1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the MC-JIT runtime dynamic linker. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ExecutionEngine/RuntimeDyld.h" 15 #include "RuntimeDyldCheckerImpl.h" 16 #include "RuntimeDyldCOFF.h" 17 #include "RuntimeDyldELF.h" 18 #include "RuntimeDyldImpl.h" 19 #include "RuntimeDyldMachO.h" 20 #include "llvm/Object/ELFObjectFile.h" 21 #include "llvm/Object/COFF.h" 22 #include "llvm/Support/ManagedStatic.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/MutexGuard.h" 25 26 using namespace llvm; 27 using namespace llvm::object; 28 29 #define DEBUG_TYPE "dyld" 30 31 namespace { 32 33 enum RuntimeDyldErrorCode { 34 GenericRTDyldError = 1 35 }; 36 37 // FIXME: This class is only here to support the transition to llvm::Error. It 38 // will be removed once this transition is complete. Clients should prefer to 39 // deal with the Error value directly, rather than converting to error_code. 40 class RuntimeDyldErrorCategory : public std::error_category { 41 public: 42 const char *name() const LLVM_NOEXCEPT override { return "runtimedyld"; } 43 44 std::string message(int Condition) const override { 45 switch (static_cast<RuntimeDyldErrorCode>(Condition)) { 46 case GenericRTDyldError: return "Generic RuntimeDyld error"; 47 } 48 llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); 49 } 50 }; 51 52 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; 53 54 } 55 56 char RuntimeDyldError::ID = 0; 57 58 void RuntimeDyldError::log(raw_ostream &OS) const { 59 OS << ErrMsg << "\n"; 60 } 61 62 std::error_code RuntimeDyldError::convertToErrorCode() const { 63 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); 64 } 65 66 // Empty out-of-line virtual destructor as the key function. 67 RuntimeDyldImpl::~RuntimeDyldImpl() {} 68 69 // Pin LoadedObjectInfo's vtables to this file. 70 void RuntimeDyld::LoadedObjectInfo::anchor() {} 71 72 namespace llvm { 73 74 void RuntimeDyldImpl::registerEHFrames() {} 75 76 void RuntimeDyldImpl::deregisterEHFrames() {} 77 78 #ifndef NDEBUG 79 static void dumpSectionMemory(const SectionEntry &S, StringRef State) { 80 dbgs() << "----- Contents of section " << S.getName() << " " << State 81 << " -----"; 82 83 if (S.getAddress() == nullptr) { 84 dbgs() << "\n <section not emitted>\n"; 85 return; 86 } 87 88 const unsigned ColsPerRow = 16; 89 90 uint8_t *DataAddr = S.getAddress(); 91 uint64_t LoadAddr = S.getLoadAddress(); 92 93 unsigned StartPadding = LoadAddr & (ColsPerRow - 1); 94 unsigned BytesRemaining = S.getSize(); 95 96 if (StartPadding) { 97 dbgs() << "\n" << format("0x%016" PRIx64, 98 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; 99 while (StartPadding--) 100 dbgs() << " "; 101 } 102 103 while (BytesRemaining > 0) { 104 if ((LoadAddr & (ColsPerRow - 1)) == 0) 105 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; 106 107 dbgs() << " " << format("%02x", *DataAddr); 108 109 ++DataAddr; 110 ++LoadAddr; 111 --BytesRemaining; 112 } 113 114 dbgs() << "\n"; 115 } 116 #endif 117 118 // Resolve the relocations for all symbols we currently know about. 119 void RuntimeDyldImpl::resolveRelocations() { 120 MutexGuard locked(lock); 121 122 // Print out the sections prior to relocation. 123 DEBUG( 124 for (int i = 0, e = Sections.size(); i != e; ++i) 125 dumpSectionMemory(Sections[i], "before relocations"); 126 ); 127 128 // First, resolve relocations associated with external symbols. 129 resolveExternalSymbols(); 130 131 // Iterate over all outstanding relocations 132 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { 133 // The Section here (Sections[i]) refers to the section in which the 134 // symbol for the relocation is located. The SectionID in the relocation 135 // entry provides the section to which the relocation will be applied. 136 int Idx = it->first; 137 uint64_t Addr = Sections[Idx].getLoadAddress(); 138 DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" 139 << format("%p", (uintptr_t)Addr) << "\n"); 140 resolveRelocationList(it->second, Addr); 141 } 142 Relocations.clear(); 143 144 // Print out sections after relocation. 