
   1421   }
   1422 
   1423   /// \brief Retrieve the type that \c Class has been defined to, which may be
   1424   /// different from the built-in \c Class if \c Class has been typedef'd.
   1425   QualType getObjCClassRedefinitionType() const {
   1426     if (ObjCClassRedefinitionType.isNull())
   1427       return getObjCClassType();
   1428     return ObjCClassRedefinitionType;
   1429   }
   1430 
   1431   /// \brief Set the user-written type that redefines 'SEL'.
   1432   void setObjCClassRedefinitionType(QualType RedefType) {
   1433     ObjCClassRedefinitionType = RedefType;
   1434   }
   1435 
   1436   /// \brief Retrieve the type that 'SEL' has been defined to, which may be
   1437   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
   1438   QualType getObjCSelRedefinitionType() const {
   1439     if (ObjCSelRedefinitionType.isNull())
   1440       return getObjCSelType();
   1441     return ObjCSelRedefinitionType;
   1442   }
   1443 
   1444 
   1445   /// \brief Set the user-written type that redefines 'SEL'.
   1446   void setObjCSelRedefinitionType(QualType RedefType) {
   1447     ObjCSelRedefinitionType = RedefType;
   1448   }
   1449 
   1450   /// Retrieve the identifier 'NSObject'.
   1451   IdentifierInfo *getNSObjectName() {
   1452     if (!NSObjectName) {
   1453       NSObjectName = &Idents.get("NSObject");
   1454     }
   1455 
   1456     return NSObjectName;
   1457   }
   1458 
   1459   /// Retrieve the identifier 'NSCopying'.
   1460   IdentifierInfo *getNSCopyingName() {
   1461     if (!NSCopyingName) {
   1462       NSCopyingName = &Idents.get("NSCopying");
   1463     }
   1464 
   1465     return NSCopyingName;
   1466   }
   1467 
   1468   /// Retrieve the identifier 'bool'.
   1469   IdentifierInfo *getBoolName() const {
   1470     if (!BoolName)
   1471       BoolName = &Idents.get("bool");
   1472     return BoolName;
   1473   }
   1474 
   1475   IdentifierInfo *getMakeIntegerSeqName() const {
   1476     if (!MakeIntegerSeqName)
   1477       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
   1478     return MakeIntegerSeqName;
   1479   }
   1480 
   1481   IdentifierInfo *getTypePackElementName() const {
   1482     if (!TypePackElementName)
   1483       TypePackElementName = &Idents.get("__type_pack_element");
   1484     return TypePackElementName;
   1485   }
   1486 
   1487   /// \brief Retrieve the Objective-C "instancetype" type, if already known;
   1488   /// otherwise, returns a NULL type;
   1489   QualType getObjCInstanceType() {
   1490     return getTypeDeclType(getObjCInstanceTypeDecl());
   1491   }
   1492 
   1493   /// \brief Retrieve the typedef declaration corresponding to the Objective-C
   1494   /// "instancetype" type.
   1495   TypedefDecl *getObjCInstanceTypeDecl();
   1496 
   1497   /// \brief Set the type for the C FILE type.
   1498   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
   1499 
   1500   /// \brief Retrieve the C FILE type.
   1501   QualType getFILEType() const {
   1502     if (FILEDecl)
   1503       return getTypeDeclType(FILEDecl);
   1504     return QualType();
   1505   }
   1506 
   1507   /// \brief Set the type for the C jmp_buf type.
   1508   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
   1509     this->jmp_bufDecl = jmp_bufDecl;
   1510   }
   1511 
   1512   /// \brief Retrieve the C jmp_buf type.
   1513   QualType getjmp_bufType() const {
   1514     if (jmp_bufDecl)
   1515       return getTypeDeclType(jmp_bufDecl);
   1516     return QualType();
   1517   }
   1518 
   1519   /// \brief Set the type for the C sigjmp_buf type.
   1520   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
   1521     this->sigjmp_bufDecl = sigjmp_bufDecl;
   1522   }
   1523 
   1524   /// \brief Retrieve the C sigjmp_buf type.
   1525   QualType getsigjmp_bufType() const {
   1526     if (sigjmp_bufDecl)
   1527       return getTypeDeclType(sigjmp_bufDecl);
   1528     return QualType();
   1529   }
   1530 
   1531   /// \brief Set the type for the C ucontext_t type.
   1532   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
   1533     this->ucontext_tDecl = ucontext_tDecl;
   1534   }
   1535 
   1536   /// \brief Retrieve the C ucontext_t type.
   1537   QualType getucontext_tType() const {
   1538     if (ucontext_tDecl)
   1539       return getTypeDeclType(ucontext_tDecl);
   1540     return QualType();
   1541   }
   1542 
   1543   /// \brief The result type of logical operations, '<', '>', '!=', etc.
   1544   QualType getLogicalOperationType() const {
   1545     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
   1546   }
   1547 
   1548   /// \brief Emit the Objective-CC type encoding for the given type \p T into
   1549   /// \p S.
   1550   ///
   1551   /// If \p Field is specified then record field names are also encoded.
   1552   void getObjCEncodingForType(QualType T, std::string &S,
   1553                               const FieldDecl *Field=nullptr,
   1554                               QualType *NotEncodedT=nullptr) const;
   1555 
   1556   /// \brief Emit the Objective-C property type encoding for the given
   1557   /// type \p T into \p S.
   1558   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
   1559 
   1560   void getLegacyIntegralTypeEncoding(QualType &t) const;
   1561 
   1562   /// \brief Put the string version of the type qualifiers \p QT into \p S.
   1563   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
   1564                                        std::string &S) const;
   1565 
   1566   /// \brief Emit the encoded type for the function \p Decl into \p S.
   1567   ///
   1568   /// This is in the same format as Objective-C method encodings.
   1569   ///
   1570   /// \returns true if an error occurred (e.g., because one of the parameter
   1571   /// types is incomplete), false otherwise.
   1572   bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
   1573 
   1574   /// \brief Emit the encoded type for the method declaration \p Decl into
   1575   /// \p S.
   1576   ///
   1577   /// \returns true if an error occurred (e.g., because one of the parameter
   1578   /// types is incomplete), false otherwise.
   1579   bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
   1580                                     bool Extended = false)
   1581     const;
   1582 
   1583   /// \brief Return the encoded type for this block declaration.
