Home | History | Annotate | Download | only in Writer
      1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the ValueEnumerator class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ValueEnumerator.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/IR/Constants.h"
     18 #include "llvm/IR/DebugInfoMetadata.h"
     19 #include "llvm/IR/DerivedTypes.h"
     20 #include "llvm/IR/Instructions.h"
     21 #include "llvm/IR/Module.h"
     22 #include "llvm/IR/UseListOrder.h"
     23 #include "llvm/IR/ValueSymbolTable.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include <algorithm>
     27 using namespace llvm;
     28 
     29 namespace {
     30 struct OrderMap {
     31   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
     32   unsigned LastGlobalConstantID;
     33   unsigned LastGlobalValueID;
     34 
     35   OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
     36 
     37   bool isGlobalConstant(unsigned ID) const {
     38     return ID <= LastGlobalConstantID;
     39   }
     40   bool isGlobalValue(unsigned ID) const {
     41     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
     42   }
     43 
     44   unsigned size() const { return IDs.size(); }
     45   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
     46   std::pair<unsigned, bool> lookup(const Value *V) const {
     47     return IDs.lookup(V);
     48   }
     49   void index(const Value *V) {
     50     // Explicitly sequence get-size and insert-value operations to avoid UB.
     51     unsigned ID = IDs.size() + 1;
     52     IDs[V].first = ID;
     53   }
     54 };
     55 }
     56 
     57 static void orderValue(const Value *V, OrderMap &OM) {
     58   if (OM.lookup(V).first)
     59     return;
     60 
     61   if (const Constant *C = dyn_cast<Constant>(V))
     62     if (C->getNumOperands() && !isa<GlobalValue>(C))
     63       for (const Value *Op : C->operands())
     64         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
     65           orderValue(Op, OM);
     66 
     67   // Note: we cannot cache this lookup above, since inserting into the map
     68   // changes the map's size, and thus affects the other IDs.
     69   OM.index(V);
     70 }
     71 
     72 static OrderMap orderModule(const Module &M) {
     73   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
     74   // and ValueEnumerator::incorporateFunction().
     75   OrderMap OM;
     76 
     77   // In the reader, initializers of GlobalValues are set *after* all the
     78   // globals have been read.  Rather than awkwardly modeling this behaviour
     79   // directly in predictValueUseListOrderImpl(), just assign IDs to
     80   // initializers of GlobalValues before GlobalValues themselves to model this
     81   // implicitly.
     82   for (const GlobalVariable &G : M.globals())
     83     if (G.hasInitializer())
     84       if (!isa<GlobalValue>(G.getInitializer()))
     85         orderValue(G.getInitializer(), OM);
     86   for (const GlobalAlias &A : M.aliases())
     87     if (!isa<GlobalValue>(A.getAliasee()))
     88       orderValue(A.getAliasee(), OM);
     89   for (const GlobalIFunc &I : M.ifuncs())
     90     if (!isa<GlobalValue>(I.getResolver()))
     91       orderValue(I.getResolver(), OM);
     92   for (const Function &F : M) {
     93     for (const Use &U : F.operands())
     94       if (!isa<GlobalValue>(U.get()))
     95         orderValue(U.get(), OM);
     96   }
     97   OM.LastGlobalConstantID = OM.size();
     98 
     99   // Initializers of GlobalValues are processed in
    100   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
    101   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
    102   // by giving IDs in reverse order.
    103   //
    104   // Since GlobalValues never reference each other directly (just through
    105   // initializers), their relative IDs only matter for determining order of
    106   // uses in their initializers.
    107   for (const Function &F : M)
    108     orderValue(&F, OM);
    109   for (const GlobalAlias &A : M.aliases())
    110     orderValue(&A, OM);
    111   for (const GlobalIFunc &I : M.ifuncs())
    112     orderValue(&I, OM);
    113   for (const GlobalVariable &G : M.globals())
    114     orderValue(&G, OM);
    115   OM.LastGlobalValueID = OM.size();
    116 
    117   for (const Function &F : M) {
    118     if (F.isDeclaration())
    119       continue;
    120     // Here we need to match the union of ValueEnumerator::incorporateFunction()
    121     // and WriteFunction().  Basic blocks are implicitly declared before
    122     // anything else (by declaring their size).