145 DEBUG( 146 for (int i = 0, e = Sections.size(); i != e; ++i) 147 dumpSectionMemory(Sections[i], "after relocations"); 148 ); 149 150 } 151 152 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, 153 uint64_t TargetAddress) { 154 MutexGuard locked(lock); 155 for (unsigned i = 0, e = Sections.size(); i != e; ++i) { 156 if (Sections[i].getAddress() == LocalAddress) { 157 reassignSectionAddress(i, TargetAddress); 158 return; 159 } 160 } 161 llvm_unreachable("Attempting to remap address of unknown section!"); 162 } 163 164 static Error getOffset(const SymbolRef &Sym, SectionRef Sec, 165 uint64_t &Result) { 166 Expected<uint64_t> AddressOrErr = Sym.getAddress(); 167 if (!AddressOrErr) 168 return AddressOrErr.takeError(); 169 Result = *AddressOrErr - Sec.getAddress(); 170 return Error::success(); 171 } 172 173 Expected<RuntimeDyldImpl::ObjSectionToIDMap> 174 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { 175 MutexGuard locked(lock); 176 177 // Save information about our target 178 Arch = (Triple::ArchType)Obj.getArch(); 179 IsTargetLittleEndian = Obj.isLittleEndian(); 180 setMipsABI(Obj); 181 182 // Compute the memory size required to load all sections to be loaded 183 // and pass this information to the memory manager 184 if (MemMgr.needsToReserveAllocationSpace()) { 185 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; 186 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; 187 if (auto Err = computeTotalAllocSize(Obj, 188 CodeSize, CodeAlign, 189 RODataSize, RODataAlign, 190 RWDataSize, RWDataAlign)) 191 return std::move(Err); 192 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, 193 RWDataSize, RWDataAlign); 194 } 195 196 // Used sections from the object file 197 ObjSectionToIDMap LocalSections; 198 199 // Common symbols requiring allocation, with their sizes and alignments 200 CommonSymbolList CommonSymbols; 201 202 // Parse symbols 203 DEBUG(dbgs() << "Parse symbols:\n"); 204 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 205 ++I) { 206 uint32_t Flags = I->getFlags(); 207 208 if (Flags & SymbolRef::SF_Common) 209 CommonSymbols.push_back(*I); 210 else { 211 212 // Get the symbol type. 213 object::SymbolRef::Type SymType; 214 if (auto SymTypeOrErr = I->getType()) 215 SymType = *SymTypeOrErr; 216 else 217 return SymTypeOrErr.takeError(); 218 219 // Get symbol name. 220 StringRef Name; 221 if (auto NameOrErr = I->getName()) 222 Name = *NameOrErr; 223 else 224 return NameOrErr.takeError(); 225 226 // Compute JIT symbol flags. 227 JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None; 228 if (Flags & SymbolRef::SF_Weak) 229 RTDyldSymFlags |= JITSymbolFlags::Weak; 230 if (Flags & SymbolRef::SF_Exported) 231 RTDyldSymFlags |= JITSymbolFlags::Exported; 232 233 if (Flags & SymbolRef::SF_Absolute && 234 SymType != object::SymbolRef::ST_File) { 235 uint64_t Addr = 0; 236 if (auto AddrOrErr = I->getAddress()) 237 Addr = *AddrOrErr; 238 else 239 return AddrOrErr.takeError(); 240 241 unsigned SectionID = AbsoluteSymbolSection; 242 243 DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name 244 << " SID: " << SectionID << " Offset: " 245 << format("%p", (uintptr_t)Addr) 246 << " flags: " << Flags << "\n"); 247 GlobalSymbolTable[Name] = 248 SymbolTableEntry(SectionID, Addr, RTDyldSymFlags); 249 } else if (SymType == object::SymbolRef::ST_Function || 250 SymType == object::SymbolRef::ST_Data || 251 SymType == object::SymbolRef::ST_Unknown || 252 SymType == object::SymbolRef::ST_Other) { 253 254 section_iterator SI = Obj.section_end(); 255 if (auto SIOrErr = I->getSection()) 256 SI = *SIOrErr; 257 else 258 return SIOrErr.takeError(); 259 260 if (SI == Obj.section_end()) 261 continue; 262 263 // Get symbol offset. 264 uint64_t SectOffset; 265 if (auto Err = getOffset(*I, *SI, SectOffset)) 266 return std::move(Err); 267 268 bool IsCode = SI->isText(); 269 unsigned SectionID; 270 if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode, 271 LocalSections)) 272 SectionID = *SectionIDOrErr; 273 else 274 return SectionIDOrErr.takeError(); 275 276 DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name 277 << " SID: " << SectionID << " Offset: " 278 << format("%p", (uintptr_t)SectOffset) 279 << " flags: " << Flags << "\n"); 280 GlobalSymbolTable[Name] = 281 SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags); 282 } 283 } 284 } 285 286 // Allocate common symbols 287 if (auto Err = emitCommonSymbols(Obj, CommonSymbols)) 288 return std::move(Err); 289 290 // Parse and process relocations 291 DEBUG(dbgs() << "Parse relocations:\n"); 292 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 293 SI != SE; ++SI) { 294 StubMap Stubs; 295 section_iterator RelocatedSection = SI->getRelocatedSection(); 296 297 if (RelocatedSection == SE) 298 continue; 299 300 relocation_iterator I = SI->relocation_begin(); 301 relocation_iterator E = SI->relocation_end(); 302 303 if (I == E && !ProcessAllSections) 304 continue; 305 306 bool IsCode = RelocatedSection->isText(); 307 unsigned SectionID = 0; 308 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, 309 LocalSections)) 310 SectionID = *SectionIDOrErr; 311 else 312 return SectionIDOrErr.takeError(); 313 314 DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); 315 316 for (; I != E;) 317 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) 318 I = *IOrErr; 319 else 320 return IOrErr.takeError(); 321 322 // If there is an attached checker, notify it about the stubs for this 323 // section so that they can be verified. 