Home | History | Annotate | Download | only in RuntimeDyld
      1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of the MC-JIT runtime dynamic linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
     15 #include "RuntimeDyldCheckerImpl.h"
     16 #include "RuntimeDyldCOFF.h"
     17 #include "RuntimeDyldELF.h"
     18 #include "RuntimeDyldImpl.h"
     19 #include "RuntimeDyldMachO.h"
     20 #include "llvm/Object/ELFObjectFile.h"
     21 #include "llvm/Object/COFF.h"
     22 #include "llvm/Support/ManagedStatic.h"
     23 #include "llvm/Support/MathExtras.h"
     24 #include "llvm/Support/MutexGuard.h"
     25 
     26 using namespace llvm;
     27 using namespace llvm::object;
     28 
     29 #define DEBUG_TYPE "dyld"
     30 
     31 namespace {
     32 
     33 enum RuntimeDyldErrorCode {
     34   GenericRTDyldError = 1
     35 };
     36 
     37 // FIXME: This class is only here to support the transition to llvm::Error. It
     38 // will be removed once this transition is complete. Clients should prefer to
     39 // deal with the Error value directly, rather than converting to error_code.
     40 class RuntimeDyldErrorCategory : public std::error_category {
     41 public:
     42   const char *name() const LLVM_NOEXCEPT override { return "runtimedyld"; }
     43 
     44   std::string message(int Condition) const override {
     45     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
     46       case GenericRTDyldError: return "Generic RuntimeDyld error";
     47     }
     48     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
     49   }
     50 };
     51 
     52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
     53 
     54 }
     55 
     56 char RuntimeDyldError::ID = 0;
     57 
     58 void RuntimeDyldError::log(raw_ostream &OS) const {
     59   OS << ErrMsg << "\n";
     60 }
     61 
     62 std::error_code RuntimeDyldError::convertToErrorCode() const {
     63   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
     64 }
     65 
     66 // Empty out-of-line virtual destructor as the key function.
     67 RuntimeDyldImpl::~RuntimeDyldImpl() {}
     68 
     69 // Pin LoadedObjectInfo's vtables to this file.
     70 void RuntimeDyld::LoadedObjectInfo::anchor() {}
     71 
     72 namespace llvm {
     73 
     74 void RuntimeDyldImpl::registerEHFrames() {}
     75 
     76 void RuntimeDyldImpl::deregisterEHFrames() {}
     77 
     78 #ifndef NDEBUG
     79 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
     80   dbgs() << "----- Contents of section " << S.getName() << " " << State
     81          << " -----";
     82 
     83   if (S.getAddress() == nullptr) {
     84     dbgs() << "\n          <section not emitted>\n";
     85     return;
     86   }
     87 
     88   const unsigned ColsPerRow = 16;
     89 
     90   uint8_t *DataAddr = S.getAddress();
     91   uint64_t LoadAddr = S.getLoadAddress();
     92 
     93   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
     94   unsigned BytesRemaining = S.getSize();
     95 
     96   if (StartPadding) {
     97     dbgs() << "\n" << format("0x%016" PRIx64,
     98                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
     99     while (StartPadding--)
    100       dbgs() << "   ";
    101   }
    102 
    103   while (BytesRemaining > 0) {
    104     if ((LoadAddr & (ColsPerRow - 1)) == 0)
    105       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
    106 
    107     dbgs() << " " << format("%02x", *DataAddr);
    108 
    109     ++DataAddr;
    110     ++LoadAddr;
    111     --BytesRemaining;
    112   }
    113 
    114   dbgs() << "\n";
    115 }
    116 #endif
    117 
    118 // Resolve the relocations for all symbols we currently know about.
    119 void RuntimeDyldImpl::resolveRelocations() {
    120   MutexGuard locked(lock);
    121 
    122   // Print out the sections prior to relocation.
    123   DEBUG(
    124     for (int i = 0, e = Sections.size(); i != e; ++i)
    125       dumpSectionMemory(Sections[i], "before relocations");
    126   );
    127 
    128   // First, resolve relocations associated with external symbols.
    129   resolveExternalSymbols();
    130 
    131   // Iterate over all outstanding relocations
    132   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
    133     // The Section here (Sections[i]) refers to the section in which the
    134     // symbol for the relocation is located.  The SectionID in the relocation
    135     // entry provides the section to which the relocation will be applied.
    136     int Idx = it->first;
    137     uint64_t Addr = Sections[Idx].getLoadAddress();
    138     DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
    139                  << format("%p", (uintptr_t)Addr) << "\n");
    140     resolveRelocationList(it->second, Addr);
    141   }
    142   Relocations.clear();
    143 
    144   // Print out sections after relocation.
