Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_GLOBALS_H_
      6 #define V8_GLOBALS_H_
      7 
      8 #include <stddef.h>
      9 #include <stdint.h>
     10 
     11 #include <ostream>
     12 
     13 #include "src/base/build_config.h"
     14 #include "src/base/flags.h"
     15 #include "src/base/logging.h"
     16 #include "src/base/macros.h"
     17 
     18 #ifdef V8_OS_WIN
     19 
     20 // Setup for Windows shared library export.
     21 #ifdef BUILDING_V8_SHARED
     22 #define V8_EXPORT_PRIVATE __declspec(dllexport)
     23 #elif USING_V8_SHARED
     24 #define V8_EXPORT_PRIVATE __declspec(dllimport)
     25 #else
     26 #define V8_EXPORT_PRIVATE
     27 #endif  // BUILDING_V8_SHARED
     28 
     29 #else  // V8_OS_WIN
     30 
     31 // Setup for Linux shared library export.
     32 #if V8_HAS_ATTRIBUTE_VISIBILITY
     33 #ifdef BUILDING_V8_SHARED
     34 #define V8_EXPORT_PRIVATE __attribute__((visibility("default")))
     35 #else
     36 #define V8_EXPORT_PRIVATE
     37 #endif
     38 #else
     39 #define V8_EXPORT_PRIVATE
     40 #endif
     41 
     42 #endif  // V8_OS_WIN
     43 
     44 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
     45 // warning flag and certain versions of GCC due to a bug:
     46 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
     47 // For now, we use the more involved template-based version from <limits>, but
     48 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
     49 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
     50 # include <limits>  // NOLINT
     51 # define V8_INFINITY std::numeric_limits<double>::infinity()
     52 #elif V8_LIBC_MSVCRT
     53 # define V8_INFINITY HUGE_VAL
     54 #elif V8_OS_AIX
     55 #define V8_INFINITY (__builtin_inff())
     56 #else
     57 # define V8_INFINITY INFINITY
     58 #endif
     59 
     60 namespace v8 {
     61 
     62 namespace base {
     63 class Mutex;
     64 class RecursiveMutex;
     65 class VirtualMemory;
     66 }
     67 
     68 namespace internal {
     69 
     70 // Determine whether we are running in a simulated environment.
     71 // Setting USE_SIMULATOR explicitly from the build script will force
     72 // the use of a simulated environment.
     73 #if !defined(USE_SIMULATOR)
     74 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
     75 #define USE_SIMULATOR 1
     76 #endif
     77 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
     78 #define USE_SIMULATOR 1
     79 #endif
     80 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
     81 #define USE_SIMULATOR 1
     82 #endif
     83 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
     84 #define USE_SIMULATOR 1
     85 #endif
     86 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
     87 #define USE_SIMULATOR 1
     88 #endif
     89 #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
     90 #define USE_SIMULATOR 1
     91 #endif
     92 #endif
     93 
     94 // Determine whether the architecture uses an embedded constant pool
     95 // (contiguous constant pool embedded in code object).
     96 #if V8_TARGET_ARCH_PPC
     97 #define V8_EMBEDDED_CONSTANT_POOL 1
     98 #else
     99 #define V8_EMBEDDED_CONSTANT_POOL 0
    100 #endif
    101 
    102 #ifdef V8_TARGET_ARCH_ARM
    103 // Set stack limit lower for ARM than for other architectures because
    104 // stack allocating MacroAssembler takes 120K bytes.
    105 // See issue crbug.com/405338
    106 #define V8_DEFAULT_STACK_SIZE_KB 864
    107 #else
    108 // Slightly less than 1MB, since Windows' default stack size for
    109 // the main execution thread is 1MB for both 32 and 64-bit.
    110 #define V8_DEFAULT_STACK_SIZE_KB 984
    111 #endif
    112 
    113 
    114 // Determine whether double field unboxing feature is enabled.
