Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
     11 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
     12 // is common code shared among the LegalizeTypes*.cpp files.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "LegalizeTypes.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/IR/CallingConv.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 using namespace llvm;
     24 
     25 #define DEBUG_TYPE "legalize-types"
     26 
     27 static cl::opt<bool>
     28 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
     29 
     30 /// Do extensive, expensive, sanity checking.
     31 void DAGTypeLegalizer::PerformExpensiveChecks() {
     32   // If a node is not processed, then none of its values should be mapped by any
     33   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     34 
     35   // If a node is processed, then each value with an illegal type must be mapped
     36   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     37   // Values with a legal type may be mapped by ReplacedValues, but not by any of
     38   // the other maps.
     39 
     40   // Note that these invariants may not hold momentarily when processing a node:
     41   // the node being processed may be put in a map before being marked Processed.
     42 
     43   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
     44   // occur in two ways.  Firstly, a node may be created during legalization but
     45   // never passed to the legalization core.  This is usually due to the implicit
     46   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
     47   // node may be passed to the legalization core, but when analyzed may morph
     48   // into a different node, leaving the original node as a NewNode in the DAG.
     49   // A node may morph if one of its operands changes during analysis.  Whether
     50   // it actually morphs or not depends on whether, after updating its operands,
     51   // it is equivalent to an existing node: if so, it morphs into that existing
     52   // node (CSE).  An operand can change during analysis if the operand is a new
     53   // node that morphs, or it is a processed value that was mapped to some other
     54   // value (as recorded in ReplacedValues) in which case the operand is turned
     55   // into that other value.  If a node morphs then the node it morphed into will
     56   // be used instead of it for legalization, however the original node continues
     57   // to live on in the DAG.
     58   // The conclusion is that though there may be nodes marked NewNode in the DAG,
     59   // all uses of such nodes are also marked NewNode: the result is a fungus of
     60   // NewNodes growing on top of the useful nodes, and perhaps using them, but
     61   // not used by them.
     62 
     63   // If a value is mapped by ReplacedValues, then it must have no uses, except
     64   // by nodes marked NewNode (see above).
     65 
     66   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
     67   // Note that ReplacedValues should be applied iteratively.
     68 
     69   // Note that the ReplacedValues map may also map deleted nodes (by iterating
     70   // over the DAG we never dereference deleted nodes).  This means that it may
     71   // also map nodes marked NewNode if the deallocated memory was reallocated as
     72   // another node, and that new node was not seen by the LegalizeTypes machinery
     73   // (for example because it was created but not used).  In general, we cannot
     74   // distinguish between new nodes and deleted nodes.
     75   SmallVector<SDNode*, 16> NewNodes;
     76   for (SDNode &Node : DAG.allnodes()) {
     77     // Remember nodes marked NewNode - they are subject to extra checking below.
     78     if (Node.getNodeId() == NewNode)
     79       NewNodes.push_back(&Node);
     80 
     81     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
     82       SDValue Res(&Node, i);
     83       bool Failed = false;
     84 
     85       unsigned Mapped = 0;
     86       if (ReplacedValues.find(Res) != ReplacedValues.end()) {
     87         Mapped |= 1;
     88         // Check that remapped values are only used by nodes marked NewNode.
     89         for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
     90              UI != UE; ++UI)
     91           if (UI.getUse().getResNo() == i)
     92             assert(UI->getNodeId() == NewNode &&
     93                    "Remapped value has non-trivial use!");
     94 
     95         // Check that the final result of applying ReplacedValues is not
     96         // marked NewNode.
     97         SDValue NewVal = ReplacedValues[Res];
     98         DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
     99         while (I != ReplacedValues.end()) {
    100           NewVal = I->second;
    101           I = ReplacedValues.find(NewVal);
    102         }
    103         assert(NewVal.getNode()->getNodeId() != NewNode &&
    104                "ReplacedValues maps to a new node!");
    105       }
    106       if (PromotedIntegers.find(Res) != PromotedIntegers.end())
    107         Mapped |= 2;
    108       if (SoftenedFloats.find(Res) != SoftenedFloats.end())
    109         Mapped |= 4;
    110       if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
    111         Mapped |= 8;
    112       if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
    113         Mapped |= 16;
    114       if (ExpandedFloats.find(Res) != ExpandedFloats.end())
    115         Mapped |= 32;
    116       if (SplitVectors.find(Res) != SplitVectors.end())
    117         Mapped |= 64;
    118       if (WidenedVectors.find(Res) != WidenedVectors.end())
    119         Mapped |= 128;
    120 
    121       if (Node.getNodeId() != Processed) {
    122         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
    123         // marked NewNode too, since a deleted node may have been reallocated as
    124         // another node that has not been seen by the LegalizeTypes machinery.