    145   DEBUG(
    146     for (int i = 0, e = Sections.size(); i != e; ++i)
    147       dumpSectionMemory(Sections[i], "after relocations");
    148   );
    149 
    150 }
    151 
    152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
    153                                         uint64_t TargetAddress) {
    154   MutexGuard locked(lock);
    155   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
    156     if (Sections[i].getAddress() == LocalAddress) {
    157       reassignSectionAddress(i, TargetAddress);
    158       return;
    159     }
    160   }
    161   llvm_unreachable("Attempting to remap address of unknown section!");
    162 }
    163 
    164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
    165                        uint64_t &Result) {
    166   Expected<uint64_t> AddressOrErr = Sym.getAddress();
    167   if (!AddressOrErr)
    168     return AddressOrErr.takeError();
    169   Result = *AddressOrErr - Sec.getAddress();
    170   return Error::success();
    171 }
    172 
    173 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
    174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
    175   MutexGuard locked(lock);
    176 
    177   // Save information about our target
    178   Arch = (Triple::ArchType)Obj.getArch();
    179   IsTargetLittleEndian = Obj.isLittleEndian();
    180   setMipsABI(Obj);
    181 
    182   // Compute the memory size required to load all sections to be loaded
    183   // and pass this information to the memory manager
    184   if (MemMgr.needsToReserveAllocationSpace()) {
    185     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
    186     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
    187     if (auto Err = computeTotalAllocSize(Obj,
    188                                          CodeSize, CodeAlign,
    189                                          RODataSize, RODataAlign,
    190                                          RWDataSize, RWDataAlign))
    191       return std::move(Err);
    192     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
    193                                   RWDataSize, RWDataAlign);
    194   }
    195 
    196   // Used sections from the object file
    197   ObjSectionToIDMap LocalSections;
    198 
    199   // Common symbols requiring allocation, with their sizes and alignments
    200   CommonSymbolList CommonSymbols;
    201 
    202   // Parse symbols
    203   DEBUG(dbgs() << "Parse symbols:\n");
    204   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
    205        ++I) {
    206     uint32_t Flags = I->getFlags();
    207 
    208     if (Flags & SymbolRef::SF_Common)
    209       CommonSymbols.push_back(*I);
    210     else {
    211 
    212       // Get the symbol type.
    213       object::SymbolRef::Type SymType;
    214       if (auto SymTypeOrErr = I->getType())
    215         SymType =  *SymTypeOrErr;
    216       else
    217         return SymTypeOrErr.takeError();
    218 
    219       // Get symbol name.
    220       StringRef Name;
    221       if (auto NameOrErr = I->getName())
    222         Name = *NameOrErr;
    223       else
    224         return NameOrErr.takeError();
    225 
    226       // Compute JIT symbol flags.
    227       JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
    228       if (Flags & SymbolRef::SF_Weak)
    229         RTDyldSymFlags |= JITSymbolFlags::Weak;
    230       if (Flags & SymbolRef::SF_Exported)
    231         RTDyldSymFlags |= JITSymbolFlags::Exported;
    232 
    233       if (Flags & SymbolRef::SF_Absolute &&
    234           SymType != object::SymbolRef::ST_File) {
    235         uint64_t Addr = 0;
    236         if (auto AddrOrErr = I->getAddress())
    237           Addr = *AddrOrErr;
    238         else
    239           return AddrOrErr.takeError();
    240 
    241         unsigned SectionID = AbsoluteSymbolSection;
    242 
    243         DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
    244                      << " SID: " << SectionID << " Offset: "
    245                      << format("%p", (uintptr_t)Addr)
    246                      << " flags: " << Flags << "\n");
    247         GlobalSymbolTable[Name] =
    248           SymbolTableEntry(SectionID, Addr, RTDyldSymFlags);
    249       } else if (SymType == object::SymbolRef::ST_Function ||
    250                  SymType == object::SymbolRef::ST_Data ||
    251                  SymType == object::SymbolRef::ST_Unknown ||
    252                  SymType == object::SymbolRef::ST_Other) {
    253 
    254         section_iterator SI = Obj.section_end();
    255         if (auto SIOrErr = I->getSection())
    256           SI = *SIOrErr;
    257         else
    258           return SIOrErr.takeError();
    259 
    260         if (SI == Obj.section_end())
    261           continue;
    262 
    263         // Get symbol offset.