   1584   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
   1585 
   1586   /// getObjCEncodingForPropertyDecl - Return the encoded type for
   1587   /// this method declaration. If non-NULL, Container must be either
   1588   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
   1589   /// only be NULL when getting encodings for protocol properties.
   1590   void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
   1591                                       const Decl *Container,
   1592                                       std::string &S) const;
   1593 
   1594   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
   1595                                       ObjCProtocolDecl *rProto) const;
   1596 
   1597   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
   1598                                                   const ObjCPropertyDecl *PD,
   1599                                                   const Decl *Container) const;
   1600 
   1601   /// \brief Return the size of type \p T for Objective-C encoding purpose,
   1602   /// in characters.
   1603   CharUnits getObjCEncodingTypeSize(QualType T) const;
   1604 
   1605   /// \brief Retrieve the typedef corresponding to the predefined \c id type
   1606   /// in Objective-C.
   1607   TypedefDecl *getObjCIdDecl() const;
   1608 
   1609   /// \brief Represents the Objective-CC \c id type.
   1610   ///
   1611   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
   1612   /// pointer type, a pointer to a struct.
   1613   QualType getObjCIdType() const {
   1614     return getTypeDeclType(getObjCIdDecl());
   1615   }
   1616 
   1617   /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
   1618   /// in Objective-C.
   1619   TypedefDecl *getObjCSelDecl() const;
   1620 
   1621   /// \brief Retrieve the type that corresponds to the predefined Objective-C
   1622   /// 'SEL' type.
   1623   QualType getObjCSelType() const {
   1624     return getTypeDeclType(getObjCSelDecl());
   1625   }
   1626 
   1627   /// \brief Retrieve the typedef declaration corresponding to the predefined
   1628   /// Objective-C 'Class' type.
   1629   TypedefDecl *getObjCClassDecl() const;
   1630 
   1631   /// \brief Represents the Objective-C \c Class type.
   1632   ///
   1633   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
   1634   /// pointer type, a pointer to a struct.
   1635   QualType getObjCClassType() const {
   1636     return getTypeDeclType(getObjCClassDecl());
   1637   }
   1638 
   1639   /// \brief Retrieve the Objective-C class declaration corresponding to
   1640   /// the predefined \c Protocol class.
   1641   ObjCInterfaceDecl *getObjCProtocolDecl() const;
   1642 
   1643   /// \brief Retrieve declaration of 'BOOL' typedef
   1644   TypedefDecl *getBOOLDecl() const {
   1645     return BOOLDecl;
   1646   }
   1647 
   1648   /// \brief Save declaration of 'BOOL' typedef
   1649   void setBOOLDecl(TypedefDecl *TD) {
   1650     BOOLDecl = TD;
   1651   }
   1652 
   1653   /// \brief type of 'BOOL' type.
   1654   QualType getBOOLType() const {
   1655     return getTypeDeclType(getBOOLDecl());
   1656   }
   1657 
   1658   /// \brief Retrieve the type of the Objective-C \c Protocol class.
   1659   QualType getObjCProtoType() const {
   1660     return getObjCInterfaceType(getObjCProtocolDecl());
   1661   }
   1662 
   1663   /// \brief Retrieve the C type declaration corresponding to the predefined
   1664   /// \c __builtin_va_list type.
   1665   TypedefDecl *getBuiltinVaListDecl() const;
   1666 
   1667   /// \brief Retrieve the type of the \c __builtin_va_list type.
   1668   QualType getBuiltinVaListType() const {
   1669     return getTypeDeclType(getBuiltinVaListDecl());
   1670   }
   1671 
   1672   /// \brief Retrieve the C type declaration corresponding to the predefined
   1673   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
   1674   /// for some targets.
   1675   Decl *getVaListTagDecl() const;
   1676 
   1677   /// Retrieve the C type declaration corresponding to the predefined
   1678   /// \c __builtin_ms_va_list type.
   1679   TypedefDecl *getBuiltinMSVaListDecl() const;
   1680 
   1681   /// Retrieve the type of the \c __builtin_ms_va_list type.
   1682   QualType getBuiltinMSVaListType() const {
   1683     return getTypeDeclType(getBuiltinMSVaListDecl());
   1684   }
   1685 
   1686   /// \brief Return a type with additional \c const, \c volatile, or
   1687   /// \c restrict qualifiers.
   1688   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
   1689     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
   1690   }
   1691 
   1692   /// \brief Un-split a SplitQualType.
   1693   QualType getQualifiedType(SplitQualType split) const {
   1694     return getQualifiedType(split.Ty, split.Quals);
   1695   }
   1696 
   1697   /// \brief Return a type with additional qualifiers.
   1698   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
   1699     if (!Qs.hasNonFastQualifiers())
   1700       return T.withFastQualifiers(Qs.getFastQualifiers());
   1701     QualifierCollector Qc(Qs);
   1702     const Type *Ptr = Qc.strip(T);
   1703     return getExtQualType(Ptr, Qc);
   1704   }
   1705 
   1706   /// \brief Return a type with additional qualifiers.
   1707   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
   1708     if (!Qs.hasNonFastQualifiers())
   1709       return QualType(T, Qs.getFastQualifiers());
   1710     return getExtQualType(T, Qs);
   1711   }
   1712 
   1713   /// \brief Return a type with the given lifetime qualifier.
   1714   ///
   1715   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
   1716   QualType getLifetimeQualifiedType(QualType type,
   1717                                     Qualifiers::ObjCLifetime lifetime) {
   1718     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
   1719     assert(lifetime != Qualifiers::OCL_None);
   1720 
   1721     Qualifiers qs;
   1722     qs.addObjCLifetime(lifetime);
   1723     return getQualifiedType(type, qs);
   1724   }
   1725 
   1726   /// getUnqualifiedObjCPointerType - Returns version of
   1727   /// Objective-C pointer type with lifetime qualifier removed.
