1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <assert.h> 18 #include <dirent.h> 19 #include <errno.h> 20 #include <fcntl.h> 21 #include <inttypes.h> 22 #include <memory.h> 23 #include <stdint.h> 24 #include <stdio.h> 25 #include <stdlib.h> 26 #include <string.h> 27 #include <sys/epoll.h> 28 #include <sys/limits.h> 29 #include <sys/inotify.h> 30 #include <sys/ioctl.h> 31 #include <sys/utsname.h> 32 #include <unistd.h> 33 34 #define LOG_TAG "EventHub" 35 36 // #define LOG_NDEBUG 0 37 38 #include "EventHub.h" 39 40 #include <hardware_legacy/power.h> 41 42 #include <android-base/stringprintf.h> 43 #include <cutils/properties.h> 44 #include <openssl/sha.h> 45 #include <utils/Log.h> 46 #include <utils/Timers.h> 47 #include <utils/threads.h> 48 #include <utils/Errors.h> 49 50 #include <input/KeyLayoutMap.h> 51 #include <input/KeyCharacterMap.h> 52 #include <input/VirtualKeyMap.h> 53 54 /* this macro is used to tell if "bit" is set in "array" 55 * it selects a byte from the array, and does a boolean AND 56 * operation with a byte that only has the relevant bit set. 57 * eg. to check for the 12th bit, we do (array[1] & 1<<4) 58 */ 59 #define test_bit(bit, array) ((array)[(bit)/8] & (1<<((bit)%8))) 60 61 /* this macro computes the number of bytes needed to represent a bit array of the specified size */ 62 #define sizeof_bit_array(bits) (((bits) + 7) / 8) 63 64 #define INDENT " " 65 #define INDENT2 " " 66 #define INDENT3 " " 67 68 using android::base::StringPrintf; 69 70 namespace android { 71 72 static const char *WAKE_LOCK_ID = "KeyEvents"; 73 static const char *DEVICE_PATH = "/dev/input"; 74 75 static inline const char* toString(bool value) { 76 return value ? "true" : "false"; 77 } 78 79 static String8 sha1(const String8& in) { 80 SHA_CTX ctx; 81 SHA1_Init(&ctx); 82 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size()); 83 u_char digest[SHA_DIGEST_LENGTH]; 84 SHA1_Final(digest, &ctx); 85 86 String8 out; 87 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) { 88 out.appendFormat("%02x", digest[i]); 89 } 90 return out; 91 } 92 93 static void getLinuxRelease(int* major, int* minor) { 94 struct utsname info; 95 if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) { 96 *major = 0, *minor = 0; 97 ALOGE("Could not get linux version: %s", strerror(errno)); 98 } 99 } 100 101 // --- Global Functions --- 102 103 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) { 104 // Touch devices get dibs on touch-related axes. 105 if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) { 106 switch (axis) { 107 case ABS_X: 108 case ABS_Y: 109 case ABS_PRESSURE: 110 case ABS_TOOL_WIDTH: 111 case ABS_DISTANCE: 112 case ABS_TILT_X: 113 case ABS_TILT_Y: 114 case ABS_MT_SLOT: 115 case ABS_MT_TOUCH_MAJOR: 116 case ABS_MT_TOUCH_MINOR: 117 case ABS_MT_WIDTH_MAJOR: 118 case ABS_MT_WIDTH_MINOR: 119 case ABS_MT_ORIENTATION: 120 case ABS_MT_POSITION_X: 121 case ABS_MT_POSITION_Y: 122 case ABS_MT_TOOL_TYPE: 123 case ABS_MT_BLOB_ID: 124 case ABS_MT_TRACKING_ID: 125 case ABS_MT_PRESSURE: 126 case ABS_MT_DISTANCE: 127 return INPUT_DEVICE_CLASS_TOUCH; 128 } 129 } 130 131 // External stylus gets the pressure axis 132 if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) { 133 if (axis == ABS_PRESSURE) { 134 return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS; 135 } 136 } 137 138 // Joystick devices get the rest. 139 return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK; 140 } 141 142 // --- EventHub::Device --- 143 144 EventHub::Device::Device(int fd, int32_t id, const String8& path, 145 const InputDeviceIdentifier& identifier) : 146 next(NULL), 147 fd(fd), id(id), path(path), identifier(identifier), 148 classes(0), configuration(NULL), virtualKeyMap(NULL), 149 ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0), 150 timestampOverrideSec(0), timestampOverrideUsec(0), enabled(true), 151 isVirtual(fd < 0) { 152 memset(keyBitmask, 0, sizeof(keyBitmask)); 153 memset(absBitmask, 0, sizeof(absBitmask)); 154 memset(relBitmask, 0, sizeof(relBitmask)); 155 memset(swBitmask, 0, sizeof(swBitmask)); 156 memset(ledBitmask, 0, sizeof(ledBitmask)); 157 memset(ffBitmask, 0, sizeof(ffBitmask)); 158 memset(propBitmask, 0, sizeof(propBitmask)); 159 } 160 161 EventHub::Device::~Device() { 162 close(); 163 delete configuration; 164 delete virtualKeyMap; 165 } 166 167 void EventHub::Device::close() { 168 if (fd >= 0) { 169 ::close(fd); 170 fd = -1; 171 } 172 } 173 174 status_t EventHub::Device::enable() { 175 fd = open(path, O_RDWR | O_CLOEXEC | O_NONBLOCK); 176 if(fd < 0) { 177 ALOGE("could not open %s, %s\n", path.string(), strerror(errno)); 178 return -errno; 179 } 180 enabled = true; 181 return OK; 182 } 183 184 status_t EventHub::Device::disable() { 185 close(); 186 enabled = false; 187 return OK; 188 } 189 190 bool EventHub::Device::hasValidFd() { 191 return !isVirtual && enabled; 192 } 193 194 // --- EventHub --- 195 196 const uint32_t EventHub::EPOLL_ID_INOTIFY; 197 const uint32_t EventHub::EPOLL_ID_WAKE; 198 const int EventHub::EPOLL_SIZE_HINT; 199 const int EventHub::EPOLL_MAX_EVENTS; 200 201 EventHub::EventHub(void) : 202 mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(), 203 mOpeningDevices(0), mClosingDevices(0), 204 mNeedToSendFinishedDeviceScan(false), 205 mNeedToReopenDevices(false), mNeedToScanDevices(true), 206 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) { 207 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 208 209 mEpollFd = epoll_create(EPOLL_SIZE_HINT); 210 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); 211 212 mINotifyFd = inotify_init(); 213 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); 214 LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d", 215 DEVICE_PATH, errno); 216 217 struct epoll_event eventItem; 218 memset(&eventItem, 0, sizeof(eventItem)); 219 eventItem.events = EPOLLIN; 220 eventItem.data.u32 = EPOLL_ID_INOTIFY; 221 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); 222 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); 223 224 int wakeFds[2]; 225 result = pipe(wakeFds); 226 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); 227 228 mWakeReadPipeFd = wakeFds[0]; 229 mWakeWritePipeFd = wakeFds[1]; 230 231 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); 232 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", 233 errno); 234 235 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); 236 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", 237 errno); 238 239 eventItem.data.u32 = EPOLL_ID_WAKE; 240 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); 241 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", 242 errno); 243 244 int major, minor; 245 getLinuxRelease(&major, &minor); 246 // EPOLLWAKEUP was introduced in kernel 3.5 247 mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5); 248 } 249 250 EventHub::~EventHub(void) { 251 closeAllDevicesLocked(); 252 253 while (mClosingDevices) { 254 Device* device = mClosingDevices; 255 mClosingDevices = device->next; 256 delete device; 257 } 258 259 ::close(mEpollFd); 260 ::close(mINotifyFd); 261 ::close(mWakeReadPipeFd); 262 ::close(mWakeWritePipeFd); 263 264 release_wake_lock(WAKE_LOCK_ID); 265 } 266 267 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const { 268 AutoMutex _l(mLock); 269 Device* device = getDeviceLocked(deviceId); 270 if (device == NULL) return InputDeviceIdentifier(); 271 return device->identifier; 272 } 273 274 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const { 275 AutoMutex _l(mLock); 276 Device* device = getDeviceLocked(deviceId); 277 if (device == NULL) return 0; 278 return device->classes; 279 } 280 281 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const { 282 AutoMutex _l(mLock); 283 Device* device = getDeviceLocked(deviceId); 284 if (device == NULL) return 0; 285 return device->controllerNumber; 286 } 287 288 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const { 289 AutoMutex _l(mLock); 290 Device* device = getDeviceLocked(deviceId); 291 if (device && device->configuration) { 292 *outConfiguration = *device->configuration; 293 } else { 294 outConfiguration->clear(); 295 } 296 } 297 298 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, 299 RawAbsoluteAxisInfo* outAxisInfo) const { 300 outAxisInfo->clear(); 301 302 if (axis >= 0 && axis <= ABS_MAX) { 303 AutoMutex _l(mLock); 304 305 Device* device = getDeviceLocked(deviceId); 306 if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) { 307 struct input_absinfo info; 308 if(ioctl(device->fd, EVIOCGABS(axis), &info)) { 309 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 310 axis, device->identifier.name.string(), device->fd, errno); 311 return -errno; 312 } 313 314 if (info.minimum != info.maximum) { 315 outAxisInfo->valid = true; 316 outAxisInfo->minValue = info.minimum; 317 outAxisInfo->maxValue = info.maximum; 318 outAxisInfo->flat = info.flat; 319 outAxisInfo->fuzz = info.fuzz; 320 outAxisInfo->resolution = info.resolution; 321 } 322 return OK; 323 } 324 } 325 return -1; 326 } 327 328 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const { 329 if (axis >= 0 && axis <= REL_MAX) { 330 AutoMutex _l(mLock); 331 332 Device* device = getDeviceLocked(deviceId); 333 if (device) { 334 return test_bit(axis, device->relBitmask); 335 } 336 } 337 return false; 338 } 339 340 bool EventHub::hasInputProperty(int32_t deviceId, int property) const { 341 if (property >= 0 && property <= INPUT_PROP_MAX) { 342 AutoMutex _l(mLock); 343 344 Device* device = getDeviceLocked(deviceId); 345 if (device) { 346 return test_bit(property, device->propBitmask); 347 } 348 } 349 return false; 350 } 351 352 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { 353 if (scanCode >= 0 && scanCode <= KEY_MAX) { 354 AutoMutex _l(mLock); 355 356 Device* device = getDeviceLocked(deviceId); 357 if (device && device->hasValidFd() && test_bit(scanCode, device->keyBitmask)) { 358 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; 359 memset(keyState, 0, sizeof(keyState)); 360 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { 361 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 362 } 363 } 364 } 365 return AKEY_STATE_UNKNOWN; 366 } 367 368 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { 369 AutoMutex _l(mLock); 370 371 Device* device = getDeviceLocked(deviceId); 372 if (device && device->hasValidFd() && device->keyMap.haveKeyLayout()) { 373 Vector<int32_t> scanCodes; 374 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes); 375 if (scanCodes.size() != 0) { 376 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; 377 memset(keyState, 0, sizeof(keyState)); 378 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { 379 for (size_t i = 0; i < scanCodes.size(); i++) { 380 int32_t sc = scanCodes.itemAt(i); 381 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) { 382 return AKEY_STATE_DOWN; 383 } 384 } 385 return AKEY_STATE_UP; 386 } 387 } 388 } 389 return AKEY_STATE_UNKNOWN; 390 } 391 392 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { 393 if (sw >= 0 && sw <= SW_MAX) { 394 AutoMutex _l(mLock); 395 396 Device* device = getDeviceLocked(deviceId); 397 if (device && device->hasValidFd() && test_bit(sw, device->swBitmask)) { 398 uint8_t swState[sizeof_bit_array(SW_MAX + 1)]; 399 memset(swState, 0, sizeof(swState)); 400 if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) { 401 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 402 } 403 } 404 } 405 return AKEY_STATE_UNKNOWN; 406 } 407 408 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { 409 *outValue = 0; 410 411 if (axis >= 0 && axis <= ABS_MAX) { 412 AutoMutex _l(mLock); 413 414 Device* device = getDeviceLocked(deviceId); 415 if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) { 416 struct input_absinfo info; 417 if(ioctl(device->fd, EVIOCGABS(axis), &info)) { 418 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 419 axis, device->identifier.name.string(), device->fd, errno); 420 return -errno; 421 } 422 423 *outValue = info.value; 424 return OK; 425 } 426 } 427 return -1; 428 } 429 430 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, 431 const int32_t* keyCodes, uint8_t* outFlags) const { 432 AutoMutex _l(mLock); 433 434 Device* device = getDeviceLocked(deviceId); 435 if (device && device->keyMap.haveKeyLayout()) { 436 Vector<int32_t> scanCodes; 437 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) { 438 scanCodes.clear(); 439 440 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey( 441 keyCodes[codeIndex], &scanCodes); 442 if (! err) { 443 // check the possible scan codes identified by the layout map against the 444 // map of codes actually emitted by the driver 445 for (size_t sc = 0; sc < scanCodes.size(); sc++) { 446 if (test_bit(scanCodes[sc], device->keyBitmask)) { 447 outFlags[codeIndex] = 1; 448 break; 449 } 450 } 451 } 452 } 453 return true; 454 } 455 return false; 456 } 457 458 status_t EventHub::mapKey(int32_t deviceId, 459 int32_t scanCode, int32_t usageCode, int32_t metaState, 460 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const { 461 AutoMutex _l(mLock); 462 Device* device = getDeviceLocked(deviceId); 463 status_t status = NAME_NOT_FOUND; 464 465 if (device) { 466 // Check the key character map first. 467 sp<KeyCharacterMap> kcm = device->getKeyCharacterMap(); 468 if (kcm != NULL) { 469 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) { 470 *outFlags = 0; 471 status = NO_ERROR; 472 } 473 } 474 475 // Check the key layout next. 476 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) { 477 if (!device->keyMap.keyLayoutMap->mapKey( 478 scanCode, usageCode, outKeycode, outFlags)) { 479 status = NO_ERROR; 480 } 481 } 482 483 if (status == NO_ERROR) { 484 if (kcm != NULL) { 485 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState); 486 } else { 487 *outMetaState = metaState; 488 } 489 } 490 } 491 492 if (status != NO_ERROR) { 493 *outKeycode = 0; 494 *outFlags = 0; 495 *outMetaState = metaState; 496 } 497 498 return status; 499 } 500 501 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const { 502 AutoMutex _l(mLock); 503 Device* device = getDeviceLocked(deviceId); 504 505 if (device && device->keyMap.haveKeyLayout()) { 506 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo); 507 if (err == NO_ERROR) { 508 return NO_ERROR; 509 } 510 } 511 512 return NAME_NOT_FOUND; 513 } 514 515 void EventHub::setExcludedDevices(const Vector<String8>& devices) { 516 AutoMutex _l(mLock); 517 518 mExcludedDevices = devices; 519 } 520 521 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { 522 AutoMutex _l(mLock); 523 Device* device = getDeviceLocked(deviceId); 524 if (device && scanCode >= 0 && scanCode <= KEY_MAX) { 525 if (test_bit(scanCode, device->keyBitmask)) { 526 return true; 527 } 528 } 529 return false; 530 } 531 532 bool EventHub::hasLed(int32_t deviceId, int32_t led) const { 533 AutoMutex _l(mLock); 534 Device* device = getDeviceLocked(deviceId); 535 int32_t sc; 536 if (device && mapLed(device, led, &sc) == NO_ERROR) { 537 if (test_bit(sc, device->ledBitmask)) { 538 return true; 539 } 540 } 541 return false; 542 } 543 544 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { 545 AutoMutex _l(mLock); 546 Device* device = getDeviceLocked(deviceId); 547 setLedStateLocked(device, led, on); 548 } 549 550 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) { 551 int32_t sc; 552 if (device && device->hasValidFd() && mapLed(device, led, &sc) != NAME_NOT_FOUND) { 553 struct input_event ev; 554 ev.time.tv_sec = 0; 555 ev.time.tv_usec = 0; 556 ev.type = EV_LED; 557 ev.code = sc; 558 ev.value = on ? 