    115 #if V8_TARGET_ARCH_64_BIT
    116 #define V8_DOUBLE_FIELDS_UNBOXING 1
    117 #else
    118 #define V8_DOUBLE_FIELDS_UNBOXING 0
    119 #endif
    120 
    121 
    122 typedef uint8_t byte;
    123 typedef byte* Address;
    124 
    125 // -----------------------------------------------------------------------------
    126 // Constants
    127 
    128 const int KB = 1024;
    129 const int MB = KB * KB;
    130 const int GB = KB * KB * KB;
    131 const int kMaxInt = 0x7FFFFFFF;
    132 const int kMinInt = -kMaxInt - 1;
    133 const int kMaxInt8 = (1 << 7) - 1;
    134 const int kMinInt8 = -(1 << 7);
    135 const int kMaxUInt8 = (1 << 8) - 1;
    136 const int kMinUInt8 = 0;
    137 const int kMaxInt16 = (1 << 15) - 1;
    138 const int kMinInt16 = -(1 << 15);
    139 const int kMaxUInt16 = (1 << 16) - 1;
    140 const int kMinUInt16 = 0;
    141 
    142 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
    143 const int kMinUInt32 = 0;
    144 
    145 const int kCharSize = sizeof(char);
    146 const int kShortSize = sizeof(short);  // NOLINT
    147 const int kIntSize = sizeof(int);
    148 const int kInt32Size = sizeof(int32_t);
    149 const int kInt64Size = sizeof(int64_t);
    150 const int kSizetSize = sizeof(size_t);
    151 const int kFloatSize = sizeof(float);
    152 const int kDoubleSize = sizeof(double);
    153 const int kIntptrSize = sizeof(intptr_t);
    154 const int kPointerSize = sizeof(void*);
    155 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
    156 const int kRegisterSize = kPointerSize + kPointerSize;
    157 #else
    158 const int kRegisterSize = kPointerSize;
    159 #endif
    160 const int kPCOnStackSize = kRegisterSize;
    161 const int kFPOnStackSize = kRegisterSize;
    162 
    163 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    164 const int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
    165 #else
    166 const int kElidedFrameSlots = 0;
    167 #endif
    168 
    169 const int kDoubleSizeLog2 = 3;
    170 
    171 #if V8_HOST_ARCH_64_BIT
    172 const int kPointerSizeLog2 = 3;
    173 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
    174 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
    175 const bool kRequiresCodeRange = true;
    176 #if V8_TARGET_ARCH_MIPS64
    177 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit
    178 // encoded immediate, the addresses have to be in range of 256MB aligned
    179 // region. Used only for large object space.
    180 const size_t kMaximalCodeRangeSize = 256 * MB;
    181 const size_t kCodeRangeAreaAlignment = 256 * MB;
    182 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
    183 const size_t kMaximalCodeRangeSize = 512 * MB;
    184 const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
    185 #else
    186 const size_t kMaximalCodeRangeSize = 512 * MB;
    187 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
    188 #endif
    189 #if V8_OS_WIN
    190 const size_t kMinimumCodeRangeSize = 4 * MB;
    191 const size_t kReservedCodeRangePages = 1;
    192 #else
    193 const size_t kMinimumCodeRangeSize = 3 * MB;
    194 const size_t kReservedCodeRangePages = 0;
    195 #endif
    196 #else
    197 const int kPointerSizeLog2 = 2;
    198 const intptr_t kIntptrSignBit = 0x80000000;
    199 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
    200 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
    201 // x32 port also requires code range.
    202 const bool kRequiresCodeRange = true;
    203 const size_t kMaximalCodeRangeSize = 256 * MB;
    204 const size_t kMinimumCodeRangeSize = 3 * MB;
    205 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
    206 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
    207 const bool kRequiresCodeRange = false;
    208 const size_t kMaximalCodeRangeSize = 0 * MB;
    209 const size_t kMinimumCodeRangeSize = 0 * MB;
    210 const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
    211 #else
    212 const bool kRequiresCodeRange = false;
    213 const size_t kMaximalCodeRangeSize = 0 * MB;
    214 const size_t kMinimumCodeRangeSize = 0 * MB;
    215 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
    216 #endif
    217 const size_t kReservedCodeRangePages = 0;
    218 #endif
    219 
    220 // Trigger an incremental GCs once the external memory reaches this limit.
    221 const int kExternalAllocationSoftLimit = 64 * MB;
    222 
    223 // Maximum object size that gets allocated into regular pages. Objects larger
    224 // than that size are allocated in large object space and are never moved in
    225 // memory. This also applies to new space allocation, since objects are never
    226 // migrated from new space to large object space. Takes double alignment into
    227 // account.
    228 //
    229 // Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack).
    230 const int kMaxRegularHeapObjectSize = 507136;
    231 
    232 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
    233 
    234 const int kBitsPerByte = 8;
    235 const int kBitsPerByteLog2 = 3;
    236 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
    237 const int kBitsPerInt = kIntSize * kBitsPerByte;
    238 
    239 // IEEE 754 single precision floating point number bit layout.
    240 const uint32_t kBinary32SignMask = 0x80000000u;
    241 const uint32_t kBinary32ExponentMask = 0x7f800000u;
    242 const uint32_t kBinary32MantissaMask = 0x007fffffu;
    243 const int kBinary32ExponentBias = 127;
    244 const int kBinary32MaxExponent  = 0xFE;
    245 const int kBinary32MinExponent  = 0x01;
    246 const int kBinary32MantissaBits = 23;
    247 const int kBinary32ExponentShift = 23;
    248 
    249 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
    250 // other bits set.
    251 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
    252 
    253 // Latin1/UTF-16 constants
    254 // Code-point values in Unicode 4.0 are 21 bits wide.
    255 // Code units in UTF-16 are 16 bits wide.
    256 typedef uint16_t uc16;
    257 typedef int32_t uc32;
    258 const int kOneByteSize    = kCharSize;
    259 const int kUC16Size     = sizeof(uc16);      // NOLINT
    260 
    261 // 128 bit SIMD value size.
