Home | History | Annotate | Download | only in invoke
      1 /*
      2  * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package java.lang.invoke;
     27 
     28 
     29 import dalvik.system.EmulatedStackFrame;
     30 
     31 import static java.lang.invoke.MethodHandleStatics.*;
     32 
     33 /**
     34  * A method handle is a typed, directly executable reference to an underlying method,
     35  * constructor, field, or similar low-level operation, with optional
     36  * transformations of arguments or return values.
     37  * These transformations are quite general, and include such patterns as
     38  * {@linkplain #asType conversion},
     39  * {@linkplain #bindTo insertion},
     40  * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
     41  * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
     42  *
     43  * <h1>Method handle contents</h1>
     44  * Method handles are dynamically and strongly typed according to their parameter and return types.
     45  * They are not distinguished by the name or the defining class of their underlying methods.
     46  * A method handle must be invoked using a symbolic type descriptor which matches
     47  * the method handle's own {@linkplain #type type descriptor}.
     48  * <p>
     49  * Every method handle reports its type descriptor via the {@link #type type} accessor.
     50  * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
     51  * whose structure is a series of classes, one of which is
     52  * the return type of the method (or {@code void.class} if none).
     53  * <p>
     54  * A method handle's type controls the types of invocations it accepts,
     55  * and the kinds of transformations that apply to it.
     56  * <p>
     57  * A method handle contains a pair of special invoker methods
     58  * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
     59  * Both invoker methods provide direct access to the method handle's
     60  * underlying method, constructor, field, or other operation,
     61  * as modified by transformations of arguments and return values.
     62  * Both invokers accept calls which exactly match the method handle's own type.
     63  * The plain, inexact invoker also accepts a range of other call types.
     64  * <p>
     65  * Method handles are immutable and have no visible state.
     66  * Of course, they can be bound to underlying methods or data which exhibit state.
     67  * With respect to the Java Memory Model, any method handle will behave
     68  * as if all of its (internal) fields are final variables.  This means that any method
     69  * handle made visible to the application will always be fully formed.
     70  * This is true even if the method handle is published through a shared
     71  * variable in a data race.
     72  * <p>
     73  * Method handles cannot be subclassed by the user.
     74  * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
     75  * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
     76  * operation.  The programmer should not draw conclusions about a method handle
     77  * from its specific class, as the method handle class hierarchy (if any)
     78  * may change from time to time or across implementations from different vendors.
     79  *
     80  * <h1>Method handle compilation</h1>
     81  * A Java method call expression naming {@code invokeExact} or {@code invoke}
     82  * can invoke a method handle from Java source code.
     83  * From the viewpoint of source code, these methods can take any arguments
     84  * and their result can be cast to any return type.
     85  * Formally this is accomplished by giving the invoker methods
     86  * {@code Object} return types and variable arity {@code Object} arguments,
     87  * but they have an additional quality called <em>signature polymorphism</em>
     88  * which connects this freedom of invocation directly to the JVM execution stack.
     89  * <p>
     90  * As is usual with virtual methods, source-level calls to {@code invokeExact}
     91  * and {@code invoke} compile to an {@code invokevirtual} instruction.
     92  * More unusually, the compiler must record the actual argument types,
     93  * and may not perform method invocation conversions on the arguments.
     94  * Instead, it must push them on the stack according to their own unconverted types.
     95  * The method handle object itself is pushed on the stack before the arguments.
     96  * The compiler then calls the method handle with a symbolic type descriptor which
     97  * describes the argument and return types.
     98  * <p>
     99  * To issue a complete symbolic type descriptor, the compiler must also determine
    100  * the return type.  This is based on a cast on the method invocation expression,
    101  * if there is one, or else {@code Object} if the invocation is an expression
    102  * or else {@code void} if the invocation is a statement.
    103  * The cast may be to a primitive type (but not {@code void}).
    104  * <p>
    105  * As a corner case, an uncasted {@code null} argument is given
    106  * a symbolic type descriptor of {@code java.lang.Void}.
    107  * The ambiguity with the type {@code Void} is harmless, since there are no references of type
    108  * {@code Void} except the null reference.
    109  *
    110  * <h1>Method handle invocation</h1>
    111  * The first time a {@code invokevirtual} instruction is executed
    112  * it is linked, by symbolically resolving the names in the instruction
    113  * and verifying that the method call is statically legal.
    114  * This is true of calls to {@code invokeExact} and {@code invoke}.
    115  * In this case, the symbolic type descriptor emitted by the compiler is checked for
    116  * correct syntax and names it contains are resolved.
    117  * Thus, an {@code invokevirtual} instruction which invokes
    118  * a method handle will always link, as long
    119  * as the symbolic type descriptor is syntactically well-formed
    120  * and the types exist.
    121  * <p>
    122  * When the {@code invokevirtual} is executed after linking,
    123  * the receiving method handle's type is first checked by the JVM
    124  * to ensure that it matches the symbolic type descriptor.
    125  * If the type match fails, it means that the method which the
    126  * caller is invoking is not present on the individual
    127  * method handle being invoked.
    128  * <p>
    129  * In the case of {@code invokeExact}, the type descriptor of the invocation
    130  * (after resolving symbolic type names) must exactly match the method type
    131  * of the receiving method handle.
    132  * In the case of plain, inexact {@code invoke}, the resolved type descriptor
    133  * must be a valid argument to the receiver's {@link #asType asType} method.
    134  * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
    135  * <p>
    136  * After type matching, a call to {@code invokeExact} directly
    137  * and immediately invoke the method handle's underlying method
    138  * (or other behavior, as the case may be).
    139  * <p>
    140  * A call to plain {@code invoke} works the same as a call to
    141  * {@code invokeExact}, if the symbolic type descriptor specified by the caller
    142  * exactly matches the method handle's own type.
    143  * If there is a type mismatch, {@code invoke} attempts
    144  * to adjust the type of the receiving method handle,
    145  * as if by a call to {@link #asType asType},
    146  * to obtain an exactly invokable method handle {@code M2}.
    147  * This allows a more powerful negotiation of method type
    148  * between caller and callee.
    149  * <p>
    150  * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
    151  * and implementations are therefore not required to materialize it.)
    152  *
    153  * <h1>Invocation checking</h1>
    154  * In typical programs, method handle type matching will usually succeed.
    155  * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
    156  * either directly (in the case of {@code invokeExact}) or indirectly as if
    157  * by a failed call to {@code asType} (in the case of {@code invoke}).
    158  * <p>
    159  * Thus, a method type mismatch which might show up as a linkage error
    160  * in a statically typed program can show up as
    161  * a dynamic {@code WrongMethodTypeException}
    162  * in a program which uses method handles.
    163  * <p>
    164  * Because method types contain "live" {@code Class} objects,
    165  * method type matching takes into account both types names and class loaders.
    166  * Thus, even if a method handle {@code M} is created in one
    167  * class loader {@code L1} and used in another {@code L2},
    168  * method handle calls are type-safe, because the caller's symbolic type
    169  * descriptor, as resolved in {@code L2},
    170  * is matched against the original callee method's symbolic type descriptor,
    171  * as resolved in {@code L1}.
    172  * The resolution in {@code L1} happens when {@code M} is created
    173  * and its type is assigned, while the resolution in {@code L2} happens
    174  * when the {@code invokevirtual} instruction is linked.