    264         uint64_t SectOffset;
    265         if (auto Err = getOffset(*I, *SI, SectOffset))
    266           return std::move(Err);
    267 
    268         bool IsCode = SI->isText();
    269         unsigned SectionID;
    270         if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode,
    271                                                     LocalSections))
    272           SectionID = *SectionIDOrErr;
    273         else
    274           return SectionIDOrErr.takeError();
    275 
    276         DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
    277                      << " SID: " << SectionID << " Offset: "
    278                      << format("%p", (uintptr_t)SectOffset)
    279                      << " flags: " << Flags << "\n");
    280         GlobalSymbolTable[Name] =
    281           SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
    282       }
    283     }
    284   }
    285 
    286   // Allocate common symbols
    287   if (auto Err = emitCommonSymbols(Obj, CommonSymbols))
    288     return std::move(Err);
    289 
    290   // Parse and process relocations
    291   DEBUG(dbgs() << "Parse relocations:\n");
    292   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    293        SI != SE; ++SI) {
    294     StubMap Stubs;
    295     section_iterator RelocatedSection = SI->getRelocatedSection();
    296 
    297     if (RelocatedSection == SE)
    298       continue;
    299 
    300     relocation_iterator I = SI->relocation_begin();
    301     relocation_iterator E = SI->relocation_end();
    302 
    303     if (I == E && !ProcessAllSections)
    304       continue;
    305 
    306     bool IsCode = RelocatedSection->isText();
    307     unsigned SectionID = 0;
    308     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
    309                                                 LocalSections))
    310       SectionID = *SectionIDOrErr;
    311     else
    312       return SectionIDOrErr.takeError();
    313 
    314     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
    315 
    316     for (; I != E;)
    317       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
    318         I = *IOrErr;
    319       else
    320         return IOrErr.takeError();
    321 
    322     // If there is an attached checker, notify it about the stubs for this
    323     // section so that they can be verified.
    324     if (Checker)
    325       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
    326   }
    327 
    328   // Give the subclasses a chance to tie-up any loose ends.
    329   if (auto Err = finalizeLoad(Obj, LocalSections))
    330     return std::move(Err);
    331 
    332 //   for (auto E : LocalSections)
    333 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
    334 
    335   return LocalSections;
    336 }
    337 
    338 // A helper method for computeTotalAllocSize.
    339 // Computes the memory size required to allocate sections with the given sizes,
    340 // assuming that all sections are allocated with the given alignment
    341 static uint64_t
    342 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
    343                                  uint64_t Alignment) {
    344   uint64_t TotalSize = 0;
    345   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
    346     uint64_t AlignedSize =
    347         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
    348     TotalSize += AlignedSize;
    349   }
    350   return TotalSize;
    351 }
    352 
    353 static bool isRequiredForExecution(const SectionRef Section) {
    354   const ObjectFile *Obj = Section.getObject();
    355   if (isa<object::ELFObjectFileBase>(Obj))
    356     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
    357   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
    358     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
    359     // Avoid loading zero-sized COFF sections.
    360     // In PE files, VirtualSize gives the section size, and SizeOfRawData
    361     // may be zero for sections with content. In Obj files, SizeOfRawData
    362     // gives the section size, and VirtualSize is always zero. Hence
    363     // the need to check for both cases below.
    364     bool HasContent =
    365         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
    366     bool IsDiscardable =
    367         CoffSection->Characteristics &
    368         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
    369     return HasContent && !IsDiscardable;
    370   }
    371 
    372   assert(isa<MachOObjectFile>(Obj));
    373   return true;
    374 }
    375 
    376 static bool isReadOnlyData(const SectionRef Section) {
    377   const ObjectFile *Obj = Section.getObject();
    378   if (isa<object::ELFObjectFileBase>(Obj))
    379     return !(ELFSectionRef(Section).getFlags() &
    380              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
    381   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
    382     return ((COFFObj->getCOFFSection(Section)->Characteristics &
    383              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
    384              | COFF::IMAGE_SCN_MEM_READ
    385              | COFF::IMAGE_SCN_MEM_WRITE))
    386              ==
    387              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
    388              | COFF::IMAGE_SCN_MEM_READ));
    389 
    390   assert(isa<MachOObjectFile>(Obj));
    391   return false;
    392 }
    393 
    394 static bool isZeroInit(const SectionRef Section) {
    395   const ObjectFile *Obj = Section.getObject();
    396   if (isa<object::ELFObjectFileBase>(Obj))
    397     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
    398   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
    399     return COFFObj->getCOFFSection(Section)->Characteristics &
    400             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
    401 
    402   auto *MachO = cast<MachOObjectFile>(Obj);
    403   unsigned SectionType = MachO->getSectionType(Section);
    404   return SectionType == MachO::S_ZEROFILL ||
    405          SectionType == MachO::S_GB_ZEROFILL;
    406 }
    407 
    408 // Compute an upper bound of the memory size that is required to load all
    409 // sections
    410 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
    411                                              uint64_t &CodeSize,
    412                                              uint32_t &CodeAlign,
    413                                              uint64_t &RODataSize,
    414                                              uint32_t &RODataAlign,
    415                                              uint64_t &RWDataSize,
    416                                              uint32_t &RWDataAlign) {
    417   // Compute the size of all sections required for execution
    418   std::vector<uint64_t> CodeSectionSizes;
    419   std::vector<uint64_t> ROSectionSizes;
    420   std::vector<uint64_t> RWSectionSizes;
    421 
    422   // Collect sizes of all sections to be loaded;
    423   // also determine the max alignment of all sections
    424   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    425        SI != SE; ++SI) {
    426     const SectionRef &Section = *SI;
    427 
    428     bool IsRequired = isRequiredForExecution(Section);
    429 
    430     // Consider only the sections that are required to be loaded for execution
    431     if (IsRequired) {
    432       uint64_t DataSize = Section.getSize();
    433       uint64_t Alignment64 = Section.getAlignment();
    434       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    435       bool IsCode = Section.isText();
    436       bool IsReadOnly = isReadOnlyData(Section);
    437 
    438       StringRef Name;
    439       if (auto EC = Section.getName(Name))
    440         return errorCodeToError(EC);
    441 
    442       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
    443       uint64_t SectionSize = DataSize + StubBufSize;
    444 
    445       // The .eh_frame section (at least on Linux) needs an extra four bytes
    446       // padded
    447       // with zeroes added at the end.  For MachO objects, this section has a
    448       // slightly different name, so this won't have any effect for MachO
    449       // objects.