    262 const int kSimd128Size = 16;
    263 
    264 // Round up n to be a multiple of sz, where sz is a power of 2.
    265 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
    266 
    267 
    268 // FUNCTION_ADDR(f) gets the address of a C function f.
    269 #define FUNCTION_ADDR(f)                                        \
    270   (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
    271 
    272 
    273 // FUNCTION_CAST<F>(addr) casts an address into a function
    274 // of type F. Used to invoke generated code from within C.
    275 template <typename F>
    276 F FUNCTION_CAST(Address addr) {
    277   return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
    278 }
    279 
    280 
    281 // Determine whether the architecture uses function descriptors
    282 // which provide a level of indirection between the function pointer
    283 // and the function entrypoint.
    284 #if V8_HOST_ARCH_PPC && \
    285     (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
    286 #define USES_FUNCTION_DESCRIPTORS 1
    287 #define FUNCTION_ENTRYPOINT_ADDRESS(f)       \
    288   (reinterpret_cast<v8::internal::Address*>( \
    289       &(reinterpret_cast<intptr_t*>(f)[0])))
    290 #else
    291 #define USES_FUNCTION_DESCRIPTORS 0
    292 #endif
    293 
    294 
    295 // -----------------------------------------------------------------------------
    296 // Forward declarations for frequently used classes
    297 // (sorted alphabetically)
    298 
    299 class FreeStoreAllocationPolicy;
    300 template <typename T, class P = FreeStoreAllocationPolicy> class List;
    301 
    302 // -----------------------------------------------------------------------------
    303 // Declarations for use in both the preparser and the rest of V8.
    304 
    305 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
    306 
    307 enum LanguageMode : uint32_t { SLOPPY, STRICT, LANGUAGE_END };
    308 
    309 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
    310   switch (mode) {
    311     case SLOPPY: return os << "sloppy";
    312     case STRICT: return os << "strict";
    313     default: UNREACHABLE();
    314   }
    315   return os;
    316 }
    317 
    318 inline bool is_sloppy(LanguageMode language_mode) {
    319   return language_mode == SLOPPY;
    320 }
    321 
    322 inline bool is_strict(LanguageMode language_mode) {
    323   return language_mode != SLOPPY;
    324 }
    325 
    326 inline bool is_valid_language_mode(int language_mode) {
    327   return language_mode == SLOPPY || language_mode == STRICT;
    328 }
    329 
    330 inline LanguageMode construct_language_mode(bool strict_bit) {
    331   return static_cast<LanguageMode>(strict_bit);
    332 }
    333 
    334 enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
    335 
    336 // This constant is used as an undefined value when passing source positions.
    337 const int kNoSourcePosition = -1;
    338 
    339 // This constant is used to indicate missing deoptimization information.
    340 const int kNoDeoptimizationId = -1;
    341 
    342 // Deoptimize bailout kind.
    343 enum class DeoptimizeKind : uint8_t { kEager, kSoft };
    344 inline size_t hash_value(DeoptimizeKind kind) {
    345   return static_cast<size_t>(kind);
    346 }
    347 inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) {
    348   switch (kind) {
    349     case DeoptimizeKind::kEager:
    350       return os << "Eager";
    351     case DeoptimizeKind::kSoft:
    352       return os << "Soft";
    353   }
    354   UNREACHABLE();
    355   return os;
    356 }
    357 
    358 // Mask for the sign bit in a smi.
    359 const intptr_t kSmiSignMask = kIntptrSignBit;
    360 
    361 const int kObjectAlignmentBits = kPointerSizeLog2;
    362 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
    363 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
    364 
    365 // Desired alignment for pointers.
    366 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
    367 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
    368 
    369 // Desired alignment for double values.
    370 const intptr_t kDoubleAlignment = 8;
    371 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
    372 
    373 // Desired alignment for generated code is 32 bytes (to improve cache line
    374 // utilization).
    375 const int kCodeAlignmentBits = 5;
    376 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
    377 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
    378 
    379 // The owner field of a page is tagged with the page header tag. We need that
    380 // to find out if a slot is part of a large object. If we mask out the lower
    381 // 0xfffff bits (1M pages), go to the owner offset, and see that this field
    382 // is tagged with the page header tag, we can just look up the owner.
    383 // Otherwise, we know that we are somewhere (not within the first 1M) in a
    384 // large object.
    385 const int kPageHeaderTag = 3;
    386 const int kPageHeaderTagSize = 2;
    387 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
    388 
    389 
    390 // Zap-value: The value used for zapping dead objects.
    391 // Should be a recognizable hex value tagged as a failure.