    123     for (const BasicBlock &BB : F)
    124       orderValue(&BB, OM);
    125     for (const Argument &A : F.args())
    126       orderValue(&A, OM);
    127     for (const BasicBlock &BB : F)
    128       for (const Instruction &I : BB)
    129         for (const Value *Op : I.operands())
    130           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
    131               isa<InlineAsm>(*Op))
    132             orderValue(Op, OM);
    133     for (const BasicBlock &BB : F)
    134       for (const Instruction &I : BB)
    135         orderValue(&I, OM);
    136   }
    137   return OM;
    138 }
    139 
    140 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
    141                                          unsigned ID, const OrderMap &OM,
    142                                          UseListOrderStack &Stack) {
    143   // Predict use-list order for this one.
    144   typedef std::pair<const Use *, unsigned> Entry;
    145   SmallVector<Entry, 64> List;
    146   for (const Use &U : V->uses())
    147     // Check if this user will be serialized.
    148     if (OM.lookup(U.getUser()).first)
    149       List.push_back(std::make_pair(&U, List.size()));
    150 
    151   if (List.size() < 2)
    152     // We may have lost some users.
    153     return;
    154 
    155   bool IsGlobalValue = OM.isGlobalValue(ID);
    156   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
    157     const Use *LU = L.first;
    158     const Use *RU = R.first;
    159     if (LU == RU)
    160       return false;
    161 
    162     auto LID = OM.lookup(LU->getUser()).first;
    163     auto RID = OM.lookup(RU->getUser()).first;
    164 
    165     // Global values are processed in reverse order.
    166     //
    167     // Moreover, initializers of GlobalValues are set *after* all the globals
    168     // have been read (despite having earlier IDs).  Rather than awkwardly
    169     // modeling this behaviour here, orderModule() has assigned IDs to
    170     // initializers of GlobalValues before GlobalValues themselves.
    171     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
    172       return LID < RID;
    173 
    174     // If ID is 4, then expect: 7 6 5 1 2 3.
    175     if (LID < RID) {
    176       if (RID <= ID)
    177         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
    178           return true;
    179       return false;
    180     }
    181     if (RID < LID) {
    182       if (LID <= ID)
    183         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
    184           return false;
    185       return true;
    186     }
    187 
    188     // LID and RID are equal, so we have different operands of the same user.
    189     // Assume operands are added in order for all instructions.
    190     if (LID <= ID)
    191       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
    192         return LU->getOperandNo() < RU->getOperandNo();
    193     return LU->getOperandNo() > RU->getOperandNo();
    194   });
    195 
    196   if (std::is_sorted(
    197           List.begin(), List.end(),
    198           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
    199     // Order is already correct.
    200     return;
    201 
    202   // Store the shuffle.
    203   Stack.emplace_back(V, F, List.size());
    204   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
    205   for (size_t I = 0, E = List.size(); I != E; ++I)
    206     Stack.back().Shuffle[I] = List[I].second;
    207 }
    208 
    209 static void predictValueUseListOrder(const Value *V, const Function *F,
    210                                      OrderMap &OM, UseListOrderStack &Stack) {
    211   auto &IDPair = OM[V];
    212   assert(IDPair.first && "Unmapped value");
    213   if (IDPair.second)
    214     // Already predicted.
    215     return;
    216 
    217   // Do the actual prediction.
    218   IDPair.second = true;
    219   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
    220     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
    221 
    222   // Recursive descent into constants.
    223   if (const Constant *C = dyn_cast<Constant>(V))
    224     if (C->getNumOperands()) // Visit GlobalValues.
    225       for (const Value *Op : C->operands())
    226         if (isa<Constant>(Op)) // Visit GlobalValues.
    227           predictValueUseListOrder(Op, F, OM, Stack);
    228 }
    229 
    230 static UseListOrderStack predictUseListOrder(const Module &M) {
    231   OrderMap OM = orderModule(M);
    232 
    233   // Use-list orders need to be serialized after all the users have been added
    234   // to a value, or else the shuffles will be incomplete.  Store them per
    235   // function in a stack.
    236   //
    237   // Aside from function order, the order of values doesn't matter much here.
    238   UseListOrderStack Stack;
    239 
    240   // We want to visit the functions backward now so we can list function-local
    241   // constants in the last Function they're used in.  Module-level constants
    242   // have already been visited above.
