Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTConsumer.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/RecursiveASTVisitor.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/Basic/SourceManager.h"
     23 #include "clang/Sema/DeclSpec.h"
     24 #include "clang/Sema/Lookup.h"
     25 #include "clang/Sema/Scope.h"
     26 #include "clang/Sema/ScopeInfo.h"
     27 #include "llvm/ADT/DenseMap.h"
     28 #include "llvm/ADT/DenseSet.h"
     29 #include "TypeLocBuilder.h"
     30 
     31 using namespace clang;
     32 
     33 /// Check whether the given method, which must be in the 'init'
     34 /// family, is a valid member of that family.
     35 ///
     36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     37 ///   if non-null, check this as if making a call to it with the given
     38 ///   receiver type
     39 ///
     40 /// \return true to indicate that there was an error and appropriate
     41 ///   actions were taken
     42 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     43                            QualType receiverTypeIfCall) {
     44   if (method->isInvalidDecl()) return true;
     45 
     46   // This castAs is safe: methods that don't return an object
     47   // pointer won't be inferred as inits and will reject an explicit
     48   // objc_method_family(init).
     49 
     50   // We ignore protocols here.  Should we?  What about Class?
     51 
     52   const ObjCObjectType *result =
     53       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
     54 
     55   if (result->isObjCId()) {
     56     return false;
     57   } else if (result->isObjCClass()) {
     58     // fall through: always an error
     59   } else {
     60     ObjCInterfaceDecl *resultClass = result->getInterface();
     61     assert(resultClass && "unexpected object type!");
     62 
     63     // It's okay for the result type to still be a forward declaration
     64     // if we're checking an interface declaration.
     65     if (!resultClass->hasDefinition()) {
     66       if (receiverTypeIfCall.isNull() &&
     67           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     68         return false;
     69 
     70     // Otherwise, we try to compare class types.
     71     } else {
     72       // If this method was declared in a protocol, we can't check
     73       // anything unless we have a receiver type that's an interface.
     74       const ObjCInterfaceDecl *receiverClass = nullptr;
     75       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     76         if (receiverTypeIfCall.isNull())
     77           return false;
     78 
     79         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     80           ->getInterfaceDecl();
     81 
     82         // This can be null for calls to e.g. id<Foo>.
     83         if (!receiverClass) return false;
     84       } else {
     85         receiverClass = method->getClassInterface();
     86         assert(receiverClass && "method not associated with a class!");
     87       }
     88 
     89       // If either class is a subclass of the other, it's fine.
     90       if (receiverClass->isSuperClassOf(resultClass) ||
     91           resultClass->isSuperClassOf(receiverClass))
     92         return false;
     93     }
     94   }
     95 
     96   SourceLocation loc = method->getLocation();
     97 
     98   // If we're in a system header, and this is not a call, just make
     99   // the method unusable.
    100   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
    101     method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
    102                       UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
    103     return true;
    104   }
    105 
    106   // Otherwise, it's an error.
    107   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    108   method->setInvalidDecl();
    109   return true;
    110 }
    111 
    112 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    113                                    const ObjCMethodDecl *Overridden) {
    114   if (Overridden->hasRelatedResultType() &&
    115       !NewMethod->hasRelatedResultType()) {
    116     // This can only happen when the method follows a naming convention that
    117     // implies a related result type, and the original (overridden) method has
    118     // a suitable return type, but the new (overriding) method does not have
    119     // a suitable return type.
    120     QualType ResultType = NewMethod->getReturnType();
    121     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
    122 
    123     // Figure out which class this method is part of, if any.
    124     ObjCInterfaceDecl *CurrentClass
    125       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    126     if (!CurrentClass) {
    127       DeclContext *DC = NewMethod->getDeclContext();
    128       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    129         CurrentClass = Cat->getClassInterface();
    130       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    131         CurrentClass = Impl->getClassInterface();
    132       else if (ObjCCategoryImplDecl *CatImpl
    133                = dyn_cast<ObjCCategoryImplDecl>(DC))
    134         CurrentClass = CatImpl->getClassInterface();
    135     }
    136 
    137     if (CurrentClass) {
    138       Diag(NewMethod->getLocation(),
    139            diag::warn_related_result_type_compatibility_class)
    140         << Context.getObjCInterfaceType(CurrentClass)
    141         << ResultType
    142         << ResultTypeRange;
    143     } else {
    144       Diag(NewMethod->getLocation(),
    145            diag::warn_related_result_type_compatibility_protocol)
    146         << ResultType
    147         << ResultTypeRange;
    148     }
    149 
    150     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
    151       Diag(Overridden->getLocation(),
    152            diag::note_related_result_type_family)
    153         << /*overridden method*/ 0
    154         << Family;
    155     else
    156       Diag(Overridden->getLocation(),
    157            diag::note_related_result_type_overridden);
    158   }
    159   if (getLangOpts().ObjCAutoRefCount) {
    160     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
    161          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
    162         Diag(NewMethod->getLocation(),
    163              diag::err_nsreturns_retained_attribute_mismatch) << 1;
    164         Diag(Overridden->getLocation(), diag::note_previous_decl)
    165         << "method";
    166     }
    167     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
    168               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
    169         Diag(NewMethod->getLocation(),
    170              diag::err_nsreturns_retained_attribute_mismatch) << 0;
    171         Diag(Overridden->getLocation(), diag::note_previous_decl)
    172         << "method";
    173     }
    174     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
    175                                          oe = Overridden->param_end();
    176     for (ObjCMethodDecl::param_iterator
    177            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
    178          ni != ne && oi != oe; ++ni, ++oi) {
    179       const ParmVarDecl *oldDecl = (*oi);
    180       ParmVarDecl *newDecl = (*ni);
    181       if (newDecl->hasAttr<NSConsumedAttr>() !=
    182           oldDecl->hasAttr<NSConsumedAttr>()) {
    183         Diag(newDecl->getLocation(),
    184              diag::err_nsconsumed_attribute_mismatch);
    185         Diag(oldDecl->getLocation(), diag::note_previous_decl)
    186           << "parameter";
    187       }
    188     }
    189   }
    190 }
    191 
    192 /// \brief Check a method declaration for compatibility with the Objective-C
    193 /// ARC conventions.
    194 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
    195   ObjCMethodFamily family = method->getMethodFamily();
    196   switch (family) {
    197   case OMF_None:
    198   case OMF_finalize:
    199   case OMF_retain:
    200   case OMF_release:
    201   case OMF_autorelease:
    202   case OMF_retainCount:
    203   case OMF_self:
    204   case OMF_initialize:
    205   case OMF_performSelector:
    206     return false;
    207 
    208   case OMF_dealloc:
    209     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
    210       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
    211       if (ResultTypeRange.isInvalid())
    212         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    213             << method->getReturnType()
    214             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
    215       else
    216         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    217             << method->getReturnType()
    218             << FixItHint::CreateReplacement(ResultTypeRange, "void");
    219       return true;
    220     }
    221     return false;
    222 
    223   case OMF_init:
    224     // If the method doesn't obey the init rules, don't bother annotating it.
    225     if (checkInitMethod(method, QualType()))
    226       return true;
    227 
    228     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
    229 
    230     // Don't add a second copy of this attribute, but otherwise don't
    231     // let it be suppressed.
    232     if (method->hasAttr<NSReturnsRetainedAttr>())
    233       return false;
    234     break;
    235 
    236   case OMF_alloc:
    237   case OMF_copy:
    238   case OMF_mutableCopy:
    239   case OMF_new:
    240     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    241         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    242         method->hasAttr<NSReturnsAutoreleasedAttr>())
    243       return false;
    244     break;
    245   }
    246 
    247   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
    248   return false;
    249 }
    250 
    251 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    252                                                 NamedDecl *ND,
    253                                                 SourceLocation ImplLoc,
    254                                                 int select) {
    255   if (ND && ND->isDeprecated()) {
    256     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    257     if (select == 0)
    258       S.Diag(ND->getLocation(), diag::note_method_declared_at)
    259         << ND->getDeclName();
    260     else
    261       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    262   }
    263 }
    264 
    265 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
    266 /// pool.
    267 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
    268   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    269 
    270   // If we don't have a valid method decl, simply return.
    271   if (!MDecl)
    272     return;
    273   if (MDecl->isInstanceMethod())
    274     AddInstanceMethodToGlobalPool(MDecl, true);
    275   else
    276     AddFactoryMethodToGlobalPool(MDecl, true);
    277 }
    278 
    279 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
    280 /// has explicit ownership attribute; false otherwise.
    281 static bool
    282 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
    283   QualType T = Param->getType();
    284 
    285   if (const PointerType *PT = T->getAs<PointerType>()) {
    286     T = PT->getPointeeType();
    287   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
    288     T = RT->getPointeeType();
    289   } else {
    290     return true;
    291   }
    292 
    293   // If we have a lifetime qualifier, but it's local, we must have
    294   // inferred it. So, it is implicit.
    295   return !T.getLocalQualifiers().hasObjCLifetime();
    296 }
    297 
    298 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    299 /// and user declared, in the method definition's AST.
    300 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    301   assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
    302   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    303 
    304   // If we don't have a valid method decl, simply return.
    305   if (!MDecl)
    306     return;
    307 
    308   // Allow all of Sema to see that we are entering a method definition.
    309   PushDeclContext(FnBodyScope, MDecl);
    310   PushFunctionScope();
    311 
    312   // Create Decl objects for each parameter, entrring them in the scope for
    313   // binding to their use.
    314 
    315   // Insert the invisible arguments, self and _cmd!
    316   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    317 
    318   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    319   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    320 
    321   // The ObjC parser requires parameter names so there's no need to check.
    322   CheckParmsForFunctionDef(MDecl->parameters(),
    323                            /*CheckParameterNames=*/false);
    324 
    325   // Introduce all of the other parameters into this scope.
    326   for (auto *Param : MDecl->parameters()) {
    327     if (!Param->isInvalidDecl() &&
    328         getLangOpts().ObjCAutoRefCount &&
    329         !HasExplicitOwnershipAttr(*this, Param))
    330       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
    331             Param->getType();
    332 
    333     if (Param->getIdentifier())
    334       PushOnScopeChains(Param, FnBodyScope);
    335   }
    336 
    337   // In ARC, disallow definition of retain/release/autorelease/retainCount
    338   if (getLangOpts().ObjCAutoRefCount) {
    339     switch (MDecl->getMethodFamily()) {
    340     case OMF_retain:
    341     case OMF_retainCount:
    342     case OMF_release:
    343     case OMF_autorelease:
    344       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    345         << 0 << MDecl->getSelector();
    346       break;
    347 
    348     case OMF_None:
    349     case OMF_dealloc:
    350     case OMF_finalize:
    351     case OMF_alloc:
    352     case OMF_init:
    353     case OMF_mutableCopy:
    354     case OMF_copy:
    355     case OMF_new:
    356     case OMF_self:
    357     case OMF_initialize:
    358     case OMF_performSelector:
    359       break;
    360     }
    361   }
    362 
    363   // Warn on deprecated methods under -Wdeprecated-implementations,
    364   // and prepare for warning on missing super calls.
    365   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
    366     ObjCMethodDecl *IMD =
    367       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
    368 
    369     if (IMD) {
    370       ObjCImplDecl *ImplDeclOfMethodDef =
    371         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
    372       ObjCContainerDecl *ContDeclOfMethodDecl =
    373         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
    374       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
    375       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
    376         ImplDeclOfMethodDecl = OID->getImplementation();
    377       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
    378         if (CD->IsClassExtension()) {
    379           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
    380             ImplDeclOfMethodDecl = OID->getImplementation();
    381         } else
    382             ImplDeclOfMethodDecl = CD->getImplementation();
    383       }
    384       // No need to issue deprecated warning if deprecated mehod in class/category
    385       // is being implemented in its own implementation (no overriding is involved).
    386       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
    387         DiagnoseObjCImplementedDeprecations(*this,
    388                                           dyn_cast<NamedDecl>(IMD),
    389                                           MDecl->getLocation(), 0);
    390     }
    391 
    392     if (MDecl->getMethodFamily() == OMF_init) {
    393       if (MDecl->isDesignatedInitializerForTheInterface()) {
    394         getCurFunction()->ObjCIsDesignatedInit = true;
    395         getCurFunction()->ObjCWarnForNoDesignatedInitChain =
    396             IC->getSuperClass() != nullptr;
    397       } else if (IC->hasDesignatedInitializers()) {
    398         getCurFunction()->ObjCIsSecondaryInit = true;
    399         getCurFunction()->ObjCWarnForNoInitDelegation = true;
    400       }
    401     }
    402 
    403     // If this is "dealloc" or "finalize", set some bit here.
    404     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
    405     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
    406     // Only do this if the current class actually has a superclass.
    407     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
    408       ObjCMethodFamily Family = MDecl->getMethodFamily();
    409       if (Family == OMF_dealloc) {
    410         if (!(getLangOpts().ObjCAutoRefCount ||
    411               getLangOpts().getGC() == LangOptions::GCOnly))
    412           getCurFunction()->ObjCShouldCallSuper = true;
    413 
    414       } else if (Family == OMF_finalize) {
    415         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
    416           getCurFunction()->ObjCShouldCallSuper = true;
    417 
    418       } else {
    419         const ObjCMethodDecl *SuperMethod =
    420           SuperClass->lookupMethod(MDecl->getSelector(),
    421                                    MDecl->isInstanceMethod());
    422         getCurFunction()->ObjCShouldCallSuper =
    423           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
    424       }
    425     }
    426   }
    427 }
    428 
    429 namespace {
    430 
    431 // Callback to only accept typo corrections that are Objective-C classes.
    432 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
    433 // function will reject corrections to that class.
    434 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
    435  public:
    436   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
    437   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
    438       : CurrentIDecl(IDecl) {}
    439 
    440   bool ValidateCandidate(const TypoCorrection &candidate) override {
    441     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
    442     return ID && !declaresSameEntity(ID, CurrentIDecl);
    443   }
    444 
    445  private:
    446   ObjCInterfaceDecl *CurrentIDecl;
    447 };
    448 
    449 } // end anonymous namespace
    450 
    451 static void diagnoseUseOfProtocols(Sema &TheSema,
    452                                    ObjCContainerDecl *CD,
    453                                    ObjCProtocolDecl *const *ProtoRefs,
    454                                    unsigned NumProtoRefs,
    455                                    const SourceLocation *ProtoLocs) {
    456   assert(ProtoRefs);
    457   // Diagnose availability in the context of the ObjC container.
    458   Sema::ContextRAII SavedContext(TheSema, CD);
    459   for (unsigned i = 0; i < NumProtoRefs; ++i) {
    460     (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i]);
    461   }
    462 }
    463 
    464 void Sema::
    465 ActOnSuperClassOfClassInterface(Scope *S,
    466                                 SourceLocation AtInterfaceLoc,
    467                                 ObjCInterfaceDecl *IDecl,
    468                                 IdentifierInfo *ClassName,
    469                                 SourceLocation ClassLoc,
    470                                 IdentifierInfo *SuperName,
    471                                 SourceLocation SuperLoc,
    472                                 ArrayRef<ParsedType> SuperTypeArgs,
    473                                 SourceRange SuperTypeArgsRange) {
    474   // Check if a different kind of symbol declared in this scope.
    475   NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    476                                          LookupOrdinaryName);
    477 
    478   if (!PrevDecl) {
    479     // Try to correct for a typo in the superclass name without correcting
    480     // to the class we're defining.
    481     if (TypoCorrection Corrected = CorrectTypo(
    482             DeclarationNameInfo(SuperName, SuperLoc),
    483             LookupOrdinaryName, TUScope,
    484             nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
    485             CTK_ErrorRecovery)) {
    486       diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
    487                    << SuperName << ClassName);
    488       PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    489     }
    490   }
    491 
    492   if (declaresSameEntity(PrevDecl, IDecl)) {
    493     Diag(SuperLoc, diag::err_recursive_superclass)
    494       << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    495     IDecl->setEndOfDefinitionLoc(ClassLoc);
    496   } else {
    497     ObjCInterfaceDecl *SuperClassDecl =
    498     dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    499     QualType SuperClassType;
    500 
    501     // Diagnose classes that inherit from deprecated classes.
    502     if (SuperClassDecl) {
    503       (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    504       SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
    505     }
    506 
    507     if (PrevDecl && !SuperClassDecl) {
    508       // The previous declaration was not a class decl. Check if we have a
    509       // typedef. If we do, get the underlying class type.
    510       if (const TypedefNameDecl *TDecl =
    511           dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    512         QualType T = TDecl->getUnderlyingType();
    513         if (T->isObjCObjectType()) {
    514           if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    515             SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    516             SuperClassType = Context.getTypeDeclType(TDecl);
    517 
    518             // This handles the following case:
    519             // @interface NewI @end
    520             // typedef NewI DeprI __attribute__((deprecated("blah")))
    521             // @interface SI : DeprI /* warn here */ @end
    522             (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
    523           }
    524         }
    525       }
    526 
    527       // This handles the following case:
    528       //
    529       // typedef int SuperClass;
    530       // @interface MyClass : SuperClass {} @end
    531       //
    532       if (!SuperClassDecl) {
    533         Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    534         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    535       }
    536     }
    537 
    538     if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    539       if (!SuperClassDecl)
    540         Diag(SuperLoc, diag::err_undef_superclass)
    541           << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    542       else if (RequireCompleteType(SuperLoc,
    543                                    SuperClassType,
    544                                    diag::err_forward_superclass,
    545                                    SuperClassDecl->getDeclName(),
    546                                    ClassName,
    547                                    SourceRange(AtInterfaceLoc, ClassLoc))) {
    548         SuperClassDecl = nullptr;
    549         SuperClassType = QualType();
    550       }
    551     }
    552 
    553     if (SuperClassType.isNull()) {
    554       assert(!SuperClassDecl && "Failed to set SuperClassType?");
    555       return;
    556     }
    557 
    558     // Handle type arguments on the superclass.
    559     TypeSourceInfo *SuperClassTInfo = nullptr;
    560     if (!SuperTypeArgs.empty()) {
    561       TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
    562                                         S,
    563                                         SuperLoc,
    564                                         CreateParsedType(SuperClassType,
    565                                                          nullptr),
    566                                         SuperTypeArgsRange.getBegin(),
    567                                         SuperTypeArgs,
    568                                         SuperTypeArgsRange.getEnd(),
    569                                         SourceLocation(),
    570                                         { },
    571                                         { },
    572                                         SourceLocation());
    573       if (!fullSuperClassType.isUsable())
    574         return;
    575 
    576       SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
    577                                          &SuperClassTInfo);
    578     }
    579 
    580     if (!SuperClassTInfo) {
    581       SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
    582                                                          SuperLoc);
    583     }
    584 
    585     IDecl->setSuperClass(SuperClassTInfo);
    586     IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
    587   }
    588 }
    589 
    590 DeclResult Sema::actOnObjCTypeParam(Scope *S,
    591                                     ObjCTypeParamVariance variance,
    592                                     SourceLocation varianceLoc,
    593                                     unsigned index,
    594                                     IdentifierInfo *paramName,
    595                                     SourceLocation paramLoc,
    596                                     SourceLocation colonLoc,
    597                                     ParsedType parsedTypeBound) {
    598   // If there was an explicitly-provided type bound, check it.
    599   TypeSourceInfo *typeBoundInfo = nullptr;
    600   if (parsedTypeBound) {
    601     // The type bound can be any Objective-C pointer type.
    602     QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
    603     if (typeBound->isObjCObjectPointerType()) {
    604       // okay
    605     } else if (typeBound->isObjCObjectType()) {
    606       // The user forgot the * on an Objective-C pointer type, e.g.,
    607       // "T : NSView".
    608       SourceLocation starLoc = getLocForEndOfToken(
    609                                  typeBoundInfo->getTypeLoc().getEndLoc());
    610       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
    611            diag::err_objc_type_param_bound_missing_pointer)
    612         << typeBound << paramName
    613         << FixItHint::CreateInsertion(starLoc, " *");
    614 
    615       // Create a new type location builder so we can update the type
    616       // location information we have.
    617       TypeLocBuilder builder;
    618       builder.pushFullCopy(typeBoundInfo->getTypeLoc());
    619 
    620       // Create the Objective-C pointer type.
    621       typeBound = Context.getObjCObjectPointerType(typeBound);
    622       ObjCObjectPointerTypeLoc newT
    623         = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
    624       newT.setStarLoc(starLoc);
    625 
    626       // Form the new type source information.
    627       typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
    628     } else {
    629       // Not a valid type bound.
    630       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
    631            diag::err_objc_type_param_bound_nonobject)
    632         << typeBound << paramName;
    633 
    634       // Forget the bound; we'll default to id later.
    635       typeBoundInfo = nullptr;
    636     }
    637 
    638     // Type bounds cannot have qualifiers (even indirectly) or explicit
    639     // nullability.