    392 #ifdef V8_HOST_ARCH_64_BIT
    393 const Address kZapValue =
    394     reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
    395 const Address kHandleZapValue =
    396     reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
    397 const Address kGlobalHandleZapValue =
    398     reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
    399 const Address kFromSpaceZapValue =
    400     reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
    401 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
    402 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
    403 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
    404 #else
    405 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
    406 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
    407 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
    408 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
    409 const uint32_t kSlotsZapValue = 0xbeefdeef;
    410 const uint32_t kDebugZapValue = 0xbadbaddb;
    411 const uint32_t kFreeListZapValue = 0xfeed1eaf;
    412 #endif
    413 
    414 const int kCodeZapValue = 0xbadc0de;
    415 const uint32_t kPhantomReferenceZap = 0xca11bac;
    416 
    417 // On Intel architecture, cache line size is 64 bytes.
    418 // On ARM it may be less (32 bytes), but as far this constant is
    419 // used for aligning data, it doesn't hurt to align on a greater value.
    420 #define PROCESSOR_CACHE_LINE_SIZE 64
    421 
    422 // Constants relevant to double precision floating point numbers.
    423 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
    424 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
    425 
    426 
    427 // -----------------------------------------------------------------------------
    428 // Forward declarations for frequently used classes
    429 
    430 class AccessorInfo;
    431 class Allocation;
    432 class Arguments;
    433 class Assembler;
    434 class Code;
    435 class CodeGenerator;
    436 class CodeStub;
    437 class Context;
    438 class Debug;
    439 class DebugInfo;
    440 class Descriptor;
    441 class DescriptorArray;
    442 class TransitionArray;
    443 class ExternalReference;
    444 class FixedArray;
    445 class FunctionTemplateInfo;
    446 class MemoryChunk;
    447 class SeededNumberDictionary;
    448 class UnseededNumberDictionary;
    449 class NameDictionary;
    450 class GlobalDictionary;
    451 template <typename T> class MaybeHandle;
    452 template <typename T> class Handle;
    453 class Heap;
    454 class HeapObject;
    455 class IC;
    456 class InterceptorInfo;
    457 class Isolate;
    458 class JSReceiver;
    459 class JSArray;
    460 class JSFunction;
    461 class JSObject;
    462 class LargeObjectSpace;
    463 class MacroAssembler;
    464 class Map;
    465 class MapSpace;
    466 class MarkCompactCollector;
    467 class NewSpace;
    468 class Object;
    469 class OldSpace;
    470 class ParameterCount;
    471 class Foreign;
    472 class Scope;
    473 class DeclarationScope;
    474 class ModuleScope;
    475 class ScopeInfo;
    476 class Script;
    477 class Smi;
    478 template <typename Config, class Allocator = FreeStoreAllocationPolicy>
    479 class SplayTree;
    480 class String;
    481 class Symbol;
    482 class Name;
    483 class Struct;
    484 class FeedbackVector;
    485 class Variable;
    486 class RelocInfo;
    487 class Deserializer;
    488 class MessageLocation;
    489 
    490 typedef bool (*WeakSlotCallback)(Object** pointer);
    491 
    492 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
    493 
    494 // -----------------------------------------------------------------------------
    495 // Miscellaneous
    496 
    497 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being
    498 // consecutive.
    499 // Keep this enum in sync with the ObjectSpace enum in v8.h
    500 enum AllocationSpace {
    501   NEW_SPACE,   // Semispaces collected with copying collector.
    502   OLD_SPACE,   // May contain pointers to new space.
    503   CODE_SPACE,  // No pointers to new space, marked executable.
    504   MAP_SPACE,   // Only and all map objects.
    505   LO_SPACE,    // Promoted large objects.
    506 
    507   FIRST_SPACE = NEW_SPACE,
    508   LAST_SPACE = LO_SPACE,
    509   FIRST_PAGED_SPACE = OLD_SPACE,
    510   LAST_PAGED_SPACE = MAP_SPACE
    511 };
    512 const int kSpaceTagSize = 3;
    513 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
    514 
    515 enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
    516 
    517 // Possible outcomes for decisions.
    518 enum class Decision : uint8_t { kUnknown, kTrue, kFalse };
    519 
    520 inline size_t hash_value(Decision decision) {
    521   return static_cast<uint8_t>(decision);
    522 }
    523 
    524 inline std::ostream& operator<<(std::ostream& os, Decision decision) {
    525   switch (decision) {
    526     case Decision::kUnknown:
    527       return os << "Unknown";
    528     case Decision::kTrue:
    529       return os << "True";
    530     case Decision::kFalse:
    531       return os << "False";
    532   }
    533   UNREACHABLE();
    534   return os;
    535 }
    536 
    537 // Supported write barrier modes.
    538 enum WriteBarrierKind : uint8_t {
    539   kNoWriteBarrier,
    540   kMapWriteBarrier,
    541   kPointerWriteBarrier,
    542   kFullWriteBarrier
    543 };
    544 
    545 inline size_t hash_value(WriteBarrierKind kind) {
    546   return static_cast<uint8_t>(kind);
    547 }
    548 
    549 inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
    550   switch (kind) {
    551     case kNoWriteBarrier:
    552       return os << "NoWriteBarrier";
    553     case kMapWriteBarrier:
    554       return os << "MapWriteBarrier";
    555     case kPointerWriteBarrier:
    556       return os << "PointerWriteBarrier";
    557     case kFullWriteBarrier:
    558       return os << "FullWriteBarrier";
    559   }
    560   UNREACHABLE();
    561   return os;
    562 }
    563 
    564 // A flag that indicates whether objects should be pretenured when
    565 // allocated (allocated directly into the old generation) or not
    566 // (allocated in the young generation if the object size and type
    567 // allows).