    243   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
    244     const Function &F = *I;
    245     if (F.isDeclaration())
    246       continue;
    247     for (const BasicBlock &BB : F)
    248       predictValueUseListOrder(&BB, &F, OM, Stack);
    249     for (const Argument &A : F.args())
    250       predictValueUseListOrder(&A, &F, OM, Stack);
    251     for (const BasicBlock &BB : F)
    252       for (const Instruction &I : BB)
    253         for (const Value *Op : I.operands())
    254           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
    255             predictValueUseListOrder(Op, &F, OM, Stack);
    256     for (const BasicBlock &BB : F)
    257       for (const Instruction &I : BB)
    258         predictValueUseListOrder(&I, &F, OM, Stack);
    259   }
    260 
    261   // Visit globals last, since the module-level use-list block will be seen
    262   // before the function bodies are processed.
    263   for (const GlobalVariable &G : M.globals())
    264     predictValueUseListOrder(&G, nullptr, OM, Stack);
    265   for (const Function &F : M)
    266     predictValueUseListOrder(&F, nullptr, OM, Stack);
    267   for (const GlobalAlias &A : M.aliases())
    268     predictValueUseListOrder(&A, nullptr, OM, Stack);
    269   for (const GlobalIFunc &I : M.ifuncs())
    270     predictValueUseListOrder(&I, nullptr, OM, Stack);
    271   for (const GlobalVariable &G : M.globals())
    272     if (G.hasInitializer())
    273       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
    274   for (const GlobalAlias &A : M.aliases())
    275     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
    276   for (const GlobalIFunc &I : M.ifuncs())
    277     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
    278   for (const Function &F : M) {
    279     for (const Use &U : F.operands())
    280       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
    281   }
    282 
    283   return Stack;
    284 }
    285 
    286 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
    287   return V.first->getType()->isIntOrIntVectorTy();
    288 }
    289 
    290 ValueEnumerator::ValueEnumerator(const Module &M,
    291                                  bool ShouldPreserveUseListOrder)
    292     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
    293   if (ShouldPreserveUseListOrder)
    294     UseListOrders = predictUseListOrder(M);
    295 
    296   // Enumerate the global variables.
    297   for (const GlobalVariable &GV : M.globals())
    298     EnumerateValue(&GV);
    299 
    300   // Enumerate the functions.
    301   for (const Function & F : M) {
    302     EnumerateValue(&F);
    303     EnumerateAttributes(F.getAttributes());
    304   }
    305 
    306   // Enumerate the aliases.
    307   for (const GlobalAlias &GA : M.aliases())
    308     EnumerateValue(&GA);
    309 
    310   // Enumerate the ifuncs.
    311   for (const GlobalIFunc &GIF : M.ifuncs())
    312     EnumerateValue(&GIF);
    313 
    314   // Remember what is the cutoff between globalvalue's and other constants.
    315   unsigned FirstConstant = Values.size();
    316 
    317   // Enumerate the global variable initializers.
    318   for (const GlobalVariable &GV : M.globals())
    319     if (GV.hasInitializer())
    320       EnumerateValue(GV.getInitializer());
    321 
    322   // Enumerate the aliasees.
    323   for (const GlobalAlias &GA : M.aliases())
    324     EnumerateValue(GA.getAliasee());
    325 
    326   // Enumerate the ifunc resolvers.
    327   for (const GlobalIFunc &GIF : M.ifuncs())
    328     EnumerateValue(GIF.getResolver());
    329 
    330   // Enumerate any optional Function data.
    331   for (const Function &F : M)
    332     for (const Use &U : F.operands())
    333       EnumerateValue(U.get());
    334 
    335   // Enumerate the metadata type.
    336   //
    337   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
    338   // only encodes the metadata type when it's used as a value.
    339   EnumerateType(Type::getMetadataTy(M.getContext()));
    340 
    341   // Insert constants and metadata that are named at module level into the slot
    342   // pool so that the module symbol table can refer to them...
    343   EnumerateValueSymbolTable(M.getValueSymbolTable());
    344   EnumerateNamedMetadata(M);
    345 
    346   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
    347   for (const GlobalVariable &GV : M.globals()) {
    348     MDs.clear();
    349     GV.getAllMetadata(MDs);
    350     for (const auto &I : MDs)
    351       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
    352       // to write metadata to the global variable's own metadata block
    353       // (PR28134).
    354       EnumerateMetadata(nullptr, I.second);
    355   }
    356 
    357   // Enumerate types used by function bodies and argument lists.
    358   for (const Function &F : M) {
    359     for (const Argument &A : F.args())
    360       EnumerateType(A.getType());
    361 
    362     // Enumerate metadata attached to this function.