324 if (Checker) 325 Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs); 326 } 327 328 // Give the subclasses a chance to tie-up any loose ends. 329 if (auto Err = finalizeLoad(Obj, LocalSections)) 330 return std::move(Err); 331 332 // for (auto E : LocalSections) 333 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; 334 335 return LocalSections; 336 } 337 338 // A helper method for computeTotalAllocSize. 339 // Computes the memory size required to allocate sections with the given sizes, 340 // assuming that all sections are allocated with the given alignment 341 static uint64_t 342 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, 343 uint64_t Alignment) { 344 uint64_t TotalSize = 0; 345 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { 346 uint64_t AlignedSize = 347 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; 348 TotalSize += AlignedSize; 349 } 350 return TotalSize; 351 } 352 353 static bool isRequiredForExecution(const SectionRef Section) { 354 const ObjectFile *Obj = Section.getObject(); 355 if (isa<object::ELFObjectFileBase>(Obj)) 356 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 357 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { 358 const coff_section *CoffSection = COFFObj->getCOFFSection(Section); 359 // Avoid loading zero-sized COFF sections. 360 // In PE files, VirtualSize gives the section size, and SizeOfRawData 361 // may be zero for sections with content. In Obj files, SizeOfRawData 362 // gives the section size, and VirtualSize is always zero. Hence 363 // the need to check for both cases below. 364 bool HasContent = 365 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); 366 bool IsDiscardable = 367 CoffSection->Characteristics & 368 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); 369 return HasContent && !IsDiscardable; 370 } 371 372 assert(isa<MachOObjectFile>(Obj)); 373 return true; 374 } 375 376 static bool isReadOnlyData(const SectionRef Section) { 377 const ObjectFile *Obj = Section.getObject(); 378 if (isa<object::ELFObjectFileBase>(Obj)) 379 return !(ELFSectionRef(Section).getFlags() & 380 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); 381 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 382 return ((COFFObj->getCOFFSection(Section)->Characteristics & 383 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 384 | COFF::IMAGE_SCN_MEM_READ 385 | COFF::IMAGE_SCN_MEM_WRITE)) 386 == 387 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA 388 | COFF::IMAGE_SCN_MEM_READ)); 389 390 assert(isa<MachOObjectFile>(Obj)); 391 return false; 392 } 393 394 static bool isZeroInit(const SectionRef Section) { 395 const ObjectFile *Obj = Section.getObject(); 396 if (isa<object::ELFObjectFileBase>(Obj)) 397 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; 398 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) 399 return COFFObj->getCOFFSection(Section)->Characteristics & 400 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 401 402 auto *MachO = cast<MachOObjectFile>(Obj); 403 unsigned SectionType = MachO->getSectionType(Section); 404 return SectionType == MachO::S_ZEROFILL || 405 SectionType == MachO::S_GB_ZEROFILL; 406 } 407 408 // Compute an upper bound of the memory size that is required to load all 409 // sections 410 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, 411 uint64_t &CodeSize, 412 uint32_t &CodeAlign, 413 uint64_t &RODataSize, 414 uint32_t &RODataAlign, 415 uint64_t &RWDataSize, 416 uint32_t &RWDataAlign) { 417 // Compute the size of all sections required for execution 418 std::vector<uint64_t> CodeSectionSizes; 419 std::vector<uint64_t> ROSectionSizes; 420 std::vector<uint64_t> RWSectionSizes; 421 422 // Collect sizes of all sections to be loaded; 423 // also determine the max alignment of all sections 424 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 425 SI != SE; ++SI) { 426 const SectionRef &Section = *SI; 427 428 bool IsRequired = isRequiredForExecution(Section); 429 430 // Consider only the sections that are required to be loaded for execution 431 if (IsRequired) { 432 uint64_t DataSize = Section.getSize(); 433 uint64_t Alignment64 = Section.getAlignment(); 434 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 435 bool IsCode = Section.isText(); 436 bool IsReadOnly = isReadOnlyData(Section); 437 438 StringRef Name; 439 if (auto EC = Section.getName(Name)) 440 return errorCodeToError(EC); 441 442 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); 443 uint64_t SectionSize = DataSize + StubBufSize; 444 445 // The .eh_frame section (at least on Linux) needs an extra four bytes 446 // padded 447 // with zeroes added at the end. For MachO objects, this section has a 448 // slightly different name, so this won't have any effect for MachO 449 // objects. 