   1728   QualType getUnqualifiedObjCPointerType(QualType type) const {
   1729     if (!type.getTypePtr()->isObjCObjectPointerType() ||
   1730         !type.getQualifiers().hasObjCLifetime())
   1731       return type;
   1732     Qualifiers Qs = type.getQualifiers();
   1733     Qs.removeObjCLifetime();
   1734     return getQualifiedType(type.getUnqualifiedType(), Qs);
   1735   }
   1736 
   1737   DeclarationNameInfo getNameForTemplate(TemplateName Name,
   1738                                          SourceLocation NameLoc) const;
   1739 
   1740   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
   1741                                          UnresolvedSetIterator End) const;
   1742 
   1743   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
   1744                                         bool TemplateKeyword,
   1745                                         TemplateDecl *Template) const;
   1746 
   1747   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
   1748                                         const IdentifierInfo *Name) const;
   1749   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
   1750                                         OverloadedOperatorKind Operator) const;
   1751   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
   1752                                             TemplateName replacement) const;
   1753   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
   1754                                         const TemplateArgument &ArgPack) const;
   1755 
   1756   enum GetBuiltinTypeError {
   1757     GE_None,              ///< No error
   1758     GE_Missing_stdio,     ///< Missing a type from <stdio.h>
   1759     GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
   1760     GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
   1761   };
   1762 
   1763   /// \brief Return the type for the specified builtin.
   1764   ///
   1765   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
   1766   /// arguments to the builtin that are required to be integer constant
   1767   /// expressions.
   1768   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
   1769                           unsigned *IntegerConstantArgs = nullptr) const;
   1770 
   1771 private:
   1772   CanQualType getFromTargetType(unsigned Type) const;
   1773   TypeInfo getTypeInfoImpl(const Type *T) const;
   1774 
   1775   //===--------------------------------------------------------------------===//
   1776   //                         Type Predicates.
   1777   //===--------------------------------------------------------------------===//
   1778 
   1779 public:
   1780   /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
   1781   /// collection attributes.
   1782   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
   1783 
   1784   /// \brief Return true if the given vector types are of the same unqualified
   1785   /// type or if they are equivalent to the same GCC vector type.
   1786   ///
   1787   /// \note This ignores whether they are target-specific (AltiVec or Neon)
   1788   /// types.
   1789   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
   1790 
   1791   /// \brief Return true if this is an \c NSObject object with its \c NSObject
   1792   /// attribute set.
   1793   static bool isObjCNSObjectType(QualType Ty) {
   1794     return Ty->isObjCNSObjectType();
   1795   }
   1796 
   1797   //===--------------------------------------------------------------------===//
   1798   //                         Type Sizing and Analysis
   1799   //===--------------------------------------------------------------------===//
   1800 
   1801   /// \brief Return the APFloat 'semantics' for the specified scalar floating
   1802   /// point type.
   1803   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
   1804 
   1805   /// \brief Get the size and alignment of the specified complete type in bits.
   1806   TypeInfo getTypeInfo(const Type *T) const;
   1807   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
   1808 
   1809   /// \brief Get default simd alignment of the specified complete type in bits.
   1810   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
   1811 
   1812   /// \brief Return the size of the specified (complete) type \p T, in bits.
   1813   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
   1814   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
   1815 
   1816   /// \brief Return the size of the character type, in bits.
   1817   uint64_t getCharWidth() const {
   1818     return getTypeSize(CharTy);
   1819   }
   1820 
   1821   /// \brief Convert a size in bits to a size in characters.
   1822   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
   1823 
   1824   /// \brief Convert a size in characters to a size in bits.
   1825   int64_t toBits(CharUnits CharSize) const;
   1826 
   1827   /// \brief Return the size of the specified (complete) type \p T, in
   1828   /// characters.
   1829   CharUnits getTypeSizeInChars(QualType T) const;
   1830   CharUnits getTypeSizeInChars(const Type *T) const;
   1831 
   1832   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
   1833   /// bits.
   1834   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
   1835   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
   1836 
   1837   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
   1838   /// characters.
   1839   CharUnits getTypeAlignInChars(QualType T) const;
   1840   CharUnits getTypeAlignInChars(const Type *T) const;
   1841 
   1842   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
   1843   // type is a record, its data size is returned.
   1844   std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
   1845 
   1846   std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
   1847   std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
   1848 
   1849   /// \brief Determine if the alignment the type has was required using an
   1850   /// alignment attribute.
   1851   bool isAlignmentRequired(const Type *T) const;
   1852   bool isAlignmentRequired(QualType T) const;
   1853 
   1854   /// \brief Return the "preferred" alignment of the specified type \p T for
   1855   /// the current target, in bits.
   1856   ///
   1857   /// This can be different than the ABI alignment in cases where it is
   1858   /// beneficial for performance to overalign a data type.
   1859   unsigned getPreferredTypeAlign(const Type *T) const;
   1860 
   1861   /// \brief Return the default alignment for __attribute__((aligned)) on
   1862   /// this target, to be used if no alignment value is specified.
   1863   unsigned getTargetDefaultAlignForAttributeAligned(void) const;
   1864 
   1865   /// \brief Return the alignment in bits that should be given to a
   1866   /// global variable with type \p T.
   1867   unsigned getAlignOfGlobalVar(QualType T) const;
   1868 
   1869   /// \brief Return the alignment in characters that should be given to a
   1870   /// global variable with type \p T.
   1871   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
   1872 
   1873   /// \brief Return a conservative estimate of the alignment of the specified
   1874   /// decl \p D.
   1875   ///
   1876   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
   1877   /// alignment.
   1878   ///
   1879   /// If \p ForAlignof, references are treated like their underlying type
   1880   /// and  large arrays don't get any special treatment. If not \p ForAlignof
   1881   /// it computes the value expected by CodeGen: references are treated like
   1882   /// pointers and large arrays get extra alignment.
   1883   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
   1884 
   1885   /// \brief Get or compute information about the layout of the specified
   1886   /// record (struct/union/class) \p D, which indicates its size and field
   1887   /// position information.
   1888   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
   1889 
   1890   /// \brief Get or compute information about the layout of the specified
   1891   /// Objective-C interface.
   1892   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
   1893     const;
   1894 
   1895   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
   1896                         bool Simple = false) const;
   1897 
   1898   /// \brief Get or compute information about the layout of the specified
   1899   /// Objective-C implementation.
   1900   ///
   1901   /// This may differ from the interface if synthesized ivars are present.
   1902   const ASTRecordLayout &
   1903   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
   1904 
   1905   /// \brief Get our current best idea for the key function of the
   1906   /// given record decl, or NULL if there isn't one.
   1907   ///
   1908   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
   1909   ///   ...the first non-pure virtual function that is not inline at the
   1910   ///   point of class definition.
   1911   ///
   1912   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
   1913   /// virtual functions that are defined 'inline', which means that
   1914   /// the result of this computation can change.
   1915   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
   1916 
   1917   /// \brief Observe that the given method cannot be a key function.