    640     if (typeBoundInfo) {
    641       QualType typeBound = typeBoundInfo->getType();
    642       TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
    643       if (qual || typeBound.hasQualifiers()) {
    644         bool diagnosed = false;
    645         SourceRange rangeToRemove;
    646         if (qual) {
    647           if (auto attr = qual.getAs<AttributedTypeLoc>()) {
    648             rangeToRemove = attr.getLocalSourceRange();
    649             if (attr.getTypePtr()->getImmediateNullability()) {
    650               Diag(attr.getLocStart(),
    651                    diag::err_objc_type_param_bound_explicit_nullability)
    652                 << paramName << typeBound
    653                 << FixItHint::CreateRemoval(rangeToRemove);
    654               diagnosed = true;
    655             }
    656           }
    657         }
    658 
    659         if (!diagnosed) {
    660           Diag(qual ? qual.getLocStart()
    661                     : typeBoundInfo->getTypeLoc().getLocStart(),
    662               diag::err_objc_type_param_bound_qualified)
    663             << paramName << typeBound << typeBound.getQualifiers().getAsString()
    664             << FixItHint::CreateRemoval(rangeToRemove);
    665         }
    666 
    667         // If the type bound has qualifiers other than CVR, we need to strip
    668         // them or we'll probably assert later when trying to apply new
    669         // qualifiers.
    670         Qualifiers quals = typeBound.getQualifiers();
    671         quals.removeCVRQualifiers();
    672         if (!quals.empty()) {
    673           typeBoundInfo =
    674              Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
    675         }
    676       }
    677     }
    678   }
    679 
    680   // If there was no explicit type bound (or we removed it due to an error),
    681   // use 'id' instead.
    682   if (!typeBoundInfo) {
    683     colonLoc = SourceLocation();
    684     typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
    685   }
    686 
    687   // Create the type parameter.
    688   return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
    689                                    index, paramLoc, paramName, colonLoc,
    690                                    typeBoundInfo);
    691 }
    692 
    693 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
    694                                                 SourceLocation lAngleLoc,
    695                                                 ArrayRef<Decl *> typeParamsIn,
    696                                                 SourceLocation rAngleLoc) {
    697   // We know that the array only contains Objective-C type parameters.
    698   ArrayRef<ObjCTypeParamDecl *>
    699     typeParams(
    700       reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
    701       typeParamsIn.size());
    702 
    703   // Diagnose redeclarations of type parameters.
    704   // We do this now because Objective-C type parameters aren't pushed into
    705   // scope until later (after the instance variable block), but we want the
    706   // diagnostics to occur right after we parse the type parameter list.
    707   llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
    708   for (auto typeParam : typeParams) {
    709     auto known = knownParams.find(typeParam->getIdentifier());
    710     if (known != knownParams.end()) {
    711       Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
    712         << typeParam->getIdentifier()
    713         << SourceRange(known->second->getLocation());
    714 
    715       typeParam->setInvalidDecl();
    716     } else {
    717       knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
    718 
    719       // Push the type parameter into scope.
    720       PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
    721     }
    722   }
    723 
    724   // Create the parameter list.
    725   return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
    726 }
    727 
    728 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
    729   for (auto typeParam : *typeParamList) {
    730     if (!typeParam->isInvalidDecl()) {
    731       S->RemoveDecl(typeParam);
    732       IdResolver.RemoveDecl(typeParam);
    733     }
    734   }
    735 }
    736 
    737 namespace {
    738   /// The context in which an Objective-C type parameter list occurs, for use
    739   /// in diagnostics.
    740   enum class TypeParamListContext {
    741     ForwardDeclaration,
    742     Definition,
    743     Category,
    744     Extension
    745   };
    746 } // end anonymous namespace
    747 
    748 /// Check consistency between two Objective-C type parameter lists, e.g.,
    749 /// between a category/extension and an \@interface or between an \@class and an
    750 /// \@interface.
    751 static bool checkTypeParamListConsistency(Sema &S,
    752                                           ObjCTypeParamList *prevTypeParams,
    753                                           ObjCTypeParamList *newTypeParams,
    754                                           TypeParamListContext newContext) {
    755   // If the sizes don't match, complain about that.
    756   if (prevTypeParams->size() != newTypeParams->size()) {
    757     SourceLocation diagLoc;
    758     if (newTypeParams->size() > prevTypeParams->size()) {
    759       diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
    760     } else {
    761       diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
    762     }
    763 
    764     S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
    765       << static_cast<unsigned>(newContext)
    766       << (newTypeParams->size() > prevTypeParams->size())
    767       << prevTypeParams->size()
    768       << newTypeParams->size();
    769 
    770     return true;
    771   }
    772 
    773   // Match up the type parameters.
    774   for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
    775     ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
    776     ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
    777 
    778     // Check for consistency of the variance.
    779     if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
    780       if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
    781           newContext != TypeParamListContext::Definition) {
    782         // When the new type parameter is invariant and is not part
    783         // of the definition, just propagate the variance.
    784         newTypeParam->setVariance(prevTypeParam->getVariance());
    785       } else if (prevTypeParam->getVariance()
    786                    == ObjCTypeParamVariance::Invariant &&
    787                  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
    788                    cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
    789                      ->getDefinition() == prevTypeParam->getDeclContext())) {
    790         // When the old parameter is invariant and was not part of the
    791         // definition, just ignore the difference because it doesn't
    792         // matter.
    793       } else {
    794         {
    795           // Diagnose the conflict and update the second declaration.
    796           SourceLocation diagLoc = newTypeParam->getVarianceLoc();
    797           if (diagLoc.isInvalid())
    798             diagLoc = newTypeParam->getLocStart();
    799 
    800           auto diag = S.Diag(diagLoc,
    801                              diag::err_objc_type_param_variance_conflict)
    802                         << static_cast<unsigned>(newTypeParam->getVariance())
    803                         << newTypeParam->getDeclName()
    804                         << static_cast<unsigned>(prevTypeParam->getVariance())
    805                         << prevTypeParam->getDeclName();
    806           switch (prevTypeParam->getVariance()) {
    807           case ObjCTypeParamVariance::Invariant:
    808             diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
    809             break;
    810 
    811           case ObjCTypeParamVariance::Covariant:
    812           case ObjCTypeParamVariance::Contravariant: {
    813             StringRef newVarianceStr
    814                = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
    815                    ? "__covariant"
    816                    : "__contravariant";
    817             if (newTypeParam->getVariance()
    818                   == ObjCTypeParamVariance::Invariant) {
    819               diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
    820                                                  (newVarianceStr + " ").str());
    821             } else {
    822               diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
    823                                                newVarianceStr);
    824             }
    825           }
    826           }
    827         }
    828 
    829         S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
    830           << prevTypeParam->getDeclName();
    831 
    832         // Override the variance.
    833         newTypeParam->setVariance(prevTypeParam->getVariance());
    834       }
    835     }
    836 
    837     // If the bound types match, there's nothing to do.
    838     if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
    839                               newTypeParam->getUnderlyingType()))
    840       continue;
    841 
    842     // If the new type parameter's bound was explicit, complain about it being
    843     // different from the original.
    844     if (newTypeParam->hasExplicitBound()) {
    845       SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
    846                                     ->getTypeLoc().getSourceRange();
    847       S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
    848         << newTypeParam->getUnderlyingType()
    849         << newTypeParam->getDeclName()
    850         << prevTypeParam->hasExplicitBound()
    851         << prevTypeParam->getUnderlyingType()
    852         << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
    853         << prevTypeParam->getDeclName()
    854         << FixItHint::CreateReplacement(
    855              newBoundRange,
    856              prevTypeParam->getUnderlyingType().getAsString(
    857                S.Context.getPrintingPolicy()));
    858 
    859       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
    860         << prevTypeParam->getDeclName();
    861 
    862       // Override the new type parameter's bound type with the previous type,
    863       // so that it's consistent.
    864       newTypeParam->setTypeSourceInfo(
    865         S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
    866       continue;
    867     }
    868 
    869     // The new type parameter got the implicit bound of 'id'. That's okay for
    870     // categories and extensions (overwrite it later), but not for forward
    871     // declarations and @interfaces, because those must be standalone.
    872     if (newContext == TypeParamListContext::ForwardDeclaration ||
    873         newContext == TypeParamListContext::Definition) {
    874       // Diagnose this problem for forward declarations and definitions.
    875       SourceLocation insertionLoc
    876         = S.getLocForEndOfToken(newTypeParam->getLocation());
    877       std::string newCode
    878         = " : " + prevTypeParam->getUnderlyingType().getAsString(
    879                     S.Context.getPrintingPolicy());
    880       S.Diag(newTypeParam->getLocation(),
    881              diag::err_objc_type_param_bound_missing)
    882         << prevTypeParam->getUnderlyingType()
    883         << newTypeParam->getDeclName()
    884         << (newContext == TypeParamListContext::ForwardDeclaration)
    885         << FixItHint::CreateInsertion(insertionLoc, newCode);
    886 
    887       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
    888         << prevTypeParam->getDeclName();
    889     }
    890 
    891     // Update the new type parameter's bound to match the previous one.
    892     newTypeParam->setTypeSourceInfo(
    893       S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
    894   }
    895 
    896   return false;
    897 }
    898 
    899 Decl *Sema::
    900 ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
    901                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    902                          ObjCTypeParamList *typeParamList,
    903                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    904                          ArrayRef<ParsedType> SuperTypeArgs,
    905                          SourceRange SuperTypeArgsRange,
    906                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    907                          const SourceLocation *ProtoLocs,
    908                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    909   assert(ClassName && "Missing class identifier");
    910 
    911   // Check for another declaration kind with the same name.
    912   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    913                                          LookupOrdinaryName, ForRedeclaration);
    914 
    915   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    916     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    917     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    918   }
    919 
    920   // Create a declaration to describe this @interface.
    921   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    922 
    923   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
    924     // A previous decl with a different name is because of
    925     // @compatibility_alias, for example:
    926     // \code
    927     //   @class NewImage;
    928     //   @compatibility_alias OldImage NewImage;
    929     // \endcode
    930     // A lookup for 'OldImage' will return the 'NewImage' decl.
    931     //
    932     // In such a case use the real declaration name, instead of the alias one,
    933     // otherwise we will break IdentifierResolver and redecls-chain invariants.
    934     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
    935     // has been aliased.
    936     ClassName = PrevIDecl->getIdentifier();
    937   }
    938 
    939   // If there was a forward declaration with type parameters, check
    940   // for consistency.
    941   if (PrevIDecl) {
    942     if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
    943       if (typeParamList) {
    944         // Both have type parameter lists; check for consistency.
    945         if (checkTypeParamListConsistency(*this, prevTypeParamList,
    946                                           typeParamList,
    947                                           TypeParamListContext::Definition)) {
    948           typeParamList = nullptr;
    949         }
    950       } else {
    951         Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
    952           << ClassName;
    953         Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
    954           << ClassName;
    955 
    956         // Clone the type parameter list.
    957         SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
    958         for (auto typeParam : *prevTypeParamList) {
    959           clonedTypeParams.push_back(
    960             ObjCTypeParamDecl::Create(
    961               Context,
    962               CurContext,
    963               typeParam->getVariance(),
    964               SourceLocation(),
    965               typeParam->getIndex(),
    966               SourceLocation(),
    967               typeParam->getIdentifier(),
    968               SourceLocation(),
    969               Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
    970         }
    971 
    972         typeParamList = ObjCTypeParamList::create(Context,
    973                                                   SourceLocation(),
    974                                                   clonedTypeParams,
    975                                                   SourceLocation());
    976       }
    977     }
    978   }
    979 
    980   ObjCInterfaceDecl *IDecl
    981     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
    982                                 typeParamList, PrevIDecl, ClassLoc);
    983   if (PrevIDecl) {
    984     // Class already seen. Was it a definition?
    985     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
    986       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
    987         << PrevIDecl->getDeclName();
    988       Diag(Def->getLocation(), diag::note_previous_definition);
    989       IDecl->setInvalidDecl();
    990     }
    991   }
    992 
    993   if (AttrList)
    994     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    995   PushOnScopeChains(IDecl, TUScope);
    996 
    997   // Start the definition of this class. If we're in a redefinition case, there
    998   // may already be a definition, so we'll end up adding to it.
    999   if (!IDecl->hasDefinition())
   1000     IDecl->startDefinition();
   1001 
   1002   if (SuperName) {
   1003     // Diagnose availability in the context of the @interface.
   1004     ContextRAII SavedContext(*this, IDecl);
   1005 
   1006     ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
   1007                                     ClassName, ClassLoc,
   1008                                     SuperName, SuperLoc, SuperTypeArgs,
   1009                                     SuperTypeArgsRange);
   1010   } else { // we have a root class.
   1011     IDecl->setEndOfDefinitionLoc(ClassLoc);
   1012   }
   1013 
   1014   // Check then save referenced protocols.
   1015   if (NumProtoRefs) {
   1016     diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
   1017                            NumProtoRefs, ProtoLocs);
   1018     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
   1019                            ProtoLocs, Context);
   1020     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
   1021   }
   1022 
   1023   CheckObjCDeclScope(IDecl);
   1024   return ActOnObjCContainerStartDefinition(IDecl);
   1025 }
   1026 
   1027 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
   1028 /// typedef'ed use for a qualified super class and adds them to the list
   1029 /// of the protocols.
   1030 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
   1031                                    IdentifierInfo *SuperName,
   1032                                    SourceLocation SuperLoc) {
   1033   if (!SuperName)
   1034     return;
   1035   NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
   1036                                       LookupOrdinaryName);
   1037   if (!IDecl)
   1038     return;
   1039 
   1040   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
   1041     QualType T = TDecl->getUnderlyingType();
   1042     if (T->isObjCObjectType())
   1043       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
   1044         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
   1045   }
   1046 }
   1047 
   1048 /// ActOnCompatibilityAlias - this action is called after complete parsing of
   1049 /// a \@compatibility_alias declaration. It sets up the alias relationships.
   1050 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
   1051                                     IdentifierInfo *AliasName,
   1052                                     SourceLocation AliasLocation,
   1053                                     IdentifierInfo *ClassName,
   1054                                     SourceLocation ClassLocation) {
   1055   // Look for previous declaration of alias name
   1056   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
   1057                                       LookupOrdinaryName, ForRedeclaration);
   1058   if (ADecl) {
   1059     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
   1060     Diag(ADecl->getLocation(), diag::note_previous_declaration);
   1061     return nullptr;
   1062   }
   1063   // Check for class declaration
   1064   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
   1065                                        LookupOrdinaryName, ForRedeclaration);
   1066   if (const TypedefNameDecl *TDecl =
   1067         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
   1068     QualType T = TDecl->getUnderlyingType();
   1069     if (T->isObjCObjectType()) {
   1070       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
   1071         ClassName = IDecl->getIdentifier();
   1072         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
   1073                                   LookupOrdinaryName, ForRedeclaration);
   1074       }
   1075     }
   1076   }
   1077   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
   1078   if (!CDecl) {
   1079     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
   1080     if (CDeclU)
   1081       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
   1082     return nullptr;
   1083   }
   1084 
   1085   // Everything checked out, instantiate a new alias declaration AST.
   1086   ObjCCompatibleAliasDecl *AliasDecl =
   1087     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
   1088 
   1089   if (!CheckObjCDeclScope(AliasDecl))
   1090     PushOnScopeChains(AliasDecl, TUScope);
   1091 
   1092   return AliasDecl;
   1093 }
   1094 
   1095 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
   1096   IdentifierInfo *PName,
   1097   SourceLocation &Ploc, SourceLocation PrevLoc,
   1098   const ObjCList<ObjCProtocolDecl> &PList) {
   1099 
   1100   bool res = false;
   1101   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
   1102        E = PList.end(); I != E; ++I) {
   1103     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
   1104                                                  Ploc)) {
   1105       if (PDecl->getIdentifier() == PName) {
   1106         Diag(Ploc, diag::err_protocol_has_circular_dependency);
   1107         Diag(PrevLoc, diag::note_previous_definition);
   1108         res = true;
   1109       }
   1110 
   1111       if (!PDecl->hasDefinition())
   1112         continue;
   1113 
   1114       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
   1115             PDecl->getLocation(), PDecl->getReferencedProtocols()))
   1116         res = true;
   1117     }
   1118   }
   1119   return res;
   1120 }
   1121 
   1122 Decl *
   1123 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
   1124                                   IdentifierInfo *ProtocolName,
   1125                                   SourceLocation ProtocolLoc,
   1126                                   Decl * const *ProtoRefs,
   1127                                   unsigned NumProtoRefs,
   1128                                   const SourceLocation *ProtoLocs,
   1129                                   SourceLocation EndProtoLoc,
   1130                                   AttributeList *AttrList) {
   1131   bool err = false;
   1132   // FIXME: Deal with AttrList.
   1133   assert(ProtocolName && "Missing protocol identifier");
   1134   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
   1135                                               ForRedeclaration);
   1136   ObjCProtocolDecl *PDecl = nullptr;
   1137   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
   1138     // If we already have a definition, complain.
   1139     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
   1140     Diag(Def->getLocation(), diag::note_previous_definition);
   1141 
   1142     // Create a new protocol that is completely distinct from previous
   1143     // declarations, and do not make this protocol available for name lookup.
   1144     // That way, we'll end up completely ignoring the duplicate.
   1145     // FIXME: Can we turn this into an error?
   1146     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
   1147                                      ProtocolLoc, AtProtoInterfaceLoc,
   1148                                      /*PrevDecl=*/nullptr);
   1149     PDecl->startDefinition();
   1150   } else {
   1151     if (PrevDecl) {
   1152       // Check for circular dependencies among protocol declarations. This can
   1153       // only happen if this protocol was forward-declared.
   1154       ObjCList<ObjCProtocolDecl> PList;
   1155       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
   1156       err = CheckForwardProtocolDeclarationForCircularDependency(
   1157               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
   1158     }
   1159 
   1160     // Create the new declaration.
   1161     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
   1162                                      ProtocolLoc, AtProtoInterfaceLoc,
   1163                                      /*PrevDecl=*/PrevDecl);
   1164 
   1165     PushOnScopeChains(PDecl, TUScope);
   1166     PDecl->startDefinition();
   1167   }
   1168 
   1169   if (AttrList)
   1170     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
   1171 
   1172   // Merge attributes from previous declarations.
   1173   if (PrevDecl)
   1174     mergeDeclAttributes(PDecl, PrevDecl);
   1175 
   1176   if (!err && NumProtoRefs ) {
   1177     /// Check then save referenced protocols.
   1178     diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
   1179                            NumProtoRefs, ProtoLocs);
   1180     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
   1181                            ProtoLocs, Context);
   1182   }
   1183 
   1184   CheckObjCDeclScope(PDecl);
   1185   return ActOnObjCContainerStartDefinition(PDecl);
   1186 }
   1187 
   1188 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
   1189                                           ObjCProtocolDecl *&UndefinedProtocol) {
   1190   if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
   1191     UndefinedProtocol = PDecl;
   1192     return true;
   1193   }
   1194 
   1195   for (auto *PI : PDecl->protocols())
   1196     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
   1197       UndefinedProtocol = PI;
   1198       return true;
   1199     }
   1200   return false;
   1201 }
   1202 
   1203 /// FindProtocolDeclaration - This routine looks up protocols and
   1204 /// issues an error if they are not declared. It returns list of
   1205 /// protocol declarations in its 'Protocols' argument.
   1206 void
   1207 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
   1208                               ArrayRef<IdentifierLocPair> ProtocolId,
   1209                               SmallVectorImpl<Decl *> &Protocols) {
   1210   for (const IdentifierLocPair &Pair : ProtocolId) {
   1211     ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
   1212     if (!PDecl) {
   1213       TypoCorrection Corrected = CorrectTypo(
   1214           DeclarationNameInfo(Pair.first, Pair.second),
   1215           LookupObjCProtocolName, TUScope, nullptr,
   1216           llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
   1217           CTK_ErrorRecovery);
   1218       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
   1219         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
   1220                                     << Pair.first);
   1221     }
   1222 
   1223     if (!PDecl) {
   1224       Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
   1225       continue;
   1226     }
   1227     // If this is a forward protocol declaration, get its definition.
   1228     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
   1229       PDecl = PDecl->getDefinition();
   1230 
   1231     // For an objc container, delay protocol reference checking until after we
   1232     // can set the objc decl as the availability context, otherwise check now.
   1233     if (!ForObjCContainer) {
   1234       (void)DiagnoseUseOfDecl(PDecl, Pair.second);
   1235     }
   1236 
   1237     // If this is a forward declaration and we are supposed to warn in this
   1238     // case, do it.
   1239     // FIXME: Recover nicely in the hidden case.
   1240     ObjCProtocolDecl *UndefinedProtocol;
   1241 
   1242     if (WarnOnDeclarations &&
   1243         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
   1244       Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
   1245       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
   1246         << UndefinedProtocol;
   1247     }
   1248     Protocols.push_back(PDecl);
   1249   }
   1250 }
   1251 
   1252 namespace {
   1253 // Callback to only accept typo corrections that are either
   1254 // Objective-C protocols or valid Objective-C type arguments.
   1255 class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
   1256   ASTContext &Context;
   1257   Sema::LookupNameKind LookupKind;
   1258  public:
   1259   ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
   1260                                     Sema::LookupNameKind lookupKind)
   1261     : Context(context), LookupKind(lookupKind) { }
   1262 
   1263   bool ValidateCandidate(const TypoCorrection &candidate) override {
   1264     // If we're allowed to find protocols and we have a protocol, accept it.
   1265     if (LookupKind != Sema::LookupOrdinaryName) {
   1266       if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
   1267         return true;
   1268     }
   1269 
   1270     // If we're allowed to find type names and we have one, accept it.