1 : 0; 559 560 ssize_t nWrite; 561 do { 562 nWrite = write(device->fd, &ev, sizeof(struct input_event)); 563 } while (nWrite == -1 && errno == EINTR); 564 } 565 } 566 567 void EventHub::getVirtualKeyDefinitions(int32_t deviceId, 568 Vector<VirtualKeyDefinition>& outVirtualKeys) const { 569 outVirtualKeys.clear(); 570 571 AutoMutex _l(mLock); 572 Device* device = getDeviceLocked(deviceId); 573 if (device && device->virtualKeyMap) { 574 outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys()); 575 } 576 } 577 578 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const { 579 AutoMutex _l(mLock); 580 Device* device = getDeviceLocked(deviceId); 581 if (device) { 582 return device->getKeyCharacterMap(); 583 } 584 return NULL; 585 } 586 587 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, 588 const sp<KeyCharacterMap>& map) { 589 AutoMutex _l(mLock); 590 Device* device = getDeviceLocked(deviceId); 591 if (device) { 592 if (map != device->overlayKeyMap) { 593 device->overlayKeyMap = map; 594 device->combinedKeyMap = KeyCharacterMap::combine( 595 device->keyMap.keyCharacterMap, map); 596 return true; 597 } 598 } 599 return false; 600 } 601 602 static String8 generateDescriptor(InputDeviceIdentifier& identifier) { 603 String8 rawDescriptor; 604 rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, 605 identifier.product); 606 // TODO add handling for USB devices to not uniqueify kbs that show up twice 607 if (!identifier.uniqueId.isEmpty()) { 608 rawDescriptor.append("uniqueId:"); 609 rawDescriptor.append(identifier.uniqueId); 610 } else if (identifier.nonce != 0) { 611 rawDescriptor.appendFormat("nonce:%04x", identifier.nonce); 612 } 613 614 if (identifier.vendor == 0 && identifier.product == 0) { 615 // If we don't know the vendor and product id, then the device is probably 616 // built-in so we need to rely on other information to uniquely identify 617 // the input device. Usually we try to avoid relying on the device name or 618 // location but for built-in input device, they are unlikely to ever change. 619 if (!identifier.name.isEmpty()) { 620 rawDescriptor.append("name:"); 621 rawDescriptor.append(identifier.name); 622 } else if (!identifier.location.isEmpty()) { 623 rawDescriptor.append("location:"); 624 rawDescriptor.append(identifier.location); 625 } 626 } 627 identifier.descriptor = sha1(rawDescriptor); 628 return rawDescriptor; 629 } 630 631 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) { 632 // Compute a device descriptor that uniquely identifies the device. 633 // The descriptor is assumed to be a stable identifier. Its value should not 634 // change between reboots, reconnections, firmware updates or new releases 635 // of Android. In practice we sometimes get devices that cannot be uniquely 636 // identified. In this case we enforce uniqueness between connected devices. 637 // Ideally, we also want the descriptor to be short and relatively opaque. 638 639 identifier.nonce = 0; 640 String8 rawDescriptor = generateDescriptor(identifier); 641 if (identifier.uniqueId.isEmpty()) { 642 // If it didn't have a unique id check for conflicts and enforce 643 // uniqueness if necessary. 644 while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) { 645 identifier.nonce++; 646 rawDescriptor = generateDescriptor(identifier); 647 } 648 } 649 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(), 650 identifier.descriptor.string()); 651 } 652 653 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) { 654 AutoMutex _l(mLock); 655 Device* device = getDeviceLocked(deviceId); 656 if (device && device->hasValidFd()) { 657 ff_effect effect; 658 memset(&effect, 0, sizeof(effect)); 659 effect.type = FF_RUMBLE; 660 effect.id = device->ffEffectId; 661 effect.u.rumble.strong_magnitude = 0xc000; 662 effect.u.rumble.weak_magnitude = 0xc000; 663 effect.replay.length = (duration + 999999LL) / 1000000LL; 664 effect.replay.delay = 0; 665 if (ioctl(device->fd, EVIOCSFF, &effect)) { 666 ALOGW("Could not upload force feedback effect to device %s due to error %d.", 667 device->identifier.name.string(), errno); 668 return; 669 } 670 device->ffEffectId = effect.id; 671 672 struct input_event ev; 673 ev.time.tv_sec = 0; 674 ev.time.tv_usec = 0; 675 ev.type = EV_FF; 676 ev.code = device->ffEffectId; 677 ev.value = 1; 678 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { 679 ALOGW("Could not start force feedback effect on device %s due to error %d.", 680 device->identifier.name.string(), errno); 681 return; 682 } 683 device->ffEffectPlaying = true; 684 } 685 } 686 687 void EventHub::cancelVibrate(int32_t deviceId) { 688 AutoMutex _l(mLock); 689 Device* device = getDeviceLocked(deviceId); 690 if (device && device->hasValidFd()) { 691 if (device->ffEffectPlaying) { 692 device->ffEffectPlaying = false; 693 694 struct input_event ev; 695 ev.time.tv_sec = 0; 696 ev.time.tv_usec = 0; 697 ev.type = EV_FF; 698 ev.code = device->ffEffectId; 699 ev.value = 0; 700 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { 701 ALOGW("Could not stop force feedback effect on device %s due to error %d.", 702 device->identifier.name.string(), errno); 703 return; 704 } 705 } 706 } 707 } 708 709 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const { 710 size_t size = mDevices.size(); 711 for (size_t i = 0; i < size; i++) { 712 Device* device = mDevices.valueAt(i); 713 if (descriptor.compare(device->identifier.descriptor) == 0) { 714 return device; 715 } 716 } 717 return NULL; 718 } 719 720 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const { 721 if (deviceId == BUILT_IN_KEYBOARD_ID) { 722 deviceId = mBuiltInKeyboardId; 723 } 724 ssize_t index = mDevices.indexOfKey(deviceId); 725 return index >= 0 ? mDevices.valueAt(index) : NULL; 726 } 727 728 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const { 729 for (size_t i = 0; i < mDevices.size(); i++) { 730 Device* device = mDevices.valueAt(i); 731 if (device->path == devicePath) { 732 return device; 733 } 734 } 735 return NULL; 736 } 737 738 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { 739 ALOG_ASSERT(bufferSize >= 1); 740 741 AutoMutex _l(mLock); 742 743 struct input_event readBuffer[bufferSize]; 744 745 RawEvent* event = buffer; 746 size_t capacity = bufferSize; 747 bool awoken = false; 748 for (;;) { 749 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 750 751 // Reopen input devices if needed. 