    450       if (Name == ".eh_frame")
    451         SectionSize += 4;
    452 
    453       if (!SectionSize)
    454         SectionSize = 1;
    455 
    456       if (IsCode) {
    457         CodeAlign = std::max(CodeAlign, Alignment);
    458         CodeSectionSizes.push_back(SectionSize);
    459       } else if (IsReadOnly) {
    460         RODataAlign = std::max(RODataAlign, Alignment);
    461         ROSectionSizes.push_back(SectionSize);
    462       } else {
    463         RWDataAlign = std::max(RWDataAlign, Alignment);
    464         RWSectionSizes.push_back(SectionSize);
    465       }
    466     }
    467   }
    468 
    469   // Compute the size of all common symbols
    470   uint64_t CommonSize = 0;
    471   uint32_t CommonAlign = 1;
    472   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
    473        ++I) {
    474     uint32_t Flags = I->getFlags();
    475     if (Flags & SymbolRef::SF_Common) {
    476       // Add the common symbols to a list.  We'll allocate them all below.
    477       uint64_t Size = I->getCommonSize();
    478       uint32_t Align = I->getAlignment();
    479       // If this is the first common symbol, use its alignment as the alignment
    480       // for the common symbols section.
    481       if (CommonSize == 0)
    482         CommonAlign = Align;
    483       CommonSize = alignTo(CommonSize, Align) + Size;
    484     }
    485   }
    486   if (CommonSize != 0) {
    487     RWSectionSizes.push_back(CommonSize);
    488     RWDataAlign = std::max(RWDataAlign, CommonAlign);
    489   }
    490 
    491   // Compute the required allocation space for each different type of sections
    492   // (code, read-only data, read-write data) assuming that all sections are
    493   // allocated with the max alignment. Note that we cannot compute with the
    494   // individual alignments of the sections, because then the required size
    495   // depends on the order, in which the sections are allocated.
    496   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
    497   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
    498   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
    499 
    500   return Error::success();
    501 }
    502 
    503 // compute stub buffer size for the given section
    504 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
    505                                                     const SectionRef &Section) {
    506   unsigned StubSize = getMaxStubSize();
    507   if (StubSize == 0) {
    508     return 0;
    509   }
    510   // FIXME: this is an inefficient way to handle this. We should computed the
    511   // necessary section allocation size in loadObject by walking all the sections
    512   // once.
    513   unsigned StubBufSize = 0;
    514   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    515        SI != SE; ++SI) {
    516     section_iterator RelSecI = SI->getRelocatedSection();
    517     if (!(RelSecI == Section))
    518       continue;
    519 
    520     for (const RelocationRef &Reloc : SI->relocations())
    521       if (relocationNeedsStub(Reloc))
    522         StubBufSize += StubSize;
    523   }
    524 
    525   // Get section data size and alignment
    526   uint64_t DataSize = Section.getSize();
    527   uint64_t Alignment64 = Section.getAlignment();
    528 
    529   // Add stubbuf size alignment
    530   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    531   unsigned StubAlignment = getStubAlignment();
    532   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
    533   if (StubAlignment > EndAlignment)
    534     StubBufSize += StubAlignment - EndAlignment;
    535   return StubBufSize;
    536 }
    537 
    538 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
    539                                              unsigned Size) const {
    540   uint64_t Result = 0;
    541   if (IsTargetLittleEndian) {
    542     Src += Size - 1;
    543     while (Size--)
    544       Result = (Result << 8) | *Src--;
    545   } else
    546     while (Size--)
    547       Result = (Result << 8) | *Src++;
    548 
    549   return Result;
    550 }
    551 
    552 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
    553                                           unsigned Size) const {
    554   if (IsTargetLittleEndian) {
    555     while (Size--) {
    556       *Dst++ = Value & 0xFF;
    557       Value >>= 8;
    558     }
    559   } else {
    560     Dst += Size - 1;
    561     while (Size--) {
    562       *Dst-- = Value & 0xFF;
    563       Value >>= 8;
    564     }
    565   }
    566 }
    567 
    568 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
    569                                          CommonSymbolList &CommonSymbols) {
    570   if (CommonSymbols.empty())
    571     return Error::success();
    572 
    573   uint64_t CommonSize = 0;
    574   uint32_t CommonAlign = CommonSymbols.begin()->getAlignment();
    575   CommonSymbolList SymbolsToAllocate;
    576 
    577   DEBUG(dbgs() << "Processing common symbols...\n");
    578 
    579   for (const auto &Sym : CommonSymbols) {
    580     StringRef Name;
    581     if (auto NameOrErr = Sym.getName())
    582       Name = *NameOrErr;
    583     else
    584       return NameOrErr.takeError();
    585 
    586     // Skip common symbols already elsewhere.