    125         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
    126             (Node.getNodeId() != NewNode && Mapped != 0)) {
    127           dbgs() << "Unprocessed value in a map!";
    128           Failed = true;
    129         }
    130       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
    131         if (Mapped > 1) {
    132           dbgs() << "Value with legal type was transformed!";
    133           Failed = true;
    134         }
    135       } else {
    136         if (Mapped == 0) {
    137           dbgs() << "Processed value not in any map!";
    138           Failed = true;
    139         } else if (Mapped & (Mapped - 1)) {
    140           dbgs() << "Value in multiple maps!";
    141           Failed = true;
    142         }
    143       }
    144 
    145       if (Failed) {
    146         if (Mapped & 1)
    147           dbgs() << " ReplacedValues";
    148         if (Mapped & 2)
    149           dbgs() << " PromotedIntegers";
    150         if (Mapped & 4)
    151           dbgs() << " SoftenedFloats";
    152         if (Mapped & 8)
    153           dbgs() << " ScalarizedVectors";
    154         if (Mapped & 16)
    155           dbgs() << " ExpandedIntegers";
    156         if (Mapped & 32)
    157           dbgs() << " ExpandedFloats";
    158         if (Mapped & 64)
    159           dbgs() << " SplitVectors";
    160         if (Mapped & 128)
    161           dbgs() << " WidenedVectors";
    162         dbgs() << "\n";
    163         llvm_unreachable(nullptr);
    164       }
    165     }
    166   }
    167 
    168   // Checked that NewNodes are only used by other NewNodes.
    169   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
    170     SDNode *N = NewNodes[i];
    171     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
    172          UI != UE; ++UI)
    173       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
    174   }
    175 }
    176 
    177 /// This is the main entry point for the type legalizer. This does a top-down
    178 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
    179 /// any changes.
    180 bool DAGTypeLegalizer::run() {
    181   bool Changed = false;
    182 
    183   // Create a dummy node (which is not added to allnodes), that adds a reference
    184   // to the root node, preventing it from being deleted, and tracking any
    185   // changes of the root.
    186   HandleSDNode Dummy(DAG.getRoot());
    187   Dummy.setNodeId(Unanalyzed);
    188 
    189   // The root of the dag may dangle to deleted nodes until the type legalizer is
    190   // done.  Set it to null to avoid confusion.
    191   DAG.setRoot(SDValue());
    192 
    193   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
    194   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
    195   // non-leaves.
    196   for (SDNode &Node : DAG.allnodes()) {
    197     if (Node.getNumOperands() == 0) {
    198       Node.setNodeId(ReadyToProcess);
    199       Worklist.push_back(&Node);
    200     } else {
    201       Node.setNodeId(Unanalyzed);
    202     }
    203   }
    204 
    205   // Now that we have a set of nodes to process, handle them all.
    206   while (!Worklist.empty()) {
    207 #ifndef EXPENSIVE_CHECKS
    208     if (EnableExpensiveChecks)
    209 #endif
    210       PerformExpensiveChecks();
    211 
    212     SDNode *N = Worklist.back();
    213     Worklist.pop_back();
    214     assert(N->getNodeId() == ReadyToProcess &&
    215            "Node should be ready if on worklist!");
    216 
    217     if (IgnoreNodeResults(N))
    218       goto ScanOperands;
    219 
    220     // Scan the values produced by the node, checking to see if any result
    221     // types are illegal.
    222     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
    223       EVT ResultVT = N->getValueType(i);
    224       switch (getTypeAction(ResultVT)) {
    225       case TargetLowering::TypeLegal:
    226         break;
    227       // The following calls must take care of *all* of the node's results,
    228       // not just the illegal result they were passed (this includes results
    229       // with a legal type).  Results can be remapped using ReplaceValueWith,
    230       // or their promoted/expanded/etc values registered in PromotedIntegers,
    231       // ExpandedIntegers etc.
    232       case TargetLowering::TypePromoteInteger:
    233         PromoteIntegerResult(N, i);
    234         Changed = true;
    235         goto NodeDone;
    236       case TargetLowering::TypeExpandInteger:
    237         ExpandIntegerResult(N, i);
    238         Changed = true;
    239         goto NodeDone;
    240       case TargetLowering::TypeSoftenFloat:
    241         Changed = SoftenFloatResult(N, i);
    242         if (Changed)
    243           goto NodeDone;
    244         // If not changed, the result type should be legally in register.
    245         assert(isLegalInHWReg(ResultVT) &&
    246                "Unchanged SoftenFloatResult should be legal in register!");
    247         goto ScanOperands;
    248       case TargetLowering::TypeExpandFloat:
    249         ExpandFloatResult(N, i);
    250         Changed = true;
    251         goto NodeDone;
    252       case TargetLowering::TypeScalarizeVector:
    253         ScalarizeVectorResult(N, i);
    254         Changed = true;
    255         goto NodeDone;
    256       case TargetLowering::TypeSplitVector:
    257         SplitVectorResult(N, i);
    258         Changed = true;
    259         goto NodeDone;
    260       case TargetLowering::TypeWidenVector:
    261         WidenVectorResult(N, i);
    262         Changed = true;
    263         goto NodeDone;
    264       case TargetLowering::TypePromoteFloat:
    265         PromoteFloatResult(N, i);
    266         Changed = true;
    267         goto NodeDone;
    268       }
    269     }
    270 
    271 ScanOperands:
    272     // Scan the operand list for the node, handling any nodes with operands that
    273     // are illegal.
    274     {
    275     unsigned NumOperands = N->getNumOperands();
    276     bool NeedsReanalyzing = false;
    277     unsigned i;
    278     for (i = 0; i != NumOperands; ++i) {
    279       if (IgnoreNodeResults(N->getOperand(i).getNode()))
    280         continue;
    281 
    282       EVT OpVT = N->getOperand(i).getValueType();
    283       switch (getTypeAction(OpVT)) {
    284       case TargetLowering::TypeLegal:
    285         continue;
    286       // The following calls must either replace all of the node's results
    287       // using ReplaceValueWith, and return "false"; or update the node's
    288       // operands in place, and return "true".