    568 enum PretenureFlag { NOT_TENURED, TENURED };
    569 
    570 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
    571   switch (flag) {
    572     case NOT_TENURED:
    573       return os << "NotTenured";
    574     case TENURED:
    575       return os << "Tenured";
    576   }
    577   UNREACHABLE();
    578   return os;
    579 }
    580 
    581 enum MinimumCapacity {
    582   USE_DEFAULT_MINIMUM_CAPACITY,
    583   USE_CUSTOM_MINIMUM_CAPACITY
    584 };
    585 
    586 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR };
    587 
    588 enum Executability { NOT_EXECUTABLE, EXECUTABLE };
    589 
    590 enum VisitMode {
    591   VISIT_ALL,
    592   VISIT_ALL_IN_SCAVENGE,
    593   VISIT_ALL_IN_SWEEP_NEWSPACE,
    594   VISIT_ONLY_STRONG,
    595   VISIT_ONLY_STRONG_FOR_SERIALIZATION,
    596   VISIT_ONLY_STRONG_ROOT_LIST,
    597 };
    598 
    599 // Flag indicating whether code is built into the VM (one of the natives files).
    600 enum NativesFlag {
    601   NOT_NATIVES_CODE,
    602   EXTENSION_CODE,
    603   NATIVES_CODE,
    604   INSPECTOR_CODE
    605 };
    606 
    607 // JavaScript defines two kinds of 'nil'.
    608 enum NilValue { kNullValue, kUndefinedValue };
    609 
    610 // ParseRestriction is used to restrict the set of valid statements in a
    611 // unit of compilation.  Restriction violations cause a syntax error.
    612 enum ParseRestriction {
    613   NO_PARSE_RESTRICTION,         // All expressions are allowed.
    614   ONLY_SINGLE_FUNCTION_LITERAL  // Only a single FunctionLiteral expression.
    615 };
    616 
    617 // A CodeDesc describes a buffer holding instructions and relocation
    618 // information. The instructions start at the beginning of the buffer
    619 // and grow forward, the relocation information starts at the end of
    620 // the buffer and grows backward.  A constant pool may exist at the
    621 // end of the instructions.
    622 //
    623 //  |<--------------- buffer_size ----------------------------------->|
    624 //  |<------------- instr_size ---------->|        |<-- reloc_size -->|
    625 //  |               |<- const_pool_size ->|                           |
    626 //  +=====================================+========+==================+
    627 //  |  instructions |        data         |  free  |    reloc info    |
    628 //  +=====================================+========+==================+
    629 //  ^
    630 //  |
    631 //  buffer
    632 
    633 struct CodeDesc {
    634   byte* buffer;
    635   int buffer_size;
    636   int instr_size;
    637   int reloc_size;
    638   int constant_pool_size;
    639   byte* unwinding_info;
    640   int unwinding_info_size;
    641   Assembler* origin;
    642 };
    643 
    644 
    645 // Callback function used for checking constraints when copying/relocating
    646 // objects. Returns true if an object can be copied/relocated from its
    647 // old_addr to a new_addr.
    648 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
    649 
    650 
    651 // Callback function on inline caches, used for iterating over inline caches
    652 // in compiled code.
    653 typedef void (*InlineCacheCallback)(Code* code, Address ic);
    654 
    655 
    656 // State for inline cache call sites. Aliased as IC::State.
    657 enum InlineCacheState {
    658   // Has never been executed.
    659   UNINITIALIZED,
    660   // Has been executed but monomorhic state has been delayed.
    661   PREMONOMORPHIC,
    662   // Has been executed and only one receiver type has been seen.
    663   MONOMORPHIC,
    664   // Check failed due to prototype (or map deprecation).
    665   RECOMPUTE_HANDLER,
    666   // Multiple receiver types have been seen.
    667   POLYMORPHIC,
    668   // Many receiver types have been seen.
    669   MEGAMORPHIC,
    670   // A generic handler is installed and no extra typefeedback is recorded.
    671   GENERIC,
    672 };
    673 
    674 enum CacheHolderFlag {
    675   kCacheOnPrototype,
    676   kCacheOnPrototypeReceiverIsDictionary,
    677   kCacheOnPrototypeReceiverIsPrimitive,
    678   kCacheOnReceiver
    679 };
    680 
    681 enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
    682 
    683 // The Store Buffer (GC).