   1918   /// Checks the key-function cache for the method's class and clears it
   1919   /// if matches the given declaration.
   1920   ///
   1921   /// This is used in ABIs where out-of-line definitions marked
   1922   /// inline are not considered to be key functions.
   1923   ///
   1924   /// \param method should be the declaration from the class definition
   1925   void setNonKeyFunction(const CXXMethodDecl *method);
   1926 
   1927   /// Loading virtual member pointers using the virtual inheritance model
   1928   /// always results in an adjustment using the vbtable even if the index is
   1929   /// zero.
   1930   ///
   1931   /// This is usually OK because the first slot in the vbtable points
   1932   /// backwards to the top of the MDC.  However, the MDC might be reusing a
   1933   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
   1934   /// points to the start of the nv-base which introduced the vbptr and *not*
   1935   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
   1936   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
   1937 
   1938   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
   1939   uint64_t getFieldOffset(const ValueDecl *FD) const;
   1940 
   1941   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
   1942 
   1943   VTableContextBase *getVTableContext();
   1944 
   1945   MangleContext *createMangleContext();
   1946 
   1947   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
   1948                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
   1949 
   1950   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
   1951   void CollectInheritedProtocols(const Decl *CDecl,
   1952                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
   1953 
   1954   //===--------------------------------------------------------------------===//
   1955   //                            Type Operators
   1956   //===--------------------------------------------------------------------===//
   1957 
   1958   /// \brief Return the canonical (structural) type corresponding to the
   1959   /// specified potentially non-canonical type \p T.
   1960   ///
   1961   /// The non-canonical version of a type may have many "decorated" versions of
   1962   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
   1963   /// returned type is guaranteed to be free of any of these, allowing two
   1964   /// canonical types to be compared for exact equality with a simple pointer
   1965   /// comparison.
   1966   CanQualType getCanonicalType(QualType T) const {
   1967     return CanQualType::CreateUnsafe(T.getCanonicalType());
   1968   }
   1969 
   1970   const Type *getCanonicalType(const Type *T) const {
   1971     return T->getCanonicalTypeInternal().getTypePtr();
   1972   }
   1973 
   1974   /// \brief Return the canonical parameter type corresponding to the specific
   1975   /// potentially non-canonical one.
   1976   ///
   1977   /// Qualifiers are stripped off, functions are turned into function
   1978   /// pointers, and arrays decay one level into pointers.
   1979   CanQualType getCanonicalParamType(QualType T) const;
   1980 
   1981   /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
   1982   bool hasSameType(QualType T1, QualType T2) const {
   1983     return getCanonicalType(T1) == getCanonicalType(T2);
   1984   }
   1985 
   1986   bool hasSameType(const Type *T1, const Type *T2) const {
   1987     return getCanonicalType(T1) == getCanonicalType(T2);
   1988   }
   1989 
   1990   /// \brief Return this type as a completely-unqualified array type,
   1991   /// capturing the qualifiers in \p Quals.
   1992   ///
   1993   /// This will remove the minimal amount of sugaring from the types, similar
   1994   /// to the behavior of QualType::getUnqualifiedType().
   1995   ///
   1996   /// \param T is the qualified type, which may be an ArrayType
   1997   ///
   1998   /// \param Quals will receive the full set of qualifiers that were
   1999   /// applied to the array.
   2000   ///
   2001   /// \returns if this is an array type, the completely unqualified array type
   2002   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
   2003   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
   2004 
   2005   /// \brief Determine whether the given types are equivalent after
   2006   /// cvr-qualifiers have been removed.
   2007   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
   2008     return getCanonicalType(T1).getTypePtr() ==
   2009            getCanonicalType(T2).getTypePtr();
   2010   }
   2011 
   2012   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
   2013                                        bool IsParam) const {
   2014     auto SubTnullability = SubT->getNullability(*this);
   2015     auto SuperTnullability = SuperT->getNullability(*this);
   2016     if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
   2017       // Neither has nullability; return true
   2018       if (!SubTnullability)
   2019         return true;
   2020       // Both have nullability qualifier.
   2021       if (*SubTnullability == *SuperTnullability ||
   2022           *SubTnullability == NullabilityKind::Unspecified ||
   2023           *SuperTnullability == NullabilityKind::Unspecified)
   2024         return true;
   2025 
   2026       if (IsParam) {
   2027         // Ok for the superclass method parameter to be "nonnull" and the subclass
   2028         // method parameter to be "nullable"
   2029         return (*SuperTnullability == NullabilityKind::NonNull &&
   2030                 *SubTnullability == NullabilityKind::Nullable);
   2031       }
   2032       else {
   2033         // For the return type, it's okay for the superclass method to specify
   2034         // "nullable" and the subclass method specify "nonnull"
   2035         return (*SuperTnullability == NullabilityKind::Nullable &&
   2036                 *SubTnullability == NullabilityKind::NonNull);
   2037       }
   2038     }
   2039     return true;
   2040   }
   2041 
   2042   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
   2043                            const ObjCMethodDecl *MethodImp);
   2044 
   2045   bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
   2046 
   2047   /// \brief Retrieves the "canonical" nested name specifier for a
   2048   /// given nested name specifier.
   2049   ///
   2050   /// The canonical nested name specifier is a nested name specifier
   2051   /// that uniquely identifies a type or namespace within the type
   2052   /// system. For example, given:
   2053   ///
   2054   /// \code
   2055   /// namespace N {
   2056   ///   struct S {
   2057   ///     template<typename T> struct X { typename T* type; };
   2058   ///   };
   2059   /// }
   2060   ///
   2061   /// template<typename T> struct Y {
   2062   ///   typename N::S::X<T>::type member;
   2063   /// };
   2064   /// \endcode
   2065   ///
   2066   /// Here, the nested-name-specifier for N::S::X<T>:: will be
   2067   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
   2068   /// by declarations in the type system and the canonical type for
   2069   /// the template type parameter 'T' is template-param-0-0.
   2070   NestedNameSpecifier *
   2071   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
   2072 
   2073   /// \brief Retrieves the default calling convention for the current target.
   2074   CallingConv getDefaultCallingConvention(bool isVariadic,
   2075                                           bool IsCXXMethod) const;
   2076 
   2077   /// \brief Retrieves the "canonical" template name that refers to a
   2078   /// given template.