    289       case TargetLowering::TypePromoteInteger:
    290         NeedsReanalyzing = PromoteIntegerOperand(N, i);
    291         Changed = true;
    292         break;
    293       case TargetLowering::TypeExpandInteger:
    294         NeedsReanalyzing = ExpandIntegerOperand(N, i);
    295         Changed = true;
    296         break;
    297       case TargetLowering::TypeSoftenFloat:
    298         NeedsReanalyzing = SoftenFloatOperand(N, i);
    299         Changed = true;
    300         break;
    301       case TargetLowering::TypeExpandFloat:
    302         NeedsReanalyzing = ExpandFloatOperand(N, i);
    303         Changed = true;
    304         break;
    305       case TargetLowering::TypeScalarizeVector:
    306         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
    307         Changed = true;
    308         break;
    309       case TargetLowering::TypeSplitVector:
    310         NeedsReanalyzing = SplitVectorOperand(N, i);
    311         Changed = true;
    312         break;
    313       case TargetLowering::TypeWidenVector:
    314         NeedsReanalyzing = WidenVectorOperand(N, i);
    315         Changed = true;
    316         break;
    317       case TargetLowering::TypePromoteFloat:
    318         NeedsReanalyzing = PromoteFloatOperand(N, i);
    319         Changed = true;
    320         break;
    321       }
    322       break;
    323     }
    324 
    325     // The sub-method updated N in place.  Check to see if any operands are new,
    326     // and if so, mark them.  If the node needs revisiting, don't add all users
    327     // to the worklist etc.
    328     if (NeedsReanalyzing) {
    329       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    330       N->setNodeId(NewNode);
    331       // Recompute the NodeId and correct processed operands, adding the node to
    332       // the worklist if ready.
    333       SDNode *M = AnalyzeNewNode(N);
    334       if (M == N)
    335         // The node didn't morph - nothing special to do, it will be revisited.
    336         continue;
    337 
    338       // The node morphed - this is equivalent to legalizing by replacing every
    339       // value of N with the corresponding value of M.  So do that now.
    340       assert(N->getNumValues() == M->getNumValues() &&
    341              "Node morphing changed the number of results!");
    342       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    343         // Replacing the value takes care of remapping the new value.
    344         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
    345       assert(N->getNodeId() == NewNode && "Unexpected node state!");
    346       // The node continues to live on as part of the NewNode fungus that
    347       // grows on top of the useful nodes.  Nothing more needs to be done
    348       // with it - move on to the next node.
    349       continue;
    350     }
    351 
    352     if (i == NumOperands) {
    353       DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
    354     }
    355     }
    356 NodeDone:
    357 
    358     // If we reach here, the node was processed, potentially creating new nodes.
    359     // Mark it as processed and add its users to the worklist as appropriate.
    360     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    361     N->setNodeId(Processed);
    362 
    363     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    364          UI != E; ++UI) {
    365       SDNode *User = *UI;
    366       int NodeId = User->getNodeId();
    367 
    368       // This node has two options: it can either be a new node or its Node ID
    369       // may be a count of the number of operands it has that are not ready.
    370       if (NodeId > 0) {
    371         User->setNodeId(NodeId-1);
    372 
    373         // If this was the last use it was waiting on, add it to the ready list.
    374         if (NodeId-1 == ReadyToProcess)
    375           Worklist.push_back(User);
    376         continue;
    377       }
    378 
    379       // If this is an unreachable new node, then ignore it.  If it ever becomes
    380       // reachable by being used by a newly created node then it will be handled
    381       // by AnalyzeNewNode.
    382       if (NodeId == NewNode)
    383         continue;
    384 
    385       // Otherwise, this node is new: this is the first operand of it that
    386       // became ready.  Its new NodeId is the number of operands it has minus 1
    387       // (as this node is now processed).
    388       assert(NodeId == Unanalyzed && "Unknown node ID!");
    389       User->setNodeId(User->getNumOperands() - 1);
    390 
    391       // If the node only has a single operand, it is now ready.
    392       if (User->getNumOperands() == 1)
    393         Worklist.push_back(User);
    394     }
    395   }
    396 
    397 #ifndef EXPENSIVE_CHECKS
    398   if (EnableExpensiveChecks)
    399 #endif
    400     PerformExpensiveChecks();
    401 
    402   // If the root changed (e.g. it was a dead load) update the root.
    403   DAG.setRoot(Dummy.getValue());
    404 
    405   // Remove dead nodes.  This is important to do for cleanliness but also before
    406   // the checking loop below.  Implicit folding by the DAG.getNode operators and
    407   // node morphing can cause unreachable nodes to be around with their flags set
    408   // to new.
    409   DAG.RemoveDeadNodes();
    410 
    411   // In a debug build, scan all the nodes to make sure we found them all.  This
    412   // ensures that there are no cycles and that everything got processed.
    413 #ifndef NDEBUG
    414   for (SDNode &Node : DAG.allnodes()) {
    415     bool Failed = false;
    416 
    417     // Check that all result types are legal.
    418     // A value type is illegal if its TypeAction is not TypeLegal,
    419     // and TLI.RegClassForVT does not have a register class for this type.
    420     // For example, the x86_64 target has f128 that is not TypeLegal,
    421     // to have softened operators, but it also has FR128 register class to
    422     // pass and return f128 values. Hence a legalized node can have f128 type.