   1271     if (LookupKind != Sema::LookupObjCProtocolName) {
   1272       // If we have a type declaration, we might accept this result.
   1273       if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
   1274         // If we found a tag declaration outside of C++, skip it. This
   1275         // can happy because we look for any name when there is no
   1276         // bias to protocol or type names.
   1277         if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
   1278           return false;
   1279 
   1280         // Make sure the type is something we would accept as a type
   1281         // argument.
   1282         auto type = Context.getTypeDeclType(typeDecl);
   1283         if (type->isObjCObjectPointerType() ||
   1284             type->isBlockPointerType() ||
   1285             type->isDependentType() ||
   1286             type->isObjCObjectType())
   1287           return true;
   1288 
   1289         return false;
   1290       }
   1291 
   1292       // If we have an Objective-C class type, accept it; there will
   1293       // be another fix to add the '*'.
   1294       if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
   1295         return true;
   1296 
   1297       return false;
   1298     }
   1299 
   1300     return false;
   1301   }
   1302 };
   1303 } // end anonymous namespace
   1304 
   1305 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
   1306                                         SourceLocation ProtocolLoc,
   1307                                         IdentifierInfo *TypeArgId,
   1308                                         SourceLocation TypeArgLoc,
   1309                                         bool SelectProtocolFirst) {
   1310   Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
   1311       << SelectProtocolFirst << TypeArgId << ProtocolId
   1312       << SourceRange(ProtocolLoc);
   1313 }
   1314 
   1315 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
   1316        Scope *S,
   1317        ParsedType baseType,
   1318        SourceLocation lAngleLoc,
   1319        ArrayRef<IdentifierInfo *> identifiers,
   1320        ArrayRef<SourceLocation> identifierLocs,
   1321        SourceLocation rAngleLoc,
   1322        SourceLocation &typeArgsLAngleLoc,
   1323        SmallVectorImpl<ParsedType> &typeArgs,
   1324        SourceLocation &typeArgsRAngleLoc,
   1325        SourceLocation &protocolLAngleLoc,
   1326        SmallVectorImpl<Decl *> &protocols,
   1327        SourceLocation &protocolRAngleLoc,
   1328        bool warnOnIncompleteProtocols) {
   1329   // Local function that updates the declaration specifiers with
   1330   // protocol information.
   1331   unsigned numProtocolsResolved = 0;
   1332   auto resolvedAsProtocols = [&] {
   1333     assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
   1334 
   1335     // Determine whether the base type is a parameterized class, in
   1336     // which case we want to warn about typos such as
   1337     // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
   1338     ObjCInterfaceDecl *baseClass = nullptr;
   1339     QualType base = GetTypeFromParser(baseType, nullptr);
   1340     bool allAreTypeNames = false;
   1341     SourceLocation firstClassNameLoc;
   1342     if (!base.isNull()) {
   1343       if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
   1344         baseClass = objcObjectType->getInterface();
   1345         if (baseClass) {
   1346           if (auto typeParams = baseClass->getTypeParamList()) {
   1347             if (typeParams->size() == numProtocolsResolved) {
   1348               // Note that we should be looking for type names, too.
   1349               allAreTypeNames = true;
   1350             }
   1351           }
   1352         }
   1353       }
   1354     }
   1355 
   1356     for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
   1357       ObjCProtocolDecl *&proto
   1358         = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
   1359       // For an objc container, delay protocol reference checking until after we
   1360       // can set the objc decl as the availability context, otherwise check now.
   1361       if (!warnOnIncompleteProtocols) {
   1362         (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
   1363       }
   1364 
   1365       // If this is a forward protocol declaration, get its definition.
   1366       if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
   1367         proto = proto->getDefinition();
   1368 
   1369       // If this is a forward declaration and we are supposed to warn in this
   1370       // case, do it.
   1371       // FIXME: Recover nicely in the hidden case.
   1372       ObjCProtocolDecl *forwardDecl = nullptr;
   1373       if (warnOnIncompleteProtocols &&
   1374           NestedProtocolHasNoDefinition(proto, forwardDecl)) {
   1375         Diag(identifierLocs[i], diag::warn_undef_protocolref)
   1376           << proto->getDeclName();
   1377         Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
   1378           << forwardDecl;
   1379       }
   1380 
   1381       // If everything this far has been a type name (and we care
   1382       // about such things), check whether this name refers to a type
   1383       // as well.
   1384       if (allAreTypeNames) {
   1385         if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
   1386                                           LookupOrdinaryName)) {
   1387           if (isa<ObjCInterfaceDecl>(decl)) {
   1388             if (firstClassNameLoc.isInvalid())
   1389               firstClassNameLoc = identifierLocs[i];
   1390           } else if (!isa<TypeDecl>(decl)) {
   1391             // Not a type.
   1392             allAreTypeNames = false;
   1393           }
   1394         } else {
   1395           allAreTypeNames = false;
   1396         }
   1397       }
   1398     }
   1399 
   1400     // All of the protocols listed also have type names, and at least
   1401     // one is an Objective-C class name. Check whether all of the
   1402     // protocol conformances are declared by the base class itself, in
   1403     // which case we warn.
   1404     if (allAreTypeNames && firstClassNameLoc.isValid()) {
   1405       llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
   1406       Context.CollectInheritedProtocols(baseClass, knownProtocols);
   1407       bool allProtocolsDeclared = true;
   1408       for (auto proto : protocols) {
   1409         if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
   1410           allProtocolsDeclared = false;
   1411           break;
   1412         }
   1413       }
   1414 
   1415       if (allProtocolsDeclared) {
   1416         Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
   1417           << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
   1418           << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
   1419                                         " *");
   1420       }
   1421     }
   1422 
   1423     protocolLAngleLoc = lAngleLoc;
   1424     protocolRAngleLoc = rAngleLoc;
   1425     assert(protocols.size() == identifierLocs.size());
   1426   };
   1427 
   1428   // Attempt to resolve all of the identifiers as protocols.
   1429   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
   1430     ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
   1431     protocols.push_back(proto);
   1432     if (proto)
   1433       ++numProtocolsResolved;
   1434   }
   1435 
   1436   // If all of the names were protocols, these were protocol qualifiers.
   1437   if (numProtocolsResolved == identifiers.size())
   1438     return resolvedAsProtocols();
   1439 
   1440   // Attempt to resolve all of the identifiers as type names or
   1441   // Objective-C class names. The latter is technically ill-formed,
   1442   // but is probably something like \c NSArray<NSView *> missing the
   1443   // \c*.
   1444   typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
   1445   SmallVector<TypeOrClassDecl, 4> typeDecls;
   1446   unsigned numTypeDeclsResolved = 0;
   1447   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
   1448     NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
   1449                                        LookupOrdinaryName);
   1450     if (!decl) {
   1451       typeDecls.push_back(TypeOrClassDecl());
   1452       continue;
   1453     }
   1454 
   1455     if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
   1456       typeDecls.push_back(typeDecl);
   1457       ++numTypeDeclsResolved;
   1458       continue;
   1459     }
   1460 
   1461     if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
   1462       typeDecls.push_back(objcClass);
   1463       ++numTypeDeclsResolved;
   1464       continue;
   1465     }
   1466 
   1467     typeDecls.push_back(TypeOrClassDecl());
   1468   }
   1469 
   1470   AttributeFactory attrFactory;
   1471 
   1472   // Local function that forms a reference to the given type or
   1473   // Objective-C class declaration.
   1474   auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
   1475                                 -> TypeResult {
   1476     // Form declaration specifiers. They simply refer to the type.
   1477     DeclSpec DS(attrFactory);
   1478     const char* prevSpec; // unused
   1479     unsigned diagID; // unused
   1480     QualType type;
   1481     if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
   1482       type = Context.getTypeDeclType(actualTypeDecl);
   1483     else
   1484       type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
   1485     TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
   1486     ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
   1487     DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
   1488                        parsedType, Context.getPrintingPolicy());
   1489     // Use the identifier location for the type source range.
   1490     DS.SetRangeStart(loc);
   1491     DS.SetRangeEnd(loc);
   1492 
   1493     // Form the declarator.
   1494     Declarator D(DS, Declarator::TypeNameContext);
   1495 
   1496     // If we have a typedef of an Objective-C class type that is missing a '*',
   1497     // add the '*'.
   1498     if (type->getAs<ObjCInterfaceType>()) {
   1499       SourceLocation starLoc = getLocForEndOfToken(loc);
   1500       ParsedAttributes parsedAttrs(attrFactory);
   1501       D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
   1502                                                 SourceLocation(),
   1503                                                 SourceLocation(),
   1504                                                 SourceLocation(),
   1505                                                 SourceLocation(),
   1506                                                 SourceLocation()),
   1507                                                 parsedAttrs,
   1508                                                 starLoc);
   1509 
   1510       // Diagnose the missing '*'.
   1511       Diag(loc, diag::err_objc_type_arg_missing_star)
   1512         << type
   1513         << FixItHint::CreateInsertion(starLoc, " *");
   1514     }
   1515 
   1516     // Convert this to a type.
   1517     return ActOnTypeName(S, D);
   1518   };
   1519 
   1520   // Local function that updates the declaration specifiers with
   1521   // type argument information.
   1522   auto resolvedAsTypeDecls = [&] {
   1523     // We did not resolve these as protocols.
   1524     protocols.clear();
   1525 
   1526     assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
   1527     // Map type declarations to type arguments.
   1528     for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
   1529       // Map type reference to a type.
   1530       TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
   1531       if (!type.isUsable()) {
   1532         typeArgs.clear();
   1533         return;
   1534       }
   1535 
   1536       typeArgs.push_back(type.get());
   1537     }
   1538 
   1539     typeArgsLAngleLoc = lAngleLoc;
   1540     typeArgsRAngleLoc = rAngleLoc;
   1541   };
   1542 
   1543   // If all of the identifiers can be resolved as type names or
   1544   // Objective-C class names, we have type arguments.
   1545   if (numTypeDeclsResolved == identifiers.size())
   1546     return resolvedAsTypeDecls();
   1547 
   1548   // Error recovery: some names weren't found, or we have a mix of
   1549   // type and protocol names. Go resolve all of the unresolved names
   1550   // and complain if we can't find a consistent answer.
   1551   LookupNameKind lookupKind = LookupAnyName;
   1552   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
   1553     // If we already have a protocol or type. Check whether it is the
   1554     // right thing.
   1555     if (protocols[i] || typeDecls[i]) {
   1556       // If we haven't figured out whether we want types or protocols
   1557       // yet, try to figure it out from this name.
   1558       if (lookupKind == LookupAnyName) {
   1559         // If this name refers to both a protocol and a type (e.g., \c
   1560         // NSObject), don't conclude anything yet.
   1561         if (protocols[i] && typeDecls[i])
   1562           continue;
   1563 
   1564         // Otherwise, let this name decide whether we'll be correcting
   1565         // toward types or protocols.
   1566         lookupKind = protocols[i] ? LookupObjCProtocolName
   1567                                   : LookupOrdinaryName;
   1568         continue;
   1569       }
   1570 
   1571       // If we want protocols and we have a protocol, there's nothing
   1572       // more to do.
   1573       if (lookupKind == LookupObjCProtocolName && protocols[i])
   1574         continue;
   1575 
   1576       // If we want types and we have a type declaration, there's
   1577       // nothing more to do.
   1578       if (lookupKind == LookupOrdinaryName && typeDecls[i])
   1579         continue;
   1580 
   1581       // We have a conflict: some names refer to protocols and others
   1582       // refer to types.
   1583       DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
   1584                                    identifiers[i], identifierLocs[i],
   1585                                    protocols[i] != nullptr);
   1586 
   1587       protocols.clear();
   1588       typeArgs.clear();
   1589       return;
   1590     }
   1591 
   1592     // Perform typo correction on the name.
   1593     TypoCorrection corrected = CorrectTypo(
   1594         DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
   1595         nullptr,
   1596         llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
   1597                                                              lookupKind),
   1598         CTK_ErrorRecovery);
   1599     if (corrected) {
   1600       // Did we find a protocol?
   1601       if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
   1602         diagnoseTypo(corrected,
   1603                      PDiag(diag::err_undeclared_protocol_suggest)
   1604                        << identifiers[i]);
   1605         lookupKind = LookupObjCProtocolName;
   1606         protocols[i] = proto;
   1607         ++numProtocolsResolved;
   1608         continue;
   1609       }
   1610 
   1611       // Did we find a type?
   1612       if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
   1613         diagnoseTypo(corrected,
   1614                      PDiag(diag::err_unknown_typename_suggest)
   1615                        << identifiers[i]);
   1616         lookupKind = LookupOrdinaryName;
   1617         typeDecls[i] = typeDecl;
   1618         ++numTypeDeclsResolved;
   1619         continue;
   1620       }
   1621 
   1622       // Did we find an Objective-C class?
   1623       if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
   1624         diagnoseTypo(corrected,
   1625                      PDiag(diag::err_unknown_type_or_class_name_suggest)
   1626                        << identifiers[i] << true);
   1627         lookupKind = LookupOrdinaryName;
   1628         typeDecls[i] = objcClass;
   1629         ++numTypeDeclsResolved;
   1630         continue;
   1631       }
   1632     }
   1633 
   1634     // We couldn't find anything.
   1635     Diag(identifierLocs[i],
   1636          (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
   1637           : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
   1638           : diag::err_unknown_typename))
   1639       << identifiers[i];
   1640     protocols.clear();
   1641     typeArgs.clear();
   1642     return;
   1643   }
   1644 
   1645   // If all of the names were (corrected to) protocols, these were
   1646   // protocol qualifiers.
   1647   if (numProtocolsResolved == identifiers.size())
   1648     return resolvedAsProtocols();
   1649 
   1650   // Otherwise, all of the names were (corrected to) types.
   1651   assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
   1652   return resolvedAsTypeDecls();
   1653 }
   1654 
   1655 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
   1656 /// a class method in its extension.
   1657 ///
   1658 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
   1659                                             ObjCInterfaceDecl *ID) {
   1660   if (!ID)
   1661     return;  // Possibly due to previous error
   1662 
   1663   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
   1664   for (auto *MD : ID->methods())
   1665     MethodMap[MD->getSelector()] = MD;
   1666 
   1667   if (MethodMap.empty())
   1668     return;
   1669   for (const auto *Method : CAT->methods()) {
   1670     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
   1671     if (PrevMethod &&
   1672         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
   1673         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
   1674       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   1675             << Method->getDeclName();
   1676       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   1677     }
   1678   }
   1679 }
   1680 
   1681 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
   1682 Sema::DeclGroupPtrTy
   1683 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
   1684                                       ArrayRef<IdentifierLocPair> IdentList,
   1685                                       AttributeList *attrList) {
   1686   SmallVector<Decl *, 8> DeclsInGroup;
   1687   for (const IdentifierLocPair &IdentPair : IdentList) {
   1688     IdentifierInfo *Ident = IdentPair.first;
   1689     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
   1690                                                 ForRedeclaration);
   1691     ObjCProtocolDecl *PDecl
   1692       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
   1693                                  IdentPair.second, AtProtocolLoc,
   1694                                  PrevDecl);
   1695 
   1696     PushOnScopeChains(PDecl, TUScope);
   1697     CheckObjCDeclScope(PDecl);
   1698 
   1699     if (attrList)
   1700       ProcessDeclAttributeList(TUScope, PDecl, attrList);
   1701 
   1702     if (PrevDecl)
   1703       mergeDeclAttributes(PDecl, PrevDecl);
   1704 
   1705     DeclsInGroup.push_back(PDecl);
   1706   }
   1707 
   1708   return BuildDeclaratorGroup(DeclsInGroup, false);
   1709 }
   1710 
   1711 Decl *Sema::
   1712 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
   1713                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
   1714                             ObjCTypeParamList *typeParamList,
   1715                             IdentifierInfo *CategoryName,
   1716                             SourceLocation CategoryLoc,
   1717                             Decl * const *ProtoRefs,
   1718                             unsigned NumProtoRefs,
   1719                             const SourceLocation *ProtoLocs,
   1720                             SourceLocation EndProtoLoc) {
   1721   ObjCCategoryDecl *CDecl;
   1722   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
   1723 
   1724   /// Check that class of this category is already completely declared.
   1725 
   1726   if (!IDecl
   1727       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
   1728                              diag::err_category_forward_interface,
   1729                              CategoryName == nullptr)) {
   1730     // Create an invalid ObjCCategoryDecl to serve as context for
   1731     // the enclosing method declarations.  We mark the decl invalid
   1732     // to make it clear that this isn't a valid AST.
   1733     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
   1734                                      ClassLoc, CategoryLoc, CategoryName,
   1735                                      IDecl, typeParamList);
   1736     CDecl->setInvalidDecl();
   1737     CurContext->addDecl(CDecl);
   1738 
   1739     if (!IDecl)
   1740       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
   1741     return ActOnObjCContainerStartDefinition(CDecl);
   1742   }
   1743 
   1744   if (!CategoryName && IDecl->getImplementation()) {
   1745     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
   1746     Diag(IDecl->getImplementation()->getLocation(),
   1747           diag::note_implementation_declared);
   1748   }
   1749 
   1750   if (CategoryName) {
   1751     /// Check for duplicate interface declaration for this category
   1752     if (ObjCCategoryDecl *Previous
   1753           = IDecl->FindCategoryDeclaration(CategoryName)) {
   1754       // Class extensions can be declared multiple times, categories cannot.
   1755       Diag(CategoryLoc, diag::warn_dup_category_def)
   1756         << ClassName << CategoryName;
   1757       Diag(Previous->getLocation(), diag::note_previous_definition);
   1758     }
   1759   }
   1760 
   1761   // If we have a type parameter list, check it.
   1762   if (typeParamList) {
   1763     if (auto prevTypeParamList = IDecl->getTypeParamList()) {
   1764       if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
   1765                                         CategoryName
   1766                                           ? TypeParamListContext::Category
   1767                                           : TypeParamListContext::Extension))
   1768         typeParamList = nullptr;
   1769     } else {
   1770       Diag(typeParamList->getLAngleLoc(),
   1771            diag::err_objc_parameterized_category_nonclass)
   1772         << (CategoryName != nullptr)
   1773         << ClassName
   1774         << typeParamList->getSourceRange();
   1775 
   1776       typeParamList = nullptr;
   1777     }
   1778   }
   1779 
   1780   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
   1781                                    ClassLoc, CategoryLoc, CategoryName, IDecl,
   1782                                    typeParamList);
   1783   // FIXME: PushOnScopeChains?
   1784   CurContext->addDecl(CDecl);
   1785 
   1786   if (NumProtoRefs) {
   1787     diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
   1788                            NumProtoRefs, ProtoLocs);
   1789     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
   1790                            ProtoLocs, Context);
   1791     // Protocols in the class extension belong to the class.
   1792     if (CDecl->IsClassExtension())
   1793      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
   1794                                             NumProtoRefs, Context);
   1795   }
   1796 
   1797   CheckObjCDeclScope(CDecl);
   1798   return ActOnObjCContainerStartDefinition(CDecl);
   1799 }
   1800 
   1801 /// ActOnStartCategoryImplementation - Perform semantic checks on the
   1802 /// category implementation declaration and build an ObjCCategoryImplDecl
   1803 /// object.
   1804 Decl *Sema::ActOnStartCategoryImplementation(
   1805                       SourceLocation AtCatImplLoc,
   1806                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
   1807                       IdentifierInfo *CatName, SourceLocation CatLoc) {
   1808   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
   1809   ObjCCategoryDecl *CatIDecl = nullptr;
   1810   if (IDecl && IDecl->hasDefinition()) {
   1811     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
   1812     if (!CatIDecl) {
   1813       // Category @implementation with no corresponding @interface.
   1814       // Create and install one.
   1815       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
   1816                                           ClassLoc, CatLoc,
   1817                                           CatName, IDecl,
   1818                                           /*typeParamList=*/nullptr);
   1819       CatIDecl->setImplicit();
   1820     }
   1821   }
   1822 
   1823   ObjCCategoryImplDecl *CDecl =
   1824     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
   1825                                  ClassLoc, AtCatImplLoc, CatLoc);
   1826   /// Check that class of this category is already completely declared.
   1827   if (!IDecl) {
   1828     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
   1829     CDecl->setInvalidDecl();
   1830   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
   1831                                  diag::err_undef_interface)) {
   1832     CDecl->setInvalidDecl();
   1833   }
   1834 
   1835   // FIXME: PushOnScopeChains?
   1836   CurContext->addDecl(CDecl);
   1837 
   1838   // If the interface is deprecated/unavailable, warn/error about it.
   1839   if (IDecl)
   1840     DiagnoseUseOfDecl(IDecl, ClassLoc);
   1841 
   1842   // If the interface has the objc_runtime_visible attribute, we
   1843   // cannot implement a category for it.
   1844   if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
   1845     Diag(ClassLoc, diag::err_objc_runtime_visible_category)
   1846       << IDecl->getDeclName();
   1847   }
   1848 
   1849   /// Check that CatName, category name, is not used in another implementation.