    175  * <p>
    176  * Apart from the checking of type descriptors,
    177  * a method handle's capability to call its underlying method is unrestricted.
    178  * If a method handle is formed on a non-public method by a class
    179  * that has access to that method, the resulting handle can be used
    180  * in any place by any caller who receives a reference to it.
    181  * <p>
    182  * Unlike with the Core Reflection API, where access is checked every time
    183  * a reflective method is invoked,
    184  * method handle access checking is performed
    185  * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
    186  * In the case of {@code ldc} (see below), access checking is performed as part of linking
    187  * the constant pool entry underlying the constant method handle.
    188  * <p>
    189  * Thus, handles to non-public methods, or to methods in non-public classes,
    190  * should generally be kept secret.
    191  * They should not be passed to untrusted code unless their use from
    192  * the untrusted code would be harmless.
    193  *
    194  * <h1>Method handle creation</h1>
    195  * Java code can create a method handle that directly accesses
    196  * any method, constructor, or field that is accessible to that code.
    197  * This is done via a reflective, capability-based API called
    198  * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
    199  * For example, a static method handle can be obtained
    200  * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
    201  * There are also conversion methods from Core Reflection API objects,
    202  * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
    203  * <p>
    204  * Like classes and strings, method handles that correspond to accessible
    205  * fields, methods, and constructors can also be represented directly
    206  * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
    207  * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
    208  * refers directly to an associated {@code CONSTANT_Methodref},
    209  * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
    210  * constant pool entry.
    211  * (For full details on method handle constants,
    212  * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
    213  * <p>
    214  * Method handles produced by lookups or constant loads from methods or
    215  * constructors with the variable arity modifier bit ({@code 0x0080})
    216  * have a corresponding variable arity, as if they were defined with
    217  * the help of {@link #asVarargsCollector asVarargsCollector}.
    218  * <p>
    219  * A method reference may refer either to a static or non-static method.
    220  * In the non-static case, the method handle type includes an explicit
    221  * receiver argument, prepended before any other arguments.
    222  * In the method handle's type, the initial receiver argument is typed
    223  * according to the class under which the method was initially requested.
    224  * (E.g., if a non-static method handle is obtained via {@code ldc},
    225  * the type of the receiver is the class named in the constant pool entry.)
    226  * <p>
    227  * Method handle constants are subject to the same link-time access checks
    228  * their corresponding bytecode instructions, and the {@code ldc} instruction
    229  * will throw corresponding linkage errors if the bytecode behaviors would
    230  * throw such errors.
    231  * <p>
    232  * As a corollary of this, access to protected members is restricted
    233  * to receivers only of the accessing class, or one of its subclasses,
    234  * and the accessing class must in turn be a subclass (or package sibling)
    235  * of the protected member's defining class.
    236  * If a method reference refers to a protected non-static method or field
    237  * of a class outside the current package, the receiver argument will
    238  * be narrowed to the type of the accessing class.
    239  * <p>
    240  * When a method handle to a virtual method is invoked, the method is
    241  * always looked up in the receiver (that is, the first argument).
    242  * <p>
    243  * A non-virtual method handle to a specific virtual method implementation
    244  * can also be created.  These do not perform virtual lookup based on
    245  * receiver type.  Such a method handle simulates the effect of
    246  * an {@code invokespecial} instruction to the same method.
    247  *
    248  * <h1>Usage examples</h1>
    249  * Here are some examples of usage:
    250  * <blockquote><pre>{@code
    251 Object x, y; String s; int i;
    252 MethodType mt; MethodHandle mh;
    253 MethodHandles.Lookup lookup = MethodHandles.lookup();
    254 // mt is (char,char)String
    255 mt = MethodType.methodType(String.class, char.class, char.class);
    256 mh = lookup.findVirtual(String.class, "replace", mt);
    257 s = (String) mh.invokeExact("daddy",'d','n');
    258 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
    259 assertEquals(s, "nanny");
    260 // weakly typed invocation (using MHs.invoke)
    261 s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
    262 assertEquals(s, "savvy");
    263 // mt is (Object[])List
    264 mt = MethodType.methodType(java.util.List.class, Object[].class);
    265 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
    266 assert(mh.isVarargsCollector());
    267 x = mh.invoke("one", "two");
    268 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
    269 assertEquals(x, java.util.Arrays.asList("one","two"));
    270 // mt is (Object,Object,Object)Object
    271 mt = MethodType.genericMethodType(3);
    272 mh = mh.asType(mt);
    273 x = mh.invokeExact((Object)1, (Object)2, (Object)3);
    274 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
    275 assertEquals(x, java.util.Arrays.asList(1,2,3));
    276 // mt is ()int
    277 mt = MethodType.methodType(int.class);
    278 mh = lookup.findVirtual(java.util.List.class, "size", mt);
    279 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
    280 // invokeExact(Ljava/util/List;)I
    281 assert(i == 3);
    282 mt = MethodType.methodType(void.class, String.class);
    283 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
    284 mh.invokeExact(System.out, "Hello, world.");
    285 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
    286  * }</pre></blockquote>
    287  * Each of the above calls to {@code invokeExact} or plain {@code invoke}
    288  * generates a single invokevirtual instruction with
    289  * the symbolic type descriptor indicated in the following comment.
    290  * In these examples, the helper method {@code assertEquals} is assumed to
    291  * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
    292  * on its arguments, and asserts that the result is true.
    293  *
    294  * <h1>Exceptions</h1>
    295  * The methods {@code invokeExact} and {@code invoke} are declared
    296  * to throw {@link java.lang.Throwable Throwable},
    297  * which is to say that there is no static restriction on what a method handle
    298  * can throw.  Since the JVM does not distinguish between checked
    299  * and unchecked exceptions (other than by their class, of course),
    300  * there is no particular effect on bytecode shape from ascribing
    301  * checked exceptions to method handle invocations.  But in Java source
    302  * code, methods which perform method handle calls must either explicitly
    303  * throw {@code Throwable}, or else must catch all
    304  * throwables locally, rethrowing only those which are legal in the context,
    305  * and wrapping ones which are illegal.
    306  *
    307  * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
    308  * The unusual compilation and linkage behavior of
    309  * {@code invokeExact} and plain {@code invoke}
    310  * is referenced by the term <em>signature polymorphism</em>.
    311  * As defined in the Java Language Specification,
    312  * a signature polymorphic method is one which can operate with
    313  * any of a wide range of call signatures and return types.
    314  * <p>
    315  * In source code, a call to a signature polymorphic method will
    316  * compile, regardless of the requested symbolic type descriptor.
    317  * As usual, the Java compiler emits an {@code invokevirtual}
    318  * instruction with the given symbolic type descriptor against the named method.
    319  * The unusual part is that the symbolic type descriptor is derived from
    320  * the actual argument and return types, not from the method declaration.
    321  * <p>
    322  * When the JVM processes bytecode containing signature polymorphic calls,
    323  * it will successfully link any such call, regardless of its symbolic type descriptor.
    324  * (In order to retain type safety, the JVM will guard such calls with suitable
    325  * dynamic type checks, as described elsewhere.)
    326  * <p>
    327  * Bytecode generators, including the compiler back end, are required to emit
    328  * untransformed symbolic type descriptors for these methods.
    329  * Tools which determine symbolic linkage are required to accept such
    330  * untransformed descriptors, without reporting linkage errors.