    423     if (!IgnoreNodeResults(&Node))
    424       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
    425         if (!isTypeLegal(Node.getValueType(i)) &&
    426             !TLI.isTypeLegal(Node.getValueType(i))) {
    427           dbgs() << "Result type " << i << " illegal: ";
    428           Node.dump();
    429           Failed = true;
    430         }
    431 
    432     // Check that all operand types are legal.
    433     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
    434       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
    435           !isTypeLegal(Node.getOperand(i).getValueType()) &&
    436           !TLI.isTypeLegal(Node.getOperand(i).getValueType())) {
    437         dbgs() << "Operand type " << i << " illegal: ";
    438         Node.getOperand(i).dump();
    439         Failed = true;
    440       }
    441 
    442     if (Node.getNodeId() != Processed) {
    443        if (Node.getNodeId() == NewNode)
    444          dbgs() << "New node not analyzed?\n";
    445        else if (Node.getNodeId() == Unanalyzed)
    446          dbgs() << "Unanalyzed node not noticed?\n";
    447        else if (Node.getNodeId() > 0)
    448          dbgs() << "Operand not processed?\n";
    449        else if (Node.getNodeId() == ReadyToProcess)
    450          dbgs() << "Not added to worklist?\n";
    451        Failed = true;
    452     }
    453 
    454     if (Failed) {
    455       Node.dump(&DAG); dbgs() << "\n";
    456       llvm_unreachable(nullptr);
    457     }
    458   }
    459 #endif
    460 
    461   return Changed;
    462 }
    463 
    464 /// The specified node is the root of a subtree of potentially new nodes.
    465 /// Correct any processed operands (this may change the node) and calculate the
    466 /// NodeId. If the node itself changes to a processed node, it is not remapped -
    467 /// the caller needs to take care of this. Returns the potentially changed node.
    468 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
    469   // If this was an existing node that is already done, we're done.
    470   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
    471     return N;
    472 
    473   // Remove any stale map entries.
    474   ExpungeNode(N);
    475 
    476   // Okay, we know that this node is new.  Recursively walk all of its operands
    477   // to see if they are new also.  The depth of this walk is bounded by the size
    478   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
    479   // about revisiting of nodes.
    480   //
    481   // As we walk the operands, keep track of the number of nodes that are
    482   // processed.  If non-zero, this will become the new nodeid of this node.
    483   // Operands may morph when they are analyzed.  If so, the node will be
    484   // updated after all operands have been analyzed.  Since this is rare,
    485   // the code tries to minimize overhead in the non-morphing case.
    486 
    487   SmallVector<SDValue, 8> NewOps;
    488   unsigned NumProcessed = 0;
    489   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    490     SDValue OrigOp = N->getOperand(i);
    491     SDValue Op = OrigOp;
    492 
    493     AnalyzeNewValue(Op); // Op may morph.
    494 
    495     if (Op.getNode()->getNodeId() == Processed)
    496       ++NumProcessed;
    497 
    498     if (!NewOps.empty()) {
    499       // Some previous operand changed.  Add this one to the list.
    500       NewOps.push_back(Op);
    501     } else if (Op != OrigOp) {
    502       // This is the first operand to change - add all operands so far.
    503       NewOps.append(N->op_begin(), N->op_begin() + i);
    504       NewOps.push_back(Op);
    505     }
    506   }
    507 
    508   // Some operands changed - update the node.
    509   if (!NewOps.empty()) {
    510     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
    511     if (M != N) {
    512       // The node morphed into a different node.  Normally for this to happen
    513       // the original node would have to be marked NewNode.  However this can
    514       // in theory momentarily not be the case while ReplaceValueWith is doing
    515       // its stuff.  Mark the original node NewNode to help sanity checking.
    516       N->setNodeId(NewNode);
    517       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
    518         // It morphed into a previously analyzed node - nothing more to do.
    519         return M;
    520 
    521       // It morphed into a different new node.  Do the equivalent of passing
    522       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
    523       // to remap the operands, since they are the same as the operands we
    524       // remapped above.
    525       N = M;
    526       ExpungeNode(N);
    527     }
    528   }
    529 
    530   // Calculate the NodeId.
    531   N->setNodeId(N->getNumOperands() - NumProcessed);
    532   if (N->getNodeId() == ReadyToProcess)
    533     Worklist.push_back(N);
    534 
    535   return N;
    536 }
    537 
    538 /// Call AnalyzeNewNode, updating the node in Val if needed.
    539 /// If the node changes to a processed node, then remap it.
    540 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
    541   Val.setNode(AnalyzeNewNode(Val.getNode()));
    542   if (Val.getNode()->getNodeId() == Processed)
    543     // We were passed a processed node, or it morphed into one - remap it.
    544     RemapValue(Val);
    545 }
    546 
    547 /// If N has a bogus mapping in ReplacedValues, eliminate it.
    548 /// This can occur when a node is deleted then reallocated as a new node -
    549 /// the mapping in ReplacedValues applies to the deleted node, not the new
    550 /// one.
    551 /// The only map that can have a deleted node as a source is ReplacedValues.
    552 /// Other maps can have deleted nodes as targets, but since their looked-up
    553 /// values are always immediately remapped using RemapValue, resulting in a
    554 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
    555 /// always performs correct mappings.  In order to keep the mapping correct,
    556 /// ExpungeNode should be called on any new nodes *before* adding them as
    557 /// either source or target to ReplacedValues (which typically means calling
    558 /// Expunge when a new node is first seen, since it may no longer be marked
    559 /// NewNode by the time it is added to ReplacedValues).