    587     if (GlobalSymbolTable.count(Name) ||
    588         Resolver.findSymbolInLogicalDylib(Name)) {
    589       DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
    590                    << "'\n");
    591       continue;
    592     }
    593 
    594     uint32_t Align = Sym.getAlignment();
    595     uint64_t Size = Sym.getCommonSize();
    596 
    597     CommonSize = alignTo(CommonSize, Align) + Size;
    598 
    599     SymbolsToAllocate.push_back(Sym);
    600   }
    601 
    602   // Allocate memory for the section
    603   unsigned SectionID = Sections.size();
    604   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
    605                                              "<common symbols>", false);
    606   if (!Addr)
    607     report_fatal_error("Unable to allocate memory for common symbols!");
    608   uint64_t Offset = 0;
    609   Sections.push_back(
    610       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
    611   memset(Addr, 0, CommonSize);
    612 
    613   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
    614                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
    615 
    616   // Assign the address of each symbol
    617   for (auto &Sym : SymbolsToAllocate) {
    618     uint32_t Align = Sym.getAlignment();
    619     uint64_t Size = Sym.getCommonSize();
    620     StringRef Name;
    621     if (auto NameOrErr = Sym.getName())
    622       Name = *NameOrErr;
    623     else
    624       return NameOrErr.takeError();
    625     if (Align) {
    626       // This symbol has an alignment requirement.
    627       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
    628       Addr += AlignOffset;
    629       Offset += AlignOffset;
    630     }
    631     uint32_t Flags = Sym.getFlags();
    632     JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
    633     if (Flags & SymbolRef::SF_Weak)
    634       RTDyldSymFlags |= JITSymbolFlags::Weak;
    635     if (Flags & SymbolRef::SF_Exported)
    636       RTDyldSymFlags |= JITSymbolFlags::Exported;
    637     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
    638                  << format("%p", Addr) << "\n");
    639     GlobalSymbolTable[Name] =
    640       SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
    641     Offset += Size;
    642     Addr += Size;
    643   }
    644 
    645   if (Checker)
    646     Checker->registerSection(Obj.getFileName(), SectionID);
    647 
    648   return Error::success();
    649 }
    650 
    651 Expected<unsigned>
    652 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
    653                              const SectionRef &Section,
    654                              bool IsCode) {
    655   StringRef data;
    656   uint64_t Alignment64 = Section.getAlignment();
    657 
    658   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    659   unsigned PaddingSize = 0;
    660   unsigned StubBufSize = 0;
    661   bool IsRequired = isRequiredForExecution(Section);
    662   bool IsVirtual = Section.isVirtual();
    663   bool IsZeroInit = isZeroInit(Section);
    664   bool IsReadOnly = isReadOnlyData(Section);
    665   uint64_t DataSize = Section.getSize();
    666 
    667   StringRef Name;
    668   if (auto EC = Section.getName(Name))
    669     return errorCodeToError(EC);
    670 
    671   StubBufSize = computeSectionStubBufSize(Obj, Section);
    672 
    673   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
    674   // with zeroes added at the end.  For MachO objects, this section has a
    675   // slightly different name, so this won't have any effect for MachO objects.
    676   if (Name == ".eh_frame")
    677     PaddingSize = 4;
    678 
    679   uintptr_t Allocate;
    680   unsigned SectionID = Sections.size();
    681   uint8_t *Addr;
    682   const char *pData = nullptr;
    683 
    684   // If this section contains any bits (i.e. isn't a virtual or bss section),
    685   // grab a reference to them.
    686   if (!IsVirtual && !IsZeroInit) {
    687     // In either case, set the location of the unrelocated section in memory,
    688     // since we still process relocations for it even if we're not applying them.
    689     if (auto EC = Section.getContents(data))
    690       return errorCodeToError(EC);
    691     pData = data.data();
    692   }
    693 
    694   // Code section alignment needs to be at least as high as stub alignment or
    695   // padding calculations may by incorrect when the section is remapped to a
    696   // higher alignment.