    363     MDs.clear();
    364     F.getAllMetadata(MDs);
    365     for (const auto &I : MDs)
    366       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
    367 
    368     for (const BasicBlock &BB : F)
    369       for (const Instruction &I : BB) {
    370         for (const Use &Op : I.operands()) {
    371           auto *MD = dyn_cast<MetadataAsValue>(&Op);
    372           if (!MD) {
    373             EnumerateOperandType(Op);
    374             continue;
    375           }
    376 
    377           // Local metadata is enumerated during function-incorporation.
    378           if (isa<LocalAsMetadata>(MD->getMetadata()))
    379             continue;
    380 
    381           EnumerateMetadata(&F, MD->getMetadata());
    382         }
    383         EnumerateType(I.getType());
    384         if (const CallInst *CI = dyn_cast<CallInst>(&I))
    385           EnumerateAttributes(CI->getAttributes());
    386         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
    387           EnumerateAttributes(II->getAttributes());
    388 
    389         // Enumerate metadata attached with this instruction.
    390         MDs.clear();
    391         I.getAllMetadataOtherThanDebugLoc(MDs);
    392         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
    393           EnumerateMetadata(&F, MDs[i].second);
    394 
    395         // Don't enumerate the location directly -- it has a special record
    396         // type -- but enumerate its operands.
    397         if (DILocation *L = I.getDebugLoc())
    398           for (const Metadata *Op : L->operands())
    399             EnumerateMetadata(&F, Op);
    400       }
    401   }
    402 
    403   // Optimize constant ordering.
    404   OptimizeConstants(FirstConstant, Values.size());
    405 
    406   // Organize metadata ordering.
    407   organizeMetadata();
    408 }
    409 
    410 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
    411   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
    412   assert(I != InstructionMap.end() && "Instruction is not mapped!");
    413   return I->second;
    414 }
    415 
    416 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
    417   unsigned ComdatID = Comdats.idFor(C);
    418   assert(ComdatID && "Comdat not found!");
    419   return ComdatID;
    420 }
    421 
    422 void ValueEnumerator::setInstructionID(const Instruction *I) {
    423   InstructionMap[I] = InstructionCount++;
    424 }
    425 
    426 unsigned ValueEnumerator::getValueID(const Value *V) const {
    427   if (auto *MD = dyn_cast<MetadataAsValue>(V))
    428     return getMetadataID(MD->getMetadata());
    429 
    430   ValueMapType::const_iterator I = ValueMap.find(V);
    431   assert(I != ValueMap.end() && "Value not in slotcalculator!");
    432   return I->second-1;
    433 }
    434 
    435 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
    436   print(dbgs(), ValueMap, "Default");
    437   dbgs() << '\n';
    438   print(dbgs(), MetadataMap, "MetaData");
    439   dbgs() << '\n';
    440 }
    441 
    442 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
    443                             const char *Name) const {
    444 
    445   OS << "Map Name: " << Name << "\n";
    446   OS << "Size: " << Map.size() << "\n";
    447   for (ValueMapType::const_iterator I = Map.begin(),
    448          E = Map.end(); I != E; ++I) {
    449 
    450     const Value *V = I->first;
    451     if (V->hasName())
    452       OS << "Value: " << V->getName();
    453     else
    454       OS << "Value: [null]\n";
    455     V->dump();
    456 
    457     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
    458     for (const Use &U : V->uses()) {
    459       if (&U != &*V->use_begin())
    460         OS << ",";
    461       if(U->hasName())
    462         OS << " " << U->getName();
    463       else
    464         OS << " [null]";
    465 
    466     }
    467     OS <<  "\n\n";
    468   }
    469 }
    470 
    471 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
    472                             const char *Name) const {
    473 
    474   OS << "Map Name: " << Name << "\n";
    475   OS << "Size: " << Map.size() << "\n";
    476   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
    477     const Metadata *MD = I->first;
    478     OS << "Metadata: slot = " << I->second.ID << "\n";
    479     OS << "Metadata: function = " << I->second.F << "\n";
    480     MD->print(OS);
    481     OS << "\n";
    482   }
    483 }
    484 
    485 /// OptimizeConstants - Reorder constant pool for denser encoding.
    486 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
    487   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
    488 
    489   if (ShouldPreserveUseListOrder)
    490     // Optimizing constants makes the use-list order difficult to predict.