   1850   if (CatIDecl) {
   1851     if (CatIDecl->getImplementation()) {
   1852       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
   1853         << CatName;
   1854       Diag(CatIDecl->getImplementation()->getLocation(),
   1855            diag::note_previous_definition);
   1856       CDecl->setInvalidDecl();
   1857     } else {
   1858       CatIDecl->setImplementation(CDecl);
   1859       // Warn on implementating category of deprecated class under
   1860       // -Wdeprecated-implementations flag.
   1861       DiagnoseObjCImplementedDeprecations(*this,
   1862                                           dyn_cast<NamedDecl>(IDecl),
   1863                                           CDecl->getLocation(), 2);
   1864     }
   1865   }
   1866 
   1867   CheckObjCDeclScope(CDecl);
   1868   return ActOnObjCContainerStartDefinition(CDecl);
   1869 }
   1870 
   1871 Decl *Sema::ActOnStartClassImplementation(
   1872                       SourceLocation AtClassImplLoc,
   1873                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
   1874                       IdentifierInfo *SuperClassname,
   1875                       SourceLocation SuperClassLoc) {
   1876   ObjCInterfaceDecl *IDecl = nullptr;
   1877   // Check for another declaration kind with the same name.
   1878   NamedDecl *PrevDecl
   1879     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
   1880                        ForRedeclaration);
   1881   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1882     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
   1883     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1884   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
   1885     // FIXME: This will produce an error if the definition of the interface has
   1886     // been imported from a module but is not visible.
   1887     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
   1888                         diag::warn_undef_interface);
   1889   } else {
   1890     // We did not find anything with the name ClassName; try to correct for
   1891     // typos in the class name.
   1892     TypoCorrection Corrected = CorrectTypo(
   1893         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
   1894         nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
   1895     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
   1896       // Suggest the (potentially) correct interface name. Don't provide a
   1897       // code-modification hint or use the typo name for recovery, because
   1898       // this is just a warning. The program may actually be correct.
   1899       diagnoseTypo(Corrected,
   1900                    PDiag(diag::warn_undef_interface_suggest) << ClassName,
   1901                    /*ErrorRecovery*/false);
   1902     } else {
   1903       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
   1904     }
   1905   }
   1906 
   1907   // Check that super class name is valid class name
   1908   ObjCInterfaceDecl *SDecl = nullptr;
   1909   if (SuperClassname) {
   1910     // Check if a different kind of symbol declared in this scope.
   1911     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
   1912                                 LookupOrdinaryName);
   1913     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1914       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
   1915         << SuperClassname;
   1916       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1917     } else {
   1918       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1919       if (SDecl && !SDecl->hasDefinition())
   1920         SDecl = nullptr;
   1921       if (!SDecl)
   1922         Diag(SuperClassLoc, diag::err_undef_superclass)
   1923           << SuperClassname << ClassName;
   1924       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
   1925         // This implementation and its interface do not have the same
   1926         // super class.
   1927         Diag(SuperClassLoc, diag::err_conflicting_super_class)
   1928           << SDecl->getDeclName();
   1929         Diag(SDecl->getLocation(), diag::note_previous_definition);
   1930       }
   1931     }
   1932   }
   1933 
   1934   if (!IDecl) {
   1935     // Legacy case of @implementation with no corresponding @interface.
   1936     // Build, chain & install the interface decl into the identifier.
   1937 
   1938     // FIXME: Do we support attributes on the @implementation? If so we should
   1939     // copy them over.
   1940     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
   1941                                       ClassName, /*typeParamList=*/nullptr,
   1942                                       /*PrevDecl=*/nullptr, ClassLoc,
   1943                                       true);
   1944     IDecl->startDefinition();
   1945     if (SDecl) {
   1946       IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
   1947                              Context.getObjCInterfaceType(SDecl),
   1948                              SuperClassLoc));
   1949       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
   1950     } else {
   1951       IDecl->setEndOfDefinitionLoc(ClassLoc);
   1952     }
   1953 
   1954     PushOnScopeChains(IDecl, TUScope);
   1955   } else {
   1956     // Mark the interface as being completed, even if it was just as
   1957     //   @class ....;
   1958     // declaration; the user cannot reopen it.
   1959     if (!IDecl->hasDefinition())
   1960       IDecl->startDefinition();
   1961   }
   1962 
   1963   ObjCImplementationDecl* IMPDecl =
   1964     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
   1965                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
   1966 
   1967   if (CheckObjCDeclScope(IMPDecl))
   1968     return ActOnObjCContainerStartDefinition(IMPDecl);
   1969 
   1970   // Check that there is no duplicate implementation of this class.
   1971   if (IDecl->getImplementation()) {
   1972     // FIXME: Don't leak everything!
   1973     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
   1974     Diag(IDecl->getImplementation()->getLocation(),
   1975          diag::note_previous_definition);
   1976     IMPDecl->setInvalidDecl();
   1977   } else { // add it to the list.
   1978     IDecl->setImplementation(IMPDecl);
   1979     PushOnScopeChains(IMPDecl, TUScope);
   1980     // Warn on implementating deprecated class under
   1981     // -Wdeprecated-implementations flag.
   1982     DiagnoseObjCImplementedDeprecations(*this,
   1983                                         dyn_cast<NamedDecl>(IDecl),
   1984                                         IMPDecl->getLocation(), 1);
   1985   }
   1986 
   1987   // If the superclass has the objc_runtime_visible attribute, we
   1988   // cannot implement a subclass of it.
   1989   if (IDecl->getSuperClass() &&
   1990       IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
   1991     Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
   1992       << IDecl->getDeclName()
   1993       << IDecl->getSuperClass()->getDeclName();
   1994   }
   1995 
   1996   return ActOnObjCContainerStartDefinition(IMPDecl);
   1997 }
   1998 
   1999 Sema::DeclGroupPtrTy
   2000 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
   2001   SmallVector<Decl *, 64> DeclsInGroup;
   2002   DeclsInGroup.reserve(Decls.size() + 1);
   2003 
   2004   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
   2005     Decl *Dcl = Decls[i];
   2006     if (!Dcl)
   2007       continue;
   2008     if (Dcl->getDeclContext()->isFileContext())
   2009       Dcl->setTopLevelDeclInObjCContainer();
   2010     DeclsInGroup.push_back(Dcl);
   2011   }
   2012 
   2013   DeclsInGroup.push_back(ObjCImpDecl);
   2014 
   2015   return BuildDeclaratorGroup(DeclsInGroup, false);
   2016 }
   2017 
   2018 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
   2019                                     ObjCIvarDecl **ivars, unsigned numIvars,
   2020                                     SourceLocation RBrace) {
   2021   assert(ImpDecl && "missing implementation decl");
   2022   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
   2023   if (!IDecl)
   2024     return;
   2025   /// Check case of non-existing \@interface decl.
   2026   /// (legacy objective-c \@implementation decl without an \@interface decl).
   2027   /// Add implementations's ivar to the synthesize class's ivar list.
   2028   if (IDecl->isImplicitInterfaceDecl()) {
   2029     IDecl->setEndOfDefinitionLoc(RBrace);
   2030     // Add ivar's to class's DeclContext.
   2031     for (unsigned i = 0, e = numIvars; i != e; ++i) {
   2032       ivars[i]->setLexicalDeclContext(ImpDecl);
   2033       IDecl->makeDeclVisibleInContext(ivars[i]);
   2034       ImpDecl->addDecl(ivars[i]);
   2035     }
   2036 
   2037     return;
   2038   }
   2039   // If implementation has empty ivar list, just return.
   2040   if (numIvars == 0)
   2041     return;
   2042 
   2043   assert(ivars && "missing @implementation ivars");
   2044   if (LangOpts.ObjCRuntime.isNonFragile()) {
   2045     if (ImpDecl->getSuperClass())
   2046       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
   2047     for (unsigned i = 0; i < numIvars; i++) {
   2048       ObjCIvarDecl* ImplIvar = ivars[i];
   2049       if (const ObjCIvarDecl *ClsIvar =
   2050             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   2051         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   2052         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   2053         continue;
   2054       }
   2055       // Check class extensions (unnamed categories) for duplicate ivars.
   2056       for (const auto *CDecl : IDecl->visible_extensions()) {
   2057         if (const ObjCIvarDecl *ClsExtIvar =
   2058             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   2059           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   2060           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   2061           continue;
   2062         }
   2063       }
   2064       // Instance ivar to Implementation's DeclContext.
   2065       ImplIvar->setLexicalDeclContext(ImpDecl);
   2066       IDecl->makeDeclVisibleInContext(ImplIvar);
   2067       ImpDecl->addDecl(ImplIvar);
   2068     }
   2069     return;
   2070   }
   2071   // Check interface's Ivar list against those in the implementation.
   2072   // names and types must match.
   2073   //
   2074   unsigned j = 0;
   2075   ObjCInterfaceDecl::ivar_iterator
   2076     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   2077   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   2078     ObjCIvarDecl* ImplIvar = ivars[j++];
   2079     ObjCIvarDecl* ClsIvar = *IVI;
   2080     assert (ImplIvar && "missing implementation ivar");
   2081     assert (ClsIvar && "missing class ivar");
   2082 
   2083     // First, make sure the types match.
   2084     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
   2085       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   2086         << ImplIvar->getIdentifier()
   2087         << ImplIvar->getType() << ClsIvar->getType();
   2088       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   2089     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
   2090                ImplIvar->getBitWidthValue(Context) !=
   2091                ClsIvar->getBitWidthValue(Context)) {
   2092       Diag(ImplIvar->getBitWidth()->getLocStart(),
   2093            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
   2094       Diag(ClsIvar->getBitWidth()->getLocStart(),
   2095            diag::note_previous_definition);
   2096     }
   2097     // Make sure the names are identical.
   2098     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   2099       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   2100         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   2101       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   2102     }
   2103     --numIvars;
   2104   }
   2105 
   2106   if (numIvars > 0)
   2107     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
   2108   else if (IVI != IVE)
   2109     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
   2110 }
   2111 
   2112 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
   2113                                 ObjCMethodDecl *method,
   2114                                 bool &IncompleteImpl,
   2115                                 unsigned DiagID,
   2116                                 NamedDecl *NeededFor = nullptr) {
   2117   // No point warning no definition of method which is 'unavailable'.
   2118   switch (method->getAvailability()) {
   2119   case AR_Available:
   2120   case AR_Deprecated:
   2121     break;
   2122 
   2123       // Don't warn about unavailable or not-yet-introduced methods.
   2124   case AR_NotYetIntroduced:
   2125   case AR_Unavailable:
   2126     return;
   2127   }
   2128 
   2129   // FIXME: For now ignore 'IncompleteImpl'.
   2130   // Previously we grouped all unimplemented methods under a single
   2131   // warning, but some users strongly voiced that they would prefer
   2132   // separate warnings.  We will give that approach a try, as that
   2133   // matches what we do with protocols.
   2134   {
   2135     const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
   2136     B << method;
   2137     if (NeededFor)
   2138       B << NeededFor;
   2139   }
   2140 
   2141   // Issue a note to the original declaration.
   2142   SourceLocation MethodLoc = method->getLocStart();
   2143   if (MethodLoc.isValid())
   2144     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
   2145 }
   2146 
   2147 /// Determines if type B can be substituted for type A.  Returns true if we can
   2148 /// guarantee that anything that the user will do to an object of type A can
   2149 /// also be done to an object of type B.  This is trivially true if the two
   2150 /// types are the same, or if B is a subclass of A.  It becomes more complex
   2151 /// in cases where protocols are involved.
   2152 ///
   2153 /// Object types in Objective-C describe the minimum requirements for an
   2154 /// object, rather than providing a complete description of a type.  For
   2155 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   2156 /// The principle of substitutability means that we may use an instance of A
   2157 /// anywhere that we may use an instance of B - it will implement all of the
   2158 /// ivars of B and all of the methods of B.
   2159 ///
   2160 /// This substitutability is important when type checking methods, because
   2161 /// the implementation may have stricter type definitions than the interface.
   2162 /// The interface specifies minimum requirements, but the implementation may
   2163 /// have more accurate ones.  For example, a method may privately accept
   2164 /// instances of B, but only publish that it accepts instances of A.  Any
   2165 /// object passed to it will be type checked against B, and so will implicitly
   2166 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   2167 /// it is declared as returning.
   2168 ///
   2169 /// This is most important when considering subclassing.  A method in a
   2170 /// subclass must accept any object as an argument that its superclass's
   2171 /// implementation accepts.  It may, however, accept a more general type
   2172 /// without breaking substitutability (i.e. you can still use the subclass
   2173 /// anywhere that you can use the superclass, but not vice versa).  The
   2174 /// converse requirement applies to return types: the return type for a
   2175 /// subclass method must be a valid object of the kind that the superclass
   2176 /// advertises, but it may be specified more accurately.  This avoids the need
   2177 /// for explicit down-casting by callers.
   2178 ///
   2179 /// Note: This is a stricter requirement than for assignment.
   2180 static bool isObjCTypeSubstitutable(ASTContext &Context,
   2181                                     const ObjCObjectPointerType *A,
   2182                                     const ObjCObjectPointerType *B,
   2183                                     bool rejectId) {
   2184   // Reject a protocol-unqualified id.
   2185   if (rejectId && B->isObjCIdType()) return false;
   2186 
   2187   // If B is a qualified id, then A must also be a qualified id and it must
   2188   // implement all of the protocols in B.  It may not be a qualified class.
   2189   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   2190   // stricter definition so it is not substitutable for id<A>.
   2191   if (B->isObjCQualifiedIdType()) {
   2192     return A->isObjCQualifiedIdType() &&
   2193            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   2194                                                      QualType(B,0),
   2195                                                      false);
   2196   }
   2197 
   2198   /*
   2199   // id is a special type that bypasses type checking completely.  We want a
   2200   // warning when it is used in one place but not another.
   2201   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   2202 
   2203 
   2204   // If B is a qualified id, then A must also be a qualified id (which it isn't
   2205   // if we've got this far)
   2206   if (B->isObjCQualifiedIdType()) return false;
   2207   */
   2208 
   2209   // Now we know that A and B are (potentially-qualified) class types.  The
   2210   // normal rules for assignment apply.
   2211   return Context.canAssignObjCInterfaces(A, B);
   2212 }
   2213 
   2214 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   2215   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   2216 }
   2217 
   2218 /// Determine whether two set of Objective-C declaration qualifiers conflict.
   2219 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
   2220                                   Decl::ObjCDeclQualifier y) {
   2221   return (x & ~Decl::OBJC_TQ_CSNullability) !=
   2222          (y & ~Decl::OBJC_TQ_CSNullability);
   2223 }
   2224 
   2225 static bool CheckMethodOverrideReturn(Sema &S,
   2226                                       ObjCMethodDecl *MethodImpl,
   2227                                       ObjCMethodDecl *MethodDecl,
   2228                                       bool IsProtocolMethodDecl,
   2229                                       bool IsOverridingMode,
   2230                                       bool Warn) {
   2231   if (IsProtocolMethodDecl &&
   2232       objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
   2233                             MethodImpl->getObjCDeclQualifier())) {
   2234     if (Warn) {
   2235       S.Diag(MethodImpl->getLocation(),
   2236              (IsOverridingMode
   2237                   ? diag::warn_conflicting_overriding_ret_type_modifiers
   2238                   : diag::warn_conflicting_ret_type_modifiers))
   2239           << MethodImpl->getDeclName()
   2240           << MethodImpl->getReturnTypeSourceRange();
   2241       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   2242           << MethodDecl->getReturnTypeSourceRange();
   2243     }
   2244     else
   2245       return false;
   2246   }
   2247   if (Warn && IsOverridingMode &&
   2248       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
   2249       !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
   2250                                                  MethodDecl->getReturnType(),
   2251                                                  false)) {
   2252     auto nullabilityMethodImpl =
   2253       *MethodImpl->getReturnType()->getNullability(S.Context);
   2254     auto nullabilityMethodDecl =
   2255       *MethodDecl->getReturnType()->getNullability(S.Context);
   2256       S.Diag(MethodImpl->getLocation(),
   2257              diag::warn_conflicting_nullability_attr_overriding_ret_types)
   2258         << DiagNullabilityKind(
   2259              nullabilityMethodImpl,
   2260              ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2261               != 0))
   2262         << DiagNullabilityKind(
   2263              nullabilityMethodDecl,
   2264              ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2265                 != 0));
   2266       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   2267   }
   2268 
   2269   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
   2270                                        MethodDecl->getReturnType()))
   2271     return true;
   2272   if (!Warn)
   2273     return false;
   2274 
   2275   unsigned DiagID =
   2276     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
   2277                      : diag::warn_conflicting_ret_types;
   2278 
   2279   // Mismatches between ObjC pointers go into a different warning
   2280   // category, and sometimes they're even completely whitelisted.
   2281   if (const ObjCObjectPointerType *ImplPtrTy =
   2282           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
   2283     if (const ObjCObjectPointerType *IfacePtrTy =
   2284             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
   2285       // Allow non-matching return types as long as they don't violate
   2286       // the principle of substitutability.  Specifically, we permit
   2287       // return types that are subclasses of the declared return type,
   2288       // or that are more-qualified versions of the declared type.
   2289       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   2290         return false;
   2291 
   2292       DiagID =
   2293         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
   2294                          : diag::warn_non_covariant_ret_types;
   2295     }
   2296   }
   2297 
   2298   S.Diag(MethodImpl->getLocation(), DiagID)
   2299       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
   2300       << MethodImpl->getReturnType()
   2301       << MethodImpl->getReturnTypeSourceRange();
   2302   S.Diag(MethodDecl->getLocation(), IsOverridingMode
   2303                                         ? diag::note_previous_declaration
   2304                                         : diag::note_previous_definition)
   2305       << MethodDecl->getReturnTypeSourceRange();
   2306   return false;
   2307 }
   2308 
   2309 static bool CheckMethodOverrideParam(Sema &S,
   2310                                      ObjCMethodDecl *MethodImpl,
   2311                                      ObjCMethodDecl *MethodDecl,
   2312                                      ParmVarDecl *ImplVar,
   2313                                      ParmVarDecl *IfaceVar,
   2314                                      bool IsProtocolMethodDecl,
   2315                                      bool IsOverridingMode,
   2316                                      bool Warn) {
   2317   if (IsProtocolMethodDecl &&
   2318       objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
   2319                             IfaceVar->getObjCDeclQualifier())) {
   2320     if (Warn) {
   2321       if (IsOverridingMode)
   2322         S.Diag(ImplVar->getLocation(),
   2323                diag::warn_conflicting_overriding_param_modifiers)
   2324             << getTypeRange(ImplVar->getTypeSourceInfo())
   2325             << MethodImpl->getDeclName();
   2326       else S.Diag(ImplVar->getLocation(),
   2327              diag::warn_conflicting_param_modifiers)
   2328           << getTypeRange(ImplVar->getTypeSourceInfo())
   2329           << MethodImpl->getDeclName();
   2330       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   2331           << getTypeRange(IfaceVar->getTypeSourceInfo());
   2332     }
   2333     else
   2334       return false;
   2335   }
   2336 
   2337   QualType ImplTy = ImplVar->getType();
   2338   QualType IfaceTy = IfaceVar->getType();
   2339   if (Warn && IsOverridingMode &&
   2340       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
   2341       !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
   2342     S.Diag(ImplVar->getLocation(),
   2343            diag::warn_conflicting_nullability_attr_overriding_param_types)
   2344       << DiagNullabilityKind(
   2345            *ImplTy->getNullability(S.Context),
   2346            ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2347             != 0))
   2348       << DiagNullabilityKind(
   2349            *IfaceTy->getNullability(S.Context),
   2350            ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2351             != 0));
   2352     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
   2353   }
   2354   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   2355     return true;
   2356 
   2357   if (!Warn)
   2358     return false;
   2359   unsigned DiagID =
   2360     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
   2361                      : diag::warn_conflicting_param_types;
   2362 
   2363   // Mismatches between ObjC pointers go into a different warning
   2364   // category, and sometimes they're even completely whitelisted.
   2365   if (const ObjCObjectPointerType *ImplPtrTy =
   2366         ImplTy->getAs<ObjCObjectPointerType>()) {
   2367     if (const ObjCObjectPointerType *IfacePtrTy =
   2368           IfaceTy->getAs<ObjCObjectPointerType>()) {
   2369       // Allow non-matching argument types as long as they don't
   2370       // violate the principle of substitutability.  Specifically, the
   2371       // implementation must accept any objects that the superclass
   2372       // accepts, however it may also accept others.
   2373       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   2374         return false;
   2375 
   2376       DiagID =
   2377       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
   2378                        : diag::warn_non_contravariant_param_types;
   2379     }
   2380   }
   2381 
   2382   S.Diag(ImplVar->getLocation(), DiagID)
   2383     << getTypeRange(ImplVar->getTypeSourceInfo())
   2384     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   2385   S.Diag(IfaceVar->getLocation(),
   2386          (IsOverridingMode ? diag::note_previous_declaration
   2387                            : diag::note_previous_definition))
   2388     << getTypeRange(IfaceVar->getTypeSourceInfo());
   2389   return false;
   2390 }
   2391 
   2392 /// In ARC, check whether the conventional meanings of the two methods
   2393 /// match.  If they don't, it's a hard error.