    684 typedef enum {
    685   kStoreBufferFullEvent,
    686   kStoreBufferStartScanningPagesEvent,
    687   kStoreBufferScanningPageEvent
    688 } StoreBufferEvent;
    689 
    690 
    691 typedef void (*StoreBufferCallback)(Heap* heap,
    692                                     MemoryChunk* page,
    693                                     StoreBufferEvent event);
    694 
    695 // Union used for customized checking of the IEEE double types
    696 // inlined within v8 runtime, rather than going to the underlying
    697 // platform headers and libraries
    698 union IeeeDoubleLittleEndianArchType {
    699   double d;
    700   struct {
    701     unsigned int man_low  :32;
    702     unsigned int man_high :20;
    703     unsigned int exp      :11;
    704     unsigned int sign     :1;
    705   } bits;
    706 };
    707 
    708 
    709 union IeeeDoubleBigEndianArchType {
    710   double d;
    711   struct {
    712     unsigned int sign     :1;
    713     unsigned int exp      :11;
    714     unsigned int man_high :20;
    715     unsigned int man_low  :32;
    716   } bits;
    717 };
    718 
    719 #if V8_TARGET_LITTLE_ENDIAN
    720 typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
    721 const int kIeeeDoubleMantissaWordOffset = 0;
    722 const int kIeeeDoubleExponentWordOffset = 4;
    723 #else
    724 typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
    725 const int kIeeeDoubleMantissaWordOffset = 4;
    726 const int kIeeeDoubleExponentWordOffset = 0;
    727 #endif
    728 
    729 // AccessorCallback
    730 struct AccessorDescriptor {
    731   Object* (*getter)(Isolate* isolate, Object* object, void* data);
    732   Object* (*setter)(
    733       Isolate* isolate, JSObject* object, Object* value, void* data);
    734   void* data;
    735 };
    736 
    737 
    738 // -----------------------------------------------------------------------------
    739 // Macros
    740 
    741 // Testers for test.
    742 
    743 #define HAS_SMI_TAG(value) \
    744   ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
    745 
    746 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
    747 #define OBJECT_POINTER_ALIGN(value)                             \
    748   (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
    749 
    750 // POINTER_SIZE_ALIGN returns the value aligned as a pointer.
    751 #define POINTER_SIZE_ALIGN(value)                               \
    752   (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
    753 
    754 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
    755 #define CODE_POINTER_ALIGN(value)                               \
    756   (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
    757 
    758 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
    759 #define DOUBLE_POINTER_ALIGN(value) \
    760   (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
    761 
    762 
    763 // CPU feature flags.
    764 enum CpuFeature {
    765   // x86
    766   SSE4_1,
    767   SSSE3,
    768   SSE3,
    769   SAHF,
    770   AVX,
    771   FMA3,
    772   BMI1,
    773   BMI2,
    774   LZCNT,
    775   POPCNT,
    776   ATOM,
    777   // ARM
    778   // - Standard configurations. The baseline is ARMv6+VFPv2.
    779   ARMv7,        // ARMv7-A + VFPv3-D32 + NEON
    780   ARMv7_SUDIV,  // ARMv7-A + VFPv4-D32 + NEON + SUDIV
    781   ARMv8,        // ARMv8-A (+ all of the above)
    782   // MIPS, MIPS64
    783   FPU,
    784   FP64FPU,
    785   MIPSr1,
    786   MIPSr2,
    787   MIPSr6,
    788   // ARM64
    789   ALWAYS_ALIGN_CSP,
    790   // PPC
    791   FPR_GPR_MOV,
    792   LWSYNC,
    793   ISELECT,
    794   VSX,
    795   MODULO,
    796   // S390
    797   DISTINCT_OPS,
    798   GENERAL_INSTR_EXT,
    799   FLOATING_POINT_EXT,
    800   VECTOR_FACILITY,
    801   MISC_INSTR_EXT2,
    802 
    803   NUMBER_OF_CPU_FEATURES,
    804 
    805   // ARM feature aliases (based on the standard configurations above).
    806   VFPv3 = ARMv7,
    807   NEON = ARMv7,
    808   VFP32DREGS = ARMv7,
    809   SUDIV = ARMv7_SUDIV
    810 };
    811 
    812 // Defines hints about receiver values based on structural knowledge.
    813 enum class ConvertReceiverMode : unsigned {
    814   kNullOrUndefined,     // Guaranteed to be null or undefined.
    815   kNotNullOrUndefined,  // Guaranteed to never be null or undefined.
    816   kAny                  // No specific knowledge about receiver.
    817 };
    818 
    819 inline size_t hash_value(ConvertReceiverMode mode) {
    820   return bit_cast<unsigned>(mode);
    821 }
    822 
    823 inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
    824   switch (mode) {
    825     case ConvertReceiverMode::kNullOrUndefined:
    826       return os << "NULL_OR_UNDEFINED";
    827     case ConvertReceiverMode::kNotNullOrUndefined:
    828       return os << "NOT_NULL_OR_UNDEFINED";
    829     case ConvertReceiverMode::kAny:
    830       return os << "ANY";
    831   }
    832   UNREACHABLE();
    833   return os;
    834 }
    835 
    836 // Defines whether tail call optimization is allowed.