    491     // Disable it for now when trying to preserve the order.
    492     return;
    493 
    494   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
    495                    [this](const std::pair<const Value *, unsigned> &LHS,
    496                           const std::pair<const Value *, unsigned> &RHS) {
    497     // Sort by plane.
    498     if (LHS.first->getType() != RHS.first->getType())
    499       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
    500     // Then by frequency.
    501     return LHS.second > RHS.second;
    502   });
    503 
    504   // Ensure that integer and vector of integer constants are at the start of the
    505   // constant pool.  This is important so that GEP structure indices come before
    506   // gep constant exprs.
    507   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
    508                         isIntOrIntVectorValue);
    509 
    510   // Rebuild the modified portion of ValueMap.
    511   for (; CstStart != CstEnd; ++CstStart)
    512     ValueMap[Values[CstStart].first] = CstStart+1;
    513 }
    514 
    515 
    516 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
    517 /// table into the values table.
    518 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
    519   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
    520        VI != VE; ++VI)
    521     EnumerateValue(VI->getValue());
    522 }
    523 
    524 /// Insert all of the values referenced by named metadata in the specified
    525 /// module.
    526 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
    527   for (const auto &I : M.named_metadata())
    528     EnumerateNamedMDNode(&I);
    529 }
    530 
    531 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
    532   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
    533     EnumerateMetadata(nullptr, MD->getOperand(i));
    534 }
    535 
    536 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
    537   return F ? getValueID(F) + 1 : 0;
    538 }
    539 
    540 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
    541   EnumerateMetadata(getMetadataFunctionID(F), MD);
    542 }
    543 
    544 void ValueEnumerator::EnumerateFunctionLocalMetadata(
    545     const Function &F, const LocalAsMetadata *Local) {
    546   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
    547 }
    548 
    549 void ValueEnumerator::dropFunctionFromMetadata(
    550     MetadataMapType::value_type &FirstMD) {
    551   SmallVector<const MDNode *, 64> Worklist;
    552   auto push = [this, &Worklist](MetadataMapType::value_type &MD) {
    553     auto &Entry = MD.second;
    554 
    555     // Nothing to do if this metadata isn't tagged.
    556     if (!Entry.F)
    557       return;
    558 
    559     // Drop the function tag.
    560     Entry.F = 0;
    561 
    562     // If this is has an ID and is an MDNode, then its operands have entries as
    563     // well.  We need to drop the function from them too.
    564     if (Entry.ID)
    565       if (auto *N = dyn_cast<MDNode>(MD.first))
    566         Worklist.push_back(N);
    567   };
    568   push(FirstMD);
    569   while (!Worklist.empty())
    570     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
    571       if (!Op)
    572         continue;
    573       auto MD = MetadataMap.find(Op);
    574       if (MD != MetadataMap.end())
    575         push(*MD);
    576     }
    577 }
    578 
    579 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
    580   // It's vital for reader efficiency that uniqued subgraphs are done in
    581   // post-order; it's expensive when their operands have forward references.
    582   // If a distinct node is referenced from a uniqued node, it'll be delayed
    583   // until the uniqued subgraph has been completely traversed.
    584   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
    585 
    586   // Start by enumerating MD, and then work through its transitive operands in
    587   // post-order.  This requires a depth-first search.
    588   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
    589   if (const MDNode *N = enumerateMetadataImpl(F, MD))
    590     Worklist.push_back(std::make_pair(N, N->op_begin()));
    591 
    592   while (!Worklist.empty()) {
    593     const MDNode *N = Worklist.back().first;
    594 
    595     // Enumerate operands until we hit a new node.  We need to traverse these
    596     // nodes' operands before visiting the rest of N's operands.
    597     MDNode::op_iterator I = std::find_if(
    598         Worklist.back().second, N->op_end(),
    599         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
    600     if (I != N->op_end()) {
    601       auto *Op = cast<MDNode>(*I);
    602       Worklist.back().second = ++I;
    603 
    604       // Delay traversing Op if it's a distinct node and N is uniqued.
    605       if (Op->isDistinct() && !N->isDistinct())
    606         DelayedDistinctNodes.push_back(Op);
    607       else
    608         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
    609       continue;
    610     }
    611 
    612     // All the operands have been visited.  Now assign an ID.
    613     Worklist.pop_back();
    614     MDs.push_back(N);
    615     MetadataMap[N].ID = MDs.size();
    616 
    617     // Flush out any delayed distinct nodes; these are all the distinct nodes
    618     // that are leaves in last uniqued subgraph.