   2394 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   2395                                       ObjCMethodDecl *decl) {
   2396   ObjCMethodFamily implFamily = impl->getMethodFamily();
   2397   ObjCMethodFamily declFamily = decl->getMethodFamily();
   2398   if (implFamily == declFamily) return false;
   2399 
   2400   // Since conventions are sorted by selector, the only possibility is
   2401   // that the types differ enough to cause one selector or the other
   2402   // to fall out of the family.
   2403   assert(implFamily == OMF_None || declFamily == OMF_None);
   2404 
   2405   // No further diagnostics required on invalid declarations.
   2406   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   2407 
   2408   const ObjCMethodDecl *unmatched = impl;
   2409   ObjCMethodFamily family = declFamily;
   2410   unsigned errorID = diag::err_arc_lost_method_convention;
   2411   unsigned noteID = diag::note_arc_lost_method_convention;
   2412   if (declFamily == OMF_None) {
   2413     unmatched = decl;
   2414     family = implFamily;
   2415     errorID = diag::err_arc_gained_method_convention;
   2416     noteID = diag::note_arc_gained_method_convention;
   2417   }
   2418 
   2419   // Indexes into a %select clause in the diagnostic.
   2420   enum FamilySelector {
   2421     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   2422   };
   2423   FamilySelector familySelector = FamilySelector();
   2424 
   2425   switch (family) {
   2426   case OMF_None: llvm_unreachable("logic error, no method convention");
   2427   case OMF_retain:
   2428   case OMF_release:
   2429   case OMF_autorelease:
   2430   case OMF_dealloc:
   2431   case OMF_finalize:
   2432   case OMF_retainCount:
   2433   case OMF_self:
   2434   case OMF_initialize:
   2435   case OMF_performSelector:
   2436     // Mismatches for these methods don't change ownership
   2437     // conventions, so we don't care.
   2438     return false;
   2439 
   2440   case OMF_init: familySelector = F_init; break;
   2441   case OMF_alloc: familySelector = F_alloc; break;
   2442   case OMF_copy: familySelector = F_copy; break;
   2443   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   2444   case OMF_new: familySelector = F_new; break;
   2445   }
   2446 
   2447   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   2448   ReasonSelector reasonSelector;
   2449 
   2450   // The only reason these methods don't fall within their families is
   2451   // due to unusual result types.
   2452   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
   2453     reasonSelector = R_UnrelatedReturn;
   2454   } else {
   2455     reasonSelector = R_NonObjectReturn;
   2456   }
   2457 
   2458   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
   2459   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
   2460 
   2461   return true;
   2462 }
   2463 
   2464 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   2465                                        ObjCMethodDecl *MethodDecl,
   2466                                        bool IsProtocolMethodDecl) {
   2467   if (getLangOpts().ObjCAutoRefCount &&
   2468       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   2469     return;
   2470 
   2471   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   2472                             IsProtocolMethodDecl, false,
   2473                             true);
   2474 
   2475   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   2476        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   2477        EF = MethodDecl->param_end();
   2478        IM != EM && IF != EF; ++IM, ++IF) {
   2479     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   2480                              IsProtocolMethodDecl, false, true);
   2481   }
   2482 
   2483   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   2484     Diag(ImpMethodDecl->getLocation(),
   2485          diag::warn_conflicting_variadic);
   2486     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   2487   }
   2488 }
   2489 
   2490 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
   2491                                        ObjCMethodDecl *Overridden,
   2492                                        bool IsProtocolMethodDecl) {
   2493 
   2494   CheckMethodOverrideReturn(*this, Method, Overridden,
   2495                             IsProtocolMethodDecl, true,
   2496                             true);
   2497 
   2498   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
   2499        IF = Overridden->param_begin(), EM = Method->param_end(),
   2500        EF = Overridden->param_end();
   2501        IM != EM && IF != EF; ++IM, ++IF) {
   2502     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
   2503                              IsProtocolMethodDecl, true, true);
   2504   }
   2505 
   2506   if (Method->isVariadic() != Overridden->isVariadic()) {
   2507     Diag(Method->getLocation(),
   2508          diag::warn_conflicting_overriding_variadic);
   2509     Diag(Overridden->getLocation(), diag::note_previous_declaration);
   2510   }
   2511 }
   2512 
   2513 /// WarnExactTypedMethods - This routine issues a warning if method
   2514 /// implementation declaration matches exactly that of its declaration.
   2515 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   2516                                  ObjCMethodDecl *MethodDecl,
   2517                                  bool IsProtocolMethodDecl) {
   2518   // don't issue warning when protocol method is optional because primary
   2519   // class is not required to implement it and it is safe for protocol
   2520   // to implement it.
   2521   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
   2522     return;
   2523   // don't issue warning when primary class's method is
   2524   // depecated/unavailable.
   2525   if (MethodDecl->hasAttr<UnavailableAttr>() ||
   2526       MethodDecl->hasAttr<DeprecatedAttr>())
   2527     return;
   2528 
   2529   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   2530                                       IsProtocolMethodDecl, false, false);
   2531   if (match)
   2532     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   2533          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   2534          EF = MethodDecl->param_end();
   2535          IM != EM && IF != EF; ++IM, ++IF) {
   2536       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
   2537                                        *IM, *IF,
   2538                                        IsProtocolMethodDecl, false, false);
   2539       if (!match)
   2540         break;
   2541     }
   2542   if (match)
   2543     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
   2544   if (match)
   2545     match = !(MethodDecl->isClassMethod() &&
   2546               MethodDecl->getSelector() == GetNullarySelector("load", Context));
   2547 
   2548   if (match) {
   2549     Diag(ImpMethodDecl->getLocation(),
   2550          diag::warn_category_method_impl_match);
   2551     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
   2552       << MethodDecl->getDeclName();
   2553   }
   2554 }
   2555 
   2556 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   2557 /// improve the efficiency of selector lookups and type checking by associating
   2558 /// with each protocol / interface / category the flattened instance tables. If
   2559 /// we used an immutable set to keep the table then it wouldn't add significant
   2560 /// memory cost and it would be handy for lookups.
   2561 
   2562 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
   2563 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
   2564 
   2565 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
   2566                                            ProtocolNameSet &PNS) {
   2567   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
   2568     PNS.insert(PDecl->getIdentifier());
   2569   for (const auto *PI : PDecl->protocols())
   2570     findProtocolsWithExplicitImpls(PI, PNS);
   2571 }
   2572 
   2573 /// Recursively populates a set with all conformed protocols in a class
   2574 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
   2575 /// attribute.
   2576 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
   2577                                            ProtocolNameSet &PNS) {
   2578   if (!Super)
   2579     return;
   2580 
   2581   for (const auto *I : Super->all_referenced_protocols())
   2582     findProtocolsWithExplicitImpls(I, PNS);
   2583 
   2584   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
   2585 }
   2586 
   2587 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   2588 /// Declared in protocol, and those referenced by it.
   2589 static void CheckProtocolMethodDefs(Sema &S,
   2590                                     SourceLocation ImpLoc,
   2591                                     ObjCProtocolDecl *PDecl,
   2592                                     bool& IncompleteImpl,
   2593                                     const Sema::SelectorSet &InsMap,
   2594                                     const Sema::SelectorSet &ClsMap,
   2595                                     ObjCContainerDecl *CDecl,
   2596                                     LazyProtocolNameSet &ProtocolsExplictImpl) {
   2597   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
   2598   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
   2599                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
   2600   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   2601 
   2602   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   2603   ObjCInterfaceDecl *NSIDecl = nullptr;
   2604 
   2605   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
   2606   // then we should check if any class in the super class hierarchy also
   2607   // conforms to this protocol, either directly or via protocol inheritance.
   2608   // If so, we can skip checking this protocol completely because we
   2609   // know that a parent class already satisfies this protocol.
   2610   //
   2611   // Note: we could generalize this logic for all protocols, and merely
   2612   // add the limit on looking at the super class chain for just
   2613   // specially marked protocols.  This may be a good optimization.  This
   2614   // change is restricted to 'objc_protocol_requires_explicit_implementation'
   2615   // protocols for now for controlled evaluation.
   2616   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
   2617     if (!ProtocolsExplictImpl) {
   2618       ProtocolsExplictImpl.reset(new ProtocolNameSet);
   2619       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
   2620     }
   2621     if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
   2622         ProtocolsExplictImpl->end())
   2623       return;
   2624 
   2625     // If no super class conforms to the protocol, we should not search
   2626     // for methods in the super class to implicitly satisfy the protocol.
   2627     Super = nullptr;
   2628   }
   2629 
   2630   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
   2631     // check to see if class implements forwardInvocation method and objects
   2632     // of this class are derived from 'NSProxy' so that to forward requests
   2633     // from one object to another.
   2634     // Under such conditions, which means that every method possible is
   2635     // implemented in the class, we should not issue "Method definition not
   2636     // found" warnings.
   2637     // FIXME: Use a general GetUnarySelector method for this.
   2638     IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
   2639     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
   2640     if (InsMap.count(fISelector))
   2641       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   2642       // need be implemented in the implementation.
   2643       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
   2644   }
   2645 
   2646   // If this is a forward protocol declaration, get its definition.
   2647   if (!PDecl->isThisDeclarationADefinition() &&
   2648       PDecl->getDefinition())
   2649     PDecl = PDecl->getDefinition();
   2650 
   2651   // If a method lookup fails locally we still need to look and see if
   2652   // the method was implemented by a base class or an inherited
   2653   // protocol. This lookup is slow, but occurs rarely in correct code
   2654   // and otherwise would terminate in a warning.
   2655 
   2656   // check unimplemented instance methods.
   2657   if (!NSIDecl)
   2658     for (auto *method : PDecl->instance_methods()) {
   2659       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   2660           !method->isPropertyAccessor() &&
   2661           !InsMap.count(method->getSelector()) &&
   2662           (!Super || !Super->lookupMethod(method->getSelector(),
   2663                                           true /* instance */,
   2664                                           false /* shallowCategory */,
   2665                                           true /* followsSuper */,
   2666                                           nullptr /* category */))) {
   2667             // If a method is not implemented in the category implementation but
   2668             // has been declared in its primary class, superclass,
   2669             // or in one of their protocols, no need to issue the warning.
   2670             // This is because method will be implemented in the primary class
   2671             // or one of its super class implementation.
   2672 
   2673             // Ugly, but necessary. Method declared in protcol might have
   2674             // have been synthesized due to a property declared in the class which
   2675             // uses the protocol.
   2676             if (ObjCMethodDecl *MethodInClass =
   2677                   IDecl->lookupMethod(method->getSelector(),
   2678                                       true /* instance */,
   2679                                       true /* shallowCategoryLookup */,
   2680                                       false /* followSuper */))
   2681               if (C || MethodInClass->isPropertyAccessor())
   2682                 continue;
   2683             unsigned DIAG = diag::warn_unimplemented_protocol_method;
   2684             if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
   2685               WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
   2686                                   PDecl);
   2687             }
   2688           }
   2689     }
   2690   // check unimplemented class methods
   2691   for (auto *method : PDecl->class_methods()) {
   2692     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   2693         !ClsMap.count(method->getSelector()) &&
   2694         (!Super || !Super->lookupMethod(method->getSelector(),
   2695                                         false /* class method */,
   2696                                         false /* shallowCategoryLookup */,
   2697                                         true  /* followSuper */,
   2698                                         nullptr /* category */))) {
   2699       // See above comment for instance method lookups.
   2700       if (C && IDecl->lookupMethod(method->getSelector(),
   2701                                    false /* class */,
   2702                                    true /* shallowCategoryLookup */,
   2703                                    false /* followSuper */))
   2704         continue;
   2705 
   2706       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   2707       if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
   2708         WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
   2709       }
   2710     }
   2711   }
   2712   // Check on this protocols's referenced protocols, recursively.
   2713   for (auto *PI : PDecl->protocols())
   2714     CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
   2715                             CDecl, ProtocolsExplictImpl);
   2716 }
   2717 
   2718 /// MatchAllMethodDeclarations - Check methods declared in interface
   2719 /// or protocol against those declared in their implementations.
   2720 ///
   2721 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
   2722                                       const SelectorSet &ClsMap,
   2723                                       SelectorSet &InsMapSeen,
   2724                                       SelectorSet &ClsMapSeen,
   2725                                       ObjCImplDecl* IMPDecl,
   2726                                       ObjCContainerDecl* CDecl,
   2727                                       bool &IncompleteImpl,
   2728                                       bool ImmediateClass,
   2729                                       bool WarnCategoryMethodImpl) {
   2730   // Check and see if instance methods in class interface have been
   2731   // implemented in the implementation class. If so, their types match.
   2732   for (auto *I : CDecl->instance_methods()) {
   2733     if (!InsMapSeen.insert(I->getSelector()).second)
   2734       continue;
   2735     if (!I->isPropertyAccessor() &&
   2736         !InsMap.count(I->getSelector())) {
   2737       if (ImmediateClass)
   2738         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
   2739                             diag::warn_undef_method_impl);
   2740       continue;
   2741     } else {
   2742       ObjCMethodDecl *ImpMethodDecl =
   2743         IMPDecl->getInstanceMethod(I->getSelector());
   2744       assert(CDecl->getInstanceMethod(I->getSelector()) &&
   2745              "Expected to find the method through lookup as well");
   2746       // ImpMethodDecl may be null as in a @dynamic property.
   2747       if (ImpMethodDecl) {
   2748         if (!WarnCategoryMethodImpl)
   2749           WarnConflictingTypedMethods(ImpMethodDecl, I,
   2750                                       isa<ObjCProtocolDecl>(CDecl));
   2751         else if (!I->isPropertyAccessor())
   2752           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
   2753       }
   2754     }
   2755   }
   2756 
   2757   // Check and see if class methods in class interface have been
   2758   // implemented in the implementation class. If so, their types match.
   2759   for (auto *I : CDecl->class_methods()) {
   2760     if (!ClsMapSeen.insert(I->getSelector()).second)
   2761       continue;
   2762     if (!I->isPropertyAccessor() &&
   2763         !ClsMap.count(I->getSelector())) {
   2764       if (ImmediateClass)
   2765         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
   2766                             diag::warn_undef_method_impl);
   2767     } else {
   2768       ObjCMethodDecl *ImpMethodDecl =
   2769         IMPDecl->getClassMethod(I->getSelector());
   2770       assert(CDecl->getClassMethod(I->getSelector()) &&
   2771              "Expected to find the method through lookup as well");
   2772       // ImpMethodDecl may be null as in a @dynamic property.
   2773       if (ImpMethodDecl) {
   2774         if (!WarnCategoryMethodImpl)
   2775           WarnConflictingTypedMethods(ImpMethodDecl, I,
   2776                                       isa<ObjCProtocolDecl>(CDecl));
   2777         else if (!I->isPropertyAccessor())
   2778           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
   2779       }
   2780     }
   2781   }
   2782 
   2783   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
   2784     // Also, check for methods declared in protocols inherited by
   2785     // this protocol.
   2786     for (auto *PI : PD->protocols())
   2787       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2788                                  IMPDecl, PI, IncompleteImpl, false,
   2789                                  WarnCategoryMethodImpl);
   2790   }
   2791 
   2792   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   2793     // when checking that methods in implementation match their declaration,
   2794     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
   2795     // extension; as well as those in categories.
   2796     if (!WarnCategoryMethodImpl) {
   2797       for (auto *Cat : I->visible_categories())
   2798         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2799                                    IMPDecl, Cat, IncompleteImpl,
   2800                                    ImmediateClass && Cat->IsClassExtension(),
   2801                                    WarnCategoryMethodImpl);
   2802     } else {
   2803       // Also methods in class extensions need be looked at next.
   2804       for (auto *Ext : I->visible_extensions())
   2805         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2806                                    IMPDecl, Ext, IncompleteImpl, false,
   2807                                    WarnCategoryMethodImpl);
   2808     }
   2809 
   2810     // Check for any implementation of a methods declared in protocol.
   2811     for (auto *PI : I->all_referenced_protocols())
   2812       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2813                                  IMPDecl, PI, IncompleteImpl, false,
   2814                                  WarnCategoryMethodImpl);
   2815 
   2816     // FIXME. For now, we are not checking for extact match of methods
   2817     // in category implementation and its primary class's super class.
   2818     if (!WarnCategoryMethodImpl && I->getSuperClass())
   2819       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2820                                  IMPDecl,
   2821                                  I->getSuperClass(), IncompleteImpl, false);
   2822   }
   2823 }
   2824 
   2825 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
   2826 /// category matches with those implemented in its primary class and
   2827 /// warns each time an exact match is found.
   2828 void Sema::CheckCategoryVsClassMethodMatches(
   2829                                   ObjCCategoryImplDecl *CatIMPDecl) {
   2830   // Get category's primary class.
   2831   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
   2832   if (!CatDecl)
   2833     return;
   2834   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
   2835   if (!IDecl)
   2836     return;
   2837   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
   2838   SelectorSet InsMap, ClsMap;
   2839 
   2840   for (const auto *I : CatIMPDecl->instance_methods()) {
   2841     Selector Sel = I->getSelector();
   2842     // When checking for methods implemented in the category, skip over
   2843     // those declared in category class's super class. This is because
   2844     // the super class must implement the method.
   2845     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
   2846       continue;
   2847     InsMap.insert(Sel);
   2848   }
   2849 
   2850   for (const auto *I : CatIMPDecl->class_methods()) {
   2851     Selector Sel = I->getSelector();
   2852     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
   2853       continue;
   2854     ClsMap.insert(Sel);
   2855   }
   2856   if (InsMap.empty() && ClsMap.empty())
   2857     return;
   2858 
   2859   SelectorSet InsMapSeen, ClsMapSeen;
   2860   bool IncompleteImpl = false;
   2861   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2862                              CatIMPDecl, IDecl,
   2863                              IncompleteImpl, false,
   2864                              true /*WarnCategoryMethodImpl*/);
   2865 }
   2866 
   2867 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   2868                                      ObjCContainerDecl* CDecl,
   2869                                      bool IncompleteImpl) {
   2870   SelectorSet InsMap;
   2871   // Check and see if instance methods in class interface have been
   2872   // implemented in the implementation class.
   2873   for (const auto *I : IMPDecl->instance_methods())
   2874     InsMap.insert(I->getSelector());
   2875 
   2876   // Add the selectors for getters/setters of @dynamic properties.
   2877   for (const auto *PImpl : IMPDecl->property_impls()) {
   2878     // We only care about @dynamic implementations.
   2879     if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
   2880       continue;
   2881 
   2882     const auto *P = PImpl->getPropertyDecl();
   2883     if (!P) continue;
   2884 
   2885     InsMap.insert(P->getGetterName());
   2886     if (!P->getSetterName().isNull())
   2887       InsMap.insert(P->getSetterName());
   2888   }
   2889 
   2890   // Check and see if properties declared in the interface have either 1)
   2891   // an implementation or 2) there is a @synthesize/@dynamic implementation
   2892   // of the property in the @implementation.
   2893   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
   2894     bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
   2895                                 LangOpts.ObjCRuntime.isNonFragile() &&
   2896                                 !IDecl->isObjCRequiresPropertyDefs();
   2897     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
   2898   }
   2899 
   2900   // Diagnose null-resettable synthesized setters.
   2901   diagnoseNullResettableSynthesizedSetters(IMPDecl);
   2902 
   2903   SelectorSet ClsMap;
   2904   for (const auto *I : IMPDecl->class_methods())
   2905     ClsMap.insert(I->getSelector());
   2906 
   2907   // Check for type conflict of methods declared in a class/protocol and
   2908   // its implementation; if any.
   2909   SelectorSet InsMapSeen, ClsMapSeen;
   2910   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   2911                              IMPDecl, CDecl,
   2912                              IncompleteImpl, true);
   2913 
   2914   // check all methods implemented in category against those declared
   2915   // in its primary class.
   2916   if (ObjCCategoryImplDecl *CatDecl =
   2917         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
   2918     CheckCategoryVsClassMethodMatches(CatDecl);
   2919 
   2920   // Check the protocol list for unimplemented methods in the @implementation
   2921   // class.
   2922   // Check and see if class methods in class interface have been
   2923   // implemented in the implementation class.
   2924 
   2925   LazyProtocolNameSet ExplicitImplProtocols;
   2926 
   2927   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   2928     for (auto *PI : I->all_referenced_protocols())
   2929       CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
   2930                               InsMap, ClsMap, I, ExplicitImplProtocols);
   2931   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   2932     // For extended class, unimplemented methods in its protocols will
   2933     // be reported in the primary class.
   2934     if (!C->IsClassExtension()) {
   2935       for (auto *P : C->protocols())
   2936         CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
   2937                                 IncompleteImpl, InsMap, ClsMap, CDecl,
   2938                                 ExplicitImplProtocols);
   2939       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
   2940                                       /*SynthesizeProperties=*/false);
   2941     }
   2942   } else
   2943     llvm_unreachable("invalid ObjCContainerDecl type.");
   2944 }
   2945 
   2946 Sema::DeclGroupPtrTy
   2947 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   2948                                    IdentifierInfo **IdentList,
   2949                                    SourceLocation *IdentLocs,
   2950                                    ArrayRef<ObjCTypeParamList *> TypeParamLists,
   2951                                    unsigned NumElts) {
   2952   SmallVector<Decl *, 8> DeclsInGroup;
   2953   for (unsigned i = 0; i != NumElts; ++i) {
   2954     // Check for another declaration kind with the same name.