   2079   ///
   2080   /// The canonical template name is the simplest expression that can
   2081   /// be used to refer to a given template. For most templates, this
   2082   /// expression is just the template declaration itself. For example,
   2083   /// the template std::vector can be referred to via a variety of
   2084   /// names---std::vector, \::std::vector, vector (if vector is in
   2085   /// scope), etc.---but all of these names map down to the same
   2086   /// TemplateDecl, which is used to form the canonical template name.
   2087   ///
   2088   /// Dependent template names are more interesting. Here, the
   2089   /// template name could be something like T::template apply or
   2090   /// std::allocator<T>::template rebind, where the nested name
   2091   /// specifier itself is dependent. In this case, the canonical
   2092   /// template name uses the shortest form of the dependent
   2093   /// nested-name-specifier, which itself contains all canonical
   2094   /// types, values, and templates.
   2095   TemplateName getCanonicalTemplateName(TemplateName Name) const;
   2096 
   2097   /// \brief Determine whether the given template names refer to the same
   2098   /// template.
   2099   bool hasSameTemplateName(TemplateName X, TemplateName Y);
   2100 
   2101   /// \brief Retrieve the "canonical" template argument.
   2102   ///
   2103   /// The canonical template argument is the simplest template argument
   2104   /// (which may be a type, value, expression, or declaration) that
   2105   /// expresses the value of the argument.
   2106   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
   2107     const;
   2108 
   2109   /// Type Query functions.  If the type is an instance of the specified class,
   2110   /// return the Type pointer for the underlying maximally pretty type.  This
   2111   /// is a member of ASTContext because this may need to do some amount of
   2112   /// canonicalization, e.g. to move type qualifiers into the element type.
   2113   const ArrayType *getAsArrayType(QualType T) const;
   2114   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
   2115     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
   2116   }
   2117   const VariableArrayType *getAsVariableArrayType(QualType T) const {
   2118     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
   2119   }
   2120   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
   2121     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
   2122   }
   2123   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
   2124     const {
   2125     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
   2126   }
   2127 
   2128   /// \brief Return the innermost element type of an array type.
   2129   ///
   2130   /// For example, will return "int" for int[m][n]
   2131   QualType getBaseElementType(const ArrayType *VAT) const;
   2132 
   2133   /// \brief Return the innermost element type of a type (which needn't
   2134   /// actually be an array type).
   2135   QualType getBaseElementType(QualType QT) const;
   2136 
   2137   /// \brief Return number of constant array elements.
   2138   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
   2139 
   2140   /// \brief Perform adjustment on the parameter type of a function.
   2141   ///
   2142   /// This routine adjusts the given parameter type @p T to the actual
   2143   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
   2144   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
   2145   QualType getAdjustedParameterType(QualType T) const;
   2146 
   2147   /// \brief Retrieve the parameter type as adjusted for use in the signature
   2148   /// of a function, decaying array and function types and removing top-level
   2149   /// cv-qualifiers.
   2150   QualType getSignatureParameterType(QualType T) const;
   2151 
   2152   QualType getExceptionObjectType(QualType T) const;
   2153 
   2154   /// \brief Return the properly qualified result of decaying the specified
   2155   /// array type to a pointer.
   2156   ///
   2157   /// This operation is non-trivial when handling typedefs etc.  The canonical
   2158   /// type of \p T must be an array type, this returns a pointer to a properly
   2159   /// qualified element of the array.
   2160   ///
   2161   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
   2162   QualType getArrayDecayedType(QualType T) const;
   2163 
   2164   /// \brief Return the type that \p PromotableType will promote to: C99
   2165   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
   2166   QualType getPromotedIntegerType(QualType PromotableType) const;
   2167 
   2168   /// \brief Recurses in pointer/array types until it finds an Objective-C
   2169   /// retainable type and returns its ownership.
   2170   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
   2171 
   2172   /// \brief Whether this is a promotable bitfield reference according
   2173   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
   2174   ///
   2175   /// \returns the type this bit-field will promote to, or NULL if no
   2176   /// promotion occurs.
   2177   QualType isPromotableBitField(Expr *E) const;
   2178 
   2179   /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
   2180   ///
   2181   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
   2182   /// \p LHS < \p RHS, return -1.
   2183   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
   2184 
   2185   /// \brief Compare the rank of the two specified floating point types,
   2186   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
   2187   ///
   2188   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
   2189   /// \p LHS < \p RHS, return -1.
   2190   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
   2191 
   2192   /// \brief Return a real floating point or a complex type (based on
   2193   /// \p typeDomain/\p typeSize).
   2194   ///
   2195   /// \param typeDomain a real floating point or complex type.
   2196   /// \param typeSize a real floating point or complex type.
   2197   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
   2198                                              QualType typeDomain) const;
   2199 
   2200   unsigned getTargetAddressSpace(QualType T) const {
   2201     return getTargetAddressSpace(T.getQualifiers());
   2202   }
   2203 
   2204   unsigned getTargetAddressSpace(Qualifiers Q) const {
   2205     return getTargetAddressSpace(Q.getAddressSpace());
   2206   }
   2207 
   2208   unsigned getTargetAddressSpace(unsigned AS) const {
   2209     if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
   2210       return AS;
   2211     else
   2212       return (*AddrSpaceMap)[AS - LangAS::Offset];
   2213   }
   2214 
   2215   bool addressSpaceMapManglingFor(unsigned AS) const {
   2216     return AddrSpaceMapMangling ||
   2217            AS < LangAS::Offset ||
   2218            AS >= LangAS::Offset + LangAS::Count;
   2219   }
   2220 
   2221 private:
   2222   // Helper for integer ordering
   2223   unsigned getIntegerRank(const Type *T) const;
   2224 
   2225 public:
   2226 
   2227   //===--------------------------------------------------------------------===//
   2228   //                    Type Compatibility Predicates
   2229   //===--------------------------------------------------------------------===//
   2230 
   2231   /// Compatibility predicates used to check assignment expressions.