    619     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
    620       for (const MDNode *N : DelayedDistinctNodes)
    621         Worklist.push_back(std::make_pair(N, N->op_begin()));
    622       DelayedDistinctNodes.clear();
    623     }
    624   }
    625 }
    626 
    627 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
    628   if (!MD)
    629     return nullptr;
    630 
    631   assert(
    632       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
    633       "Invalid metadata kind");
    634 
    635   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
    636   MDIndex &Entry = Insertion.first->second;
    637   if (!Insertion.second) {
    638     // Already mapped.  If F doesn't match the function tag, drop it.
    639     if (Entry.hasDifferentFunction(F))
    640       dropFunctionFromMetadata(*Insertion.first);
    641     return nullptr;
    642   }
    643 
    644   // Don't assign IDs to metadata nodes.
    645   if (auto *N = dyn_cast<MDNode>(MD))
    646     return N;
    647 
    648   // Save the metadata.
    649   MDs.push_back(MD);
    650   Entry.ID = MDs.size();
    651 
    652   // Enumerate the constant, if any.
    653   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
    654     EnumerateValue(C->getValue());
    655 
    656   return nullptr;
    657 }
    658 
    659 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
    660 /// information reachable from the metadata.
    661 void ValueEnumerator::EnumerateFunctionLocalMetadata(
    662     unsigned F, const LocalAsMetadata *Local) {
    663   assert(F && "Expected a function");
    664 
    665   // Check to see if it's already in!
    666   MDIndex &Index = MetadataMap[Local];
    667   if (Index.ID) {
    668     assert(Index.F == F && "Expected the same function");
    669     return;
    670   }
    671 
    672   MDs.push_back(Local);
    673   Index.F = F;
    674   Index.ID = MDs.size();
    675 
    676   EnumerateValue(Local->getValue());
    677 }
    678 
    679 static unsigned getMetadataTypeOrder(const Metadata *MD) {
    680   // Strings are emitted in bulk and must come first.
    681   if (isa<MDString>(MD))
    682     return 0;
    683 
    684   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
    685   // to the front since we can detect it.
    686   auto *N = dyn_cast<MDNode>(MD);
    687   if (!N)
    688     return 1;
    689 
    690   // The reader is fast forward references for distinct node operands, but slow
    691   // when uniqued operands are unresolved.
    692   return N->isDistinct() ? 2 : 3;
    693 }
    694 
    695 void ValueEnumerator::organizeMetadata() {
    696   assert(MetadataMap.size() == MDs.size() &&
    697          "Metadata map and vector out of sync");
    698 
    699   if (MDs.empty())
    700     return;
    701 
    702   // Copy out the index information from MetadataMap in order to choose a new
    703   // order.
    704   SmallVector<MDIndex, 64> Order;
    705   Order.reserve(MetadataMap.size());
    706   for (const Metadata *MD : MDs)
    707     Order.push_back(MetadataMap.lookup(MD));
    708 
    709   // Partition:
    710   //   - by function, then
    711   //   - by isa<MDString>
    712   // and then sort by the original/current ID.  Since the IDs are guaranteed to
    713   // be unique, the result of std::sort will be deterministic.  There's no need
    714   // for std::stable_sort.
    715   std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
    716     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
    717            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
    718   });
    719 
    720   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
    721   // and fix up MetadataMap.
    722   std::vector<const Metadata *> OldMDs = std::move(MDs);
    723   MDs.reserve(OldMDs.size());
    724   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
    725     auto *MD = Order[I].get(OldMDs);
    726     MDs.push_back(MD);
    727     MetadataMap[MD].ID = I + 1;
    728     if (isa<MDString>(MD))
    729       ++NumMDStrings;
    730   }
    731 
    732   // Return early if there's nothing for the functions.
    733   if (MDs.size() == Order.size())
    734     return;
    735 
    736   // Build the function metadata ranges.