752 if (mNeedToReopenDevices) { 753 mNeedToReopenDevices = false; 754 755 ALOGI("Reopening all input devices due to a configuration change."); 756 757 closeAllDevicesLocked(); 758 mNeedToScanDevices = true; 759 break; // return to the caller before we actually rescan 760 } 761 762 // Report any devices that had last been added/removed. 763 while (mClosingDevices) { 764 Device* device = mClosingDevices; 765 ALOGV("Reporting device closed: id=%d, name=%s\n", 766 device->id, device->path.string()); 767 mClosingDevices = device->next; 768 event->when = now; 769 event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id; 770 event->type = DEVICE_REMOVED; 771 event += 1; 772 delete device; 773 mNeedToSendFinishedDeviceScan = true; 774 if (--capacity == 0) { 775 break; 776 } 777 } 778 779 if (mNeedToScanDevices) { 780 mNeedToScanDevices = false; 781 scanDevicesLocked(); 782 mNeedToSendFinishedDeviceScan = true; 783 } 784 785 while (mOpeningDevices != NULL) { 786 Device* device = mOpeningDevices; 787 ALOGV("Reporting device opened: id=%d, name=%s\n", 788 device->id, device->path.string()); 789 mOpeningDevices = device->next; 790 event->when = now; 791 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; 792 event->type = DEVICE_ADDED; 793 event += 1; 794 mNeedToSendFinishedDeviceScan = true; 795 if (--capacity == 0) { 796 break; 797 } 798 } 799 800 if (mNeedToSendFinishedDeviceScan) { 801 mNeedToSendFinishedDeviceScan = false; 802 event->when = now; 803 event->type = FINISHED_DEVICE_SCAN; 804 event += 1; 805 if (--capacity == 0) { 806 break; 807 } 808 } 809 810 // Grab the next input event. 811 bool deviceChanged = false; 812 while (mPendingEventIndex < mPendingEventCount) { 813 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; 814 if (eventItem.data.u32 == EPOLL_ID_INOTIFY) { 815 if (eventItem.events & EPOLLIN) { 816 mPendingINotify = true; 817 } else { 818 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); 819 } 820 continue; 821 } 822 823 if (eventItem.data.u32 == EPOLL_ID_WAKE) { 824 if (eventItem.events & EPOLLIN) { 825 ALOGV("awoken after wake()"); 826 awoken = true; 827 char buffer[16]; 828 ssize_t nRead; 829 do { 830 nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer)); 831 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer)); 832 } else { 833 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", 834 eventItem.events); 835 } 836 continue; 837 } 838 839 ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32); 840 if (deviceIndex < 0) { 841 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.", 842 eventItem.events, eventItem.data.u32); 843 continue; 844 } 845 846 Device* device = mDevices.valueAt(deviceIndex); 847 if (eventItem.events & EPOLLIN) { 848 int32_t readSize = read(device->fd, readBuffer, 849 sizeof(struct input_event) * capacity); 850 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { 851 // Device was removed before INotify noticed. 852 ALOGW("could not get event, removed? (fd: %d size: %" PRId32 853 " bufferSize: %zu capacity: %zu errno: %d)\n", 854 device->fd, readSize, bufferSize, capacity, errno); 855 deviceChanged = true; 856 closeDeviceLocked(device); 857 } else if (readSize < 0) { 858 if (errno != EAGAIN && errno != EINTR) { 859 ALOGW("could not get event (errno=%d)", errno); 860 } 861 } else if ((readSize % sizeof(struct input_event)) != 0) { 862 ALOGE("could not get event (wrong size: %d)", readSize); 863 } else { 864 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; 865 866 size_t count = size_t(readSize) / sizeof(struct input_event); 867 for (size_t i = 0; i < count; i++) { 868 struct input_event& iev = readBuffer[i]; 869 ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d", 870 device->path.string(), 871 (int) iev.time.tv_sec, (int) iev.time.tv_usec, 872 iev.type, iev.code, iev.value); 873 874 // Some input devices may have a better concept of the time 875 // when an input event was actually generated than the kernel 876 // which simply timestamps all events on entry to evdev. 877 // This is a custom Android extension of the input protocol 878 // mainly intended for use with uinput based device drivers. 879 if (iev.type == EV_MSC) { 880 if (iev.code == MSC_ANDROID_TIME_SEC) { 881 device->timestampOverrideSec = iev.value; 882 continue; 883 } else if (iev.code == MSC_ANDROID_TIME_USEC) { 884 device->timestampOverrideUsec = iev.value; 885 continue; 886 } 887 } 888 if (device->timestampOverrideSec || device->timestampOverrideUsec) { 889 iev.time.tv_sec = device->timestampOverrideSec; 890 iev.time.tv_usec = device->timestampOverrideUsec; 891 if (iev.type == EV_SYN && iev.code == SYN_REPORT) { 892 device->timestampOverrideSec = 0; 893 device->timestampOverrideUsec = 0; 894 } 895 ALOGV("applied override time %d.%06d", 896 int(iev.time.tv_sec), int(iev.time.tv_usec)); 897 } 898 899 // Use the time specified in the event instead of the current time 900 // so that downstream code can get more accurate estimates of 901 // event dispatch latency from the time the event is enqueued onto 902 // the evdev client buffer. 903 // 904 // The event's timestamp fortuitously uses the same monotonic clock 905 // time base as the rest of Android. The kernel event device driver 906 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts(). 907 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere 908 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a 909 // system call that also queries ktime_get_ts(). 910 event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL 911 + nsecs_t(iev.time.tv_usec) * 1000LL; 912 ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now); 913 914 // Bug 7291243: Add a guard in case the kernel generates timestamps 915 // that appear to be far into the future because they were generated 916 // using the wrong clock source. 917 // 918 // This can happen because when the input device is initially opened 919 // it has a default clock source of CLOCK_REALTIME. Any input events 920 // enqueued right after the device is opened will have timestamps 921 // generated using CLOCK_REALTIME. We later set the clock source 922 // to CLOCK_MONOTONIC but it is already too late. 923 // 924 // Invalid input event timestamps can result in ANRs, crashes and 925 // and other issues that are hard to track down. We must not let them 926 // propagate through the system. 927 // 928 // Log a warning so that we notice the problem and recover gracefully. 929 if (event->when >= now + 10 * 1000000000LL) { 930 // Double-check. Time may have moved on. 931 nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC); 932 if (event->when > time) { 933 ALOGW("An input event from %s has a timestamp that appears to " 934 "have been generated using the wrong clock source " 935 "(expected CLOCK_MONOTONIC): " 936 "event time %" PRId64 ", current time %" PRId64 937 ", call time %" PRId64 ". " 938 "Using current time instead.", 939 device->path.string(), event->when, time, now); 940 event->when = time; 941 } else { 942 ALOGV("Event time is ok but failed the fast path and required " 943 "an extra call to systemTime: " 944 "event time %" PRId64 ", current time %" PRId64 945 ", call time %" PRId64 ".", 946 event->when, time, now); 947 } 948 } 949 event->deviceId = deviceId; 950 event->type = iev.type; 951 event->code = iev.code; 952 event->value = iev.value; 953 event += 1; 954 capacity -= 1; 955 } 956 if (capacity == 0) { 957 // The result buffer is full. Reset the pending event index 958 // so we will try to read the device again on the next iteration. 