   2232   bool typesAreCompatible(QualType T1, QualType T2,
   2233                           bool CompareUnqualified = false); // C99 6.2.7p1
   2234 
   2235   bool propertyTypesAreCompatible(QualType, QualType);
   2236   bool typesAreBlockPointerCompatible(QualType, QualType);
   2237 
   2238   bool isObjCIdType(QualType T) const {
   2239     return T == getObjCIdType();
   2240   }
   2241   bool isObjCClassType(QualType T) const {
   2242     return T == getObjCClassType();
   2243   }
   2244   bool isObjCSelType(QualType T) const {
   2245     return T == getObjCSelType();
   2246   }
   2247   bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
   2248                                          bool ForCompare);
   2249 
   2250   bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
   2251 
   2252   // Check the safety of assignment from LHS to RHS
   2253   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
   2254                                const ObjCObjectPointerType *RHSOPT);
   2255   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
   2256                                const ObjCObjectType *RHS);
   2257   bool canAssignObjCInterfacesInBlockPointer(
   2258                                           const ObjCObjectPointerType *LHSOPT,
   2259                                           const ObjCObjectPointerType *RHSOPT,
   2260                                           bool BlockReturnType);
   2261   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
   2262   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
   2263                                    const ObjCObjectPointerType *RHSOPT);
   2264   bool canBindObjCObjectType(QualType To, QualType From);
   2265 
   2266   // Functions for calculating composite types
   2267   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
   2268                       bool Unqualified = false, bool BlockReturnType = false);
   2269   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
   2270                               bool Unqualified = false);
   2271   QualType mergeFunctionParameterTypes(QualType, QualType,
   2272                                        bool OfBlockPointer = false,
   2273                                        bool Unqualified = false);
   2274   QualType mergeTransparentUnionType(QualType, QualType,
   2275                                      bool OfBlockPointer=false,
   2276                                      bool Unqualified = false);
   2277 
   2278   QualType mergeObjCGCQualifiers(QualType, QualType);
   2279 
   2280   bool doFunctionTypesMatchOnExtParameterInfos(
   2281          const FunctionProtoType *FromFunctionType,
   2282          const FunctionProtoType *ToFunctionType);
   2283 
   2284   void ResetObjCLayout(const ObjCContainerDecl *CD);
   2285 
   2286   //===--------------------------------------------------------------------===//
   2287   //                    Integer Predicates
   2288   //===--------------------------------------------------------------------===//
   2289 
   2290   // The width of an integer, as defined in C99 6.2.6.2. This is the number
   2291   // of bits in an integer type excluding any padding bits.
   2292   unsigned getIntWidth(QualType T) const;
   2293 
   2294   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
   2295   // unsigned integer type.  This method takes a signed type, and returns the
   2296   // corresponding unsigned integer type.
   2297   QualType getCorrespondingUnsignedType(QualType T) const;
   2298 
   2299   //===--------------------------------------------------------------------===//
   2300   //                    Integer Values
   2301   //===--------------------------------------------------------------------===//
   2302 
   2303   /// \brief Make an APSInt of the appropriate width and signedness for the
   2304   /// given \p Value and integer \p Type.
   2305   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
   2306     // If Type is a signed integer type larger than 64 bits, we need to be sure
   2307     // to sign extend Res appropriately.
   2308     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
   2309     Res = Value;
   2310     unsigned Width = getIntWidth(Type);
   2311     if (Width != Res.getBitWidth())
   2312       return Res.extOrTrunc(Width);
   2313     return Res;
   2314   }
   2315 
   2316   bool isSentinelNullExpr(const Expr *E);
   2317 
   2318   /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
   2319   /// none exists.
   2320   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
   2321   /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
   2322   /// none exists.
   2323   ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
   2324 
   2325   /// \brief Return true if there is at least one \@implementation in the TU.
   2326   bool AnyObjCImplementation() {
   2327     return !ObjCImpls.empty();
   2328   }
   2329 
   2330   /// \brief Set the implementation of ObjCInterfaceDecl.
   2331   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
   2332                              ObjCImplementationDecl *ImplD);
   2333   /// \brief Set the implementation of ObjCCategoryDecl.
   2334   void setObjCImplementation(ObjCCategoryDecl *CatD,
   2335                              ObjCCategoryImplDecl *ImplD);
   2336 
   2337   /// \brief Get the duplicate declaration of a ObjCMethod in the same
   2338   /// interface, or null if none exists.
   2339   const ObjCMethodDecl *
   2340   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
   2341 
   2342   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
   2343                                   const ObjCMethodDecl *Redecl);
   2344 
   2345   /// \brief Returns the Objective-C interface that \p ND belongs to if it is
   2346   /// an Objective-C method/property/ivar etc. that is part of an interface,
   2347   /// otherwise returns null.
   2348   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
   2349 
   2350   /// \brief Set the copy inialization expression of a block var decl.
   2351   void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
   2352   /// \brief Get the copy initialization expression of the VarDecl \p VD, or
   2353   /// NULL if none exists.
   2354   Expr *getBlockVarCopyInits(const VarDecl* VD);
   2355 
   2356   /// \brief Allocate an uninitialized TypeSourceInfo.
   2357   ///
   2358   /// The caller should initialize the memory held by TypeSourceInfo using
   2359   /// the TypeLoc wrappers.
   2360   ///
   2361   /// \param T the type that will be the basis for type source info. This type
   2362   /// should refer to how the declarator was written in source code, not to
   2363   /// what type semantic analysis resolved the declarator to.
   2364   ///
   2365   /// \param Size the size of the type info to create, or 0 if the size
   2366   /// should be calculated based on the type.
   2367   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
   2368 
   2369   /// \brief Allocate a TypeSourceInfo where all locations have been
   2370   /// initialized to a given location, which defaults to the empty
   2371   /// location.
   2372   TypeSourceInfo *
   2373   getTrivialTypeSourceInfo(QualType T,
   2374                            SourceLocation Loc = SourceLocation()) const;
   2375 
   2376   /// \brief Add a deallocation callback that will be invoked when the
   2377   /// ASTContext is destroyed.
   2378   ///
   2379   /// \param Callback A callback function that will be invoked on destruction.
   2380   ///
   2381   /// \param Data Pointer data that will be provided to the callback function
   2382   /// when it is called.
   2383   void AddDeallocation(void (*Callback)(void*), void *Data);
   2384 
   2385   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
   2386   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
   2387 
   2388   /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
   2389   /// lazily, only when used; this is only relevant for function or file scoped
   2390   /// var definitions.
   2391   ///
   2392   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
   2393   /// it is not used.