    737   MDRange R;
    738   FunctionMDs.reserve(OldMDs.size());
    739   unsigned PrevF = 0;
    740   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
    741        ++I) {
    742     unsigned F = Order[I].F;
    743     if (!PrevF) {
    744       PrevF = F;
    745     } else if (PrevF != F) {
    746       R.Last = FunctionMDs.size();
    747       std::swap(R, FunctionMDInfo[PrevF]);
    748       R.First = FunctionMDs.size();
    749 
    750       ID = MDs.size();
    751       PrevF = F;
    752     }
    753 
    754     auto *MD = Order[I].get(OldMDs);
    755     FunctionMDs.push_back(MD);
    756     MetadataMap[MD].ID = ++ID;
    757     if (isa<MDString>(MD))
    758       ++R.NumStrings;
    759   }
    760   R.Last = FunctionMDs.size();
    761   FunctionMDInfo[PrevF] = R;
    762 }
    763 
    764 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
    765   NumModuleMDs = MDs.size();
    766 
    767   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
    768   NumMDStrings = R.NumStrings;
    769   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
    770              FunctionMDs.begin() + R.Last);
    771 }
    772 
    773 void ValueEnumerator::EnumerateValue(const Value *V) {
    774   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
    775   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
    776 
    777   // Check to see if it's already in!
    778   unsigned &ValueID = ValueMap[V];
    779   if (ValueID) {
    780     // Increment use count.
    781     Values[ValueID-1].second++;
    782     return;
    783   }
    784 
    785   if (auto *GO = dyn_cast<GlobalObject>(V))
    786     if (const Comdat *C = GO->getComdat())
    787       Comdats.insert(C);
    788 
    789   // Enumerate the type of this value.
    790   EnumerateType(V->getType());
    791 
    792   if (const Constant *C = dyn_cast<Constant>(V)) {
    793     if (isa<GlobalValue>(C)) {
    794       // Initializers for globals are handled explicitly elsewhere.
    795     } else if (C->getNumOperands()) {
    796       // If a constant has operands, enumerate them.  This makes sure that if a
    797       // constant has uses (for example an array of const ints), that they are
    798       // inserted also.
    799 
    800       // We prefer to enumerate them with values before we enumerate the user
    801       // itself.  This makes it more likely that we can avoid forward references
    802       // in the reader.  We know that there can be no cycles in the constants
    803       // graph that don't go through a global variable.
    804       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
    805            I != E; ++I)
    806         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
    807           EnumerateValue(*I);
    808 
    809       // Finally, add the value.  Doing this could make the ValueID reference be
    810       // dangling, don't reuse it.
    811       Values.push_back(std::make_pair(V, 1U));
    812       ValueMap[V] = Values.size();
    813       return;
    814     }
    815   }
    816 
    817   // Add the value.
    818   Values.push_back(std::make_pair(V, 1U));
    819   ValueID = Values.size();
    820 }
    821 
    822 
    823 void ValueEnumerator::EnumerateType(Type *Ty) {
    824   unsigned *TypeID = &TypeMap[Ty];
    825 
    826   // We've already seen this type.
    827   if (*TypeID)
    828     return;
    829 
    830   // If it is a non-anonymous struct, mark the type as being visited so that we
    831   // don't recursively visit it.  This is safe because we allow forward
    832   // references of these in the bitcode reader.
    833   if (StructType *STy = dyn_cast<StructType>(Ty))
    834     if (!STy->isLiteral())
    835       *TypeID = ~0U;
    836 
    837   // Enumerate all of the subtypes before we enumerate this type.  This ensures
    838   // that the type will be enumerated in an order that can be directly built.
    839   for (Type *SubTy : Ty->subtypes())
    840     EnumerateType(SubTy);
    841 
    842   // Refresh the TypeID pointer in case the table rehashed.
    843   TypeID = &TypeMap[Ty];
    844 
    845   // Check to see if we got the pointer another way.  This can happen when
    846   // enumerating recursive types that hit the base case deeper than they start.
    847   //
    848   // If this is actually a struct that we are treating as forward ref'able,
    849   // then emit the definition now that all of its contents are available.
    850   if (*TypeID && *TypeID != ~0U)
    851     return;
    852 
    853   // Add this type now that its contents are all happily enumerated.
    854   Types.push_back(Ty);
    855 
    856   *TypeID = Types.size();
    857 }
    858 
    859 // Enumerate the types for the specified value.  If the value is a constant,
    860 // walk through it, enumerating the types of the constant.
    861 void ValueEnumerator::EnumerateOperandType(const Value *V) {
    862   EnumerateType(V->getType());
    863 
    864   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
    865 
    866   const Constant *C = dyn_cast<Constant>(V);
    867   if (!C)
    868     return;
    869 
    870   // If this constant is already enumerated, ignore it, we know its type must
    871   // be enumerated.