   2955     NamedDecl *PrevDecl
   2956       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   2957                          LookupOrdinaryName, ForRedeclaration);
   2958     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   2959       // GCC apparently allows the following idiom:
   2960       //
   2961       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   2962       // @class XCElementToggler;
   2963       //
   2964       // Here we have chosen to ignore the forward class declaration
   2965       // with a warning. Since this is the implied behavior.
   2966       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   2967       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   2968         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   2969         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   2970       } else {
   2971         // a forward class declaration matching a typedef name of a class refers
   2972         // to the underlying class. Just ignore the forward class with a warning
   2973         // as this will force the intended behavior which is to lookup the
   2974         // typedef name.
   2975         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
   2976           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
   2977               << IdentList[i];
   2978           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   2979           continue;
   2980         }
   2981       }
   2982     }
   2983 
   2984     // Create a declaration to describe this forward declaration.
   2985     ObjCInterfaceDecl *PrevIDecl
   2986       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   2987 
   2988     IdentifierInfo *ClassName = IdentList[i];
   2989     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
   2990       // A previous decl with a different name is because of
   2991       // @compatibility_alias, for example:
   2992       // \code
   2993       //   @class NewImage;
   2994       //   @compatibility_alias OldImage NewImage;
   2995       // \endcode
   2996       // A lookup for 'OldImage' will return the 'NewImage' decl.
   2997       //
   2998       // In such a case use the real declaration name, instead of the alias one,
   2999       // otherwise we will break IdentifierResolver and redecls-chain invariants.
   3000       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
   3001       // has been aliased.
   3002       ClassName = PrevIDecl->getIdentifier();
   3003     }
   3004 
   3005     // If this forward declaration has type parameters, compare them with the
   3006     // type parameters of the previous declaration.
   3007     ObjCTypeParamList *TypeParams = TypeParamLists[i];
   3008     if (PrevIDecl && TypeParams) {
   3009       if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
   3010         // Check for consistency with the previous declaration.
   3011         if (checkTypeParamListConsistency(
   3012               *this, PrevTypeParams, TypeParams,
   3013               TypeParamListContext::ForwardDeclaration)) {
   3014           TypeParams = nullptr;
   3015         }
   3016       } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
   3017         // The @interface does not have type parameters. Complain.
   3018         Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
   3019           << ClassName
   3020           << TypeParams->getSourceRange();
   3021         Diag(Def->getLocation(), diag::note_defined_here)
   3022           << ClassName;
   3023 
   3024         TypeParams = nullptr;
   3025       }
   3026     }
   3027 
   3028     ObjCInterfaceDecl *IDecl
   3029       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   3030                                   ClassName, TypeParams, PrevIDecl,
   3031                                   IdentLocs[i]);
   3032     IDecl->setAtEndRange(IdentLocs[i]);
   3033 
   3034     PushOnScopeChains(IDecl, TUScope);
   3035     CheckObjCDeclScope(IDecl);
   3036     DeclsInGroup.push_back(IDecl);
   3037   }
   3038 
   3039   return BuildDeclaratorGroup(DeclsInGroup, false);
   3040 }
   3041 
   3042 static bool tryMatchRecordTypes(ASTContext &Context,
   3043                                 Sema::MethodMatchStrategy strategy,
   3044                                 const Type *left, const Type *right);
   3045 
   3046 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   3047                        QualType leftQT, QualType rightQT) {
   3048   const Type *left =
   3049     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   3050   const Type *right =
   3051     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   3052 
   3053   if (left == right) return true;
   3054 
   3055   // If we're doing a strict match, the types have to match exactly.
   3056   if (strategy == Sema::MMS_strict) return false;
   3057 
   3058   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   3059 
   3060   // Otherwise, use this absurdly complicated algorithm to try to
   3061   // validate the basic, low-level compatibility of the two types.
   3062 
   3063   // As a minimum, require the sizes and alignments to match.
   3064   TypeInfo LeftTI = Context.getTypeInfo(left);
   3065   TypeInfo RightTI = Context.getTypeInfo(right);
   3066   if (LeftTI.Width != RightTI.Width)
   3067     return false;
   3068 
   3069   if (LeftTI.Align != RightTI.Align)
   3070     return false;
   3071 
   3072   // Consider all the kinds of non-dependent canonical types:
   3073   // - functions and arrays aren't possible as return and parameter types
   3074 
   3075   // - vector types of equal size can be arbitrarily mixed
   3076   if (isa<VectorType>(left)) return isa<VectorType>(right);
   3077   if (isa<VectorType>(right)) return false;
   3078 
   3079   // - references should only match references of identical type
   3080   // - structs, unions, and Objective-C objects must match more-or-less
   3081   //   exactly
   3082   // - everything else should be a scalar
   3083   if (!left->isScalarType() || !right->isScalarType())
   3084     return tryMatchRecordTypes(Context, strategy, left, right);
   3085 
   3086   // Make scalars agree in kind, except count bools as chars, and group
   3087   // all non-member pointers together.
   3088   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   3089   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   3090   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   3091   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   3092   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
   3093     leftSK = Type::STK_ObjCObjectPointer;
   3094   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
   3095     rightSK = Type::STK_ObjCObjectPointer;
   3096 
   3097   // Note that data member pointers and function member pointers don't
   3098   // intermix because of the size differences.
   3099 
   3100   return (leftSK == rightSK);
   3101 }
   3102 
   3103 static bool tryMatchRecordTypes(ASTContext &Context,
   3104                                 Sema::MethodMatchStrategy strategy,
   3105                                 const Type *lt, const Type *rt) {
   3106   assert(lt && rt && lt != rt);
   3107 
   3108   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   3109   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   3110   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   3111 
   3112   // Require union-hood to match.
   3113   if (left->isUnion() != right->isUnion()) return false;
   3114 
   3115   // Require an exact match if either is non-POD.
   3116   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   3117       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   3118     return false;
   3119 
   3120   // Require size and alignment to match.
   3121   TypeInfo LeftTI = Context.getTypeInfo(lt);
   3122   TypeInfo RightTI = Context.getTypeInfo(rt);
   3123   if (LeftTI.Width != RightTI.Width)
   3124     return false;
   3125 
   3126   if (LeftTI.Align != RightTI.Align)
   3127     return false;
   3128 
   3129   // Require fields to match.
   3130   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   3131   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   3132   for (; li != le && ri != re; ++li, ++ri) {
   3133     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   3134       return false;
   3135   }
   3136   return (li == le && ri == re);
   3137 }
   3138 
   3139 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   3140 /// returns true, or false, accordingly.
   3141 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   3142 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   3143                                       const ObjCMethodDecl *right,
   3144                                       MethodMatchStrategy strategy) {
   3145   if (!matchTypes(Context, strategy, left->getReturnType(),
   3146                   right->getReturnType()))
   3147     return false;
   3148 
   3149   // If either is hidden, it is not considered to match.
   3150   if (left->isHidden() || right->isHidden())
   3151     return false;
   3152 
   3153   if (getLangOpts().ObjCAutoRefCount &&
   3154       (left->hasAttr<NSReturnsRetainedAttr>()
   3155          != right->hasAttr<NSReturnsRetainedAttr>() ||
   3156        left->hasAttr<NSConsumesSelfAttr>()
   3157          != right->hasAttr<NSConsumesSelfAttr>()))
   3158     return false;
   3159 
   3160   ObjCMethodDecl::param_const_iterator
   3161     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
   3162     re = right->param_end();
   3163 
   3164   for (; li != le && ri != re; ++li, ++ri) {
   3165     assert(ri != right->param_end() && "Param mismatch");
   3166     const ParmVarDecl *lparm = *li, *rparm = *ri;
   3167 
   3168     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   3169       return false;
   3170 
   3171     if (getLangOpts().ObjCAutoRefCount &&
   3172         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   3173       return false;
   3174   }
   3175   return true;
   3176 }
   3177 
   3178 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
   3179                                                ObjCMethodDecl *MethodInList) {
   3180   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
   3181   auto *MethodInListProtocol =
   3182       dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
   3183   // If this method belongs to a protocol but the method in list does not, or
   3184   // vice versa, we say the context is not the same.
   3185   if ((MethodProtocol && !MethodInListProtocol) ||
   3186       (!MethodProtocol && MethodInListProtocol))
   3187     return false;
   3188 
   3189   if (MethodProtocol && MethodInListProtocol)
   3190     return true;
   3191 
   3192   ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
   3193   ObjCInterfaceDecl *MethodInListInterface =
   3194       MethodInList->getClassInterface();
   3195   return MethodInterface == MethodInListInterface;
   3196 }
   3197 
   3198 void Sema::addMethodToGlobalList(ObjCMethodList *List,
   3199                                  ObjCMethodDecl *Method) {
   3200   // Record at the head of the list whether there were 0, 1, or >= 2 methods
   3201   // inside categories.
   3202   if (ObjCCategoryDecl *CD =
   3203           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
   3204     if (!CD->IsClassExtension() && List->getBits() < 2)
   3205       List->setBits(List->getBits() + 1);
   3206 
   3207   // If the list is empty, make it a singleton list.
   3208   if (List->getMethod() == nullptr) {
   3209     List->setMethod(Method);
   3210     List->setNext(nullptr);
   3211     return;
   3212   }
   3213 
   3214   // We've seen a method with this name, see if we have already seen this type
   3215   // signature.
   3216   ObjCMethodList *Previous = List;
   3217   ObjCMethodList *ListWithSameDeclaration = nullptr;
   3218   for (; List; Previous = List, List = List->getNext()) {
   3219     // If we are building a module, keep all of the methods.
   3220     if (getLangOpts().CompilingModule)
   3221       continue;
   3222 
   3223     bool SameDeclaration = MatchTwoMethodDeclarations(Method,
   3224                                                       List->getMethod());
   3225     // Looking for method with a type bound requires the correct context exists.
   3226     // We need to insert a method into the list if the context is different.
   3227     // If the method's declaration matches the list
   3228     // a> the method belongs to a different context: we need to insert it, in
   3229     //    order to emit the availability message, we need to prioritize over
   3230     //    availability among the methods with the same declaration.
   3231     // b> the method belongs to the same context: there is no need to insert a
   3232     //    new entry.
   3233     // If the method's declaration does not match the list, we insert it to the
   3234     // end.
   3235     if (!SameDeclaration ||
   3236         !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
   3237       // Even if two method types do not match, we would like to say
   3238       // there is more than one declaration so unavailability/deprecated
   3239       // warning is not too noisy.
   3240       if (!Method->isDefined())
   3241         List->setHasMoreThanOneDecl(true);
   3242 
   3243       // For methods with the same declaration, the one that is deprecated
   3244       // should be put in the front for better diagnostics.
   3245       if (Method->isDeprecated() && SameDeclaration &&
   3246           !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
   3247         ListWithSameDeclaration = List;
   3248 
   3249       if (Method->isUnavailable() && SameDeclaration &&
   3250           !ListWithSameDeclaration &&
   3251           List->getMethod()->getAvailability() < AR_Deprecated)
   3252         ListWithSameDeclaration = List;
   3253       continue;
   3254     }
   3255 
   3256     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
   3257 
   3258     // Propagate the 'defined' bit.
   3259     if (Method->isDefined())
   3260       PrevObjCMethod->setDefined(true);
   3261     else {
   3262       // Objective-C doesn't allow an @interface for a class after its
   3263       // @implementation. So if Method is not defined and there already is
   3264       // an entry for this type signature, Method has to be for a different
   3265       // class than PrevObjCMethod.
   3266       List->setHasMoreThanOneDecl(true);
   3267     }
   3268 
   3269     // If a method is deprecated, push it in the global pool.
   3270     // This is used for better diagnostics.
   3271     if (Method->isDeprecated()) {
   3272       if (!PrevObjCMethod->isDeprecated())
   3273         List->setMethod(Method);
   3274     }
   3275     // If the new method is unavailable, push it into global pool
   3276     // unless previous one is deprecated.
   3277     if (Method->isUnavailable()) {
   3278       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   3279         List->setMethod(Method);
   3280     }
   3281 
   3282     return;
   3283   }
   3284 
   3285   // We have a new signature for an existing method - add it.
   3286   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   3287   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   3288 
   3289   // We insert it right before ListWithSameDeclaration.
   3290   if (ListWithSameDeclaration) {
   3291     auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
   3292     // FIXME: should we clear the other bits in ListWithSameDeclaration?
   3293     ListWithSameDeclaration->setMethod(Method);
   3294     ListWithSameDeclaration->setNext(List);
   3295     return;
   3296   }
   3297 
   3298   Previous->setNext(new (Mem) ObjCMethodList(Method));
   3299 }
   3300 
   3301 /// \brief Read the contents of the method pool for a given selector from
   3302 /// external storage.
   3303 void Sema::ReadMethodPool(Selector Sel) {
   3304   assert(ExternalSource && "We need an external AST source");
   3305   ExternalSource->ReadMethodPool(Sel);
   3306 }
   3307 
   3308 void Sema::updateOutOfDateSelector(Selector Sel) {
   3309   if (!ExternalSource)
   3310     return;
   3311   ExternalSource->updateOutOfDateSelector(Sel);
   3312 }
   3313 
   3314 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   3315                                  bool instance) {
   3316   // Ignore methods of invalid containers.
   3317   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
   3318     return;
   3319 
   3320   if (ExternalSource)
   3321     ReadMethodPool(Method->getSelector());
   3322 
   3323   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   3324   if (Pos == MethodPool.end())
   3325     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   3326                                            GlobalMethods())).first;
   3327 
   3328   Method->setDefined(impl);
   3329 
   3330   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   3331   addMethodToGlobalList(&Entry, Method);
   3332 }
   3333 
   3334 /// Determines if this is an "acceptable" loose mismatch in the global
   3335 /// method pool.  This exists mostly as a hack to get around certain
   3336 /// global mismatches which we can't afford to make warnings / errors.
   3337 /// Really, what we want is a way to take a method out of the global
   3338 /// method pool.
   3339 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   3340                                        ObjCMethodDecl *other) {
   3341   if (!chosen->isInstanceMethod())
   3342     return false;
   3343 
   3344   Selector sel = chosen->getSelector();
   3345   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   3346     return false;
   3347 
   3348   // Don't complain about mismatches for -length if the method we
   3349   // chose has an integral result type.
   3350   return (chosen->getReturnType()->isIntegerType());
   3351 }
   3352 
   3353 /// Return true if the given method is wthin the type bound.
   3354 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
   3355                                      const ObjCObjectType *TypeBound) {
   3356   if (!TypeBound)
   3357     return true;
   3358 
   3359   if (TypeBound->isObjCId())
   3360     // FIXME: should we handle the case of bounding to id<A, B> differently?
   3361     return true;
   3362 
   3363   auto *BoundInterface = TypeBound->getInterface();
   3364   assert(BoundInterface && "unexpected object type!");
   3365 
   3366   // Check if the Method belongs to a protocol. We should allow any method
   3367   // defined in any protocol, because any subclass could adopt the protocol.
   3368   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
   3369   if (MethodProtocol) {
   3370     return true;
   3371   }
   3372 
   3373   // If the Method belongs to a class, check if it belongs to the class
   3374   // hierarchy of the class bound.
   3375   if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
   3376     // We allow methods declared within classes that are part of the hierarchy
   3377     // of the class bound (superclass of, subclass of, or the same as the class
   3378     // bound).
   3379     return MethodInterface == BoundInterface ||
   3380            MethodInterface->isSuperClassOf(BoundInterface) ||
   3381            BoundInterface->isSuperClassOf(MethodInterface);
   3382   }
   3383   llvm_unreachable("unknow method context");
   3384 }
   3385 
   3386 /// We first select the type of the method: Instance or Factory, then collect
   3387 /// all methods with that type.
   3388 bool Sema::CollectMultipleMethodsInGlobalPool(
   3389     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
   3390     bool InstanceFirst, bool CheckTheOther,
   3391     const ObjCObjectType *TypeBound) {
   3392   if (ExternalSource)
   3393     ReadMethodPool(Sel);
   3394 
   3395   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   3396   if (Pos == MethodPool.end())
   3397     return false;
   3398 
   3399   // Gather the non-hidden methods.
   3400   ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
   3401                              Pos->second.second;
   3402   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
   3403     if (M->getMethod() && !M->getMethod()->isHidden()) {
   3404       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
   3405         Methods.push_back(M->getMethod());
   3406     }
   3407 
   3408   // Return if we find any method with the desired kind.
   3409   if (!Methods.empty())
   3410     return Methods.size() > 1;
   3411 
   3412   if (!CheckTheOther)
   3413     return false;
   3414 
   3415   // Gather the other kind.
   3416   ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
   3417                               Pos->second.first;
   3418   for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
   3419     if (M->getMethod() && !M->getMethod()->isHidden()) {
   3420       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
   3421         Methods.push_back(M->getMethod());
   3422     }
   3423 
   3424   return Methods.size() > 1;
   3425 }
   3426 
   3427 bool Sema::AreMultipleMethodsInGlobalPool(
   3428     Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
   3429     bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
   3430   // Diagnose finding more than one method in global pool.
   3431   SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
   3432   FilteredMethods.push_back(BestMethod);
   3433 
   3434   for (auto *M : Methods)
   3435     if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
   3436       FilteredMethods.push_back(M);
   3437 
   3438   if (FilteredMethods.size() > 1)
   3439     DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
   3440                                        receiverIdOrClass);
   3441 
   3442   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   3443   // Test for no method in the pool which should not trigger any warning by
   3444   // caller.
   3445   if (Pos == MethodPool.end())
   3446     return true;
   3447   ObjCMethodList &MethList =
   3448     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
   3449   return MethList.hasMoreThanOneDecl();
   3450 }
   3451 
   3452 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   3453                                                bool receiverIdOrClass,
   3454                                                bool instance) {
   3455   if (ExternalSource)
   3456     ReadMethodPool(Sel);
   3457 
   3458   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   3459   if (Pos == MethodPool.end())
   3460     return nullptr;
   3461 
   3462   // Gather the non-hidden methods.
   3463   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   3464   SmallVector<ObjCMethodDecl *, 4> Methods;
   3465   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
   3466     if (M->getMethod() && !M->getMethod()->isHidden())
   3467       return M->getMethod();
   3468   }
   3469   return nullptr;
   3470 }
   3471 
   3472 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
   3473                                               Selector Sel, SourceRange R,
   3474                                               bool receiverIdOrClass) {
   3475   // We found multiple methods, so we may have to complain.
   3476   bool issueDiagnostic = false, issueError = false;
   3477 
   3478   // We support a warning which complains about *any* difference in
   3479   // method signature.
   3480   bool strictSelectorMatch =
   3481   receiverIdOrClass &&
   3482   !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
   3483   if (strictSelectorMatch) {
   3484     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   3485       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
   3486         issueDiagnostic = true;
   3487         break;
   3488       }
   3489     }
   3490   }
   3491 
   3492   // If we didn't see any strict differences, we won't see any loose
   3493   // differences.  In ARC, however, we also need to check for loose
   3494   // mismatches, because most of them are errors.
   3495   if (!strictSelectorMatch ||
   3496       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
   3497     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   3498       // This checks if the methods differ in type mismatch.