    560 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
    561   if (N->getNodeId() != NewNode)
    562     return;
    563 
    564   // If N is not remapped by ReplacedValues then there is nothing to do.
    565   unsigned i, e;
    566   for (i = 0, e = N->getNumValues(); i != e; ++i)
    567     if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
    568       break;
    569 
    570   if (i == e)
    571     return;
    572 
    573   // Remove N from all maps - this is expensive but rare.
    574 
    575   for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
    576        E = PromotedIntegers.end(); I != E; ++I) {
    577     assert(I->first.getNode() != N);
    578     RemapValue(I->second);
    579   }
    580 
    581   for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
    582        E = SoftenedFloats.end(); I != E; ++I) {
    583     assert(I->first.getNode() != N);
    584     RemapValue(I->second);
    585   }
    586 
    587   for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
    588        E = ScalarizedVectors.end(); I != E; ++I) {
    589     assert(I->first.getNode() != N);
    590     RemapValue(I->second);
    591   }
    592 
    593   for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
    594        E = WidenedVectors.end(); I != E; ++I) {
    595     assert(I->first.getNode() != N);
    596     RemapValue(I->second);
    597   }
    598 
    599   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    600        I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
    601     assert(I->first.getNode() != N);
    602     RemapValue(I->second.first);
    603     RemapValue(I->second.second);
    604   }
    605 
    606   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    607        I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
    608     assert(I->first.getNode() != N);
    609     RemapValue(I->second.first);
    610     RemapValue(I->second.second);
    611   }
    612 
    613   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    614        I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
    615     assert(I->first.getNode() != N);
    616     RemapValue(I->second.first);
    617     RemapValue(I->second.second);
    618   }
    619 
    620   for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
    621        E = ReplacedValues.end(); I != E; ++I)
    622     RemapValue(I->second);
    623 
    624   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    625     ReplacedValues.erase(SDValue(N, i));
    626 }
    627 
    628 /// If the specified value was already legalized to another value,
    629 /// replace it by that value.
    630 void DAGTypeLegalizer::RemapValue(SDValue &N) {
    631   DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
    632   if (I != ReplacedValues.end()) {
    633     // Use path compression to speed up future lookups if values get multiply
    634     // replaced with other values.
    635     RemapValue(I->second);
    636     N = I->second;
    637 
    638     // Note that it is possible to have N.getNode()->getNodeId() == NewNode at
    639     // this point because it is possible for a node to be put in the map before
    640     // being processed.
    641   }
    642 }
    643 
    644 namespace {
    645   /// This class is a DAGUpdateListener that listens for updates to nodes and
    646   /// recomputes their ready state.
    647   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
    648     DAGTypeLegalizer &DTL;
    649     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
    650   public:
    651     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
    652                                 SmallSetVector<SDNode*, 16> &nta)
    653       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
    654         DTL(dtl), NodesToAnalyze(nta) {}
    655 
    656     void NodeDeleted(SDNode *N, SDNode *E) override {
    657       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    658              N->getNodeId() != DAGTypeLegalizer::Processed &&
    659              "Invalid node ID for RAUW deletion!");
    660       // It is possible, though rare, for the deleted node N to occur as a
    661       // target in a map, so note the replacement N -> E in ReplacedValues.
    662       assert(E && "Node not replaced?");
    663       DTL.NoteDeletion(N, E);
    664 
    665       // In theory the deleted node could also have been scheduled for analysis.
    666       // So remove it from the set of nodes which will be analyzed.
    667       NodesToAnalyze.remove(N);
    668 
    669       // In general nothing needs to be done for E, since it didn't change but
    670       // only gained new uses.  However N -> E was just added to ReplacedValues,
    671       // and the result of a ReplacedValues mapping is not allowed to be marked
    672       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
    673       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
    674         NodesToAnalyze.insert(E);
    675     }
    676 
    677     void NodeUpdated(SDNode *N) override {
    678       // Node updates can mean pretty much anything.  It is possible that an
    679       // operand was set to something already processed (f.e.) in which case
    680       // this node could become ready.  Recompute its flags.
    681       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    682              N->getNodeId() != DAGTypeLegalizer::Processed &&
    683              "Invalid node ID for RAUW deletion!");
    684       N->setNodeId(DAGTypeLegalizer::NewNode);
    685       NodesToAnalyze.insert(N);
    686     }
    687   };
    688 }
    689 
    690 
    691 /// The specified value was legalized to the specified other value.
    692 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
    693 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
    694   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
    695 
    696   // If expansion produced new nodes, make sure they are properly marked.
    697   ExpungeNode(From.getNode());
    698   AnalyzeNewValue(To); // Expunges To.
    699 
    700   // Anything that used the old node should now use the new one.  Note that this
    701   // can potentially cause recursive merging.
    702   SmallSetVector<SDNode*, 16> NodesToAnalyze;
    703   NodeUpdateListener NUL(*this, NodesToAnalyze);
    704   do {
    705     DAG.ReplaceAllUsesOfValueWith(From, To);
    706 
    707     // The old node may still be present in a map like ExpandedIntegers or
    708     // PromotedIntegers.  Inform maps about the replacement.
    709     ReplacedValues[From] = To;
    710 
    711     // Process the list of nodes that need to be reanalyzed.
    712     while (!NodesToAnalyze.empty()) {
    713       SDNode *N = NodesToAnalyze.back();
    714       NodesToAnalyze.pop_back();
    715       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
    716         // The node was analyzed while reanalyzing an earlier node - it is safe
    717         // to skip.  Note that this is not a morphing node - otherwise it would
    718         // still be marked NewNode.