    331  *
    332  * <h1>Interoperation between method handles and the Core Reflection API</h1>
    333  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
    334  * any class member represented by a Core Reflection API object
    335  * can be converted to a behaviorally equivalent method handle.
    336  * For example, a reflective {@link java.lang.reflect.Method Method} can
    337  * be converted to a method handle using
    338  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
    339  * The resulting method handles generally provide more direct and efficient
    340  * access to the underlying class members.
    341  * <p>
    342  * As a special case,
    343  * when the Core Reflection API is used to view the signature polymorphic
    344  * methods {@code invokeExact} or plain {@code invoke} in this class,
    345  * they appear as ordinary non-polymorphic methods.
    346  * Their reflective appearance, as viewed by
    347  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
    348  * is unaffected by their special status in this API.
    349  * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
    350  * will report exactly those modifier bits required for any similarly
    351  * declared method, including in this case {@code native} and {@code varargs} bits.
    352  * <p>
    353  * As with any reflected method, these methods (when reflected) may be
    354  * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
    355  * However, such reflective calls do not result in method handle invocations.
    356  * Such a call, if passed the required argument
    357  * (a single one, of type {@code Object[]}), will ignore the argument and
    358  * will throw an {@code UnsupportedOperationException}.
    359  * <p>
    360  * Since {@code invokevirtual} instructions can natively
    361  * invoke method handles under any symbolic type descriptor, this reflective view conflicts
    362  * with the normal presentation of these methods via bytecodes.
    363  * Thus, these two native methods, when reflectively viewed by
    364  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
    365  * <p>
    366  * In order to obtain an invoker method for a particular type descriptor,
    367  * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
    368  * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
    369  * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
    370  * API is also able to return a method handle
    371  * to call {@code invokeExact} or plain {@code invoke},
    372  * for any specified type descriptor .
    373  *
    374  * <h1>Interoperation between method handles and Java generics</h1>
    375  * A method handle can be obtained on a method, constructor, or field
    376  * which is declared with Java generic types.
    377  * As with the Core Reflection API, the type of the method handle
    378  * will constructed from the erasure of the source-level type.
    379  * When a method handle is invoked, the types of its arguments
    380  * or the return value cast type may be generic types or type instances.
    381  * If this occurs, the compiler will replace those
    382  * types by their erasures when it constructs the symbolic type descriptor
    383  * for the {@code invokevirtual} instruction.
    384  * <p>
    385  * Method handles do not represent
    386  * their function-like types in terms of Java parameterized (generic) types,
    387  * because there are three mismatches between function-like types and parameterized
    388  * Java types.
    389  * <ul>
    390  * <li>Method types range over all possible arities,
    391  * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
    392  * Generics are not variadic, and so cannot represent this.</li>
    393  * <li>Method types can specify arguments of primitive types,
    394  * which Java generic types cannot range over.</li>
    395  * <li>Higher order functions over method handles (combinators) are
    396  * often generic across a wide range of function types, including
    397  * those of multiple arities.  It is impossible to represent such
    398  * genericity with a Java type parameter.</li>
    399  * </ul>
    400  *
    401  * <h1><a name="maxarity"></a>Arity limits</h1>
    402  * The JVM imposes on all methods and constructors of any kind an absolute
    403  * limit of 255 stacked arguments.  This limit can appear more restrictive
    404  * in certain cases:
    405  * <ul>
    406  * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
    407  * <li>A non-static method consumes an extra argument for the object on which the method is called.
    408  * <li>A constructor consumes an extra argument for the object which is being constructed.
    409  * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
    410  *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
    411  * </ul>
    412  * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
    413  * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
    414  * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
    415  * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
    416  *
    417  * @see MethodType
    418  * @see MethodHandles
    419  * @author John Rose, JSR 292 EG
    420  */
    421 public abstract class MethodHandle {
    422     // Android-changed:
    423     //
    424     // static { MethodHandleImpl.initStatics(); }
    425     //
    426     // LambdaForm and customizationCount are currently unused in our implementation
    427     // and will be substituted with appropriate implementation / delegate classes.
    428     //
    429     // /*private*/ final LambdaForm form;
    430     // form is not private so that invokers can easily fetch it
    431     // /*non-public*/ byte customizationCount;
    432     // customizationCount should be accessible from invokers
    433 
    434 
    435     /**
    436      * Internal marker interface which distinguishes (to the Java compiler)
    437      * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
    438      *
    439      * @hide
    440      */
    441     @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
    442     @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
    443     public @interface PolymorphicSignature { }
    444 
    445     /**
    446      * The type of this method handle, this corresponds to the exact type of the method
    447      * being invoked.
    448      */
    449     private final MethodType type;
    450 
    451     /**
    452      * The nominal type of this method handle, will be non-null if a method handle declares
    453      * a different type from its "real" type, which is either the type of the method being invoked
    454      * or the type of the emulated stackframe expected by an underyling adapter.
    455      */
    456     private MethodType nominalType;
    457 
    458     /**
    459      * The spread invoker associated with this type with zero trailing arguments.
    460      * This is used to speed up invokeWithArguments.
    461      */
    462     private MethodHandle cachedSpreadInvoker;
    463 
    464     /**
    465      * The INVOKE* constants and SGET/SPUT and IGET/IPUT constants specify the behaviour of this
    466      * method handle with respect to the ArtField* or the ArtMethod* that it operates on. These
    467      * behaviours are equivalent to the dex bytecode behaviour on the respective method_id or
    468      * field_id in the equivalent instruction.
    469      *
    470      * INVOKE_TRANSFORM is a special type of handle which doesn't encode any dex bytecode behaviour,
    471      * instead it transforms the list of input arguments or performs other higher order operations
    472      * before (optionally) delegating to another method handle.
    473      *
    474      * INVOKE_CALLSITE_TRANSFORM is a variation on INVOKE_TRANSFORM where the method type of
    475      * a MethodHandle dynamically varies based on the callsite. This is used by
    476      * the VarargsCollector implementation which places any number of trailing arguments
    477      * into an array before invoking an arity method. The "any number of trailing arguments" means
    478      * it would otherwise generate WrongMethodTypeExceptions as the callsite method type and
    479      * VarargsCollector method type appear incompatible.
    480      */
    481 
    482     /** @hide */ public static final int INVOKE_VIRTUAL = 0;
    483     /** @hide */ public static final int INVOKE_SUPER = 1;
    484     /** @hide */ public static final int INVOKE_DIRECT = 2;
    485     /** @hide */ public static final int INVOKE_STATIC = 3;
    486     /** @hide */ public static final int INVOKE_INTERFACE = 4;
    487     /** @hide */ public static final int INVOKE_TRANSFORM = 5;
    488     /** @hide */ public static final int INVOKE_CALLSITE_TRANSFORM = 6;
    489     /** @hide */ public static final int INVOKE_VAR_HANDLE = 7;
    490     /** @hide */ public static final int INVOKE_VAR_HANDLE_EXACT = 8;
    491     /** @hide */ public static final int IGET = 9;
    492     /** @hide */ public static final int IPUT = 10;
    493     /** @hide */ public static final int SGET = 11;
    494     /** @hide */ public static final int SPUT = 12;
    495 
    496     // The kind of this method handle (used by the runtime). This is one of the INVOKE_*
    497     // constants or SGET/SPUT, IGET/IPUT.