   3499       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
   3500           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
   3501         issueDiagnostic = true;
   3502         if (getLangOpts().ObjCAutoRefCount)
   3503           issueError = true;
   3504         break;
   3505       }
   3506     }
   3507 
   3508   if (issueDiagnostic) {
   3509     if (issueError)
   3510       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   3511     else if (strictSelectorMatch)
   3512       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   3513     else
   3514       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   3515 
   3516     Diag(Methods[0]->getLocStart(),
   3517          issueError ? diag::note_possibility : diag::note_using)
   3518     << Methods[0]->getSourceRange();
   3519     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   3520       Diag(Methods[I]->getLocStart(), diag::note_also_found)
   3521       << Methods[I]->getSourceRange();
   3522     }
   3523   }
   3524 }
   3525 
   3526 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   3527   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   3528   if (Pos == MethodPool.end())
   3529     return nullptr;
   3530 
   3531   GlobalMethods &Methods = Pos->second;
   3532   for (const ObjCMethodList *Method = &Methods.first; Method;
   3533        Method = Method->getNext())
   3534     if (Method->getMethod() &&
   3535         (Method->getMethod()->isDefined() ||
   3536          Method->getMethod()->isPropertyAccessor()))
   3537       return Method->getMethod();
   3538 
   3539   for (const ObjCMethodList *Method = &Methods.second; Method;
   3540        Method = Method->getNext())
   3541     if (Method->getMethod() &&
   3542         (Method->getMethod()->isDefined() ||
   3543          Method->getMethod()->isPropertyAccessor()))
   3544       return Method->getMethod();
   3545   return nullptr;
   3546 }
   3547 
   3548 static void
   3549 HelperSelectorsForTypoCorrection(
   3550                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
   3551                       StringRef Typo, const ObjCMethodDecl * Method) {
   3552   const unsigned MaxEditDistance = 1;
   3553   unsigned BestEditDistance = MaxEditDistance + 1;
   3554   std::string MethodName = Method->getSelector().getAsString();
   3555 
   3556   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
   3557   if (MinPossibleEditDistance > 0 &&
   3558       Typo.size() / MinPossibleEditDistance < 1)
   3559     return;
   3560   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
   3561   if (EditDistance > MaxEditDistance)
   3562     return;
   3563   if (EditDistance == BestEditDistance)
   3564     BestMethod.push_back(Method);
   3565   else if (EditDistance < BestEditDistance) {
   3566     BestMethod.clear();
   3567     BestMethod.push_back(Method);
   3568   }
   3569 }
   3570 
   3571 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
   3572                                      QualType ObjectType) {
   3573   if (ObjectType.isNull())
   3574     return true;
   3575   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
   3576     return true;
   3577   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
   3578          nullptr;
   3579 }
   3580 
   3581 const ObjCMethodDecl *
   3582 Sema::SelectorsForTypoCorrection(Selector Sel,
   3583                                  QualType ObjectType) {
   3584   unsigned NumArgs = Sel.getNumArgs();
   3585   SmallVector<const ObjCMethodDecl *, 8> Methods;
   3586   bool ObjectIsId = true, ObjectIsClass = true;
   3587   if (ObjectType.isNull())
   3588     ObjectIsId = ObjectIsClass = false;
   3589   else if (!ObjectType->isObjCObjectPointerType())
   3590     return nullptr;
   3591   else if (const ObjCObjectPointerType *ObjCPtr =
   3592            ObjectType->getAsObjCInterfacePointerType()) {
   3593     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
   3594     ObjectIsId = ObjectIsClass = false;
   3595   }
   3596   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
   3597     ObjectIsClass = false;
   3598   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
   3599     ObjectIsId = false;
   3600   else
   3601     return nullptr;
   3602 
   3603   for (GlobalMethodPool::iterator b = MethodPool.begin(),
   3604        e = MethodPool.end(); b != e; b++) {
   3605     // instance methods
   3606     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
   3607       if (M->getMethod() &&
   3608           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
   3609           (M->getMethod()->getSelector() != Sel)) {
   3610         if (ObjectIsId)
   3611           Methods.push_back(M->getMethod());
   3612         else if (!ObjectIsClass &&
   3613                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
   3614                                           ObjectType))
   3615           Methods.push_back(M->getMethod());
   3616       }
   3617     // class methods
   3618     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
   3619       if (M->getMethod() &&
   3620           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
   3621           (M->getMethod()->getSelector() != Sel)) {
   3622         if (ObjectIsClass)
   3623           Methods.push_back(M->getMethod());
   3624         else if (!ObjectIsId &&
   3625                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
   3626                                           ObjectType))
   3627           Methods.push_back(M->getMethod());
   3628       }
   3629   }
   3630 
   3631   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
   3632   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
   3633     HelperSelectorsForTypoCorrection(SelectedMethods,
   3634                                      Sel.getAsString(), Methods[i]);
   3635   }
   3636   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
   3637 }
   3638 
   3639 /// DiagnoseDuplicateIvars -
   3640 /// Check for duplicate ivars in the entire class at the start of
   3641 /// \@implementation. This becomes necesssary because class extension can
   3642 /// add ivars to a class in random order which will not be known until
   3643 /// class's \@implementation is seen.
   3644 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   3645                                   ObjCInterfaceDecl *SID) {
   3646   for (auto *Ivar : ID->ivars()) {
   3647     if (Ivar->isInvalidDecl())
   3648       continue;
   3649     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   3650       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   3651       if (prevIvar) {
   3652         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   3653         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   3654         Ivar->setInvalidDecl();
   3655       }
   3656     }
   3657   }
   3658 }
   3659 
   3660 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
   3661 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
   3662   if (S.getLangOpts().ObjCWeak) return;
   3663 
   3664   for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
   3665          ivar; ivar = ivar->getNextIvar()) {
   3666     if (ivar->isInvalidDecl()) continue;
   3667     if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   3668       if (S.getLangOpts().ObjCWeakRuntime) {
   3669         S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
   3670       } else {
   3671         S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
   3672       }
   3673     }
   3674   }
   3675 }
   3676 
   3677 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
   3678   switch (CurContext->getDeclKind()) {
   3679     case Decl::ObjCInterface:
   3680       return Sema::OCK_Interface;
   3681     case Decl::ObjCProtocol:
   3682       return Sema::OCK_Protocol;
   3683     case Decl::ObjCCategory:
   3684       if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
   3685         return Sema::OCK_ClassExtension;
   3686       return Sema::OCK_Category;
   3687     case Decl::ObjCImplementation:
   3688       return Sema::OCK_Implementation;
   3689     case Decl::ObjCCategoryImpl:
   3690       return Sema::OCK_CategoryImplementation;
   3691 
   3692     default:
   3693       return Sema::OCK_None;
   3694   }
   3695 }
   3696 
   3697 // Note: For class/category implementations, allMethods is always null.
   3698 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
   3699                        ArrayRef<DeclGroupPtrTy> allTUVars) {
   3700   if (getObjCContainerKind() == Sema::OCK_None)
   3701     return nullptr;
   3702 
   3703   assert(AtEnd.isValid() && "Invalid location for '@end'");
   3704 
   3705   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   3706   Decl *ClassDecl = cast<Decl>(OCD);
   3707 
   3708   bool isInterfaceDeclKind =
   3709         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   3710          || isa<ObjCProtocolDecl>(ClassDecl);
   3711   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   3712 
   3713   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   3714   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   3715   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   3716 
   3717   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
   3718     ObjCMethodDecl *Method =
   3719       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   3720 
   3721     if (!Method) continue;  // Already issued a diagnostic.
   3722     if (Method->isInstanceMethod()) {
   3723       /// Check for instance method of the same name with incompatible types
   3724       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   3725       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   3726                               : false;
   3727       if ((isInterfaceDeclKind && PrevMethod && !match)
   3728           || (checkIdenticalMethods && match)) {
   3729           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   3730             << Method->getDeclName();
   3731           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3732         Method->setInvalidDecl();
   3733       } else {
   3734         if (PrevMethod) {
   3735           Method->setAsRedeclaration(PrevMethod);
   3736           if (!Context.getSourceManager().isInSystemHeader(
   3737                  Method->getLocation()))
   3738             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   3739               << Method->getDeclName();
   3740           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3741         }
   3742         InsMap[Method->getSelector()] = Method;
   3743         /// The following allows us to typecheck messages to "id".
   3744         AddInstanceMethodToGlobalPool(Method);
   3745       }
   3746     } else {
   3747       /// Check for class method of the same name with incompatible types
   3748       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   3749       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   3750                               : false;
   3751       if ((isInterfaceDeclKind && PrevMethod && !match)
   3752           || (checkIdenticalMethods && match)) {
   3753         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   3754           << Method->getDeclName();
   3755         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3756         Method->setInvalidDecl();
   3757       } else {
   3758         if (PrevMethod) {
   3759           Method->setAsRedeclaration(PrevMethod);
   3760           if (!Context.getSourceManager().isInSystemHeader(
   3761                  Method->getLocation()))
   3762             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   3763               << Method->getDeclName();
   3764           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3765         }
   3766         ClsMap[Method->getSelector()] = Method;
   3767         AddFactoryMethodToGlobalPool(Method);
   3768       }
   3769     }
   3770   }
   3771   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
   3772     // Nothing to do here.
   3773   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   3774     // Categories are used to extend the class by declaring new methods.
   3775     // By the same token, they are also used to add new properties. No
   3776     // need to compare the added property to those in the class.
   3777 
   3778     if (C->IsClassExtension()) {
   3779       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   3780       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   3781     }
   3782   }
   3783   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   3784     if (CDecl->getIdentifier())
   3785       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   3786       // user-defined setter/getter. It also synthesizes setter/getter methods
   3787       // and adds them to the DeclContext and global method pools.
   3788       for (auto *I : CDecl->properties())
   3789         ProcessPropertyDecl(I);
   3790     CDecl->setAtEndRange(AtEnd);
   3791   }
   3792   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   3793     IC->setAtEndRange(AtEnd);
   3794     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   3795       // Any property declared in a class extension might have user
   3796       // declared setter or getter in current class extension or one
   3797       // of the other class extensions. Mark them as synthesized as
   3798       // property will be synthesized when property with same name is
   3799       // seen in the @implementation.
   3800       for (const auto *Ext : IDecl->visible_extensions()) {
   3801         for (const auto *Property : Ext->instance_properties()) {
   3802           // Skip over properties declared @dynamic
   3803           if (const ObjCPropertyImplDecl *PIDecl
   3804               = IC->FindPropertyImplDecl(Property->getIdentifier(),
   3805                                          Property->getQueryKind()))
   3806             if (PIDecl->getPropertyImplementation()
   3807                   == ObjCPropertyImplDecl::Dynamic)
   3808               continue;
   3809 
   3810           for (const auto *Ext : IDecl->visible_extensions()) {
   3811             if (ObjCMethodDecl *GetterMethod
   3812                   = Ext->getInstanceMethod(Property->getGetterName()))
   3813               GetterMethod->setPropertyAccessor(true);
   3814             if (!Property->isReadOnly())
   3815               if (ObjCMethodDecl *SetterMethod
   3816                     = Ext->getInstanceMethod(Property->getSetterName()))
   3817                 SetterMethod->setPropertyAccessor(true);
   3818           }
   3819         }
   3820       }
   3821       ImplMethodsVsClassMethods(S, IC, IDecl);
   3822       AtomicPropertySetterGetterRules(IC, IDecl);
   3823       DiagnoseOwningPropertyGetterSynthesis(IC);
   3824       DiagnoseUnusedBackingIvarInAccessor(S, IC);
   3825       if (IDecl->hasDesignatedInitializers())
   3826         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
   3827       DiagnoseWeakIvars(*this, IC);
   3828 
   3829       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
   3830       if (IDecl->getSuperClass() == nullptr) {
   3831         // This class has no superclass, so check that it has been marked with
   3832         // __attribute((objc_root_class)).
   3833         if (!HasRootClassAttr) {
   3834           SourceLocation DeclLoc(IDecl->getLocation());
   3835           SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
   3836           Diag(DeclLoc, diag::warn_objc_root_class_missing)
   3837             << IDecl->getIdentifier();
   3838           // See if NSObject is in the current scope, and if it is, suggest
   3839           // adding " : NSObject " to the class declaration.
   3840           NamedDecl *IF = LookupSingleName(TUScope,
   3841                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
   3842                                            DeclLoc, LookupOrdinaryName);
   3843           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
   3844           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
   3845             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
   3846               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
   3847           } else {
   3848             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
   3849           }
   3850         }
   3851       } else if (HasRootClassAttr) {
   3852         // Complain that only root classes may have this attribute.
   3853         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
   3854       }
   3855 
   3856       if (LangOpts.ObjCRuntime.isNonFragile()) {
   3857         while (IDecl->getSuperClass()) {
   3858           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   3859           IDecl = IDecl->getSuperClass();
   3860         }
   3861       }
   3862     }
   3863     SetIvarInitializers(IC);
   3864   } else if (ObjCCategoryImplDecl* CatImplClass =
   3865                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   3866     CatImplClass->setAtEndRange(AtEnd);
   3867 
   3868     // Find category interface decl and then check that all methods declared
   3869     // in this interface are implemented in the category @implementation.
   3870     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   3871       if (ObjCCategoryDecl *Cat
   3872             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
   3873         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
   3874       }
   3875     }
   3876   }
   3877   if (isInterfaceDeclKind) {
   3878     // Reject invalid vardecls.
   3879     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
   3880       DeclGroupRef DG = allTUVars[i].get();
   3881       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   3882         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   3883           if (!VDecl->hasExternalStorage())
   3884             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   3885         }
   3886     }
   3887   }
   3888   ActOnObjCContainerFinishDefinition();
   3889 
   3890   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
   3891     DeclGroupRef DG = allTUVars[i].get();
   3892     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   3893       (*I)->setTopLevelDeclInObjCContainer();
   3894     Consumer.HandleTopLevelDeclInObjCContainer(DG);
   3895   }
   3896 
   3897   ActOnDocumentableDecl(ClassDecl);
   3898   return ClassDecl;
   3899 }
   3900 
   3901 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   3902 /// objective-c's type qualifier from the parser version of the same info.
   3903 static Decl::ObjCDeclQualifier
   3904 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   3905   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   3906 }
   3907 
   3908 /// \brief Check whether the declared result type of the given Objective-C
   3909 /// method declaration is compatible with the method's class.
   3910 ///
   3911 static Sema::ResultTypeCompatibilityKind
   3912 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   3913                                     ObjCInterfaceDecl *CurrentClass) {
   3914   QualType ResultType = Method->getReturnType();
   3915 
   3916   // If an Objective-C method inherits its related result type, then its
   3917   // declared result type must be compatible with its own class type. The
   3918   // declared result type is compatible if:
   3919   if (const ObjCObjectPointerType *ResultObjectType
   3920                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   3921     //   - it is id or qualified id, or
   3922     if (ResultObjectType->isObjCIdType() ||
   3923         ResultObjectType->isObjCQualifiedIdType())
   3924       return Sema::RTC_Compatible;
   3925 
   3926     if (CurrentClass) {
   3927       if (ObjCInterfaceDecl *ResultClass
   3928                                       = ResultObjectType->getInterfaceDecl()) {
   3929         //   - it is the same as the method's class type, or
   3930         if (declaresSameEntity(CurrentClass, ResultClass))
   3931           return Sema::RTC_Compatible;
   3932 
   3933         //   - it is a superclass of the method's class type
   3934         if (ResultClass->isSuperClassOf(CurrentClass))
   3935           return Sema::RTC_Compatible;
   3936       }
   3937     } else {
   3938       // Any Objective-C pointer type might be acceptable for a protocol
   3939       // method; we just don't know.
   3940       return Sema::RTC_Unknown;
   3941     }
   3942   }
   3943 
   3944   return Sema::RTC_Incompatible;
   3945 }
   3946 
   3947 namespace {
   3948 /// A helper class for searching for methods which a particular method
   3949 /// overrides.
   3950 class OverrideSearch {
   3951 public:
   3952   Sema &S;
   3953   ObjCMethodDecl *Method;
   3954   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
   3955   bool Recursive;
   3956 
   3957 public:
   3958   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
   3959     Selector selector = method->getSelector();
   3960 
   3961     // Bypass this search if we've never seen an instance/class method
   3962     // with this selector before.
   3963     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
   3964     if (it == S.MethodPool.end()) {
   3965       if (!S.getExternalSource()) return;
   3966       S.ReadMethodPool(selector);
   3967 
   3968       it = S.MethodPool.find(selector);
   3969       if (it == S.MethodPool.end())
   3970         return;
   3971     }
   3972     ObjCMethodList &list =
   3973       method->isInstanceMethod() ? it->second.first : it->second.second;
   3974     if (!list.getMethod()) return;
   3975 
   3976     ObjCContainerDecl *container
   3977       = cast<ObjCContainerDecl>(method->getDeclContext());
   3978 
   3979     // Prevent the search from reaching this container again.  This is
   3980     // important with categories, which override methods from the
   3981     // interface and each other.
   3982     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
   3983       searchFromContainer(container);
   3984       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
   3985         searchFromContainer(Interface);
   3986     } else {
   3987       searchFromContainer(container);
   3988     }
   3989   }
   3990 
   3991   typedef llvm::SmallPtrSetImpl<ObjCMethodDecl*>::iterator iterator;
   3992   iterator begin() const { return Overridden.begin(); }
   3993   iterator end() const { return Overridden.end(); }
   3994 
   3995 private:
   3996   void searchFromContainer(ObjCContainerDecl *container) {
   3997     if (container->isInvalidDecl()) return;
   3998 
   3999     switch (container->getDeclKind()) {
   4000 #define OBJCCONTAINER(type, base) \
   4001     case Decl::type: \
   4002       searchFrom(cast<type##Decl>(container)); \
   4003       break;
   4004 #define ABSTRACT_DECL(expansion)
   4005 #define DECL(type, base) \
   4006     case Decl::type:
   4007 #include "clang/AST/DeclNodes.inc"
   4008       llvm_unreachable("not an ObjC container!");
   4009     }
   4010   }
   4011 
   4012   void searchFrom(ObjCProtocolDecl *protocol) {
   4013     if (!protocol->hasDefinition())
   4014       return;
   4015 
   4016     // A method in a protocol declaration overrides declarations from
   4017     // referenced ("parent") protocols.
   4018     search(protocol->getReferencedProtocols());
   4019   }
   4020 
   4021   void searchFrom(ObjCCategoryDecl *category) {
   4022     // A method in a category declaration overrides declarations from
   4023     // the main class and from protocols the category references.
   4024     // The main class is handled in the constructor.
   4025     search(category->getReferencedProtocols());
   4026   }
   4027 
   4028   void searchFrom(ObjCCategoryImplDecl *impl) {
   4029     // A method in a category definition that has a category
   4030     // declaration overrides declarations from the category
   4031     // declaration.
   4032     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
   4033       search(category);
   4034       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
   4035         search(Interface);
   4036 
   4037     // Otherwise it overrides declarations from the class.
   4038     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
   4039       search(Interface);
   4040     }
   4041   }
   4042 
   4043   void searchFrom(ObjCInterfaceDecl *iface) {
   4044     // A method in a class declaration overrides declarations from
   4045     if (!iface->hasDefinition())
   4046       return;
   4047 
   4048     //   - categories,
   4049     for (auto *Cat : iface->known_categories())
   4050       search(Cat);
   4051 
   4052     //   - the super class, and
   4053     if (ObjCInterfaceDecl *super = iface->getSuperClass())
   4054       search(super);
   4055 
   4056     //   - any referenced protocols.
   4057     search(iface->getReferencedProtocols());
   4058   }
   4059 
   4060   void searchFrom(ObjCImplementationDecl *impl) {
   4061     // A method in a class implementation overrides declarations from
   4062     // the class interface.
   4063     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
   4064       search(Interface);
   4065   }
   4066 
   4067   void search(const ObjCProtocolList &protocols) {
   4068     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
   4069          i != e; ++i)
   4070       search(*i);
   4071   }
   4072 
   4073   void search(ObjCContainerDecl *container) {
   4074     // Check for a method in this container which matches this selector.
   4075     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
   4076                                                 Method->isInstanceMethod(),
   4077                                                 /*AllowHidden=*/true);
   4078 
   4079     // If we find one, record it and bail out.
   4080     if (meth) {
   4081       Overridden.insert(meth);
   4082       return;
   4083     }
   4084 
   4085     // Otherwise, search for methods that a hypothetical method here
   4086     // would have overridden.
   4087 
   4088     // Note that we're now in a recursive case.
   4089     Recursive = true;
   4090 
   4091     searchFromContainer(container);
   4092   }
   4093 };
   4094 } // end anonymous namespace
   4095 
   4096 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
   4097                                     ObjCInterfaceDecl *CurrentClass,
   4098                                     ResultTypeCompatibilityKind RTC) {
   4099   // Search for overridden methods and merge information down from them.
   4100   OverrideSearch overrides(*this, ObjCMethod);
   4101   // Keep track if the method overrides any method in the class's base classes,
   4102   // its protocols, or its categories' protocols; we will keep that info
   4103   // in the ObjCMethodDecl.
   4104   // For this info, a method in an implementation is not considered as
   4105   // overriding the same method in the interface or its categories.
   4106   bool hasOverriddenMethodsInBaseOrProtocol = false;
   4107   for (OverrideSearch::iterator
   4108          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
   4109     ObjCMethodDecl *overridden = *i;
   4110 
   4111     if (!hasOverriddenMethodsInBaseOrProtocol) {
   4112       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
   4113           CurrentClass != overridden->getClassInterface() ||
   4114           overridden->isOverriding()) {
   4115         hasOverriddenMethodsInBaseOrProtocol = true;
   4116 
   4117       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
   4118         // OverrideSearch will return as "overridden" the same method in the
   4119         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
   4120         // check whether a category of a base class introduced a method with the
   4121         // same selector, after the interface method declaration.
   4122         // To avoid unnecessary lookups in the majority of cases, we use the
   4123         // extra info bits in GlobalMethodPool to check whether there were any
   4124         // category methods with this selector.
   4125         GlobalMethodPool::iterator It =
   4126             MethodPool.find(ObjCMethod->getSelector());
   4127         if (It != MethodPool.end()) {
   4128           ObjCMethodList &List =
   4129             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
   4130           unsigned CategCount = List.getBits();
   4131           if (CategCount > 0) {
   4132             // If the method is in a category we'll do lookup if there were at
   4133             // least 2 category methods recorded, otherwise only one will do.
   4134             if (CategCount > 1 ||
   4135                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
   4136               OverrideSearch overrides(*this, overridden);
   4137               for (OverrideSearch::iterator
   4138                      OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
   4139                 ObjCMethodDecl *SuperOverridden = *OI;
   4140                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
   4141                     CurrentClass != SuperOverridden->getClassInterface()) {
   4142                   hasOverriddenMethodsInBaseOrProtocol = true;
   4143                   overridden->setOverriding(true);
   4144                   break;
   4145                 }
   4146               }
   4147             }
   4148           }
   4149         }
   4150       }
   4151     }
   4152 
   4153     // Propagate down the 'related result type' bit from overridden methods.
   4154     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
   4155       ObjCMethod->SetRelatedResultType();
   4156 
   4157     // Then merge the declarations.
   4158     mergeObjCMethodDecls(ObjCMethod, overridden);
   4159 
   4160     if (ObjCMethod->isImplicit() && overridden->isImplicit())
   4161       continue; // Conflicting properties are detected elsewhere.