    719         continue;
    720 
    721       // Analyze the node's operands and recalculate the node ID.
    722       SDNode *M = AnalyzeNewNode(N);
    723       if (M != N) {
    724         // The node morphed into a different node.  Make everyone use the new
    725         // node instead.
    726         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
    727         assert(N->getNumValues() == M->getNumValues() &&
    728                "Node morphing changed the number of results!");
    729         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    730           SDValue OldVal(N, i);
    731           SDValue NewVal(M, i);
    732           if (M->getNodeId() == Processed)
    733             RemapValue(NewVal);
    734           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
    735           // OldVal may be a target of the ReplacedValues map which was marked
    736           // NewNode to force reanalysis because it was updated.  Ensure that
    737           // anything that ReplacedValues mapped to OldVal will now be mapped
    738           // all the way to NewVal.
    739           ReplacedValues[OldVal] = NewVal;
    740         }
    741         // The original node continues to exist in the DAG, marked NewNode.
    742       }
    743     }
    744     // When recursively update nodes with new nodes, it is possible to have
    745     // new uses of From due to CSE. If this happens, replace the new uses of
    746     // From with To.
    747   } while (!From.use_empty());
    748 }
    749 
    750 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
    751   assert(Result.getValueType() ==
    752          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    753          "Invalid type for promoted integer");
    754   AnalyzeNewValue(Result);
    755 
    756   SDValue &OpEntry = PromotedIntegers[Op];
    757   assert(!OpEntry.getNode() && "Node is already promoted!");
    758   OpEntry = Result;
    759 }
    760 
    761 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
    762   // f128 of x86_64 could be kept in SSE registers,
    763   // but sometimes softened to i128.
    764   assert((Result.getValueType() ==
    765           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) ||
    766           Op.getValueType() ==
    767           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
    768          "Invalid type for softened float");
    769   AnalyzeNewValue(Result);
    770 
    771   SDValue &OpEntry = SoftenedFloats[Op];
    772   // Allow repeated calls to save f128 type nodes
    773   // or any node with type that transforms to itself.
    774   // Many operations on these types are not softened.
    775   assert((!OpEntry.getNode()||
    776           Op.getValueType() ==
    777           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
    778          "Node is already converted to integer!");
    779   OpEntry = Result;
    780 }
    781 
    782 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
    783   assert(Result.getValueType() ==
    784          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    785          "Invalid type for promoted float");
    786   AnalyzeNewValue(Result);
    787 
    788   SDValue &OpEntry = PromotedFloats[Op];
    789   assert(!OpEntry.getNode() && "Node is already promoted!");
    790   OpEntry = Result;
    791 }
    792 
    793 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
    794   // Note that in some cases vector operation operands may be greater than
    795   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
    796   // a constant i8 operand.
    797   assert(Result.getValueType().getSizeInBits() >=
    798          Op.getValueType().getVectorElementType().getSizeInBits() &&
    799          "Invalid type for scalarized vector");
    800   AnalyzeNewValue(Result);
    801 
    802   SDValue &OpEntry = ScalarizedVectors[Op];
    803   assert(!OpEntry.getNode() && "Node is already scalarized!");
    804   OpEntry = Result;
    805 }
    806 
    807 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
    808                                           SDValue &Hi) {
    809   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    810   RemapValue(Entry.first);
    811   RemapValue(Entry.second);
    812   assert(Entry.first.getNode() && "Operand isn't expanded");
    813   Lo = Entry.first;
    814   Hi = Entry.second;
    815 }
    816 
    817 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
    818                                           SDValue Hi) {
    819   assert(Lo.getValueType() ==
    820          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    821          Hi.getValueType() == Lo.getValueType() &&
    822          "Invalid type for expanded integer");
    823   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    824   AnalyzeNewValue(Lo);
    825   AnalyzeNewValue(Hi);
    826 
    827   // Remember that this is the result of the node.
    828   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    829   assert(!Entry.first.getNode() && "Node already expanded");
    830   Entry.first = Lo;
    831   Entry.second = Hi;
    832 }
    833 
    834 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
    835                                         SDValue &Hi) {
    836   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    837   RemapValue(Entry.first);
    838   RemapValue(Entry.second);
    839   assert(Entry.first.getNode() && "Operand isn't expanded");
    840   Lo = Entry.first;
    841   Hi = Entry.second;
    842 }
    843 
    844 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
    845                                         SDValue Hi) {
    846   assert(Lo.getValueType() ==
    847          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    848          Hi.getValueType() == Lo.getValueType() &&
    849          "Invalid type for expanded float");
    850   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    851   AnalyzeNewValue(Lo);
    852   AnalyzeNewValue(Hi);
    853 
    854   // Remember that this is the result of the node.
    855   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    856   assert(!Entry.first.getNode() && "Node already expanded");
    857   Entry.first = Lo;
    858   Entry.second = Hi;
    859 }
    860 
    861 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
    862                                       SDValue &Hi) {
    863   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    864   RemapValue(Entry.first);
    865   RemapValue(Entry.second);
    866   assert(Entry.first.getNode() && "Operand isn't split");
    867   Lo = Entry.first;
    868   Hi = Entry.second;
    869 }
    870 
    871 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
    872                                       SDValue Hi) {
    873   assert(Lo.getValueType().getVectorElementType() ==
    874          Op.getValueType().getVectorElementType() &&
    875          2*Lo.getValueType().getVectorNumElements() ==
    876          Op.getValueType().getVectorNumElements() &&
    877          Hi.getValueType() == Lo.getValueType() &&
    878          "Invalid type for split vector");
    879   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    880   AnalyzeNewValue(Lo);
    881   AnalyzeNewValue(Hi);
    882 
    883   // Remember that this is the result of the node.