   2394   bool DeclMustBeEmitted(const Decl *D);
   2395 
   2396   const CXXConstructorDecl *
   2397   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
   2398 
   2399   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
   2400                                             CXXConstructorDecl *CD);
   2401 
   2402   void addDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
   2403                                        unsigned ParmIdx, Expr *DAE);
   2404 
   2405   Expr *getDefaultArgExprForConstructor(const CXXConstructorDecl *CD,
   2406                                         unsigned ParmIdx);
   2407 
   2408   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
   2409 
   2410   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
   2411 
   2412   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
   2413 
   2414   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
   2415 
   2416   void setManglingNumber(const NamedDecl *ND, unsigned Number);
   2417   unsigned getManglingNumber(const NamedDecl *ND) const;
   2418 
   2419   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
   2420   unsigned getStaticLocalNumber(const VarDecl *VD) const;
   2421 
   2422   /// \brief Retrieve the context for computing mangling numbers in the given
   2423   /// DeclContext.
   2424   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
   2425 
   2426   MangleNumberingContext *createMangleNumberingContext() const;
   2427 
   2428   /// \brief Used by ParmVarDecl to store on the side the
   2429   /// index of the parameter when it exceeds the size of the normal bitfield.
   2430   void setParameterIndex(const ParmVarDecl *D, unsigned index);
   2431 
   2432   /// \brief Used by ParmVarDecl to retrieve on the side the
   2433   /// index of the parameter when it exceeds the size of the normal bitfield.
   2434   unsigned getParameterIndex(const ParmVarDecl *D) const;
   2435 
   2436   /// \brief Get the storage for the constant value of a materialized temporary
   2437   /// of static storage duration.
   2438   APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
   2439                                          bool MayCreate);
   2440 
   2441   //===--------------------------------------------------------------------===//
   2442   //                    Statistics
   2443   //===--------------------------------------------------------------------===//
   2444 
   2445   /// \brief The number of implicitly-declared default constructors.
   2446   static unsigned NumImplicitDefaultConstructors;
   2447 
   2448   /// \brief The number of implicitly-declared default constructors for
   2449   /// which declarations were built.
   2450   static unsigned NumImplicitDefaultConstructorsDeclared;
   2451 
   2452   /// \brief The number of implicitly-declared copy constructors.
   2453   static unsigned NumImplicitCopyConstructors;
   2454 
   2455   /// \brief The number of implicitly-declared copy constructors for
   2456   /// which declarations were built.
   2457   static unsigned NumImplicitCopyConstructorsDeclared;
   2458 
   2459   /// \brief The number of implicitly-declared move constructors.
   2460   static unsigned NumImplicitMoveConstructors;
   2461 
   2462   /// \brief The number of implicitly-declared move constructors for
   2463   /// which declarations were built.
   2464   static unsigned NumImplicitMoveConstructorsDeclared;
   2465 
   2466   /// \brief The number of implicitly-declared copy assignment operators.
   2467   static unsigned NumImplicitCopyAssignmentOperators;
   2468 
   2469   /// \brief The number of implicitly-declared copy assignment operators for
   2470   /// which declarations were built.
   2471   static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
   2472 
   2473   /// \brief The number of implicitly-declared move assignment operators.
   2474   static unsigned NumImplicitMoveAssignmentOperators;
   2475 
   2476   /// \brief The number of implicitly-declared move assignment operators for
   2477   /// which declarations were built.
   2478   static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
   2479 
   2480   /// \brief The number of implicitly-declared destructors.
   2481   static unsigned NumImplicitDestructors;
   2482 
   2483   /// \brief The number of implicitly-declared destructors for which
   2484   /// declarations were built.
   2485   static unsigned NumImplicitDestructorsDeclared;
   2486 
   2487 private:
   2488   ASTContext(const ASTContext &) = delete;
   2489   void operator=(const ASTContext &) = delete;
   2490 
   2491 public:
   2492   /// \brief Initialize built-in types.
   2493   ///
   2494   /// This routine may only be invoked once for a given ASTContext object.
   2495   /// It is normally invoked after ASTContext construction.
   2496   ///
   2497   /// \param Target The target
   2498   void InitBuiltinTypes(const TargetInfo &Target,
   2499                         const TargetInfo *AuxTarget = nullptr);
   2500 
   2501 private:
   2502   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
   2503 
   2504   // Return the Objective-C type encoding for a given type.
   2505   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
   2506                                   bool ExpandPointedToStructures,
   2507                                   bool ExpandStructures,
   2508                                   const FieldDecl *Field,
   2509                                   bool OutermostType = false,
   2510                                   bool EncodingProperty = false,
   2511                                   bool StructField = false,
   2512                                   bool EncodeBlockParameters = false,
   2513                                   bool EncodeClassNames = false,
   2514                                   bool EncodePointerToObjCTypedef = false,
   2515                                   QualType *NotEncodedT=nullptr) const;
   2516 
   2517   // Adds the encoding of the structure's members.
   2518   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
   2519                                        const FieldDecl *Field,
   2520                                        bool includeVBases = true,
   2521                                        QualType *NotEncodedT=nullptr) const;
   2522 public:
   2523   // Adds the encoding of a method parameter or return type.
   2524   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
   2525                                          QualType T, std::string& S,
   2526                                          bool Extended) const;
   2527 
   2528   /// \brief Returns true if this is an inline-initialized static data member
   2529   /// which is treated as a definition for MSVC compatibility.
   2530   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
   2531 
   2532   enum class InlineVariableDefinitionKind {
   2533     None,        ///< Not an inline variable.
   2534     Weak,        ///< Weak definition of inline variable.
   2535     WeakUnknown, ///< Weak for now, might become strong later in this TU.
   2536     Strong       ///< Strong definition.
   2537   };
   2538   /// \brief Determine whether a definition of this inline variable should
   2539   /// be treated as a weak or strong definition. For compatibility with
   2540   /// C++14 and before, for a constexpr static data member, if there is an
   2541   /// out-of-line declaration of the member, we may promote it from weak to
   2542   /// strong.
   2543   InlineVariableDefinitionKind
   2544   getInlineVariableDefinitionKind(const VarDecl *VD) const;
   2545 
   2546 private:
   2547   const ASTRecordLayout &
   2548   getObjCLayout(const ObjCInterfaceDecl *D,
   2549                 const ObjCImplementationDecl *Impl) const;
   2550 
   2551   /// \brief A set of deallocations that should be performed when the
   2552   /// ASTContext is destroyed.
   2553   // FIXME: We really should have a better mechanism in the ASTContext to
   2554   // manage running destructors for types which do variable sized allocation
   2555   // within the AST. In some places we thread the AST bump pointer allocator
   2556   // into the datastructures which avoids this mess during deallocation but is
   2557   // wasteful of memory, and here we require a lot of error prone book keeping
   2558   // in order to track and run destructors while we're tearing things down.