    697   if (IsCode)
    698     Alignment = std::max(Alignment, getStubAlignment());
    699 
    700   // Some sections, such as debug info, don't need to be loaded for execution.
    701   // Leave those where they are.
    702   if (IsRequired) {
    703     Allocate = DataSize + PaddingSize + StubBufSize;
    704     if (!Allocate)
    705       Allocate = 1;
    706     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
    707                                                Name)
    708                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
    709                                                Name, IsReadOnly);
    710     if (!Addr)
    711       report_fatal_error("Unable to allocate section memory!");
    712 
    713     // Zero-initialize or copy the data from the image
    714     if (IsZeroInit || IsVirtual)
    715       memset(Addr, 0, DataSize);
    716     else
    717       memcpy(Addr, pData, DataSize);
    718 
    719     // Fill in any extra bytes we allocated for padding
    720     if (PaddingSize != 0) {
    721       memset(Addr + DataSize, 0, PaddingSize);
    722       // Update the DataSize variable so that the stub offset is set correctly.
    723       DataSize += PaddingSize;
    724     }
    725 
    726     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
    727                  << " obj addr: " << format("%p", pData)
    728                  << " new addr: " << format("%p", Addr)
    729                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
    730                  << " Allocate: " << Allocate << "\n");
    731   } else {
    732     // Even if we didn't load the section, we need to record an entry for it
    733     // to handle later processing (and by 'handle' I mean don't do anything
    734     // with these sections).
    735     Allocate = 0;
    736     Addr = nullptr;
    737     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
    738                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
    739                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
    740                  << " Allocate: " << Allocate << "\n");
    741   }
    742 
    743   Sections.push_back(
    744       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
    745 
    746   if (Checker)
    747     Checker->registerSection(Obj.getFileName(), SectionID);
    748 
    749   return SectionID;
    750 }
    751 
    752 Expected<unsigned>
    753 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
    754                                    const SectionRef &Section,
    755                                    bool IsCode,
    756                                    ObjSectionToIDMap &LocalSections) {
    757 
    758   unsigned SectionID = 0;
    759   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
    760   if (i != LocalSections.end())
    761     SectionID = i->second;
    762   else {
    763     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
    764       SectionID = *SectionIDOrErr;
    765     else
    766       return SectionIDOrErr.takeError();
    767     LocalSections[Section] = SectionID;
    768   }
    769   return SectionID;
    770 }
    771 
    772 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
    773                                               unsigned SectionID) {
    774   Relocations[SectionID].push_back(RE);
    775 }
    776 
    777 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
    778                                              StringRef SymbolName) {
    779   // Relocation by symbol.  If the symbol is found in the global symbol table,
    780   // create an appropriate section relocation.  Otherwise, add it to
    781   // ExternalSymbolRelocations.
    782   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
    783   if (Loc == GlobalSymbolTable.end()) {
    784     ExternalSymbolRelocations[SymbolName].push_back(RE);
    785   } else {
    786     // Copy the RE since we want to modify its addend.
    787     RelocationEntry RECopy = RE;
    788     const auto &SymInfo = Loc->second;
    789     RECopy.Addend += SymInfo.getOffset();
    790     Relocations[SymInfo.getSectionID()].push_back(RECopy);
    791   }
    792 }
    793 
    794 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
    795                                              unsigned AbiVariant) {
    796   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
    797     // This stub has to be able to access the full address space,
    798     // since symbol lookup won't necessarily find a handy, in-range,
    799     // PLT stub for functions which could be anywhere.
    800     // Stub can use ip0 (== x16) to calculate address
    801     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
    802     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
    803     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
    804     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
    805     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
    806 
    807     return Addr;
    808   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
    809     // TODO: There is only ARM far stub now. We should add the Thumb stub,
    810     // and stubs for branches Thumb - ARM and ARM - Thumb.
    811     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
    812     return Addr + 4;
    813   } else if (IsMipsO32ABI) {
    814     // 0:   3c190000        lui     t9,%hi(addr).
    815     // 4:   27390000        addiu   t9,t9,%lo(addr).
    816     // 8:   03200008        jr      t9.
    817     // c:   00000000        nop.
    818     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
    819     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
    820 
    821     writeBytesUnaligned(LuiT9Instr, Addr, 4);
    822     writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
    823     writeBytesUnaligned(JrT9Instr, Addr+8, 4);
    824     writeBytesUnaligned(NopInstr, Addr+12, 4);
    825     return Addr;
    826   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    827     // Depending on which version of the ELF ABI is in use, we need to
    828     // generate one of two variants of the stub.  They both start with
    829     // the same sequence to load the target address into r12.
    830     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
    831     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
    832     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
    833     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
    834     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
    835     if (AbiVariant == 2) {
    836       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
    837       // The address is already in r12 as required by the ABI.  Branch to it.