    837 enum class TailCallMode : unsigned { kAllow, kDisallow };
    838 
    839 inline size_t hash_value(TailCallMode mode) { return bit_cast<unsigned>(mode); }
    840 
    841 inline std::ostream& operator<<(std::ostream& os, TailCallMode mode) {
    842   switch (mode) {
    843     case TailCallMode::kAllow:
    844       return os << "ALLOW_TAIL_CALLS";
    845     case TailCallMode::kDisallow:
    846       return os << "DISALLOW_TAIL_CALLS";
    847   }
    848   UNREACHABLE();
    849   return os;
    850 }
    851 
    852 // Valid hints for the abstract operation OrdinaryToPrimitive,
    853 // implemented according to ES6, section 7.1.1.
    854 enum class OrdinaryToPrimitiveHint { kNumber, kString };
    855 
    856 // Valid hints for the abstract operation ToPrimitive,
    857 // implemented according to ES6, section 7.1.1.
    858 enum class ToPrimitiveHint { kDefault, kNumber, kString };
    859 
    860 // Defines specifics about arguments object or rest parameter creation.
    861 enum class CreateArgumentsType : uint8_t {
    862   kMappedArguments,
    863   kUnmappedArguments,
    864   kRestParameter
    865 };
    866 
    867 inline size_t hash_value(CreateArgumentsType type) {
    868   return bit_cast<uint8_t>(type);
    869 }
    870 
    871 inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
    872   switch (type) {
    873     case CreateArgumentsType::kMappedArguments:
    874       return os << "MAPPED_ARGUMENTS";
    875     case CreateArgumentsType::kUnmappedArguments:
    876       return os << "UNMAPPED_ARGUMENTS";
    877     case CreateArgumentsType::kRestParameter:
    878       return os << "REST_PARAMETER";
    879   }
    880   UNREACHABLE();
    881   return os;
    882 }
    883 
    884 // Used to specify if a macro instruction must perform a smi check on tagged
    885 // values.
    886 enum SmiCheckType {
    887   DONT_DO_SMI_CHECK,
    888   DO_SMI_CHECK
    889 };
    890 
    891 enum ScopeType : uint8_t {
    892   EVAL_SCOPE,      // The top-level scope for an eval source.
    893   FUNCTION_SCOPE,  // The top-level scope for a function.
    894   MODULE_SCOPE,    // The scope introduced by a module literal
    895   SCRIPT_SCOPE,    // The top-level scope for a script or a top-level eval.
    896   CATCH_SCOPE,     // The scope introduced by catch.
    897   BLOCK_SCOPE,     // The scope introduced by a new block.
    898   WITH_SCOPE       // The scope introduced by with.
    899 };
    900 
    901 // AllocationSiteMode controls whether allocations are tracked by an allocation
    902 // site.
    903 enum AllocationSiteMode {
    904   DONT_TRACK_ALLOCATION_SITE,
    905   TRACK_ALLOCATION_SITE,
    906   LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
    907 };
    908 
    909 // The mips architecture prior to revision 5 has inverted encoding for sNaN.
    910 // The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from
    911 // memmory.
    912 // Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this
    913 // issue
    914 // for some test cases.
    915 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) &&           \
    916      (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
    917     (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) &&         \
    918      (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
    919     (V8_TARGET_ARCH_X87)
    920 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
    921 const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
    922 #else
    923 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
    924 const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
    925 #endif
    926 
    927 const uint64_t kHoleNanInt64 =
    928     (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
    929 
    930 
    931 // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
    932 const double kMaxSafeInteger = 9007199254740991.0;  // 2^53-1
    933 
    934 
    935 // The order of this enum has to be kept in sync with the predicates below.
    936 enum VariableMode : uint8_t {
    937   // User declared variables:
    938   VAR,  // declared via 'var', and 'function' declarations
    939 
    940   LET,  // declared via 'let' declarations (first lexical)
    941 
    942   CONST,  // declared via 'const' declarations (last lexical)
    943 
    944   // Variables introduced by the compiler:
    945   TEMPORARY,  // temporary variables (not user-visible), stack-allocated
    946               // unless the scope as a whole has forced context allocation
    947 
    948   DYNAMIC,  // always require dynamic lookup (we don't know
    949             // the declaration)
    950 
    951   DYNAMIC_GLOBAL,  // requires dynamic lookup, but we know that the
    952                    // variable is global unless it has been shadowed
    953                    // by an eval-introduced variable
    954 
    955   DYNAMIC_LOCAL,  // requires dynamic lookup, but we know that the
    956                   // variable is local and where it is unless it
    957                   // has been shadowed by an eval-introduced
    958                   // variable
    959 
    960   kLastVariableMode = DYNAMIC_LOCAL
    961 };
    962 
    963 // Printing support
    964 #ifdef DEBUG
    965 inline const char* VariableMode2String(VariableMode mode) {
    966   switch (mode) {
    967     case VAR:
    968       return "VAR";
    969     case LET:
    970       return "LET";
    971     case CONST:
    972       return "CONST";
    973     case DYNAMIC:
    974       return "DYNAMIC";
    975     case DYNAMIC_GLOBAL:
    976       return "DYNAMIC_GLOBAL";
    977     case DYNAMIC_LOCAL:
    978       return "DYNAMIC_LOCAL";
    979     case TEMPORARY:
    980       return "TEMPORARY";
    981   }
    982   UNREACHABLE();
    983   return NULL;
    984 }
    985 #endif
    986 
    987 enum VariableKind : uint8_t {
    988   NORMAL_VARIABLE,
    989   FUNCTION_VARIABLE,
    990   THIS_VARIABLE,
    991   SLOPPY_FUNCTION_NAME_VARIABLE,
    992   kLastKind = SLOPPY_FUNCTION_NAME_VARIABLE
    993 };