    498     /** @hide */ protected final int handleKind;
    499 
    500     // The ArtMethod* or ArtField* associated with this method handle (used by the runtime).
    501     /** @hide */ protected final long artFieldOrMethod;
    502 
    503     /** @hide */
    504     protected MethodHandle(long artFieldOrMethod, int handleKind, MethodType type) {
    505         this.artFieldOrMethod = artFieldOrMethod;
    506         this.handleKind = handleKind;
    507         this.type = type;
    508     }
    509 
    510     /**
    511      * Reports the type of this method handle.
    512      * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
    513      * @return the method handle type
    514      */
    515     public MethodType type() {
    516         if (nominalType != null) {
    517             return nominalType;
    518         }
    519 
    520         return type;
    521     }
    522 
    523     /**
    524      * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
    525      * The symbolic type descriptor at the call site of {@code invokeExact} must
    526      * exactly match this method handle's {@link #type type}.
    527      * No conversions are allowed on arguments or return values.
    528      * <p>
    529      * When this method is observed via the Core Reflection API,
    530      * it will appear as a single native method, taking an object array and returning an object.
    531      * If this native method is invoked directly via
    532      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
    533      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
    534      * it will throw an {@code UnsupportedOperationException}.
    535      * @param args the signature-polymorphic parameter list, statically represented using varargs
    536      * @return the signature-polymorphic result, statically represented using {@code Object}
    537      * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
    538      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
    539      */
    540     public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
    541 
    542     /**
    543      * Invokes the method handle, allowing any caller type descriptor,
    544      * and optionally performing conversions on arguments and return values.
    545      * <p>
    546      * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
    547      * the call proceeds as if by {@link #invokeExact invokeExact}.
    548      * <p>
    549      * Otherwise, the call proceeds as if this method handle were first
    550      * adjusted by calling {@link #asType asType} to adjust this method handle
    551      * to the required type, and then the call proceeds as if by
    552      * {@link #invokeExact invokeExact} on the adjusted method handle.
    553      * <p>
    554      * There is no guarantee that the {@code asType} call is actually made.
    555      * If the JVM can predict the results of making the call, it may perform
    556      * adaptations directly on the caller's arguments,
    557      * and call the target method handle according to its own exact type.
    558      * <p>
    559      * The resolved type descriptor at the call site of {@code invoke} must
    560      * be a valid argument to the receivers {@code asType} method.
    561      * In particular, the caller must specify the same argument arity
    562      * as the callee's type,
    563      * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
    564      * <p>
    565      * When this method is observed via the Core Reflection API,
    566      * it will appear as a single native method, taking an object array and returning an object.
    567      * If this native method is invoked directly via
    568      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
    569      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
    570      * it will throw an {@code UnsupportedOperationException}.
    571      * @param args the signature-polymorphic parameter list, statically represented using varargs
    572      * @return the signature-polymorphic result, statically represented using {@code Object}
    573      * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
    574      * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
    575      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
    576      */
    577     public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
    578 
    579     // Android-changed: Removed implementation details.
    580     //
    581     // /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args)
    582     // /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args)
    583     // /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args)
    584     // /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args)
    585     // /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args)
    586 
    587     /**
    588      * Performs a variable arity invocation, passing the arguments in the given list
    589      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
    590      * which mentions only the type {@code Object}, and whose arity is the length
    591      * of the argument list.
    592      * <p>
    593      * Specifically, execution proceeds as if by the following steps,
    594      * although the methods are not guaranteed to be called if the JVM
    595      * can predict their effects.
    596      * <ul>
    597      * <li>Determine the length of the argument array as {@code N}.
    598      *     For a null reference, {@code N=0}. </li>
    599      * <li>Determine the general type {@code TN} of {@code N} arguments as
    600      *     as {@code TN=MethodType.genericMethodType(N)}.</li>
    601      * <li>Force the original target method handle {@code MH0} to the
    602      *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
    603      * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
    604      * <li>Invoke the type-adjusted method handle on the unpacked arguments:
    605      *     MH1.invokeExact(A0, ...). </li>
    606      * <li>Take the return value as an {@code Object} reference. </li>
    607      * </ul>
    608      * <p>
    609      * Because of the action of the {@code asType} step, the following argument
    610      * conversions are applied as necessary:
    611      * <ul>
    612      * <li>reference casting
    613      * <li>unboxing
    614      * <li>widening primitive conversions
    615      * </ul>
    616      * <p>
    617      * The result returned by the call is boxed if it is a primitive,
    618      * or forced to null if the return type is void.
    619      * <p>
    620      * This call is equivalent to the following code:
    621      * <blockquote><pre>{@code
    622      * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
    623      * Object result = invoker.invokeExact(this, arguments);
    624      * }</pre></blockquote>
    625      * <p>
    626      * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
    627      * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
    628      * It can therefore be used as a bridge between native or reflective code and method handles.
    629      *
    630      * @param arguments the arguments to pass to the target
    631      * @return the result returned by the target
    632      * @throws ClassCastException if an argument cannot be converted by reference casting
    633      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
    634      * @throws Throwable anything thrown by the target method invocation
    635      * @see MethodHandles#spreadInvoker
    636      */
    637     public Object invokeWithArguments(Object... arguments) throws Throwable {
    638         MethodHandle invoker = null;
    639         synchronized (this) {
    640             if (cachedSpreadInvoker == null) {
    641                 cachedSpreadInvoker = MethodHandles.spreadInvoker(this.type(), 0);
    642             }
    643 
    644             invoker = cachedSpreadInvoker;
    645         }
    646 
    647         return invoker.invoke(this, arguments);
    648     }
    649 
    650     /**
    651      * Performs a variable arity invocation, passing the arguments in the given array
    652      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
    653      * which mentions only the type {@code Object}, and whose arity is the length
    654      * of the argument array.
    655      * <p>
    656      * This method is also equivalent to the following code:
    657      * <blockquote><pre>{@code
    658      *   invokeWithArguments(arguments.toArray()
    659      * }</pre></blockquote>
    660      *
    661      * @param arguments the arguments to pass to the target
    662      * @return the result returned by the target
    663      * @throws NullPointerException if {@code arguments} is a null reference
    664      * @throws ClassCastException if an argument cannot be converted by reference casting
    665      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
    666      * @throws Throwable anything thrown by the target method invocation
    667      */
    668     public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
    669         return invokeWithArguments(arguments.toArray());
    670     }
    671 
    672     /**
    673      * Produces an adapter method handle which adapts the type of the
    674      * current method handle to a new type.
    675      * The resulting method handle is guaranteed to report a type
    676      * which is equal to the desired new type.
    677      * <p>
    678      * If the original type and new type are equal, returns {@code this}.
    679      * <p>
    680      * The new method handle, when invoked, will perform the following
    681      * steps:
    682      * <ul>
    683      * <li>Convert the incoming argument list to match the original
    684      *     method handle's argument list.
    685      * <li>Invoke the original method handle on the converted argument list.
    686      * <li>Convert any result returned by the original method handle
    687      *     to the return type of new method handle.
    688      * </ul>
    689      * <p>
    690      * This method provides the crucial behavioral difference between
    691      * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
    692      * The two methods
    693      * perform the same steps when the caller's type descriptor exactly m atches
    694      * the callee's, but when the types differ, plain {@link #invoke invoke}
    695      * also calls {@code asType} (or some internal equivalent) in order
    696      * to match up the caller's and callee's types.