450 if (Name == ".eh_frame") 451 SectionSize += 4; 452 453 if (!SectionSize) 454 SectionSize = 1; 455 456 if (IsCode) { 457 CodeAlign = std::max(CodeAlign, Alignment); 458 CodeSectionSizes.push_back(SectionSize); 459 } else if (IsReadOnly) { 460 RODataAlign = std::max(RODataAlign, Alignment); 461 ROSectionSizes.push_back(SectionSize); 462 } else { 463 RWDataAlign = std::max(RWDataAlign, Alignment); 464 RWSectionSizes.push_back(SectionSize); 465 } 466 } 467 } 468 469 // Compute the size of all common symbols 470 uint64_t CommonSize = 0; 471 uint32_t CommonAlign = 1; 472 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; 473 ++I) { 474 uint32_t Flags = I->getFlags(); 475 if (Flags & SymbolRef::SF_Common) { 476 // Add the common symbols to a list. We'll allocate them all below. 477 uint64_t Size = I->getCommonSize(); 478 uint32_t Align = I->getAlignment(); 479 // If this is the first common symbol, use its alignment as the alignment 480 // for the common symbols section. 481 if (CommonSize == 0) 482 CommonAlign = Align; 483 CommonSize = alignTo(CommonSize, Align) + Size; 484 } 485 } 486 if (CommonSize != 0) { 487 RWSectionSizes.push_back(CommonSize); 488 RWDataAlign = std::max(RWDataAlign, CommonAlign); 489 } 490 491 // Compute the required allocation space for each different type of sections 492 // (code, read-only data, read-write data) assuming that all sections are 493 // allocated with the max alignment. Note that we cannot compute with the 494 // individual alignments of the sections, because then the required size 495 // depends on the order, in which the sections are allocated. 496 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); 497 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); 498 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); 499 500 return Error::success(); 501 } 502 503 // compute stub buffer size for the given section 504 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, 505 const SectionRef &Section) { 506 unsigned StubSize = getMaxStubSize(); 507 if (StubSize == 0) { 508 return 0; 509 } 510 // FIXME: this is an inefficient way to handle this. We should computed the 511 // necessary section allocation size in loadObject by walking all the sections 512 // once. 513 unsigned StubBufSize = 0; 514 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); 515 SI != SE; ++SI) { 516 section_iterator RelSecI = SI->getRelocatedSection(); 517 if (!(RelSecI == Section)) 518 continue; 519 520 for (const RelocationRef &Reloc : SI->relocations()) 521 if (relocationNeedsStub(Reloc)) 522 StubBufSize += StubSize; 523 } 524 525 // Get section data size and alignment 526 uint64_t DataSize = Section.getSize(); 527 uint64_t Alignment64 = Section.getAlignment(); 528 529 // Add stubbuf size alignment 530 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 531 unsigned StubAlignment = getStubAlignment(); 532 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); 533 if (StubAlignment > EndAlignment) 534 StubBufSize += StubAlignment - EndAlignment; 535 return StubBufSize; 536 } 537 538 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, 539 unsigned Size) const { 540 uint64_t Result = 0; 541 if (IsTargetLittleEndian) { 542 Src += Size - 1; 543 while (Size--) 544 Result = (Result << 8) | *Src--; 545 } else 546 while (Size--) 547 Result = (Result << 8) | *Src++; 548 549 return Result; 550 } 551 552 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, 553 unsigned Size) const { 554 if (IsTargetLittleEndian) { 555 while (Size--) { 556 *Dst++ = Value & 0xFF; 557 Value >>= 8; 558 } 559 } else { 560 Dst += Size - 1; 561 while (Size--) { 562 *Dst-- = Value & 0xFF; 563 Value >>= 8; 564 } 565 } 566 } 567 568 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, 569 CommonSymbolList &CommonSymbols) { 570 if (CommonSymbols.empty()) 571 return Error::success(); 572 573 uint64_t CommonSize = 0; 574 uint32_t CommonAlign = CommonSymbols.begin()->getAlignment(); 575 CommonSymbolList SymbolsToAllocate; 576 577 DEBUG(dbgs() << "Processing common symbols...\n"); 578 579 for (const auto &Sym : CommonSymbols) { 580 StringRef Name; 581 if (auto NameOrErr = Sym.getName()) 582 Name = *NameOrErr; 583 else 584 return NameOrErr.takeError(); 585 586 // Skip common symbols already elsewhere. 