959 mPendingEventIndex -= 1; 960 break; 961 } 962 } 963 } else if (eventItem.events & EPOLLHUP) { 964 ALOGI("Removing device %s due to epoll hang-up event.", 965 device->identifier.name.string()); 966 deviceChanged = true; 967 closeDeviceLocked(device); 968 } else { 969 ALOGW("Received unexpected epoll event 0x%08x for device %s.", 970 eventItem.events, device->identifier.name.string()); 971 } 972 } 973 974 // readNotify() will modify the list of devices so this must be done after 975 // processing all other events to ensure that we read all remaining events 976 // before closing the devices. 977 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { 978 mPendingINotify = false; 979 readNotifyLocked(); 980 deviceChanged = true; 981 } 982 983 // Report added or removed devices immediately. 984 if (deviceChanged) { 985 continue; 986 } 987 988 // Return now if we have collected any events or if we were explicitly awoken. 989 if (event != buffer || awoken) { 990 break; 991 } 992 993 // Poll for events. Mind the wake lock dance! 994 // We hold a wake lock at all times except during epoll_wait(). This works due to some 995 // subtle choreography. When a device driver has pending (unread) events, it acquires 996 // a kernel wake lock. However, once the last pending event has been read, the device 997 // driver will release the kernel wake lock. To prevent the system from going to sleep 998 // when this happens, the EventHub holds onto its own user wake lock while the client 999 // is processing events. Thus the system can only sleep if there are no events 1000 // pending or currently being processed. 1001 // 1002 // The timeout is advisory only. If the device is asleep, it will not wake just to 1003 // service the timeout. 1004 mPendingEventIndex = 0; 1005 1006 mLock.unlock(); // release lock before poll, must be before release_wake_lock 1007 release_wake_lock(WAKE_LOCK_ID); 1008 1009 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); 1010 1011 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 1012 mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock 1013 1014 if (pollResult == 0) { 1015 // Timed out. 1016 mPendingEventCount = 0; 1017 break; 1018 } 1019 1020 if (pollResult < 0) { 1021 // An error occurred. 1022 mPendingEventCount = 0; 1023 1024 // Sleep after errors to avoid locking up the system. 1025 // Hopefully the error is transient. 1026 if (errno != EINTR) { 1027 ALOGW("poll failed (errno=%d)\n", errno); 1028 usleep(100000); 1029 } 1030 } else { 1031 // Some events occurred. 1032 mPendingEventCount = size_t(pollResult); 1033 } 1034 } 1035 1036 // All done, return the number of events we read. 1037 return event - buffer; 1038 } 1039 1040 void EventHub::wake() { 1041 ALOGV("wake() called"); 1042 1043 ssize_t nWrite; 1044 do { 1045 nWrite = write(mWakeWritePipeFd, "W", 1); 1046 } while (nWrite == -1 && errno == EINTR); 1047 1048 if (nWrite != 1 && errno != EAGAIN) { 1049 ALOGW("Could not write wake signal, errno=%d", errno); 1050 } 1051 } 1052 1053 void EventHub::scanDevicesLocked() { 1054 status_t res = scanDirLocked(DEVICE_PATH); 1055 if(res < 0) { 1056 ALOGE("scan dir failed for %s\n", DEVICE_PATH); 1057 } 1058 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) { 1059 createVirtualKeyboardLocked(); 1060 } 1061 } 1062 1063 // ---------------------------------------------------------------------------- 1064 1065 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) { 1066 const uint8_t* end = array + endIndex; 1067 array += startIndex; 1068 while (array != end) { 1069 if (*(array++) != 0) { 1070 return true; 1071 } 1072 } 1073 return false; 1074 } 1075 1076 static const int32_t GAMEPAD_KEYCODES[] = { 1077 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, 1078 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, 1079 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, 1080 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, 1081 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, 1082 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, 1083 }; 1084 1085 status_t EventHub::registerDeviceForEpollLocked(Device* device) { 1086 struct epoll_event eventItem; 1087 memset(&eventItem, 0, sizeof(eventItem)); 1088 eventItem.events = EPOLLIN; 1089 if (mUsingEpollWakeup) { 1090 eventItem.events |= EPOLLWAKEUP; 1091 } 1092 eventItem.data.u32 = device->id; 1093 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, device->fd, &eventItem)) { 1094 ALOGE("Could not add device fd to epoll instance. errno=%d", errno); 1095 return -errno; 1096 } 1097 return OK; 1098 } 1099 1100 status_t EventHub::unregisterDeviceFromEpollLocked(Device* device) { 1101 if (device->hasValidFd()) { 1102 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) { 1103 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); 1104 return -errno; 1105 } 1106 } 1107 return OK; 1108 } 1109 1110 status_t EventHub::openDeviceLocked(const char *devicePath) { 1111 char buffer[80]; 1112 1113 ALOGV("Opening device: %s", devicePath); 1114 1115 int fd = open(devicePath, O_RDWR | O_CLOEXEC | O_NONBLOCK); 1116 if(fd < 0) { 1117 ALOGE("could not open %s, %s\n", devicePath, strerror(errno)); 1118 return -1; 1119 } 1120 1121 InputDeviceIdentifier identifier; 1122 1123 // Get device name. 1124 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { 1125 //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno)); 1126 } else { 1127 buffer[sizeof(buffer) - 1] = '\0'; 1128 identifier.name.setTo(buffer); 1129 } 1130 1131 // Check to see if the device is on our excluded list 1132 for (size_t i = 0; i < mExcludedDevices.size(); i++) { 1133 const String8& item = mExcludedDevices.itemAt(i); 1134 if (identifier.name == item) { 1135 ALOGI("ignoring event id %s driver %s\n", devicePath, item.string()); 1136 close(fd); 1137 return -1; 1138 } 1139 } 1140 1141 // Get device driver version. 1142 int driverVersion; 1143 if(ioctl(fd, EVIOCGVERSION, &driverVersion)) { 1144 ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno)); 1145 close(fd); 1146 return -1; 1147 } 1148 1149 // Get device identifier. 1150 struct input_id inputId; 1151 if(ioctl(fd, EVIOCGID, &inputId)) { 1152 ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno)); 1153 close(fd); 1154 return -1; 1155 } 1156 identifier.bus = inputId.bustype; 1157 identifier.product = inputId.product; 1158 identifier.vendor = inputId.vendor; 1159 identifier.version = inputId.version; 1160 1161 // Get device physical location. 1162 if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { 1163 //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); 1164 } else { 1165 buffer[sizeof(buffer) - 1] = '\0'; 1166 identifier.location.setTo(buffer); 1167 } 1168 1169 // Get device unique id. 1170 if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { 1171 //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); 1172 } else { 1173 buffer[sizeof(buffer) - 1] = '\0'; 1174 identifier.uniqueId.setTo(buffer); 1175 } 1176 1177 // Fill in the descriptor. 