   2559   typedef llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>
   2560       DeallocationFunctionsAndArguments;
   2561   DeallocationFunctionsAndArguments Deallocations;
   2562 
   2563   // FIXME: This currently contains the set of StoredDeclMaps used
   2564   // by DeclContext objects.  This probably should not be in ASTContext,
   2565   // but we include it here so that ASTContext can quickly deallocate them.
   2566   llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
   2567 
   2568   friend class DeclContext;
   2569   friend class DeclarationNameTable;
   2570   void ReleaseDeclContextMaps();
   2571   void ReleaseParentMapEntries();
   2572 
   2573   std::unique_ptr<ParentMapPointers> PointerParents;
   2574   std::unique_ptr<ParentMapOtherNodes> OtherParents;
   2575 
   2576   std::unique_ptr<VTableContextBase> VTContext;
   2577 
   2578 public:
   2579   enum PragmaSectionFlag : unsigned {
   2580     PSF_None = 0,
   2581     PSF_Read = 0x1,
   2582     PSF_Write = 0x2,
   2583     PSF_Execute = 0x4,
   2584     PSF_Implicit = 0x8,
   2585     PSF_Invalid = 0x80000000U,
   2586   };
   2587 
   2588   struct SectionInfo {
   2589     DeclaratorDecl *Decl;
   2590     SourceLocation PragmaSectionLocation;
   2591     int SectionFlags;
   2592     SectionInfo() {}
   2593     SectionInfo(DeclaratorDecl *Decl,
   2594                 SourceLocation PragmaSectionLocation,
   2595                 int SectionFlags)
   2596       : Decl(Decl),
   2597         PragmaSectionLocation(PragmaSectionLocation),
   2598         SectionFlags(SectionFlags) {}
   2599   };
   2600 
   2601   llvm::StringMap<SectionInfo> SectionInfos;
   2602 };
   2603 
   2604 /// \brief Utility function for constructing a nullary selector.
   2605 static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
   2606   IdentifierInfo* II = &Ctx.Idents.get(name);
   2607   return Ctx.Selectors.getSelector(0, &II);
   2608 }
   2609 
   2610 /// \brief Utility function for constructing an unary selector.
   2611 static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
   2612   IdentifierInfo* II = &Ctx.Idents.get(name);
   2613   return Ctx.Selectors.getSelector(1, &II);
   2614 }
   2615 
   2616 }  // end namespace clang
   2617 
   2618 // operator new and delete aren't allowed inside namespaces.
   2619 
   2620 /// @brief Placement new for using the ASTContext's allocator.
   2621 ///
   2622 /// This placement form of operator new uses the ASTContext's allocator for
   2623 /// obtaining memory.
   2624 ///
   2625 /// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
   2626 /// here need to also be made there.
   2627 ///
   2628 /// We intentionally avoid using a nothrow specification here so that the calls
   2629 /// to this operator will not perform a null check on the result -- the
   2630 /// underlying allocator never returns null pointers.
   2631 ///
   2632 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
   2633 /// @code
   2634 /// // Default alignment (8)
   2635 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
   2636 /// // Specific alignment
   2637 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
   2638 /// @endcode
   2639 /// Memory allocated through this placement new operator does not need to be
   2640 /// explicitly freed, as ASTContext will free all of this memory when it gets
   2641 /// destroyed. Please note that you cannot use delete on the pointer.
   2642 ///
   2643 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
   2644 /// @param C The ASTContext that provides the allocator.
   2645 /// @param Alignment The alignment of the allocated memory (if the underlying
   2646 ///                  allocator supports it).
   2647 /// @return The allocated memory. Could be NULL.
   2648 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
   2649                           size_t Alignment) {
   2650   return C.Allocate(Bytes, Alignment);
   2651 }
   2652 /// @brief Placement delete companion to the new above.
   2653 ///
   2654 /// This operator is just a companion to the new above. There is no way of
   2655 /// invoking it directly; see the new operator for more details. This operator
   2656 /// is called implicitly by the compiler if a placement new expression using
   2657 /// the ASTContext throws in the object constructor.
   2658 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
   2659   C.Deallocate(Ptr);
   2660 }
   2661 
   2662 /// This placement form of operator new[] uses the ASTContext's allocator for
   2663 /// obtaining memory.
   2664 ///
   2665 /// We intentionally avoid using a nothrow specification here so that the calls
   2666 /// to this operator will not perform a null check on the result -- the
   2667 /// underlying allocator never returns null pointers.
   2668 ///
   2669 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
   2670 /// @code
   2671 /// // Default alignment (8)
   2672 /// char *data = new (Context) char[10];
   2673 /// // Specific alignment
   2674 /// char *data = new (Context, 4) char[10];
   2675 /// @endcode
   2676 /// Memory allocated through this placement new[] operator does not need to be
   2677 /// explicitly freed, as ASTContext will free all of this memory when it gets
   2678 /// destroyed. Please note that you cannot use delete on the pointer.
   2679 ///
   2680 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
   2681 /// @param C The ASTContext that provides the allocator.
   2682 /// @param Alignment The alignment of the allocated memory (if the underlying
   2683 ///                  allocator supports it).
   2684 /// @return The allocated memory. Could be NULL.
   2685 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
   2686                             size_t Alignment = 8) {
   2687   return C.Allocate(Bytes, Alignment);
   2688 }
   2689 
   2690 /// @brief Placement delete[] companion to the new[] above.
   2691 ///
   2692 /// This operator is just a companion to the new[] above. There is no way of
   2693 /// invoking it directly; see the new[] operator for more details. This operator
   2694 /// is called implicitly by the compiler if a placement new[] expression using
   2695 /// the ASTContext throws in the object constructor.
   2696 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
   2697   C.Deallocate(Ptr);
   2698 }
   2699 
   2700 /// \brief Create the representation of a LazyGenerationalUpdatePtr.
   2701 template <typename Owner, typename T,
   2702           void (clang::ExternalASTSource::*Update)(Owner)>
   2703 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
   2704     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
   2705         const clang::ASTContext &Ctx, T Value) {
   2706   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
   2707   // include ASTContext.h. We explicitly instantiate it for all relevant types
   2708   // in ASTContext.cpp.
   2709   if (auto *Source = Ctx.getExternalSource())
   2710     return new (Ctx) LazyData(Source, Value);
   2711   return Value;
   2712 }
   2713 
   2714 #endif
   2715