    697      * <p>
    698      * If the current method is a variable arity method handle
    699      * argument list conversion may involve the conversion and collection
    700      * of several arguments into an array, as
    701      * {@linkplain #asVarargsCollector described elsewhere}.
    702      * In every other case, all conversions are applied <em>pairwise</em>,
    703      * which means that each argument or return value is converted to
    704      * exactly one argument or return value (or no return value).
    705      * The applied conversions are defined by consulting the
    706      * the corresponding component types of the old and new
    707      * method handle types.
    708      * <p>
    709      * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
    710      * or old and new return types.  Specifically, for some valid index {@code i}, let
    711      * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
    712      * Or else, going the other way for return values, let
    713      * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
    714      * If the types are the same, the new method handle makes no change
    715      * to the corresponding argument or return value (if any).
    716      * Otherwise, one of the following conversions is applied
    717      * if possible:
    718      * <ul>
    719      * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
    720      *     (The types do not need to be related in any particular way.
    721      *     This is because a dynamic value of null can convert to any reference type.)
    722      * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
    723      *     conversion (JLS 5.3) is applied, if one exists.
    724      *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
    725      * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
    726      *     a Java casting conversion (JLS 5.5) is applied if one exists.
    727      *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
    728      *     which is then widened as needed to <em>T1</em>.)
    729      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
    730      *     conversion will be applied at runtime, possibly followed
    731      *     by a Java method invocation conversion (JLS 5.3)
    732      *     on the primitive value.  (These are the primitive widening conversions.)
    733      *     <em>T0</em> must be a wrapper class or a supertype of one.
    734      *     (In the case where <em>T0</em> is Object, these are the conversions
    735      *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
    736      *     The unboxing conversion must have a possibility of success, which means that
    737      *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
    738      *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
    739      *     primitive value can be widened to <em>T1</em>.
    740      * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
    741      * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
    742      * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
    743      *     a zero value is introduced.
    744      * </ul>
    745      * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
    746      * because neither corresponds specifically to the <em>dynamic type</em> of any
    747      * actual argument or return value.)
    748      * <p>
    749      * The method handle conversion cannot be made if any one of the required
    750      * pairwise conversions cannot be made.
    751      * <p>
    752      * At runtime, the conversions applied to reference arguments
    753      * or return values may require additional runtime checks which can fail.
    754      * An unboxing operation may fail because the original reference is null,
    755      * causing a {@link java.lang.NullPointerException NullPointerException}.
    756      * An unboxing operation or a reference cast may also fail on a reference
    757      * to an object of the wrong type,
    758      * causing a {@link java.lang.ClassCastException ClassCastException}.
    759      * Although an unboxing operation may accept several kinds of wrappers,
    760      * if none are available, a {@code ClassCastException} will be thrown.
    761      *
    762      * @param newType the expected type of the new method handle
    763      * @return a method handle which delegates to {@code this} after performing
    764      *           any necessary argument conversions, and arranges for any
    765      *           necessary return value conversions
    766      * @throws NullPointerException if {@code newType} is a null reference
    767      * @throws WrongMethodTypeException if the conversion cannot be made
    768      * @see MethodHandles#explicitCastArguments
    769      */
    770     public MethodHandle asType(MethodType newType) {
    771         // Fast path alternative to a heavyweight {@code asType} call.
    772         // Return 'this' if the conversion will be a no-op.
    773         if (newType == type) {
    774             return this;
    775         }
    776 
    777         if (!type.isConvertibleTo(newType)) {
    778             throw new WrongMethodTypeException("cannot convert " + this + " to " + newType);
    779         }
    780 
    781         MethodHandle mh = duplicate();
    782         mh.nominalType = newType;
    783         return mh;
    784     }
    785 
    786     /**
    787      * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
    788      * and spreads its elements as positional arguments.
    789      * The new method handle adapts, as its <i>target</i>,
    790      * the current method handle.  The type of the adapter will be
    791      * the same as the type of the target, except that the final
    792      * {@code arrayLength} parameters of the target's type are replaced
    793      * by a single array parameter of type {@code arrayType}.
    794      * <p>
    795      * If the array element type differs from any of the corresponding
    796      * argument types on the original target,
    797      * the original target is adapted to take the array elements directly,
    798      * as if by a call to {@link #asType asType}.
    799      * <p>
    800      * When called, the adapter replaces a trailing array argument
    801      * by the array's elements, each as its own argument to the target.
    802      * (The order of the arguments is preserved.)
    803      * They are converted pairwise by casting and/or unboxing
    804      * to the types of the trailing parameters of the target.
    805      * Finally the target is called.
    806      * What the target eventually returns is returned unchanged by the adapter.
    807      * <p>
    808      * Before calling the target, the adapter verifies that the array
    809      * contains exactly enough elements to provide a correct argument count
    810      * to the target method handle.
    811      * (The array may also be null when zero elements are required.)
    812      * <p>
    813      * If, when the adapter is called, the supplied array argument does
    814      * not have the correct number of elements, the adapter will throw
    815      * an {@link IllegalArgumentException} instead of invoking the target.
    816      * <p>
    817      * Here are some simple examples of array-spreading method handles:
    818      * <blockquote><pre>{@code
    819 MethodHandle equals = publicLookup()
    820   .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
    821 assert( (boolean) equals.invokeExact("me", (Object)"me"));
    822 assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
    823 // spread both arguments from a 2-array:
    824 MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
    825 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
    826 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
    827 // try to spread from anything but a 2-array:
    828 for (int n = 0; n <= 10; n++) {
    829   Object[] badArityArgs = (n == 2 ? null : new Object[n]);
    830   try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
    831   catch (IllegalArgumentException ex) { } // OK
    832 }
    833 // spread both arguments from a String array:
    834 MethodHandle eq2s = equals.asSpreader(String[].class, 2);
    835 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
    836 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
    837 // spread second arguments from a 1-array:
    838 MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
    839 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
    840 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
    841 // spread no arguments from a 0-array or null:
    842 MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
    843 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
    844 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
    845 // asSpreader and asCollector are approximate inverses:
    846 for (int n = 0; n <= 2; n++) {
    847     for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
    848         MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
    849         assert( (boolean) equals2.invokeWithArguments("me", "me"));
    850         assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
    851     }
    852 }
    853 MethodHandle caToString = publicLookup()
    854   .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
    855 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
    856 MethodHandle caString3 = caToString.asCollector(char[].class, 3);
    857 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
    858 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
    859 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
    860      * }</pre></blockquote>
    861      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
    862      * @param arrayLength the number of arguments to spread from an incoming array argument
    863      * @return a new method handle which spreads its final array argument,
    864      *         before calling the original method handle
    865      * @throws NullPointerException if {@code arrayType} is a null reference
    866      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
    867      *         or if target does not have at least
    868      *         {@code arrayLength} parameter types,
    869      *         or if {@code arrayLength} is negative,
    870      *         or if the resulting method handle's type would have
    871      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
    872      * @throws WrongMethodTypeException if the implied {@code asType} call fails
    873      * @see #asCollector
    874      */
    875     public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
    876         MethodType postSpreadType = asSpreaderChecks(arrayType, arrayLength);
    877 
    878         final int targetParamCount = postSpreadType.parameterCount();
    879         MethodType dropArrayArgs = postSpreadType.dropParameterTypes(
    880                 (targetParamCount - arrayLength), targetParamCount);
    881         MethodType adapterType = dropArrayArgs.appendParameterTypes(arrayType);
    882 
    883         return new Transformers.Spreader(this, adapterType, arrayLength);
    884     }
    885 
    886     /**
    887      * See if {@code asSpreader} can be validly called with the given arguments.