587 if (GlobalSymbolTable.count(Name) || 588 Resolver.findSymbolInLogicalDylib(Name)) { 589 DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name 590 << "'\n"); 591 continue; 592 } 593 594 uint32_t Align = Sym.getAlignment(); 595 uint64_t Size = Sym.getCommonSize(); 596 597 CommonSize = alignTo(CommonSize, Align) + Size; 598 599 SymbolsToAllocate.push_back(Sym); 600 } 601 602 // Allocate memory for the section 603 unsigned SectionID = Sections.size(); 604 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, 605 "<common symbols>", false); 606 if (!Addr) 607 report_fatal_error("Unable to allocate memory for common symbols!"); 608 uint64_t Offset = 0; 609 Sections.push_back( 610 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); 611 memset(Addr, 0, CommonSize); 612 613 DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " 614 << format("%p", Addr) << " DataSize: " << CommonSize << "\n"); 615 616 // Assign the address of each symbol 617 for (auto &Sym : SymbolsToAllocate) { 618 uint32_t Align = Sym.getAlignment(); 619 uint64_t Size = Sym.getCommonSize(); 620 StringRef Name; 621 if (auto NameOrErr = Sym.getName()) 622 Name = *NameOrErr; 623 else 624 return NameOrErr.takeError(); 625 if (Align) { 626 // This symbol has an alignment requirement. 627 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); 628 Addr += AlignOffset; 629 Offset += AlignOffset; 630 } 631 uint32_t Flags = Sym.getFlags(); 632 JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None; 633 if (Flags & SymbolRef::SF_Weak) 634 RTDyldSymFlags |= JITSymbolFlags::Weak; 635 if (Flags & SymbolRef::SF_Exported) 636 RTDyldSymFlags |= JITSymbolFlags::Exported; 637 DEBUG(dbgs() << "Allocating common symbol " << Name << " address " 638 << format("%p", Addr) << "\n"); 639 GlobalSymbolTable[Name] = 640 SymbolTableEntry(SectionID, Offset, RTDyldSymFlags); 641 Offset += Size; 642 Addr += Size; 643 } 644 645 if (Checker) 646 Checker->registerSection(Obj.getFileName(), SectionID); 647 648 return Error::success(); 649 } 650 651 Expected<unsigned> 652 RuntimeDyldImpl::emitSection(const ObjectFile &Obj, 653 const SectionRef &Section, 654 bool IsCode) { 655 StringRef data; 656 uint64_t Alignment64 = Section.getAlignment(); 657 658 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; 659 unsigned PaddingSize = 0; 660 unsigned StubBufSize = 0; 661 bool IsRequired = isRequiredForExecution(Section); 662 bool IsVirtual = Section.isVirtual(); 663 bool IsZeroInit = isZeroInit(Section); 664 bool IsReadOnly = isReadOnlyData(Section); 665 uint64_t DataSize = Section.getSize(); 666 667 StringRef Name; 668 if (auto EC = Section.getName(Name)) 669 return errorCodeToError(EC); 670 671 StubBufSize = computeSectionStubBufSize(Obj, Section); 672 673 // The .eh_frame section (at least on Linux) needs an extra four bytes padded 674 // with zeroes added at the end. For MachO objects, this section has a 675 // slightly different name, so this won't have any effect for MachO objects. 676 if (Name == ".eh_frame") 677 PaddingSize = 4; 678 679 uintptr_t Allocate; 680 unsigned SectionID = Sections.size(); 681 uint8_t *Addr; 682 const char *pData = nullptr; 683 684 // If this section contains any bits (i.e. isn't a virtual or bss section), 685 // grab a reference to them. 686 if (!IsVirtual && !IsZeroInit) { 687 // In either case, set the location of the unrelocated section in memory, 688 // since we still process relocations for it even if we're not applying them. 689 if (auto EC = Section.getContents(data)) 690 return errorCodeToError(EC); 691 pData = data.data(); 692 } 693 694 // Code section alignment needs to be at least as high as stub alignment or 695 // padding calculations may by incorrect when the section is remapped to a 696 // higher alignment. 697 if (IsCode) 698 Alignment = std::max(Alignment, getStubAlignment()); 699 700 // Some sections, such as debug info, don't need to be loaded for execution. 701 // Leave those where they are. 702 if (IsRequired) { 703 Allocate = DataSize + PaddingSize + StubBufSize; 704 if (!Allocate) 705 Allocate = 1; 706 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, 707 Name) 708 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, 709 Name, IsReadOnly); 710 if (!Addr) 711 report_fatal_error("Unable to allocate section memory!"); 712 713 // Zero-initialize or copy the data from the image 714 if (IsZeroInit || IsVirtual) 715 memset(Addr, 0, DataSize); 716 else 717 memcpy(Addr, pData, DataSize); 718 719 // Fill in any extra bytes we allocated for padding 720 if (PaddingSize != 0) { 721 memset(Addr + DataSize, 0, PaddingSize); 722 // Update the DataSize variable so that the stub offset is set correctly. 