Home | History | Annotate | Download | only in Tensor
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2015 Ke Yang <yangke (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
     11 #define EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
     12 
     13 namespace Eigen {
     14 
     15 /** \class TensorInflation
     16   * \ingroup CXX11_Tensor_Module
     17   *
     18   * \brief Tensor inflation class.
     19   *
     20   *
     21   */
     22 namespace internal {
     23 template<typename Strides, typename XprType>
     24 struct traits<TensorInflationOp<Strides, XprType> > : public traits<XprType>
     25 {
     26   typedef typename XprType::Scalar Scalar;
     27   typedef traits<XprType> XprTraits;
     28   typedef typename XprTraits::StorageKind StorageKind;
     29   typedef typename XprTraits::Index Index;
     30   typedef typename XprType::Nested Nested;
     31   typedef typename remove_reference<Nested>::type _Nested;
     32   static const int NumDimensions = XprTraits::NumDimensions;
     33   static const int Layout = XprTraits::Layout;
     34 };
     35 
     36 template<typename Strides, typename XprType>
     37 struct eval<TensorInflationOp<Strides, XprType>, Eigen::Dense>
     38 {
     39   typedef const TensorInflationOp<Strides, XprType>& type;
     40 };
     41 
     42 template<typename Strides, typename XprType>
     43 struct nested<TensorInflationOp<Strides, XprType>, 1, typename eval<TensorInflationOp<Strides, XprType> >::type>
     44 {
     45   typedef TensorInflationOp<Strides, XprType> type;
     46 };
     47 
     48 }  // end namespace internal
     49 
     50 template<typename Strides, typename XprType>
     51 class TensorInflationOp : public TensorBase<TensorInflationOp<Strides, XprType>, ReadOnlyAccessors>
     52 {
     53   public:
     54   typedef typename Eigen::internal::traits<TensorInflationOp>::Scalar Scalar;
     55   typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
     56   typedef typename XprType::CoeffReturnType CoeffReturnType;
     57   typedef typename Eigen::internal::nested<TensorInflationOp>::type Nested;
     58   typedef typename Eigen::internal::traits<TensorInflationOp>::StorageKind StorageKind;
     59   typedef typename Eigen::internal::traits<TensorInflationOp>::Index Index;
     60 
     61   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorInflationOp(const XprType& expr, const Strides& strides)
     62       : m_xpr(expr), m_strides(strides) {}
     63 
     64     EIGEN_DEVICE_FUNC
     65     const Strides& strides() const { return m_strides; }
     66 
     67     EIGEN_DEVICE_FUNC
     68     const typename internal::remove_all<typename XprType::Nested>::type&
     69     expression() const { return m_xpr; }
     70 
     71   protected:
     72     typename XprType::Nested m_xpr;
     73     const Strides m_strides;
     74 };
     75 
     76 // Eval as rvalue
     77 template<typename Strides, typename ArgType, typename Device>
     78 struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device>
     79 {
     80   typedef TensorInflationOp<Strides, ArgType> XprType;
     81   typedef typename XprType::Index Index;
     82   static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
     83   typedef DSizes<Index, NumDims> Dimensions;
     84   typedef typename XprType::Scalar Scalar;
     85   typedef typename XprType::CoeffReturnType CoeffReturnType;
     86   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
     87   static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
     88 
     89   enum {
     90     IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
     91     PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
     92     BlockAccess = false,
     93     Layout = TensorEvaluator<ArgType, Device>::Layout,
     94     CoordAccess = false,  // to be implemented
     95     RawAccess = false
     96   };
     97 
     98   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
     99       : m_impl(op.expression(), device), m_strides(op.strides())
    100   {
    101     m_dimensions = m_impl.dimensions();
    102     // Expand each dimension to the inflated dimension.
    103     for (int i = 0; i < NumDims; ++i) {
    104       m_dimensions[i] = (m_dimensions[i] - 1) * op.strides()[i] + 1;
    105     }
    106 
    107     // Remember the strides for fast division.