    888      * Return the type of the method handle call after spreading but before conversions.
    889      */
    890     private MethodType asSpreaderChecks(Class<?> arrayType, int arrayLength) {
    891         spreadArrayChecks(arrayType, arrayLength);
    892         int nargs = type().parameterCount();
    893         if (nargs < arrayLength || arrayLength < 0)
    894             throw newIllegalArgumentException("bad spread array length");
    895         Class<?> arrayElement = arrayType.getComponentType();
    896         MethodType mtype = type();
    897         boolean match = true, fail = false;
    898         for (int i = nargs - arrayLength; i < nargs; i++) {
    899             Class<?> ptype = mtype.parameterType(i);
    900             if (ptype != arrayElement) {
    901                 match = false;
    902                 if (!MethodType.canConvert(arrayElement, ptype)) {
    903                     fail = true;
    904                     break;
    905                 }
    906             }
    907         }
    908         if (match)  return mtype;
    909         MethodType needType = mtype.asSpreaderType(arrayType, arrayLength);
    910         if (!fail)  return needType;
    911         // elicit an error:
    912         this.asType(needType);
    913         throw newInternalError("should not return", null);
    914     }
    915 
    916     private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
    917         Class<?> arrayElement = arrayType.getComponentType();
    918         if (arrayElement == null)
    919             throw newIllegalArgumentException("not an array type", arrayType);
    920         if ((arrayLength & 0x7F) != arrayLength) {
    921             if ((arrayLength & 0xFF) != arrayLength)
    922                 throw newIllegalArgumentException("array length is not legal", arrayLength);
    923             assert(arrayLength >= 128);
    924             if (arrayElement == long.class ||
    925                 arrayElement == double.class)
    926                 throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
    927         }
    928     }
    929 
    930     /**
    931      * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
    932      * positional arguments and collects them into an array argument.
    933      * The new method handle adapts, as its <i>target</i>,
    934      * the current method handle.  The type of the adapter will be
    935      * the same as the type of the target, except that a single trailing
    936      * parameter (usually of type {@code arrayType}) is replaced by
    937      * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
    938      * <p>
    939      * If the array type differs from the final argument type on the original target,
    940      * the original target is adapted to take the array type directly,
    941      * as if by a call to {@link #asType asType}.
    942      * <p>
    943      * When called, the adapter replaces its trailing {@code arrayLength}
    944      * arguments by a single new array of type {@code arrayType}, whose elements
    945      * comprise (in order) the replaced arguments.
    946      * Finally the target is called.
    947      * What the target eventually returns is returned unchanged by the adapter.
    948      * <p>
    949      * (The array may also be a shared constant when {@code arrayLength} is zero.)
    950      * <p>
    951      * (<em>Note:</em> The {@code arrayType} is often identical to the last
    952      * parameter type of the original target.
    953      * It is an explicit argument for symmetry with {@code asSpreader}, and also
    954      * to allow the target to use a simple {@code Object} as its last parameter type.)
    955      * <p>
    956      * In order to create a collecting adapter which is not restricted to a particular
    957      * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
    958      * <p>
    959      * Here are some examples of array-collecting method handles:
    960      * <blockquote><pre>{@code
    961 MethodHandle deepToString = publicLookup()
    962   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
    963 assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
    964 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
    965 assertEquals(methodType(String.class, Object.class), ts1.type());
    966 //assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
    967 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
    968 // arrayType can be a subtype of Object[]
    969 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
    970 assertEquals(methodType(String.class, String.class, String.class), ts2.type());
    971 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
    972 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
    973 assertEquals("[]", (String) ts0.invokeExact());
    974 // collectors can be nested, Lisp-style
    975 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
    976 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
    977 // arrayType can be any primitive array type
    978 MethodHandle bytesToString = publicLookup()
    979   .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
    980   .asCollector(byte[].class, 3);
    981 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
    982 MethodHandle longsToString = publicLookup()
    983   .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
    984   .asCollector(long[].class, 1);
    985 assertEquals("[123]", (String) longsToString.invokeExact((long)123));
    986      * }</pre></blockquote>
    987      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
    988      * @param arrayLength the number of arguments to collect into a new array argument
    989      * @return a new method handle which collects some trailing argument
    990      *         into an array, before calling the original method handle
    991      * @throws NullPointerException if {@code arrayType} is a null reference
    992      * @throws IllegalArgumentException if {@code arrayType} is not an array type
    993      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
    994      *         or {@code arrayLength} is not a legal array size,
    995      *         or the resulting method handle's type would have
    996      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
    997      * @throws WrongMethodTypeException if the implied {@code asType} call fails
    998      * @see #asSpreader
    999      * @see #asVarargsCollector
   1000      */
   1001     public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
   1002         asCollectorChecks(arrayType, arrayLength);
   1003 
   1004         return new Transformers.Collector(this, arrayType, arrayLength);
   1005     }
   1006 
   1007     /**
   1008      * See if {@code asCollector} can be validly called with the given arguments.
   1009      * Return false if the last parameter is not an exact match to arrayType.
   1010      */
   1011     /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int arrayLength) {
   1012         spreadArrayChecks(arrayType, arrayLength);
   1013         int nargs = type().parameterCount();
   1014         if (nargs != 0) {
   1015             Class<?> lastParam = type().parameterType(nargs-1);
   1016             if (lastParam == arrayType)  return true;
   1017             if (lastParam.isAssignableFrom(arrayType))  return false;
   1018         }
   1019         throw newIllegalArgumentException("array type not assignable to trailing argument", this, arrayType);
   1020     }
   1021 
   1022     /**
   1023      * Makes a <em>variable arity</em> adapter which is able to accept
   1024      * any number of trailing positional arguments and collect them
   1025      * into an array argument.
   1026      * <p>
   1027      * The type and behavior of the adapter will be the same as
   1028      * the type and behavior of the target, except that certain
   1029      * {@code invoke} and {@code asType} requests can lead to
   1030      * trailing positional arguments being collected into target's
   1031      * trailing parameter.
   1032      * Also, the last parameter type of the adapter will be
   1033      * {@code arrayType}, even if the target has a different
   1034      * last parameter type.
   1035      * <p>
   1036      * This transformation may return {@code this} if the method handle is
   1037      * already of variable arity and its trailing parameter type
   1038      * is identical to {@code arrayType}.
   1039      * <p>
   1040      * When called with {@link #invokeExact invokeExact}, the adapter invokes
   1041      * the target with no argument changes.
   1042      * (<em>Note:</em> This behavior is different from a
   1043      * {@linkplain #asCollector fixed arity collector},
   1044      * since it accepts a whole array of indeterminate length,
   1045      * rather than a fixed number of arguments.)
   1046      * <p>
   1047      * When called with plain, inexact {@link #invoke invoke}, if the caller
   1048      * type is the same as the adapter, the adapter invokes the target as with
   1049      * {@code invokeExact}.