    884   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    885   assert(!Entry.first.getNode() && "Node already split");
    886   Entry.first = Lo;
    887   Entry.second = Hi;
    888 }
    889 
    890 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
    891   assert(Result.getValueType() ==
    892          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    893          "Invalid type for widened vector");
    894   AnalyzeNewValue(Result);
    895 
    896   SDValue &OpEntry = WidenedVectors[Op];
    897   assert(!OpEntry.getNode() && "Node already widened!");
    898   OpEntry = Result;
    899 }
    900 
    901 
    902 //===----------------------------------------------------------------------===//
    903 // Utilities.
    904 //===----------------------------------------------------------------------===//
    905 
    906 /// Convert to an integer of the same size.
    907 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
    908   unsigned BitWidth = Op.getValueType().getSizeInBits();
    909   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    910                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
    911 }
    912 
    913 /// Convert to a vector of integers of the same size.
    914 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
    915   assert(Op.getValueType().isVector() && "Only applies to vectors!");
    916   unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
    917   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
    918   unsigned NumElts = Op.getValueType().getVectorNumElements();
    919   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
    920                      EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
    921 }
    922 
    923 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
    924                                                EVT DestVT) {
    925   SDLoc dl(Op);
    926   // Create the stack frame object.  Make sure it is aligned for both
    927   // the source and destination types.
    928   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
    929   // Emit a store to the stack slot.
    930   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
    931                                MachinePointerInfo(), false, false, 0);
    932   // Result is a load from the stack slot.
    933   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
    934                      false, false, false, 0);
    935 }
    936 
    937 /// Replace the node's results with custom code provided by the target and
    938 /// return "true", or do nothing and return "false".
    939 /// The last parameter is FALSE if we are dealing with a node with legal
    940 /// result types and illegal operand. The second parameter denotes the type of
    941 /// illegal OperandNo in that case.
    942 /// The last parameter being TRUE means we are dealing with a
    943 /// node with illegal result types. The second parameter denotes the type of
    944 /// illegal ResNo in that case.
    945 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
    946   // See if the target wants to custom lower this node.
    947   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    948     return false;
    949 
    950   SmallVector<SDValue, 8> Results;
    951   if (LegalizeResult)
    952     TLI.ReplaceNodeResults(N, Results, DAG);
    953   else
    954     TLI.LowerOperationWrapper(N, Results, DAG);
    955 
    956   if (Results.empty())
    957     // The target didn't want to custom lower it after all.
    958     return false;
    959 
    960   // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
    961   // provide the same kind of custom splitting behavior.
    962   if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
    963     // We've legalized a return type by splitting it. If there is a chain,
    964     // replace that too.
    965     SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
    966     if (N->getNumValues() > 1)
    967       ReplaceValueWith(SDValue(N, 1), Results[2]);
    968     return true;
    969   }
    970 
    971   // Make everything that once used N's values now use those in Results instead.
    972   assert(Results.size() == N->getNumValues() &&
    973          "Custom lowering returned the wrong number of results!");
    974   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
    975     ReplaceValueWith(SDValue(N, i), Results[i]);
    976   }
    977   return true;
    978 }
    979 
    980 
    981 /// Widen the node's results with custom code provided by the target and return
    982 /// "true", or do nothing and return "false".
    983 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
    984   // See if the target wants to custom lower this node.
    985   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    986     return false;
    987 
    988   SmallVector<SDValue, 8> Results;
    989   TLI.ReplaceNodeResults(N, Results, DAG);
    990 
    991   if (Results.empty())
    992     // The target didn't want to custom widen lower its result after all.
    993     return false;
    994 
    995   // Update the widening map.
    996   assert(Results.size() == N->getNumValues() &&
    997          "Custom lowering returned the wrong number of results!");
    998   for (unsigned i = 0, e = Results.size(); i != e; ++i)
    999     SetWidenedVector(SDValue(N, i), Results[i]);
   1000   return true;
   1001 }
   1002 
   1003 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
   1004   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
   1005     if (i != ResNo)
   1006       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
   1007   return SDValue(N->getOperand(ResNo));
   1008 }
   1009 
   1010 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
   1011 /// given value.
   1012 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
   1013                                        SDValue &Lo, SDValue &Hi) {
   1014   SDLoc dl(Pair);
   1015   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
   1016   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
   1017                    DAG.getIntPtrConstant(0, dl));
   1018   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
   1019                    DAG.getIntPtrConstant(1, dl));
   1020 }
   1021 
   1022 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
   1023                                                   SDValue Index) {
   1024   SDLoc dl(Index);
   1025   // Make sure the index type is big enough to compute in.
   1026   Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy(DAG.getDataLayout()));
   1027 
   1028   // Calculate the element offset and add it to the pointer.
   1029   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
   1030   assert(EltSize * 8 == EltVT.getSizeInBits() &&
   1031          "Converting bits to bytes lost precision");
   1032 
   1033   Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
   1034                       DAG.getConstant(EltSize, dl, Index.getValueType()));
   1035   return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
   1036 }
   1037 
   1038 /// Build an integer with low bits Lo and high bits Hi.