    108     for (int i = 0; i < NumDims; ++i) {
    109       m_fastStrides[i] = internal::TensorIntDivisor<Index>(m_strides[i]);
    110     }
    111 
    112     const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
    113     if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
    114       m_outputStrides[0] = 1;
    115       m_inputStrides[0] = 1;
    116       for (int i = 1; i < NumDims; ++i) {
    117         m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
    118         m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
    119       }
    120     } else {  // RowMajor
    121       m_outputStrides[NumDims-1] = 1;
    122       m_inputStrides[NumDims-1] = 1;
    123       for (int i = NumDims - 2; i >= 0; --i) {
    124         m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
    125         m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
    126       }
    127     }
    128   }
    129 
    130   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
    131 
    132   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
    133     m_impl.evalSubExprsIfNeeded(NULL);
    134     return true;
    135   }
    136   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    137     m_impl.cleanup();
    138   }
    139 
    140   // Computes the input index given the output index. Returns true if the output
    141   // index doesn't fall into a hole.
    142   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool getInputIndex(Index index, Index* inputIndex) const
    143   {
    144     eigen_assert(index < dimensions().TotalSize());
    145     *inputIndex = 0;
    146     if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
    147       for (int i = NumDims - 1; i > 0; --i) {
    148         const Index idx = index / m_outputStrides[i];
    149         if (idx != idx / m_fastStrides[i] * m_strides[i]) {
    150           return false;
    151         }
    152         *inputIndex += idx / m_strides[i] * m_inputStrides[i];
    153         index -= idx * m_outputStrides[i];
    154       }
    155       if (index != index / m_fastStrides[0] * m_strides[0]) {
    156         return false;
    157       }
    158       *inputIndex += index / m_strides[0];
    159       return true;
    160     } else {
    161       for (int i = 0; i < NumDims - 1; ++i) {
    162         const Index idx = index / m_outputStrides[i];
    163         if (idx != idx / m_fastStrides[i] * m_strides[i]) {
    164           return false;
    165         }
    166         *inputIndex += idx / m_strides[i] * m_inputStrides[i];
    167         index -= idx * m_outputStrides[i];
    168       }
    169       if (index != index / m_fastStrides[NumDims-1] * m_strides[NumDims-1]) {
    170         return false;
    171       }
    172       *inputIndex += index / m_strides[NumDims - 1];
    173     }
    174     return true;
    175   }
    176 
    177   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
    178   {
    179     Index inputIndex = 0;
    180     if (getInputIndex(index, &inputIndex)) {
    181      return m_impl.coeff(inputIndex);
    182     } else {
    183      return Scalar(0);
    184     }
    185   }
    186 
    187   // TODO(yangke): optimize this function so that we can detect and produce
    188   // all-zero packets
    189   template<int LoadMode>
    190   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
    191   {
    192     EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
    193     eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
    194 
    195     EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
    196     for (int i = 0; i < PacketSize; ++i) {
    197       values[i] = coeff(index+i);
    198     }
    199     PacketReturnType rslt = internal::pload<PacketReturnType>(values);
    200     return rslt;
    201   }
    202 
    203   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    204     const double compute_cost = NumDims * (3 * TensorOpCost::DivCost<Index>() +
    205                                            3 * TensorOpCost::MulCost<Index>() +
    206                                            2 * TensorOpCost::AddCost<Index>());
    207     const double input_size = m_impl.dimensions().TotalSize();
    208     const double output_size = m_dimensions.TotalSize();
    209     if (output_size == 0)
    210       return TensorOpCost();
    211     return m_impl.costPerCoeff(vectorized) +
    212            TensorOpCost(sizeof(CoeffReturnType) * input_size / output_size, 0,
    213                         compute_cost, vectorized, PacketSize);
    214   }
    215 
    216   EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
    217 
    218  protected:
    219   Dimensions m_dimensions;
    220   array<Index, NumDims> m_outputStrides;
    221   array<Index, NumDims> m_inputStrides;
    222   TensorEvaluator<ArgType, Device> m_impl;
    223   const Strides m_strides;
    224   array<internal::TensorIntDivisor<Index>, NumDims> m_fastStrides;
    225 };
    226 
    227 } // end namespace Eigen
    228 
    229 #endif // EIGEN_CXX11_TENSOR_TENSOR_INFLATION_H
    230