1178 assignDescriptorLocked(identifier); 1179 1180 // Allocate device. (The device object takes ownership of the fd at this point.) 1181 int32_t deviceId = mNextDeviceId++; 1182 Device* device = new Device(fd, deviceId, String8(devicePath), identifier); 1183 1184 ALOGV("add device %d: %s\n", deviceId, devicePath); 1185 ALOGV(" bus: %04x\n" 1186 " vendor %04x\n" 1187 " product %04x\n" 1188 " version %04x\n", 1189 identifier.bus, identifier.vendor, identifier.product, identifier.version); 1190 ALOGV(" name: \"%s\"\n", identifier.name.string()); 1191 ALOGV(" location: \"%s\"\n", identifier.location.string()); 1192 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string()); 1193 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string()); 1194 ALOGV(" driver: v%d.%d.%d\n", 1195 driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff); 1196 1197 // Load the configuration file for the device. 1198 loadConfigurationLocked(device); 1199 1200 // Figure out the kinds of events the device reports. 1201 ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask); 1202 ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask); 1203 ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask); 1204 ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask); 1205 ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask); 1206 ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask); 1207 ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask); 1208 1209 // See if this is a keyboard. Ignore everything in the button range except for 1210 // joystick and gamepad buttons which are handled like keyboards for the most part. 1211 bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC)) 1212 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK), 1213 sizeof_bit_array(KEY_MAX + 1)); 1214 bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC), 1215 sizeof_bit_array(BTN_MOUSE)) 1216 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK), 1217 sizeof_bit_array(BTN_DIGI)); 1218 if (haveKeyboardKeys || haveGamepadButtons) { 1219 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; 1220 } 1221 1222 // See if this is a cursor device such as a trackball or mouse. 1223 if (test_bit(BTN_MOUSE, device->keyBitmask) 1224 && test_bit(REL_X, device->relBitmask) 1225 && test_bit(REL_Y, device->relBitmask)) { 1226 device->classes |= INPUT_DEVICE_CLASS_CURSOR; 1227 } 1228 1229 // See if this is a rotary encoder type device. 1230 String8 deviceType = String8(); 1231 if (device->configuration && 1232 device->configuration->tryGetProperty(String8("device.type"), deviceType)) { 1233 if (!deviceType.compare(String8("rotaryEncoder"))) { 1234 device->classes |= INPUT_DEVICE_CLASS_ROTARY_ENCODER; 1235 } 1236 } 1237 1238 // See if this is a touch pad. 1239 // Is this a new modern multi-touch driver? 1240 if (test_bit(ABS_MT_POSITION_X, device->absBitmask) 1241 && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) { 1242 // Some joysticks such as the PS3 controller report axes that conflict 1243 // with the ABS_MT range. Try to confirm that the device really is 1244 // a touch screen. 1245 if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) { 1246 device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT; 1247 } 1248 // Is this an old style single-touch driver? 1249 } else if (test_bit(BTN_TOUCH, device->keyBitmask) 1250 && test_bit(ABS_X, device->absBitmask) 1251 && test_bit(ABS_Y, device->absBitmask)) { 1252 device->classes |= INPUT_DEVICE_CLASS_TOUCH; 1253 // Is this a BT stylus? 1254 } else if ((test_bit(ABS_PRESSURE, device->absBitmask) || 1255 test_bit(BTN_TOUCH, device->keyBitmask)) 1256 && !test_bit(ABS_X, device->absBitmask) 1257 && !test_bit(ABS_Y, device->absBitmask)) { 1258 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS; 1259 // Keyboard will try to claim some of the buttons but we really want to reserve those so we 1260 // can fuse it with the touch screen data, so just take them back. Note this means an 1261 // external stylus cannot also be a keyboard device. 1262 device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD; 1263 } 1264 1265 // See if this device is a joystick. 1266 // Assumes that joysticks always have gamepad buttons in order to distinguish them 1267 // from other devices such as accelerometers that also have absolute axes. 1268 if (haveGamepadButtons) { 1269 uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK; 1270 for (int i = 0; i <= ABS_MAX; i++) { 1271 if (test_bit(i, device->absBitmask) 1272 && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) { 1273 device->classes = assumedClasses; 1274 break; 1275 } 1276 } 1277 } 1278 1279 // Check whether this device has switches. 1280 for (int i = 0; i <= SW_MAX; i++) { 1281 if (test_bit(i, device->swBitmask)) { 1282 device->classes |= INPUT_DEVICE_CLASS_SWITCH; 1283 break; 1284 } 1285 } 1286 1287 // Check whether this device supports the vibrator. 1288 if (test_bit(FF_RUMBLE, device->ffBitmask)) { 1289 device->classes |= INPUT_DEVICE_CLASS_VIBRATOR; 1290 } 1291 1292 // Configure virtual keys. 1293 if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) { 1294 // Load the virtual keys for the touch screen, if any. 1295 // We do this now so that we can make sure to load the keymap if necessary. 1296 status_t status = loadVirtualKeyMapLocked(device); 1297 if (!status) { 1298 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; 1299 } 1300 } 1301 1302 // Load the key map. 1303 // We need to do this for joysticks too because the key layout may specify axes. 1304 status_t keyMapStatus = NAME_NOT_FOUND; 1305 if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) { 1306 // Load the keymap for the device. 1307 keyMapStatus = loadKeyMapLocked(device); 1308 } 1309 1310 // Configure the keyboard, gamepad or virtual keyboard. 1311 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) { 1312 // Register the keyboard as a built-in keyboard if it is eligible. 1313 if (!keyMapStatus 1314 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD 1315 && isEligibleBuiltInKeyboard(device->identifier, 1316 device->configuration, &device->keyMap)) { 1317 mBuiltInKeyboardId = device->id; 1318 } 1319 1320 // 'Q' key support = cheap test of whether this is an alpha-capable kbd 1321 if (hasKeycodeLocked(device, AKEYCODE_Q)) { 1322 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; 1323 } 1324 1325 // See if this device has a DPAD. 1326 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && 1327 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && 1328 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && 1329 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && 1330 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { 1331 device->classes |= INPUT_DEVICE_CLASS_DPAD; 1332 } 1333 1334 // See if this device has a gamepad. 