723 DataSize += PaddingSize; 724 } 725 726 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 727 << " obj addr: " << format("%p", pData) 728 << " new addr: " << format("%p", Addr) 729 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 730 << " Allocate: " << Allocate << "\n"); 731 } else { 732 // Even if we didn't load the section, we need to record an entry for it 733 // to handle later processing (and by 'handle' I mean don't do anything 734 // with these sections). 735 Allocate = 0; 736 Addr = nullptr; 737 DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name 738 << " obj addr: " << format("%p", data.data()) << " new addr: 0" 739 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize 740 << " Allocate: " << Allocate << "\n"); 741 } 742 743 Sections.push_back( 744 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); 745 746 if (Checker) 747 Checker->registerSection(Obj.getFileName(), SectionID); 748 749 return SectionID; 750 } 751 752 Expected<unsigned> 753 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, 754 const SectionRef &Section, 755 bool IsCode, 756 ObjSectionToIDMap &LocalSections) { 757 758 unsigned SectionID = 0; 759 ObjSectionToIDMap::iterator i = LocalSections.find(Section); 760 if (i != LocalSections.end()) 761 SectionID = i->second; 762 else { 763 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) 764 SectionID = *SectionIDOrErr; 765 else 766 return SectionIDOrErr.takeError(); 767 LocalSections[Section] = SectionID; 768 } 769 return SectionID; 770 } 771 772 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, 773 unsigned SectionID) { 774 Relocations[SectionID].push_back(RE); 775 } 776 777 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, 778 StringRef SymbolName) { 779 // Relocation by symbol. If the symbol is found in the global symbol table, 780 // create an appropriate section relocation. Otherwise, add it to 781 // ExternalSymbolRelocations. 782 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); 783 if (Loc == GlobalSymbolTable.end()) { 784 ExternalSymbolRelocations[SymbolName].push_back(RE); 785 } else { 786 // Copy the RE since we want to modify its addend. 787 RelocationEntry RECopy = RE; 788 const auto &SymInfo = Loc->second; 789 RECopy.Addend += SymInfo.getOffset(); 790 Relocations[SymInfo.getSectionID()].push_back(RECopy); 791 } 792 } 793 794 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, 795 unsigned AbiVariant) { 796 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) { 797 // This stub has to be able to access the full address space, 798 // since symbol lookup won't necessarily find a handy, in-range, 799 // PLT stub for functions which could be anywhere. 800 // Stub can use ip0 (== x16) to calculate address 801 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr> 802 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr> 803 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr> 804 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> 805 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 806 807 return Addr; 808 } else if (Arch == Triple::arm || Arch == Triple::armeb) { 809 // TODO: There is only ARM far stub now. We should add the Thumb stub, 810 // and stubs for branches Thumb - ARM and ARM - Thumb. 811 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label> 812 return Addr + 4; 813 } else if (IsMipsO32ABI) { 814 // 0: 3c190000 lui t9,%hi(addr). 815 // 4: 27390000 addiu t9,t9,%lo(addr). 816 // 8: 03200008 jr t9. 817 // c: 00000000 nop. 818 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; 819 const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0; 820 821 writeBytesUnaligned(LuiT9Instr, Addr, 4); 822 writeBytesUnaligned(AdduiT9Instr, Addr+4, 4); 823 writeBytesUnaligned(JrT9Instr, Addr+8, 4); 824 writeBytesUnaligned(NopInstr, Addr+12, 4); 825 return Addr; 826 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { 827 // Depending on which version of the ELF ABI is in use, we need to 828 // generate one of two variants of the stub. They both start with 829 // the same sequence to load the target address into r12. 830 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr) 831 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr) 832 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32 833 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr) 834 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr) 835 if (AbiVariant == 2) { 836 // PowerPC64 stub ELFv2 ABI: The address points to the function itself. 837 // The address is already in r12 as required by the ABI. Branch to it. 838 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1) 839 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 840 writeInt32BE(Addr+28, 0x4E800420); // bctr 841 } else { 842 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. 843 // Load the function address on r11 and sets it to control register. Also 844 // loads the function TOC in r2 and environment pointer to r11. 