   4162 
   4163     // Check for overriding methods
   4164     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
   4165         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
   4166       CheckConflictingOverridingMethod(ObjCMethod, overridden,
   4167               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
   4168 
   4169     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
   4170         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
   4171         !overridden->isImplicit() /* not meant for properties */) {
   4172       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
   4173                                           E = ObjCMethod->param_end();
   4174       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
   4175                                      PrevE = overridden->param_end();
   4176       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
   4177         assert(PrevI != overridden->param_end() && "Param mismatch");
   4178         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   4179         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   4180         // If type of argument of method in this class does not match its
   4181         // respective argument type in the super class method, issue warning;
   4182         if (!Context.typesAreCompatible(T1, T2)) {
   4183           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   4184             << T1 << T2;
   4185           Diag(overridden->getLocation(), diag::note_previous_declaration);
   4186           break;
   4187         }
   4188       }
   4189     }
   4190   }
   4191 
   4192   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
   4193 }
   4194 
   4195 /// Merge type nullability from for a redeclaration of the same entity,
   4196 /// producing the updated type of the redeclared entity.
   4197 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
   4198                                               QualType type,
   4199                                               bool usesCSKeyword,
   4200                                               SourceLocation prevLoc,
   4201                                               QualType prevType,
   4202                                               bool prevUsesCSKeyword) {
   4203   // Determine the nullability of both types.
   4204   auto nullability = type->getNullability(S.Context);
   4205   auto prevNullability = prevType->getNullability(S.Context);
   4206 
   4207   // Easy case: both have nullability.
   4208   if (nullability.hasValue() == prevNullability.hasValue()) {
   4209     // Neither has nullability; continue.
   4210     if (!nullability)
   4211       return type;
   4212 
   4213     // The nullabilities are equivalent; do nothing.
   4214     if (*nullability == *prevNullability)
   4215       return type;
   4216 
   4217     // Complain about mismatched nullability.
   4218     S.Diag(loc, diag::err_nullability_conflicting)
   4219       << DiagNullabilityKind(*nullability, usesCSKeyword)
   4220       << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
   4221     return type;
   4222   }
   4223 
   4224   // If it's the redeclaration that has nullability, don't change anything.
   4225   if (nullability)
   4226     return type;
   4227 
   4228   // Otherwise, provide the result with the same nullability.
   4229   return S.Context.getAttributedType(
   4230            AttributedType::getNullabilityAttrKind(*prevNullability),
   4231            type, type);
   4232 }
   4233 
   4234 /// Merge information from the declaration of a method in the \@interface
   4235 /// (or a category/extension) into the corresponding method in the
   4236 /// @implementation (for a class or category).
   4237 static void mergeInterfaceMethodToImpl(Sema &S,
   4238                                        ObjCMethodDecl *method,
   4239                                        ObjCMethodDecl *prevMethod) {
   4240   // Merge the objc_requires_super attribute.
   4241   if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
   4242       !method->hasAttr<ObjCRequiresSuperAttr>()) {
   4243     // merge the attribute into implementation.
   4244     method->addAttr(
   4245       ObjCRequiresSuperAttr::CreateImplicit(S.Context,
   4246                                             method->getLocation()));
   4247   }
   4248 
   4249   // Merge nullability of the result type.
   4250   QualType newReturnType
   4251     = mergeTypeNullabilityForRedecl(
   4252         S, method->getReturnTypeSourceRange().getBegin(),
   4253         method->getReturnType(),
   4254         method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
   4255         prevMethod->getReturnTypeSourceRange().getBegin(),
   4256         prevMethod->getReturnType(),
   4257         prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
   4258   method->setReturnType(newReturnType);
   4259 
   4260   // Handle each of the parameters.
   4261   unsigned numParams = method->param_size();
   4262   unsigned numPrevParams = prevMethod->param_size();
   4263   for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
   4264     ParmVarDecl *param = method->param_begin()[i];
   4265     ParmVarDecl *prevParam = prevMethod->param_begin()[i];
   4266 
   4267     // Merge nullability.
   4268     QualType newParamType
   4269       = mergeTypeNullabilityForRedecl(
   4270           S, param->getLocation(), param->getType(),
   4271           param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
   4272           prevParam->getLocation(), prevParam->getType(),
   4273           prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
   4274     param->setType(newParamType);
   4275   }
   4276 }
   4277 
   4278 Decl *Sema::ActOnMethodDeclaration(
   4279     Scope *S,
   4280     SourceLocation MethodLoc, SourceLocation EndLoc,
   4281     tok::TokenKind MethodType,
   4282     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   4283     ArrayRef<SourceLocation> SelectorLocs,
   4284     Selector Sel,
   4285     // optional arguments. The number of types/arguments is obtained
   4286     // from the Sel.getNumArgs().
   4287     ObjCArgInfo *ArgInfo,
   4288     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   4289     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   4290     bool isVariadic, bool MethodDefinition) {
   4291   // Make sure we can establish a context for the method.
   4292   if (!CurContext->isObjCContainer()) {
   4293     Diag(MethodLoc, diag::error_missing_method_context);
   4294     return nullptr;
   4295   }
   4296   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   4297   Decl *ClassDecl = cast<Decl>(OCD);
   4298   QualType resultDeclType;
   4299 
   4300   bool HasRelatedResultType = false;
   4301   TypeSourceInfo *ReturnTInfo = nullptr;
   4302   if (ReturnType) {
   4303     resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
   4304 
   4305     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
   4306       return nullptr;
   4307 
   4308     QualType bareResultType = resultDeclType;
   4309     (void)AttributedType::stripOuterNullability(bareResultType);
   4310     HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
   4311   } else { // get the type for "id".
   4312     resultDeclType = Context.getObjCIdType();
   4313     Diag(MethodLoc, diag::warn_missing_method_return_type)
   4314       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
   4315   }
   4316 
   4317   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
   4318       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
   4319       MethodType == tok::minus, isVariadic,
   4320       /*isPropertyAccessor=*/false,
   4321       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
   4322       MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
   4323                                            : ObjCMethodDecl::Required,
   4324       HasRelatedResultType);
   4325 
   4326   SmallVector<ParmVarDecl*, 16> Params;
   4327 
   4328   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   4329     QualType ArgType;
   4330     TypeSourceInfo *DI;
   4331 
   4332     if (!ArgInfo[i].Type) {
   4333       ArgType = Context.getObjCIdType();
   4334       DI = nullptr;
   4335     } else {
   4336       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   4337     }
   4338 
   4339     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   4340                    LookupOrdinaryName, ForRedeclaration);
   4341     LookupName(R, S);
   4342     if (R.isSingleResult()) {
   4343       NamedDecl *PrevDecl = R.getFoundDecl();
   4344       if (S->isDeclScope(PrevDecl)) {
   4345         Diag(ArgInfo[i].NameLoc,
   4346              (MethodDefinition ? diag::warn_method_param_redefinition
   4347                                : diag::warn_method_param_declaration))
   4348           << ArgInfo[i].Name;
   4349         Diag(PrevDecl->getLocation(),
   4350              diag::note_previous_declaration);
   4351       }
   4352     }
   4353 
   4354     SourceLocation StartLoc = DI
   4355       ? DI->getTypeLoc().getBeginLoc()
   4356       : ArgInfo[i].NameLoc;
   4357 
   4358     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   4359                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   4360                                         ArgType, DI, SC_None);
   4361 
   4362     Param->setObjCMethodScopeInfo(i);
   4363 
   4364     Param->setObjCDeclQualifier(
   4365       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   4366 
   4367     // Apply the attributes to the parameter.
   4368     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   4369 
   4370     if (Param->hasAttr<BlocksAttr>()) {
   4371       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
   4372       Param->setInvalidDecl();
   4373     }
   4374     S->AddDecl(Param);
   4375     IdResolver.AddDecl(Param);
   4376 
   4377     Params.push_back(Param);
   4378   }
   4379 
   4380   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   4381     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   4382     QualType ArgType = Param->getType();
   4383     if (ArgType.isNull())
   4384       ArgType = Context.getObjCIdType();
   4385     else
   4386       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   4387       ArgType = Context.getAdjustedParameterType(ArgType);
   4388 
   4389     Param->setDeclContext(ObjCMethod);
   4390     Params.push_back(Param);
   4391   }
   4392 
   4393   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
   4394   ObjCMethod->setObjCDeclQualifier(
   4395     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   4396 
   4397   if (AttrList)
   4398     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   4399 
   4400   // Add the method now.
   4401   const ObjCMethodDecl *PrevMethod = nullptr;
   4402   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
   4403     if (MethodType == tok::minus) {
   4404       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   4405       ImpDecl->addInstanceMethod(ObjCMethod);
   4406     } else {
   4407       PrevMethod = ImpDecl->getClassMethod(Sel);
   4408       ImpDecl->addClassMethod(ObjCMethod);
   4409     }
   4410 
   4411     // Merge information from the @interface declaration into the
   4412     // @implementation.
   4413     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
   4414       if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
   4415                                           ObjCMethod->isInstanceMethod())) {
   4416         mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
   4417 
   4418         // Warn about defining -dealloc in a category.
   4419         if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
   4420             ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
   4421           Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
   4422             << ObjCMethod->getDeclName();
   4423         }
   4424       }
   4425     }
   4426   } else {
   4427     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   4428   }
   4429 
   4430   if (PrevMethod) {
   4431     // You can never have two method definitions with the same name.
   4432     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   4433       << ObjCMethod->getDeclName();
   4434     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   4435     ObjCMethod->setInvalidDecl();
   4436     return ObjCMethod;
   4437   }
   4438 
   4439   // If this Objective-C method does not have a related result type, but we
   4440   // are allowed to infer related result types, try to do so based on the
   4441   // method family.
   4442   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   4443   if (!CurrentClass) {
   4444     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   4445       CurrentClass = Cat->getClassInterface();
   4446     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   4447       CurrentClass = Impl->getClassInterface();
   4448     else if (ObjCCategoryImplDecl *CatImpl
   4449                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   4450       CurrentClass = CatImpl->getClassInterface();
   4451   }
   4452 
   4453   ResultTypeCompatibilityKind RTC
   4454     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
   4455 
   4456   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
   4457 
   4458   bool ARCError = false;
   4459   if (getLangOpts().ObjCAutoRefCount)
   4460     ARCError = CheckARCMethodDecl(ObjCMethod);
   4461 
   4462   // Infer the related result type when possible.
   4463   if (!ARCError && RTC == Sema::RTC_Compatible &&
   4464       !ObjCMethod->hasRelatedResultType() &&
   4465       LangOpts.ObjCInferRelatedResultType) {
   4466     bool InferRelatedResultType = false;
   4467     switch (ObjCMethod->getMethodFamily()) {
   4468     case OMF_None:
   4469     case OMF_copy:
   4470     case OMF_dealloc:
   4471     case OMF_finalize:
   4472     case OMF_mutableCopy:
   4473     case OMF_release:
   4474     case OMF_retainCount:
   4475     case OMF_initialize:
   4476     case OMF_performSelector:
   4477       break;
   4478 
   4479     case OMF_alloc:
   4480     case OMF_new:
   4481         InferRelatedResultType = ObjCMethod->isClassMethod();
   4482       break;
   4483 
   4484     case OMF_init:
   4485     case OMF_autorelease:
   4486     case OMF_retain:
   4487     case OMF_self:
   4488       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   4489       break;
   4490     }
   4491 
   4492     if (InferRelatedResultType &&
   4493         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
   4494       ObjCMethod->SetRelatedResultType();
   4495   }
   4496 
   4497   ActOnDocumentableDecl(ObjCMethod);
   4498 
   4499   return ObjCMethod;
   4500 }
   4501 
   4502 bool Sema::CheckObjCDeclScope(Decl *D) {
   4503   // Following is also an error. But it is caused by a missing @end
   4504   // and diagnostic is issued elsewhere.
   4505   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
   4506     return false;
   4507 
   4508   // If we switched context to translation unit while we are still lexically in
   4509   // an objc container, it means the parser missed emitting an error.
   4510   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
   4511     return false;
   4512 
   4513   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   4514   D->setInvalidDecl();
   4515 
   4516   return true;
   4517 }
   4518 
   4519 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
   4520 /// instance variables of ClassName into Decls.
   4521 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   4522                      IdentifierInfo *ClassName,
   4523                      SmallVectorImpl<Decl*> &Decls) {
   4524   // Check that ClassName is a valid class
   4525   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   4526   if (!Class) {
   4527     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   4528     return;
   4529   }
   4530   if (LangOpts.ObjCRuntime.isNonFragile()) {
   4531     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   4532     return;
   4533   }
   4534 
   4535   // Collect the instance variables
   4536   SmallVector<const ObjCIvarDecl*, 32> Ivars;
   4537   Context.DeepCollectObjCIvars(Class, true, Ivars);
   4538   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   4539   for (unsigned i = 0; i < Ivars.size(); i++) {
   4540     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   4541     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   4542     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   4543                                            /*FIXME: StartL=*/ID->getLocation(),
   4544                                            ID->getLocation(),
   4545                                            ID->getIdentifier(), ID->getType(),
   4546                                            ID->getBitWidth());
   4547     Decls.push_back(FD);
   4548   }
   4549 
   4550   // Introduce all of these fields into the appropriate scope.
   4551   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   4552        D != Decls.end(); ++D) {
   4553     FieldDecl *FD = cast<FieldDecl>(*D);
   4554     if (getLangOpts().CPlusPlus)
   4555       PushOnScopeChains(cast<FieldDecl>(FD), S);
   4556     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   4557       Record->addDecl(FD);
   4558   }
   4559 }
   4560 
   4561 /// \brief Build a type-check a new Objective-C exception variable declaration.
   4562 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   4563                                       SourceLocation StartLoc,
   4564                                       SourceLocation IdLoc,
   4565                                       IdentifierInfo *Id,
   4566                                       bool Invalid) {
   4567   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   4568   // duration shall not be qualified by an address-space qualifier."
   4569   // Since all parameters have automatic store duration, they can not have
   4570   // an address space.
   4571   if (T.getAddressSpace() != 0) {
   4572     Diag(IdLoc, diag::err_arg_with_address_space);
   4573     Invalid = true;
   4574   }
   4575 
   4576   // An @catch parameter must be an unqualified object pointer type;
   4577   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   4578   if (Invalid) {
   4579     // Don't do any further checking.
   4580   } else if (T->isDependentType()) {
   4581     // Okay: we don't know what this type will instantiate to.
   4582   } else if (!T->isObjCObjectPointerType()) {
   4583     Invalid = true;
   4584     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   4585   } else if (T->isObjCQualifiedIdType()) {
   4586     Invalid = true;
   4587     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   4588   }
   4589 
   4590   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   4591                                  T, TInfo, SC_None);
   4592   New->setExceptionVariable(true);
   4593 
   4594   // In ARC, infer 'retaining' for variables of retainable type.
   4595   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
   4596     Invalid = true;
   4597 
   4598   if (Invalid)
   4599     New->setInvalidDecl();
   4600   return New;
   4601 }
   4602 
   4603 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   4604   const DeclSpec &DS = D.getDeclSpec();
   4605 
   4606   // We allow the "register" storage class on exception variables because
   4607   // GCC did, but we drop it completely. Any other storage class is an error.
   4608   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   4609     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   4610       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   4611   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
   4612     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   4613       << DeclSpec::getSpecifierName(SCS);
   4614   }
   4615   if (DS.isInlineSpecified())
   4616     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
   4617         << getLangOpts().CPlusPlus1z;
   4618   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   4619     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   4620          diag::err_invalid_thread)
   4621      << DeclSpec::getSpecifierName(TSCS);
   4622   D.getMutableDeclSpec().ClearStorageClassSpecs();
   4623 
   4624   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   4625 
   4626   // Check that there are no default arguments inside the type of this
   4627   // exception object (C++ only).
   4628   if (getLangOpts().CPlusPlus)
   4629     CheckExtraCXXDefaultArguments(D);
   4630 
   4631   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   4632   QualType ExceptionType = TInfo->getType();
   4633 
   4634   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   4635                                         D.getSourceRange().getBegin(),
   4636                                         D.getIdentifierLoc(),
   4637                                         D.getIdentifier(),
   4638                                         D.isInvalidType());
   4639 
   4640   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   4641   if (D.getCXXScopeSpec().isSet()) {
   4642     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   4643       << D.getCXXScopeSpec().getRange();
   4644     New->setInvalidDecl();
   4645   }
   4646 
   4647   // Add the parameter declaration into this scope.
   4648   S->AddDecl(New);
   4649   if (D.getIdentifier())
   4650     IdResolver.AddDecl(New);
   4651 
   4652   ProcessDeclAttributes(S, New, D);
   4653 
   4654   if (New->hasAttr<BlocksAttr>())
   4655     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   4656   return New;
   4657 }
   4658 
   4659 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   4660 /// initialization.
   4661 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   4662                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   4663   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   4664        Iv= Iv->getNextIvar()) {
   4665     QualType QT = Context.getBaseElementType(Iv->getType());
   4666     if (QT->isRecordType())
   4667       Ivars.push_back(Iv);
   4668   }
   4669 }
   4670 
   4671 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   4672   // Load referenced selectors from the external source.
   4673   if (ExternalSource) {
   4674     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
   4675     ExternalSource->ReadReferencedSelectors(Sels);
   4676     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
   4677       ReferencedSelectors[Sels[I].first] = Sels[I].second;
   4678   }
   4679 
   4680   // Warning will be issued only when selector table is
   4681   // generated (which means there is at lease one implementation
   4682   // in the TU). This is to match gcc's behavior.
   4683   if (ReferencedSelectors.empty() ||
   4684       !Context.AnyObjCImplementation())
   4685     return;
   4686   for (auto &SelectorAndLocation : ReferencedSelectors) {
   4687     Selector Sel = SelectorAndLocation.first;
   4688     SourceLocation Loc = SelectorAndLocation.second;
   4689     if (!LookupImplementedMethodInGlobalPool(Sel))
   4690       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
   4691   }
   4692 }
   4693 
   4694 ObjCIvarDecl *
   4695 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
   4696                                      const ObjCPropertyDecl *&PDecl) const {
   4697   if (Method->isClassMethod())
   4698     return nullptr;
   4699   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
   4700   if (!IDecl)
   4701     return nullptr;
   4702   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
   4703                                /*shallowCategoryLookup=*/false,
   4704                                /*followSuper=*/false);
   4705   if (!Method || !Method->isPropertyAccessor())
   4706     return nullptr;
   4707   if ((PDecl = Method->findPropertyDecl()))
   4708     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
   4709       // property backing ivar must belong to property's class
   4710       // or be a private ivar in class's implementation.
   4711       // FIXME. fix the const-ness issue.
   4712       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
   4713                                                         IV->getIdentifier());
   4714       return IV;
   4715     }
   4716   return nullptr;
   4717 }
   4718 
   4719 namespace {
   4720   /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
   4721   /// accessor references the backing ivar.
   4722   class UnusedBackingIvarChecker :
   4723       public RecursiveASTVisitor<UnusedBackingIvarChecker> {
   4724   public:
   4725     Sema &S;
   4726     const ObjCMethodDecl *Method;
   4727     const ObjCIvarDecl *IvarD;
   4728     bool AccessedIvar;
   4729     bool InvokedSelfMethod;
   4730 
   4731     UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
   4732                              const ObjCIvarDecl *IvarD)
   4733       : S(S), Method(Method), IvarD(IvarD),
   4734         AccessedIvar(false), InvokedSelfMethod(false) {
   4735       assert(IvarD);
   4736     }
   4737 
   4738     bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
   4739       if (E->getDecl() == IvarD) {
   4740         AccessedIvar = true;
   4741         return false;
   4742       }
   4743       return true;
   4744     }
   4745 
   4746     bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
   4747       if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
   4748           S.isSelfExpr(E->getInstanceReceiver(), Method)) {
   4749         InvokedSelfMethod = true;
   4750       }
   4751       return true;
   4752     }
   4753   };
   4754 } // end anonymous namespace
   4755 
   4756 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
   4757                                           const ObjCImplementationDecl *ImplD) {
   4758   if (S->hasUnrecoverableErrorOccurred())
   4759     return;
   4760 
   4761   for (const auto *CurMethod : ImplD->instance_methods()) {
   4762     unsigned DIAG = diag::warn_unused_property_backing_ivar;
   4763     SourceLocation Loc = CurMethod->getLocation();
   4764     if (Diags.isIgnored(DIAG, Loc))
   4765       continue;
   4766 
   4767     const ObjCPropertyDecl *PDecl;
   4768     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
   4769     if (!IV)
   4770       continue;
   4771 
   4772     UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
   4773     Checker.TraverseStmt(CurMethod->getBody());
   4774     if (Checker.AccessedIvar)
   4775       continue;
   4776 
   4777     // Do not issue this warning if backing ivar is used somewhere and accessor
   4778     // implementation makes a self call. This is to prevent false positive in
   4779     // cases where the ivar is accessed by another method that the accessor
   4780     // delegates to.
   4781     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
   4782       Diag(Loc, DIAG) << IV;
   4783       Diag(PDecl->getLocation(), diag::note_property_declare);
   4784     }
   4785   }
   4786 }
   4787