1335 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { 1336 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { 1337 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; 1338 break; 1339 } 1340 } 1341 } 1342 1343 // If the device isn't recognized as something we handle, don't monitor it. 1344 if (device->classes == 0) { 1345 ALOGV("Dropping device: id=%d, path='%s', name='%s'", 1346 deviceId, devicePath, device->identifier.name.string()); 1347 delete device; 1348 return -1; 1349 } 1350 1351 // Determine whether the device has a mic. 1352 if (deviceHasMicLocked(device)) { 1353 device->classes |= INPUT_DEVICE_CLASS_MIC; 1354 } 1355 1356 // Determine whether the device is external or internal. 1357 if (isExternalDeviceLocked(device)) { 1358 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL; 1359 } 1360 1361 if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD) 1362 && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) { 1363 device->controllerNumber = getNextControllerNumberLocked(device); 1364 setLedForControllerLocked(device); 1365 } 1366 1367 1368 if (registerDeviceForEpollLocked(device) != OK) { 1369 delete device; 1370 return -1; 1371 } 1372 1373 configureFd(device); 1374 1375 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, " 1376 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ", 1377 deviceId, fd, devicePath, device->identifier.name.string(), 1378 device->classes, 1379 device->configurationFile.string(), 1380 device->keyMap.keyLayoutFile.string(), 1381 device->keyMap.keyCharacterMapFile.string(), 1382 toString(mBuiltInKeyboardId == deviceId)); 1383 1384 addDeviceLocked(device); 1385 return OK; 1386 } 1387 1388 void EventHub::configureFd(Device* device) { 1389 // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type 1390 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) { 1391 // Disable kernel key repeat since we handle it ourselves 1392 unsigned int repeatRate[] = {0, 0}; 1393 if (ioctl(device->fd, EVIOCSREP, repeatRate)) { 1394 ALOGW("Unable to disable kernel key repeat for %s: %s", 1395 device->path.string(), strerror(errno)); 1396 } 1397 } 1398 1399 String8 wakeMechanism("EPOLLWAKEUP"); 1400 if (!mUsingEpollWakeup) { 1401 #ifndef EVIOCSSUSPENDBLOCK 1402 // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels 1403 // will use an epoll flag instead, so as long as we want to support 1404 // this feature, we need to be prepared to define the ioctl ourselves. 1405 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int) 1406 #endif 1407 if (ioctl(device->fd, EVIOCSSUSPENDBLOCK, 1)) { 1408 wakeMechanism = "<none>"; 1409 } else { 1410 wakeMechanism = "EVIOCSSUSPENDBLOCK"; 1411 } 1412 } 1413 // Tell the kernel that we want to use the monotonic clock for reporting timestamps 1414 // associated with input events. This is important because the input system 1415 // uses the timestamps extensively and assumes they were recorded using the monotonic 1416 // clock. 1417 int clockId = CLOCK_MONOTONIC; 1418 bool usingClockIoctl = !ioctl(device->fd, EVIOCSCLOCKID, &clockId); 1419 ALOGI("wakeMechanism=%s, usingClockIoctl=%s", wakeMechanism.string(), 1420 toString(usingClockIoctl)); 1421 } 1422 1423 bool EventHub::isDeviceEnabled(int32_t deviceId) { 1424 AutoMutex _l(mLock); 1425 Device* device = getDeviceLocked(deviceId); 1426 if (device == NULL) { 1427 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); 1428 return false; 1429 } 1430 return device->enabled; 1431 } 1432 1433 status_t EventHub::enableDevice(int32_t deviceId) { 1434 AutoMutex _l(mLock); 1435 Device* device = getDeviceLocked(deviceId); 1436 if (device == NULL) { 1437 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); 1438 return BAD_VALUE; 1439 } 1440 if (device->enabled) { 1441 ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId); 1442 return OK; 1443 } 1444 status_t result = device->enable(); 1445 if (result != OK) { 1446 ALOGE("Failed to enable device %" PRId32, deviceId); 1447 return result; 1448 } 1449 1450 configureFd(device); 1451 1452 return registerDeviceForEpollLocked(device); 1453 } 1454 1455 status_t EventHub::disableDevice(int32_t deviceId) { 1456 AutoMutex _l(mLock); 1457 Device* device = getDeviceLocked(deviceId); 1458 if (device == NULL) { 1459 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); 1460 return BAD_VALUE; 1461 } 1462 if (!device->enabled) { 1463 ALOGW("Duplicate call to %s, input device already disabled", __func__); 1464 return OK; 1465 } 1466 unregisterDeviceFromEpollLocked(device); 1467 return device->disable(); 1468 } 1469 1470 void EventHub::createVirtualKeyboardLocked() { 1471 InputDeviceIdentifier identifier; 1472 identifier.name = "Virtual"; 1473 identifier.uniqueId = "<virtual>"; 1474 assignDescriptorLocked(identifier); 1475 1476 Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier); 1477 device->classes = INPUT_DEVICE_CLASS_KEYBOARD 1478 | INPUT_DEVICE_CLASS_ALPHAKEY 1479 | INPUT_DEVICE_CLASS_DPAD 1480 | INPUT_DEVICE_CLASS_VIRTUAL; 1481 loadKeyMapLocked(device); 1482 addDeviceLocked(device); 1483 } 1484 1485 void EventHub::addDeviceLocked(Device* device) { 1486 mDevices.add(device->id, device); 1487 device->next = mOpeningDevices; 1488 mOpeningDevices = device; 1489 } 1490 1491 void EventHub::loadConfigurationLocked(Device* device) { 1492 device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier( 1493 device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION); 1494 if (device->configurationFile.isEmpty()) { 1495 ALOGD("No input device configuration file found for device '%s'.", 1496 device->identifier.name.string()); 1497 } else { 1498 status_t status = PropertyMap::load(device->configurationFile, 1499 &device->configuration); 1500 if (status) { 1501 ALOGE("Error loading input device configuration file for device '%s'. " 1502 "Using default configuration.", 1503 device->identifier.name.string()); 1504 } 1505 } 1506 } 1507 1508 status_t EventHub::loadVirtualKeyMapLocked(Device* device) { 1509 // The virtual key map is supplied by the kernel as a system board property file. 1510 String8 path; 1511 path.append("/sys/board_properties/virtualkeys."); 1512 path.append(device->identifier.name); 1513 if (access(path.string(), R_OK)) { 1514 return NAME_NOT_FOUND; 1515 } 1516 return VirtualKeyMap::load(path, &device->virtualKeyMap); 1517 } 1518 1519 status_t EventHub::loadKeyMapLocked(Device* device) { 1520 return device->keyMap.load(device->identifier, device->configuration); 1521 } 1522 1523 bool EventHub::isExternalDeviceLocked(Device* device) { 1524 if (device->configuration) { 1525 bool value; 1526 if (device->configuration->tryGetProperty(String8("device.internal"), value)) { 1527 return !value; 1528 } 1529 } 1530 return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH; 1531 } 1532 1533 bool EventHub::deviceHasMicLocked(Device* device) { 1534 if (device->configuration) { 1535 bool value; 1536 if (device->configuration->tryGetProperty(String8("audio.mic"), value)) { 1537 return value; 1538 } 1539 } 1540 return false; 1541 } 1542 1543 int32_t EventHub::getNextControllerNumberLocked(Device* device) { 1544 if (mControllerNumbers.isFull()) { 1545 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s", 1546 device->identifier.name.string()); 1547 return 0; 1548 } 1549 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by 1550 // one 1551 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1); 1552 } 1553 1554 void EventHub::releaseControllerNumberLocked(Device* device) { 1555 int32_t num = device->controllerNumber; 1556 device->controllerNumber= 0; 1557 if (num == 0) { 1558 