    838       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
    839       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
    840       writeInt32BE(Addr+28, 0x4E800420); // bctr
    841     } else {
    842       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
    843       // Load the function address on r11 and sets it to control register. Also
    844       // loads the function TOC in r2 and environment pointer to r11.
    845       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
    846       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
    847       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
    848       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
    849       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
    850       writeInt32BE(Addr+40, 0x4E800420); // bctr
    851     }
    852     return Addr;
    853   } else if (Arch == Triple::systemz) {
    854     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
    855     writeInt16BE(Addr+2,  0x0000);
    856     writeInt16BE(Addr+4,  0x0004);
    857     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
    858     // 8-byte address stored at Addr + 8
    859     return Addr;
    860   } else if (Arch == Triple::x86_64) {
    861     *Addr      = 0xFF; // jmp
    862     *(Addr+1)  = 0x25; // rip
    863     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
    864   } else if (Arch == Triple::x86) {
    865     *Addr      = 0xE9; // 32-bit pc-relative jump.
    866   }
    867   return Addr;
    868 }
    869 
    870 // Assign an address to a symbol name and resolve all the relocations
    871 // associated with it.
    872 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
    873                                              uint64_t Addr) {
    874   // The address to use for relocation resolution is not
    875   // the address of the local section buffer. We must be doing
    876   // a remote execution environment of some sort. Relocations can't
    877   // be applied until all the sections have been moved.  The client must
    878   // trigger this with a call to MCJIT::finalize() or
    879   // RuntimeDyld::resolveRelocations().
    880   //
    881   // Addr is a uint64_t because we can't assume the pointer width
    882   // of the target is the same as that of the host. Just use a generic
    883   // "big enough" type.
    884   DEBUG(dbgs() << "Reassigning address for section " << SectionID << " ("
    885                << Sections[SectionID].getName() << "): "
    886                << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
    887                << " -> " << format("0x%016" PRIx64, Addr) << "\n");
    888   Sections[SectionID].setLoadAddress(Addr);
    889 }
    890 
    891 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
    892                                             uint64_t Value) {
    893   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    894     const RelocationEntry &RE = Relocs[i];
    895     // Ignore relocations for sections that were not loaded
    896     if (Sections[RE.SectionID].getAddress() == nullptr)
    897       continue;
    898     resolveRelocation(RE, Value);
    899   }
    900 }
    901 
    902 void RuntimeDyldImpl::resolveExternalSymbols() {
    903   while (!ExternalSymbolRelocations.empty()) {
    904     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
    905 
    906     StringRef Name = i->first();
    907     if (Name.size() == 0) {
    908       // This is an absolute symbol, use an address of zero.
    909       DEBUG(dbgs() << "Resolving absolute relocations."
    910                    << "\n");
    911       RelocationList &Relocs = i->second;
    912       resolveRelocationList(Relocs, 0);
    913     } else {
    914       uint64_t Addr = 0;
    915       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
    916       if (Loc == GlobalSymbolTable.end()) {
    917         // This is an external symbol, try to get its address from the symbol
    918         // resolver.
    919         // First search for the symbol in this logical dylib.
    920         Addr = Resolver.findSymbolInLogicalDylib(Name.data()).getAddress();
    921         // If that fails, try searching for an external symbol.
    922         if (!Addr)
    923           Addr = Resolver.findSymbol(Name.data()).getAddress();
    924         // The call to getSymbolAddress may have caused additional modules to
    925         // be loaded, which may have added new entries to the
    926         // ExternalSymbolRelocations map.  Consquently, we need to update our
    927         // iterator.  This is also why retrieval of the relocation list
    928         // associated with this symbol is deferred until below this point.
    929         // New entries may have been added to the relocation list.
    930         i = ExternalSymbolRelocations.find(Name);
    931       } else {
    932         // We found the symbol in our global table.  It was probably in a
    933         // Module that we loaded previously.
    934         const auto &SymInfo = Loc->second;
    935         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
    936                SymInfo.getOffset();
    937       }
    938 
    939       // FIXME: Implement error handling that doesn't kill the host program!
    940       if (!Addr)
    941         report_fatal_error("Program used external function '" + Name +
    942                            "' which could not be resolved!");
    943 
    944       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
    945       // manually and we shouldn't resolve its relocations.
    946       if (Addr != UINT64_MAX) {
    947         DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
    948                      << format("0x%lx", Addr) << "\n");
    949         // This list may have been updated when we called getSymbolAddress, so
    950         // don't change this code to get the list earlier.