845 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1) 846 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12) 847 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12) 848 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 849 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2) 850 writeInt32BE(Addr+40, 0x4E800420); // bctr 851 } 852 return Addr; 853 } else if (Arch == Triple::systemz) { 854 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8 855 writeInt16BE(Addr+2, 0x0000); 856 writeInt16BE(Addr+4, 0x0004); 857 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1 858 // 8-byte address stored at Addr + 8 859 return Addr; 860 } else if (Arch == Triple::x86_64) { 861 *Addr = 0xFF; // jmp 862 *(Addr+1) = 0x25; // rip 863 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 864 } else if (Arch == Triple::x86) { 865 *Addr = 0xE9; // 32-bit pc-relative jump. 866 } 867 return Addr; 868 } 869 870 // Assign an address to a symbol name and resolve all the relocations 871 // associated with it. 872 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, 873 uint64_t Addr) { 874 // The address to use for relocation resolution is not 875 // the address of the local section buffer. We must be doing 876 // a remote execution environment of some sort. Relocations can't 877 // be applied until all the sections have been moved. The client must 878 // trigger this with a call to MCJIT::finalize() or 879 // RuntimeDyld::resolveRelocations(). 880 // 881 // Addr is a uint64_t because we can't assume the pointer width 882 // of the target is the same as that of the host. Just use a generic 883 // "big enough" type. 884 DEBUG(dbgs() << "Reassigning address for section " << SectionID << " (" 885 << Sections[SectionID].getName() << "): " 886 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) 887 << " -> " << format("0x%016" PRIx64, Addr) << "\n"); 888 Sections[SectionID].setLoadAddress(Addr); 889 } 890 891 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, 892 uint64_t Value) { 893 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { 894 const RelocationEntry &RE = Relocs[i]; 895 // Ignore relocations for sections that were not loaded 896 if (Sections[RE.SectionID].getAddress() == nullptr) 897 continue; 898 resolveRelocation(RE, Value); 899 } 900 } 901 902 void RuntimeDyldImpl::resolveExternalSymbols() { 903 while (!ExternalSymbolRelocations.empty()) { 904 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(); 905 906 StringRef Name = i->first(); 907 if (Name.size() == 0) { 908 // This is an absolute symbol, use an address of zero. 909 DEBUG(dbgs() << "Resolving absolute relocations." 910 << "\n"); 911 RelocationList &Relocs = i->second; 912 resolveRelocationList(Relocs, 0); 913 } else { 914 uint64_t Addr = 0; 915 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); 916 if (Loc == GlobalSymbolTable.end()) { 917 // This is an external symbol, try to get its address from the symbol 918 // resolver. 919 // First search for the symbol in this logical dylib. 920 Addr = Resolver.findSymbolInLogicalDylib(Name.data()).getAddress(); 921 // If that fails, try searching for an external symbol. 922 if (!Addr) 923 Addr = Resolver.findSymbol(Name.data()).getAddress(); 924 // The call to getSymbolAddress may have caused additional modules to 925 // be loaded, which may have added new entries to the 926 // ExternalSymbolRelocations map. Consquently, we need to update our 927 // iterator. This is also why retrieval of the relocation list 928 // associated with this symbol is deferred until below this point. 929 // New entries may have been added to the relocation list. 930 i = ExternalSymbolRelocations.find(Name); 931 } else { 932 // We found the symbol in our global table. It was probably in a 933 // Module that we loaded previously. 934 const auto &SymInfo = Loc->second; 935 Addr = getSectionLoadAddress(SymInfo.getSectionID()) + 936 SymInfo.getOffset(); 937 } 938 939 // FIXME: Implement error handling that doesn't kill the host program! 940 if (!Addr) 941 report_fatal_error("Program used external function '" + Name + 942 "' which could not be resolved!"); 943 944 // If Resolver returned UINT64_MAX, the client wants to handle this symbol 945 // manually and we shouldn't resolve its relocations. 946 if (Addr != UINT64_MAX) { 947 DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" 948 << format("0x%lx", Addr) << "\n"); 949 // This list may have been updated when we called getSymbolAddress, so 950 // don't change this code to get the list earlier. 