   1050      * (This is the normal behavior for {@code invoke} when types match.)
   1051      * <p>
   1052      * Otherwise, if the caller and adapter arity are the same, and the
   1053      * trailing parameter type of the caller is a reference type identical to
   1054      * or assignable to the trailing parameter type of the adapter,
   1055      * the arguments and return values are converted pairwise,
   1056      * as if by {@link #asType asType} on a fixed arity
   1057      * method handle.
   1058      * <p>
   1059      * Otherwise, the arities differ, or the adapter's trailing parameter
   1060      * type is not assignable from the corresponding caller type.
   1061      * In this case, the adapter replaces all trailing arguments from
   1062      * the original trailing argument position onward, by
   1063      * a new array of type {@code arrayType}, whose elements
   1064      * comprise (in order) the replaced arguments.
   1065      * <p>
   1066      * The caller type must provides as least enough arguments,
   1067      * and of the correct type, to satisfy the target's requirement for
   1068      * positional arguments before the trailing array argument.
   1069      * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
   1070      * where {@code N} is the arity of the target.
   1071      * Also, there must exist conversions from the incoming arguments
   1072      * to the target's arguments.
   1073      * As with other uses of plain {@code invoke}, if these basic
   1074      * requirements are not fulfilled, a {@code WrongMethodTypeException}
   1075      * may be thrown.
   1076      * <p>
   1077      * In all cases, what the target eventually returns is returned unchanged by the adapter.
   1078      * <p>
   1079      * In the final case, it is exactly as if the target method handle were
   1080      * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
   1081      * to the arity required by the caller type.
   1082      * (As with {@code asCollector}, if the array length is zero,
   1083      * a shared constant may be used instead of a new array.
   1084      * If the implied call to {@code asCollector} would throw
   1085      * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
   1086      * the call to the variable arity adapter must throw
   1087      * {@code WrongMethodTypeException}.)
   1088      * <p>
   1089      * The behavior of {@link #asType asType} is also specialized for
   1090      * variable arity adapters, to maintain the invariant that
   1091      * plain, inexact {@code invoke} is always equivalent to an {@code asType}
   1092      * call to adjust the target type, followed by {@code invokeExact}.
   1093      * Therefore, a variable arity adapter responds
   1094      * to an {@code asType} request by building a fixed arity collector,
   1095      * if and only if the adapter and requested type differ either
   1096      * in arity or trailing argument type.
   1097      * The resulting fixed arity collector has its type further adjusted
   1098      * (if necessary) to the requested type by pairwise conversion,
   1099      * as if by another application of {@code asType}.
   1100      * <p>
   1101      * When a method handle is obtained by executing an {@code ldc} instruction
   1102      * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
   1103      * as a variable arity method (with the modifier bit {@code 0x0080}),
   1104      * the method handle will accept multiple arities, as if the method handle
   1105      * constant were created by means of a call to {@code asVarargsCollector}.
   1106      * <p>
   1107      * In order to create a collecting adapter which collects a predetermined
   1108      * number of arguments, and whose type reflects this predetermined number,
   1109      * use {@link #asCollector asCollector} instead.
   1110      * <p>
   1111      * No method handle transformations produce new method handles with
   1112      * variable arity, unless they are documented as doing so.
   1113      * Therefore, besides {@code asVarargsCollector},
   1114      * all methods in {@code MethodHandle} and {@code MethodHandles}
   1115      * will return a method handle with fixed arity,
   1116      * except in the cases where they are specified to return their original
   1117      * operand (e.g., {@code asType} of the method handle's own type).
   1118      * <p>
   1119      * Calling {@code asVarargsCollector} on a method handle which is already
   1120      * of variable arity will produce a method handle with the same type and behavior.
   1121      * It may (or may not) return the original variable arity method handle.
   1122      * <p>
   1123      * Here is an example, of a list-making variable arity method handle:
   1124      * <blockquote><pre>{@code
   1125 MethodHandle deepToString = publicLookup()
   1126   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
   1127 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
   1128 assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
   1129 assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
   1130 assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
   1131 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
   1132 // findStatic of Arrays.asList(...) produces a variable arity method handle:
   1133 MethodHandle asList = publicLookup()
   1134   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
   1135 assertEquals(methodType(List.class, Object[].class), asList.type());
   1136 assert(asList.isVarargsCollector());
   1137 assertEquals("[]", asList.invoke().toString());
   1138 assertEquals("[1]", asList.invoke(1).toString());
   1139 assertEquals("[two, too]", asList.invoke("two", "too").toString());
   1140 String[] argv = { "three", "thee", "tee" };
   1141 assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
   1142 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
   1143 List ls = (List) asList.invoke((Object)argv);
   1144 assertEquals(1, ls.size());
   1145 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
   1146      * }</pre></blockquote>
   1147      * <p style="font-size:smaller;">
   1148      * <em>Discussion:</em>
   1149      * These rules are designed as a dynamically-typed variation
   1150      * of the Java rules for variable arity methods.
   1151      * In both cases, callers to a variable arity method or method handle
   1152      * can either pass zero or more positional arguments, or else pass
   1153      * pre-collected arrays of any length.  Users should be aware of the
   1154      * special role of the final argument, and of the effect of a
   1155      * type match on that final argument, which determines whether
   1156      * or not a single trailing argument is interpreted as a whole
   1157      * array or a single element of an array to be collected.
   1158      * Note that the dynamic type of the trailing argument has no
   1159      * effect on this decision, only a comparison between the symbolic
   1160      * type descriptor of the call site and the type descriptor of the method handle.)
   1161      *
   1162      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
   1163      * @return a new method handle which can collect any number of trailing arguments
   1164      *         into an array, before calling the original method handle
   1165      * @throws NullPointerException if {@code arrayType} is a null reference
   1166      * @throws IllegalArgumentException if {@code arrayType} is not an array type
   1167      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
   1168      * @see #asCollector
   1169      * @see #isVarargsCollector
   1170      * @see #asFixedArity
   1171      */
   1172     public MethodHandle asVarargsCollector(Class<?> arrayType) {
   1173         arrayType.getClass(); // explicit NPE
   1174         boolean lastMatch = asCollectorChecks(arrayType, 0);
   1175         if (isVarargsCollector() && lastMatch)
   1176             return this;
   1177 
   1178         return new Transformers.VarargsCollector(this);
   1179     }
   1180 
   1181     /**
   1182      * Determines if this method handle
   1183      * supports {@linkplain #asVarargsCollector variable arity} calls.
   1184      * Such method handles arise from the following sources:
   1185      * <ul>
   1186      * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
   1187      * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
   1188      *     which resolves to a variable arity Java method or constructor
   1189      * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
   1190      *     which resolves to a variable arity Java method or constructor
   1191      * </ul>
   1192      * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
   1193      * @see #asVarargsCollector
   1194      * @see #asFixedArity
   1195      */
   1196     public boolean isVarargsCollector() {
   1197         return false;
   1198     }
   1199 
   1200     /**
   1201      * Makes a <em>fixed arity</em> method handle which is otherwise
   1202      * equivalent to the current method handle.
   1203      * <p>
   1204      * If the current method handle is not of
   1205      * {@linkplain #asVarargsCollector variable arity},
   1206      * the current method handle is returned.
   1207      * This is true even if the current method handle
   1208      * could not be a valid input to {@code asVarargsCollector}.