    872   if (ValueMap.count(C))
    873     return;
    874 
    875   // This constant may have operands, make sure to enumerate the types in
    876   // them.
    877   for (const Value *Op : C->operands()) {
    878     // Don't enumerate basic blocks here, this happens as operands to
    879     // blockaddress.
    880     if (isa<BasicBlock>(Op))
    881       continue;
    882 
    883     EnumerateOperandType(Op);
    884   }
    885 }
    886 
    887 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
    888   if (PAL.isEmpty()) return;  // null is always 0.
    889 
    890   // Do a lookup.
    891   unsigned &Entry = AttributeMap[PAL];
    892   if (Entry == 0) {
    893     // Never saw this before, add it.
    894     Attribute.push_back(PAL);
    895     Entry = Attribute.size();
    896   }
    897 
    898   // Do lookups for all attribute groups.
    899   for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
    900     AttributeSet AS = PAL.getSlotAttributes(i);
    901     unsigned &Entry = AttributeGroupMap[AS];
    902     if (Entry == 0) {
    903       AttributeGroups.push_back(AS);
    904       Entry = AttributeGroups.size();
    905     }
    906   }
    907 }
    908 
    909 void ValueEnumerator::incorporateFunction(const Function &F) {
    910   InstructionCount = 0;
    911   NumModuleValues = Values.size();
    912 
    913   // Add global metadata to the function block.  This doesn't include
    914   // LocalAsMetadata.
    915   incorporateFunctionMetadata(F);
    916 
    917   // Adding function arguments to the value table.
    918   for (const auto &I : F.args())
    919     EnumerateValue(&I);
    920 
    921   FirstFuncConstantID = Values.size();
    922 
    923   // Add all function-level constants to the value table.
    924   for (const BasicBlock &BB : F) {
    925     for (const Instruction &I : BB)
    926       for (const Use &OI : I.operands()) {
    927         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
    928           EnumerateValue(OI);
    929       }
    930     BasicBlocks.push_back(&BB);
    931     ValueMap[&BB] = BasicBlocks.size();
    932   }
    933 
    934   // Optimize the constant layout.
    935   OptimizeConstants(FirstFuncConstantID, Values.size());
    936 
    937   // Add the function's parameter attributes so they are available for use in
    938   // the function's instruction.
    939   EnumerateAttributes(F.getAttributes());
    940 
    941   FirstInstID = Values.size();
    942 
    943   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
    944   // Add all of the instructions.
    945   for (const BasicBlock &BB : F) {
    946     for (const Instruction &I : BB) {
    947       for (const Use &OI : I.operands()) {
    948         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
    949           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
    950             // Enumerate metadata after the instructions they might refer to.
    951             FnLocalMDVector.push_back(Local);
    952       }
    953 
    954       if (!I.getType()->isVoidTy())
    955         EnumerateValue(&I);
    956     }
    957   }
    958 
    959   // Add all of the function-local metadata.
    960   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
    961     // At this point, every local values have been incorporated, we shouldn't
    962     // have a metadata operand that references a value that hasn't been seen.
    963     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
    964            "Missing value for metadata operand");
    965     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
    966   }
    967 }
    968 
    969 void ValueEnumerator::purgeFunction() {
    970   /// Remove purged values from the ValueMap.
    971   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
    972     ValueMap.erase(Values[i].first);
    973   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
    974     MetadataMap.erase(MDs[i]);
    975   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
    976     ValueMap.erase(BasicBlocks[i]);
    977 
    978   Values.resize(NumModuleValues);
    979   MDs.resize(NumModuleMDs);
    980   BasicBlocks.clear();
    981   NumMDStrings = 0;
    982 }
    983 
    984 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
    985                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
    986   unsigned Counter = 0;
    987   for (const BasicBlock &BB : *F)
    988     IDMap[&BB] = ++Counter;
    989 }
    990 
    991 /// getGlobalBasicBlockID - This returns the function-specific ID for the
    992 /// specified basic block.  This is relatively expensive information, so it
    993 /// should only be used by rare constructs such as address-of-label.
    994 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
    995   unsigned &Idx = GlobalBasicBlockIDs[BB];
    996   if (Idx != 0)
    997     return Idx-1;
    998 
    999   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
   1000   return getGlobalBasicBlockID(BB);
   1001 }
   1002 
   1003 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
   1004   return Log2_32_Ceil(getTypes().size() + 1);
   1005 }
   1006