return; 1559 } 1560 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1)); 1561 } 1562 1563 void EventHub::setLedForControllerLocked(Device* device) { 1564 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) { 1565 setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1); 1566 } 1567 } 1568 1569 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const { 1570 if (!device->keyMap.haveKeyLayout()) { 1571 return false; 1572 } 1573 1574 Vector<int32_t> scanCodes; 1575 device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes); 1576 const size_t N = scanCodes.size(); 1577 for (size_t i=0; i<N && i<=KEY_MAX; i++) { 1578 int32_t sc = scanCodes.itemAt(i); 1579 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) { 1580 return true; 1581 } 1582 } 1583 1584 return false; 1585 } 1586 1587 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const { 1588 if (!device->keyMap.haveKeyLayout()) { 1589 return NAME_NOT_FOUND; 1590 } 1591 1592 int32_t scanCode; 1593 if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) { 1594 if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) { 1595 *outScanCode = scanCode; 1596 return NO_ERROR; 1597 } 1598 } 1599 return NAME_NOT_FOUND; 1600 } 1601 1602 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) { 1603 Device* device = getDeviceByPathLocked(devicePath); 1604 if (device) { 1605 closeDeviceLocked(device); 1606 return 0; 1607 } 1608 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath); 1609 return -1; 1610 } 1611 1612 void EventHub::closeAllDevicesLocked() { 1613 while (mDevices.size() > 0) { 1614 closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1)); 1615 } 1616 } 1617 1618 void EventHub::closeDeviceLocked(Device* device) { 1619 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n", 1620 device->path.string(), device->identifier.name.string(), device->id, 1621 device->fd, device->classes); 1622 1623 if (device->id == mBuiltInKeyboardId) { 1624 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", 1625 device->path.string(), mBuiltInKeyboardId); 1626 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD; 1627 } 1628 1629 unregisterDeviceFromEpollLocked(device); 1630 1631 releaseControllerNumberLocked(device); 1632 1633 mDevices.removeItem(device->id); 1634 device->close(); 1635 1636 // Unlink for opening devices list if it is present. 1637 Device* pred = NULL; 1638 bool found = false; 1639 for (Device* entry = mOpeningDevices; entry != NULL; ) { 1640 if (entry == device) { 1641 found = true; 1642 break; 1643 } 1644 pred = entry; 1645 entry = entry->next; 1646 } 1647 if (found) { 1648 // Unlink the device from the opening devices list then delete it. 1649 // We don't need to tell the client that the device was closed because 1650 // it does not even know it was opened in the first place. 1651 ALOGI("Device %s was immediately closed after opening.", device->path.string()); 1652 if (pred) { 1653 pred->next = device->next; 1654 } else { 1655 mOpeningDevices = device->next; 1656 } 1657 delete device; 1658 } else { 1659 // Link into closing devices list. 1660 // The device will be deleted later after we have informed the client. 1661 device->next = mClosingDevices; 1662 mClosingDevices = device; 1663 } 1664 } 1665 1666 status_t EventHub::readNotifyLocked() { 1667 int res; 1668 char devname[PATH_MAX]; 1669 char *filename; 1670 char event_buf[512]; 1671 int event_size; 1672 int event_pos = 0; 1673 struct inotify_event *event; 1674 1675 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd); 1676 res = read(mINotifyFd, event_buf, sizeof(event_buf)); 1677 if(res < (int)sizeof(*event)) { 1678 if(errno == EINTR) 1679 return 0; 1680 ALOGW("could not get event, %s\n", strerror(errno)); 1681 return -1; 1682 } 1683 //printf("got %d bytes of event information\n", res); 1684 1685 strcpy(devname, DEVICE_PATH); 1686 filename = devname + strlen(devname); 1687 *filename++ = '/'; 1688 1689 while(res >= (int)sizeof(*event)) { 1690 event = (struct inotify_event *)(event_buf + event_pos); 1691 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : ""); 1692 if(event->len) { 1693 strcpy(filename, event->name); 1694 if(event->mask & IN_CREATE) { 1695 openDeviceLocked(devname); 1696 } else { 1697 ALOGI("Removing device '%s' due to inotify event\n", devname); 1698 closeDeviceByPathLocked(devname); 1699 } 1700 } 1701 event_size = sizeof(*event) + event->len; 1702 res -= event_size; 1703 event_pos += event_size; 1704 } 1705 return 0; 1706 } 1707 1708 status_t EventHub::scanDirLocked(const char *dirname) 1709 { 1710 char devname[PATH_MAX]; 1711 char *filename; 1712 DIR *dir; 1713 struct dirent *de; 1714 dir = opendir(dirname); 1715 if(dir == NULL) 1716 return -1; 1717 strcpy(devname, dirname); 1718 filename = devname + strlen(devname); 1719 *filename++ = '/'; 1720 while((de = readdir(dir))) { 1721 if(de->d_name[0] == '.' && 1722 (de->d_name[1] == '\0' || 1723 (de->d_name[1] == '.' && de->d_name[2] == '\0'))) 1724 continue; 1725 strcpy(filename, de->d_name); 1726 openDeviceLocked(devname); 1727 } 1728 closedir(dir); 1729 return 0; 1730 } 1731 1732 void EventHub::requestReopenDevices() { 1733 ALOGV("requestReopenDevices() called"); 1734 1735 AutoMutex _l(mLock); 1736 mNeedToReopenDevices = true; 1737 } 1738 1739 void EventHub::dump(std::string& dump) { 1740 dump += "Event Hub State:\n"; 1741 1742 { // acquire lock 1743 AutoMutex _l(mLock); 1744 1745 dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId); 1746 1747 dump += INDENT "Devices:\n"; 1748 1749 for (size_t i = 0; i < mDevices.size(); i++) { 1750 const Device* device = mDevices.valueAt(i); 1751 if (mBuiltInKeyboardId == device->id) { 1752 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n", 1753 device->id, device->identifier.name.string()); 1754 } else { 1755 dump += StringPrintf(INDENT2 "%d: %s\n", device->id, 1756 device->identifier.name.string()); 1757 } 1758 dump += StringPrintf(INDENT3 "Classes: 0x%08x\n", device->classes); 1759 dump += StringPrintf(INDENT3 "Path: %s\n", device->path.string()); 1760 dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled)); 1761 dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string()); 1762 dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.string()); 1763 dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber); 1764 dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string()); 1765 dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, " 1766 "product=0x%04x, version=0x%04x\n", 1767 device->identifier.bus, device->identifier.vendor, 1768 device->identifier.product, device->identifier.version); 1769 dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n", 1770 device->keyMap.keyLayoutFile.string()); 1771 dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n", 1772 device->keyMap.keyCharacterMapFile.string()); 1773 dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n", 1774 device->configurationFile.string()); 1775 dump += StringPrintf(INDENT3 "HaveKeyboardLayoutOverlay: %s\n", 1776 toString(device->overlayKeyMap != NULL)); 1777 } 1778 } // release lock 1779 } 1780 1781 void EventHub::monitor() { 1782 // Acquire and release the lock to ensure that the event hub has not deadlocked. 1783 mLock.lock(); 1784 mLock.unlock(); 1785 } 1786 1787 1788 }; // namespace android 1789