   1039 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
   1040   // Arbitrarily use dlHi for result SDLoc
   1041   SDLoc dlHi(Hi);
   1042   SDLoc dlLo(Lo);
   1043   EVT LVT = Lo.getValueType();
   1044   EVT HVT = Hi.getValueType();
   1045   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
   1046                               LVT.getSizeInBits() + HVT.getSizeInBits());
   1047 
   1048   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
   1049   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
   1050   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
   1051                    DAG.getConstant(LVT.getSizeInBits(), dlHi,
   1052                                    TLI.getPointerTy(DAG.getDataLayout())));
   1053   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
   1054 }
   1055 
   1056 /// Convert the node into a libcall with the same prototype.
   1057 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
   1058                                      bool isSigned) {
   1059   unsigned NumOps = N->getNumOperands();
   1060   SDLoc dl(N);
   1061   if (NumOps == 0) {
   1062     return TLI.makeLibCall(DAG, LC, N->getValueType(0), None, isSigned,
   1063                            dl).first;
   1064   } else if (NumOps == 1) {
   1065     SDValue Op = N->getOperand(0);
   1066     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Op, isSigned,
   1067                            dl).first;
   1068   } else if (NumOps == 2) {
   1069     SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
   1070     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned,
   1071                            dl).first;
   1072   }
   1073   SmallVector<SDValue, 8> Ops(NumOps);
   1074   for (unsigned i = 0; i < NumOps; ++i)
   1075     Ops[i] = N->getOperand(i);
   1076 
   1077   return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned, dl).first;
   1078 }
   1079 
   1080 /// Expand a node into a call to a libcall. Similar to ExpandLibCall except that
   1081 /// the first operand is the in-chain.
   1082 std::pair<SDValue, SDValue>
   1083 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node,
   1084                                      bool isSigned) {
   1085   SDValue InChain = Node->getOperand(0);
   1086 
   1087   TargetLowering::ArgListTy Args;
   1088   TargetLowering::ArgListEntry Entry;
   1089   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
   1090     EVT ArgVT = Node->getOperand(i).getValueType();
   1091     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1092     Entry.Node = Node->getOperand(i);
   1093     Entry.Ty = ArgTy;
   1094     Entry.isSExt = isSigned;
   1095     Entry.isZExt = !isSigned;
   1096     Args.push_back(Entry);
   1097   }
   1098   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1099                                          TLI.getPointerTy(DAG.getDataLayout()));
   1100 
   1101   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1102 
   1103   TargetLowering::CallLoweringInfo CLI(DAG);
   1104   CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
   1105     .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
   1106     .setSExtResult(isSigned).setZExtResult(!isSigned);
   1107 
   1108   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
   1109 
   1110   return CallInfo;
   1111 }
   1112 
   1113 /// Promote the given target boolean to a target boolean of the given type.
   1114 /// A target boolean is an integer value, not necessarily of type i1, the bits
   1115 /// of which conform to getBooleanContents.
   1116 ///
   1117 /// ValVT is the type of values that produced the boolean.
   1118 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
   1119   SDLoc dl(Bool);
   1120   EVT BoolVT = getSetCCResultType(ValVT);
   1121   ISD::NodeType ExtendCode =
   1122       TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
   1123   return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
   1124 }
   1125 
   1126 /// Widen the given target boolean to a target boolean of the given type.
   1127 /// The boolean vector is widened and then promoted to match the target boolean
   1128 /// type of the given ValVT.
   1129 SDValue DAGTypeLegalizer::WidenTargetBoolean(SDValue Bool, EVT ValVT,
   1130                                              bool WithZeroes) {
   1131   SDLoc dl(Bool);
   1132   EVT BoolVT = Bool.getValueType();
   1133 
   1134   assert(ValVT.getVectorNumElements() > BoolVT.getVectorNumElements() &&
   1135          TLI.isTypeLegal(ValVT) &&
   1136          "Unexpected types in WidenTargetBoolean");
   1137   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), BoolVT.getScalarType(),
   1138                                 ValVT.getVectorNumElements());
   1139   Bool = ModifyToType(Bool, WideVT, WithZeroes);
   1140   return PromoteTargetBoolean(Bool, ValVT);
   1141 }
   1142 
   1143 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
   1144 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1145                                     EVT LoVT, EVT HiVT,
   1146                                     SDValue &Lo, SDValue &Hi) {
   1147   SDLoc dl(Op);
   1148   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
   1149          Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
   1150   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
   1151   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
   1152                    DAG.getConstant(LoVT.getSizeInBits(), dl,
   1153                                    TLI.getPointerTy(DAG.getDataLayout())));
   1154   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
   1155 }
   1156 
   1157 /// Return the lower and upper halves of Op's bits in a value type half the
   1158 /// size of Op's.
   1159 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1160                                     SDValue &Lo, SDValue &Hi) {
   1161   EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
   1162                                  Op.getValueType().getSizeInBits()/2);
   1163   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
   1164 }
   1165 
   1166 
   1167 //===----------------------------------------------------------------------===//
   1168 //  Entry Point
   1169 //===----------------------------------------------------------------------===//
   1170 
   1171 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
   1172 /// natively supported by the target. Returns "true" if it made any changes.
   1173 ///
   1174 /// Note that this is an involved process that may invalidate pointers into
   1175 /// the graph.
   1176 bool SelectionDAG::LegalizeTypes() {
   1177   return DAGTypeLegalizer(*this).run();
   1178 }
   1179