    951         RelocationList &Relocs = i->second;
    952         resolveRelocationList(Relocs, Addr);
    953       }
    954     }
    955 
    956     ExternalSymbolRelocations.erase(i);
    957   }
    958 }
    959 
    960 //===----------------------------------------------------------------------===//
    961 // RuntimeDyld class implementation
    962 
    963 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
    964                                           const object::SectionRef &Sec) const {
    965 
    966   auto I = ObjSecToIDMap.find(Sec);
    967   if (I != ObjSecToIDMap.end())
    968     return RTDyld.Sections[I->second].getLoadAddress();
    969 
    970   return 0;
    971 }
    972 
    973 void RuntimeDyld::MemoryManager::anchor() {}
    974 void RuntimeDyld::SymbolResolver::anchor() {}
    975 
    976 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
    977                          RuntimeDyld::SymbolResolver &Resolver)
    978     : MemMgr(MemMgr), Resolver(Resolver) {
    979   // FIXME: There's a potential issue lurking here if a single instance of
    980   // RuntimeDyld is used to load multiple objects.  The current implementation
    981   // associates a single memory manager with a RuntimeDyld instance.  Even
    982   // though the public class spawns a new 'impl' instance for each load,
    983   // they share a single memory manager.  This can become a problem when page
    984   // permissions are applied.
    985   Dyld = nullptr;
    986   ProcessAllSections = false;
    987   Checker = nullptr;
    988 }
    989 
    990 RuntimeDyld::~RuntimeDyld() {}
    991 
    992 static std::unique_ptr<RuntimeDyldCOFF>
    993 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
    994                       RuntimeDyld::SymbolResolver &Resolver,
    995                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
    996   std::unique_ptr<RuntimeDyldCOFF> Dyld =
    997     RuntimeDyldCOFF::create(Arch, MM, Resolver);
    998   Dyld->setProcessAllSections(ProcessAllSections);
    999   Dyld->setRuntimeDyldChecker(Checker);
   1000   return Dyld;
   1001 }
   1002 
   1003 static std::unique_ptr<RuntimeDyldELF>
   1004 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
   1005                      RuntimeDyld::SymbolResolver &Resolver,
   1006                      bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
   1007   std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
   1008   Dyld->setProcessAllSections(ProcessAllSections);
   1009   Dyld->setRuntimeDyldChecker(Checker);
   1010   return Dyld;
   1011 }
   1012 
   1013 static std::unique_ptr<RuntimeDyldMachO>
   1014 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
   1015                        RuntimeDyld::SymbolResolver &Resolver,
   1016                        bool ProcessAllSections,
   1017                        RuntimeDyldCheckerImpl *Checker) {
   1018   std::unique_ptr<RuntimeDyldMachO> Dyld =
   1019     RuntimeDyldMachO::create(Arch, MM, Resolver);
   1020   Dyld->setProcessAllSections(ProcessAllSections);
   1021   Dyld->setRuntimeDyldChecker(Checker);
   1022   return Dyld;
   1023 }
   1024 
   1025 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
   1026 RuntimeDyld::loadObject(const ObjectFile &Obj) {
   1027   if (!Dyld) {
   1028     if (Obj.isELF())
   1029       Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
   1030     else if (Obj.isMachO())
   1031       Dyld = createRuntimeDyldMachO(
   1032                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
   1033                ProcessAllSections, Checker);
   1034     else if (Obj.isCOFF())
   1035       Dyld = createRuntimeDyldCOFF(
   1036                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
   1037                ProcessAllSections, Checker);
   1038     else
   1039       report_fatal_error("Incompatible object format!");
   1040   }
   1041 
   1042   if (!Dyld->isCompatibleFile(Obj))
   1043     report_fatal_error("Incompatible object format!");
   1044 
   1045   auto LoadedObjInfo = Dyld->loadObject(Obj);
   1046   MemMgr.notifyObjectLoaded(*this, Obj);
   1047   return LoadedObjInfo;
   1048 }
   1049 
   1050 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
   1051   if (!Dyld)
   1052     return nullptr;
   1053   return Dyld->getSymbolLocalAddress(Name);
   1054 }
   1055 
   1056 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
   1057   if (!Dyld)
   1058     return nullptr;
   1059   return Dyld->getSymbol(Name);
   1060 }
   1061 
   1062 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
   1063 
   1064 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
   1065   Dyld->reassignSectionAddress(SectionID, Addr);
   1066 }
   1067 
   1068 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
   1069                                     uint64_t TargetAddress) {
   1070   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
   1071 }
   1072 
   1073 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
   1074 
   1075 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
   1076 
   1077 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
   1078   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
   1079   MemMgr.FinalizationLocked = true;
   1080   resolveRelocations();
   1081   registerEHFrames();
   1082   if (!MemoryFinalizationLocked) {
   1083     MemMgr.finalizeMemory();
   1084     MemMgr.FinalizationLocked = false;
   1085   }
   1086 }
   1087 
   1088 void RuntimeDyld::registerEHFrames() {
   1089   if (Dyld)
   1090     Dyld->registerEHFrames();
   1091 }
   1092 
   1093 void RuntimeDyld::deregisterEHFrames() {
   1094   if (Dyld)
   1095     Dyld->deregisterEHFrames();
   1096 }
   1097 
   1098 } // end namespace llvm
   1099