   1209      * <p>
   1210      * Otherwise, the resulting fixed-arity method handle has the same
   1211      * type and behavior of the current method handle,
   1212      * except that {@link #isVarargsCollector isVarargsCollector}
   1213      * will be false.
   1214      * The fixed-arity method handle may (or may not) be the
   1215      * a previous argument to {@code asVarargsCollector}.
   1216      * <p>
   1217      * Here is an example, of a list-making variable arity method handle:
   1218      * <blockquote><pre>{@code
   1219 MethodHandle asListVar = publicLookup()
   1220   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
   1221   .asVarargsCollector(Object[].class);
   1222 MethodHandle asListFix = asListVar.asFixedArity();
   1223 assertEquals("[1]", asListVar.invoke(1).toString());
   1224 Exception caught = null;
   1225 try { asListFix.invoke((Object)1); }
   1226 catch (Exception ex) { caught = ex; }
   1227 assert(caught instanceof ClassCastException);
   1228 assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
   1229 try { asListFix.invoke("two", "too"); }
   1230 catch (Exception ex) { caught = ex; }
   1231 assert(caught instanceof WrongMethodTypeException);
   1232 Object[] argv = { "three", "thee", "tee" };
   1233 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
   1234 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
   1235 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
   1236 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
   1237      * }</pre></blockquote>
   1238      *
   1239      * @return a new method handle which accepts only a fixed number of arguments
   1240      * @see #asVarargsCollector
   1241      * @see #isVarargsCollector
   1242      */
   1243     public MethodHandle asFixedArity() {
   1244         // Android-changed: implementation specific.
   1245         MethodHandle mh = this;
   1246         if (mh.isVarargsCollector()) {
   1247             mh = ((Transformers.VarargsCollector) mh).asFixedArity();
   1248         }
   1249         assert(!mh.isVarargsCollector());
   1250         return mh;
   1251     }
   1252 
   1253     /**
   1254      * Binds a value {@code x} to the first argument of a method handle, without invoking it.
   1255      * The new method handle adapts, as its <i>target</i>,
   1256      * the current method handle by binding it to the given argument.
   1257      * The type of the bound handle will be
   1258      * the same as the type of the target, except that a single leading
   1259      * reference parameter will be omitted.
   1260      * <p>
   1261      * When called, the bound handle inserts the given value {@code x}
   1262      * as a new leading argument to the target.  The other arguments are
   1263      * also passed unchanged.
   1264      * What the target eventually returns is returned unchanged by the bound handle.
   1265      * <p>
   1266      * The reference {@code x} must be convertible to the first parameter
   1267      * type of the target.
   1268      * <p>
   1269      * (<em>Note:</em>  Because method handles are immutable, the target method handle
   1270      * retains its original type and behavior.)
   1271      * @param x  the value to bind to the first argument of the target
   1272      * @return a new method handle which prepends the given value to the incoming
   1273      *         argument list, before calling the original method handle
   1274      * @throws IllegalArgumentException if the target does not have a
   1275      *         leading parameter type that is a reference type
   1276      * @throws ClassCastException if {@code x} cannot be converted
   1277      *         to the leading parameter type of the target
   1278      * @see MethodHandles#insertArguments
   1279      */
   1280     public MethodHandle bindTo(Object x) {
   1281         x = type.leadingReferenceParameter().cast(x);  // throw CCE if needed
   1282 
   1283         return new Transformers.BindTo(this, x);
   1284     }
   1285 
   1286     /**
   1287      * Returns a string representation of the method handle,
   1288      * starting with the string {@code "MethodHandle"} and
   1289      * ending with the string representation of the method handle's type.
   1290      * In other words, this method returns a string equal to the value of:
   1291      * <blockquote><pre>{@code
   1292      * "MethodHandle" + type().toString()
   1293      * }</pre></blockquote>
   1294      * <p>
   1295      * (<em>Note:</em>  Future releases of this API may add further information
   1296      * to the string representation.
   1297      * Therefore, the present syntax should not be parsed by applications.)
   1298      *
   1299      * @return a string representation of the method handle
   1300      */
   1301     @Override
   1302     public String toString() {
   1303         // Android-changed: Removed debugging support.
   1304         return "MethodHandle"+type;
   1305     }
   1306 
   1307     /** @hide */
   1308     public int getHandleKind() {
   1309         return handleKind;
   1310     }
   1311 
   1312     /** @hide */
   1313     protected void transform(EmulatedStackFrame arguments) throws Throwable {
   1314         throw new AssertionError("MethodHandle.transform should never be called.");
   1315     }
   1316 
   1317     /**
   1318      * Creates a copy of this method handle, copying all relevant data.
   1319      *
   1320      * @hide
   1321      */
   1322     protected MethodHandle duplicate() {
   1323         try {
   1324             return (MethodHandle) this.clone();
   1325         } catch (CloneNotSupportedException cnse) {
   1326             throw new AssertionError("Subclass of Transformer is not cloneable");
   1327         }
   1328     }
   1329 
   1330 
   1331     /**
   1332      * This is the entry point for all transform calls, and dispatches to the protected
   1333      * transform method. This layer of indirection exists purely for convenience, because
   1334      * we can invoke-direct on a fixed ArtMethod for all transform variants.
   1335      *
   1336      * NOTE: If this extra layer of indirection proves to be a problem, we can get rid
   1337      * of this layer of indirection at the cost of some additional ugliness.
   1338      */
   1339     private void transformInternal(EmulatedStackFrame arguments) throws Throwable {
   1340         transform(arguments);
   1341     }
   1342 
   1343     // Android-changed: Removed implementation details :
   1344     //
   1345     // String standardString();
   1346     // String debugString();
   1347     //
   1348     //// Implementation methods.
   1349     //// Sub-classes can override these default implementations.
   1350     //// All these methods assume arguments are already validated.
   1351     //
   1352     // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
   1353     //
   1354     // BoundMethodHandle bindArgumentL(int pos, Object value);
   1355     // /*non-public*/ MethodHandle setVarargs(MemberName member);
   1356     // /*non-public*/ MethodHandle viewAsType(MethodType newType, boolean strict);
   1357     // /*non-public*/ boolean viewAsTypeChecks(MethodType newType, boolean strict);
   1358     //
   1359     // Decoding
   1360     //
   1361     // /*non-public*/ LambdaForm internalForm();
   1362     // /*non-public*/ MemberName internalMemberName();
   1363     // /*non-public*/ Class<?> internalCallerClass();
   1364     // /*non-public*/ MethodHandleImpl.Intrinsic intrinsicName();
   1365     // /*non-public*/ MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial);
   1366     // /*non-public*/ boolean isInvokeSpecial();
   1367     // /*non-public*/ Object internalValues();
   1368     // /*non-public*/ Object internalProperties();
   1369     //
   1370     //// Method handle implementation methods.
   1371     //// Sub-classes can override these default implementations.
   1372     //// All these methods assume arguments are already validated.
   1373     //
   1374     // /*non-public*/ abstract MethodHandle copyWith(MethodType mt, LambdaForm lf);
   1375     // abstract BoundMethodHandle rebind();
   1376     // /*non-public*/ void updateForm(LambdaForm newForm);
   1377     // /*non-public*/ void customize();
   1378     // private static final long FORM_OFFSET;
   1379 }
   1380