951 RelocationList &Relocs = i->second; 952 resolveRelocationList(Relocs, Addr); 953 } 954 } 955 956 ExternalSymbolRelocations.erase(i); 957 } 958 } 959 960 //===----------------------------------------------------------------------===// 961 // RuntimeDyld class implementation 962 963 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( 964 const object::SectionRef &Sec) const { 965 966 auto I = ObjSecToIDMap.find(Sec); 967 if (I != ObjSecToIDMap.end()) 968 return RTDyld.Sections[I->second].getLoadAddress(); 969 970 return 0; 971 } 972 973 void RuntimeDyld::MemoryManager::anchor() {} 974 void RuntimeDyld::SymbolResolver::anchor() {} 975 976 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, 977 RuntimeDyld::SymbolResolver &Resolver) 978 : MemMgr(MemMgr), Resolver(Resolver) { 979 // FIXME: There's a potential issue lurking here if a single instance of 980 // RuntimeDyld is used to load multiple objects. The current implementation 981 // associates a single memory manager with a RuntimeDyld instance. Even 982 // though the public class spawns a new 'impl' instance for each load, 983 // they share a single memory manager. This can become a problem when page 984 // permissions are applied. 985 Dyld = nullptr; 986 ProcessAllSections = false; 987 Checker = nullptr; 988 } 989 990 RuntimeDyld::~RuntimeDyld() {} 991 992 static std::unique_ptr<RuntimeDyldCOFF> 993 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 994 RuntimeDyld::SymbolResolver &Resolver, 995 bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { 996 std::unique_ptr<RuntimeDyldCOFF> Dyld = 997 RuntimeDyldCOFF::create(Arch, MM, Resolver); 998 Dyld->setProcessAllSections(ProcessAllSections); 999 Dyld->setRuntimeDyldChecker(Checker); 1000 return Dyld; 1001 } 1002 1003 static std::unique_ptr<RuntimeDyldELF> 1004 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM, 1005 RuntimeDyld::SymbolResolver &Resolver, 1006 bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) { 1007 std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver)); 1008 Dyld->setProcessAllSections(ProcessAllSections); 1009 Dyld->setRuntimeDyldChecker(Checker); 1010 return Dyld; 1011 } 1012 1013 static std::unique_ptr<RuntimeDyldMachO> 1014 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, 1015 RuntimeDyld::SymbolResolver &Resolver, 1016 bool ProcessAllSections, 1017 RuntimeDyldCheckerImpl *Checker) { 1018 std::unique_ptr<RuntimeDyldMachO> Dyld = 1019 RuntimeDyldMachO::create(Arch, MM, Resolver); 1020 Dyld->setProcessAllSections(ProcessAllSections); 1021 Dyld->setRuntimeDyldChecker(Checker); 1022 return Dyld; 1023 } 1024 1025 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> 1026 RuntimeDyld::loadObject(const ObjectFile &Obj) { 1027 if (!Dyld) { 1028 if (Obj.isELF()) 1029 Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker); 1030 else if (Obj.isMachO()) 1031 Dyld = createRuntimeDyldMachO( 1032 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1033 ProcessAllSections, Checker); 1034 else if (Obj.isCOFF()) 1035 Dyld = createRuntimeDyldCOFF( 1036 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, 1037 ProcessAllSections, Checker); 1038 else 1039 report_fatal_error("Incompatible object format!"); 1040 } 1041 1042 if (!Dyld->isCompatibleFile(Obj)) 1043 report_fatal_error("Incompatible object format!"); 1044 1045 auto LoadedObjInfo = Dyld->loadObject(Obj); 1046 MemMgr.notifyObjectLoaded(*this, Obj); 1047 return LoadedObjInfo; 1048 } 1049 1050 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { 1051 if (!Dyld) 1052 return nullptr; 1053 return Dyld->getSymbolLocalAddress(Name); 1054 } 1055 1056 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const { 1057 if (!Dyld) 1058 return nullptr; 1059 return Dyld->getSymbol(Name); 1060 } 1061 1062 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } 1063 1064 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { 1065 Dyld->reassignSectionAddress(SectionID, Addr); 1066 } 1067 1068 void RuntimeDyld::mapSectionAddress(const void *LocalAddress, 1069 uint64_t TargetAddress) { 1070 Dyld->mapSectionAddress(LocalAddress, TargetAddress); 1071 } 1072 1073 bool RuntimeDyld::hasError() { return Dyld->hasError(); } 1074 1075 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } 1076 1077 void RuntimeDyld::finalizeWithMemoryManagerLocking() { 1078 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; 1079 MemMgr.FinalizationLocked = true; 1080 resolveRelocations(); 1081 registerEHFrames(); 1082 if (!MemoryFinalizationLocked) { 1083 MemMgr.finalizeMemory(); 1084 MemMgr.FinalizationLocked = false; 1085 } 1086 } 1087 1088 void RuntimeDyld::registerEHFrames() { 1089 if (Dyld) 1090 Dyld->registerEHFrames(); 1091 } 1092 1093 void RuntimeDyld::deregisterEHFrames() { 1094 if (Dyld) 1095 Dyld->deregisterEHFrames(); 1096 } 1097 1098 } // end namespace llvm 1099