    994 
    995 inline bool IsDynamicVariableMode(VariableMode mode) {
    996   return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
    997 }
    998 
    999 
   1000 inline bool IsDeclaredVariableMode(VariableMode mode) {
   1001   STATIC_ASSERT(VAR == 0);  // Implies that mode >= VAR.
   1002   return mode <= CONST;
   1003 }
   1004 
   1005 
   1006 inline bool IsLexicalVariableMode(VariableMode mode) {
   1007   return mode >= LET && mode <= CONST;
   1008 }
   1009 
   1010 enum VariableLocation : uint8_t {
   1011   // Before and during variable allocation, a variable whose location is
   1012   // not yet determined.  After allocation, a variable looked up as a
   1013   // property on the global object (and possibly absent).  name() is the
   1014   // variable name, index() is invalid.
   1015   UNALLOCATED,
   1016 
   1017   // A slot in the parameter section on the stack.  index() is the
   1018   // parameter index, counting left-to-right.  The receiver is index -1;
   1019   // the first parameter is index 0.
   1020   PARAMETER,
   1021 
   1022   // A slot in the local section on the stack.  index() is the variable
   1023   // index in the stack frame, starting at 0.
   1024   LOCAL,
   1025 
   1026   // An indexed slot in a heap context.  index() is the variable index in
   1027   // the context object on the heap, starting at 0.  scope() is the
   1028   // corresponding scope.
   1029   CONTEXT,
   1030 
   1031   // A named slot in a heap context.  name() is the variable name in the
   1032   // context object on the heap, with lookup starting at the current
   1033   // context.  index() is invalid.
   1034   LOOKUP,
   1035 
   1036   // A named slot in a module's export table.
   1037   MODULE,
   1038 
   1039   kLastVariableLocation = MODULE
   1040 };
   1041 
   1042 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
   1043 // and immutable bindings that can be in two states: initialized and
   1044 // uninitialized. In ES5 only immutable bindings have these two states. When
   1045 // accessing a binding, it needs to be checked for initialization. However in
   1046 // the following cases the binding is initialized immediately after creation
   1047 // so the initialization check can always be skipped:
   1048 // 1. Var declared local variables.
   1049 //      var foo;
   1050 // 2. A local variable introduced by a function declaration.
   1051 //      function foo() {}
   1052 // 3. Parameters
   1053 //      function x(foo) {}
   1054 // 4. Catch bound variables.
   1055 //      try {} catch (foo) {}
   1056 // 6. Function variables of named function expressions.
   1057 //      var x = function foo() {}
   1058 // 7. Implicit binding of 'this'.
   1059 // 8. Implicit binding of 'arguments' in functions.
   1060 //
   1061 // ES5 specified object environment records which are introduced by ES elements
   1062 // such as Program and WithStatement that associate identifier bindings with the
   1063 // properties of some object. In the specification only mutable bindings exist
   1064 // (which may be non-writable) and have no distinct initialization step. However
   1065 // V8 allows const declarations in global code with distinct creation and
   1066 // initialization steps which are represented by non-writable properties in the
   1067 // global object. As a result also these bindings need to be checked for
   1068 // initialization.
   1069 //
   1070 // The following enum specifies a flag that indicates if the binding needs a
   1071 // distinct initialization step (kNeedsInitialization) or if the binding is
   1072 // immediately initialized upon creation (kCreatedInitialized).
   1073 enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized };
   1074 
   1075 enum class HoleCheckMode { kRequired, kElided };
   1076 
   1077 enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned };
   1078 
   1079 // Serialized in PreparseData, so numeric values should not be changed.
   1080 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
   1081 
   1082 
   1083 enum MinusZeroMode {
   1084   TREAT_MINUS_ZERO_AS_ZERO,
   1085   FAIL_ON_MINUS_ZERO
   1086 };
   1087 
   1088 
   1089 enum Signedness { kSigned, kUnsigned };
   1090 
   1091 enum FunctionKind : uint16_t {
   1092   kNormalFunction = 0,
   1093   kArrowFunction = 1 << 0,
   1094   kGeneratorFunction = 1 << 1,
   1095   kConciseMethod = 1 << 2,
   1096   kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
   1097   kDefaultConstructor = 1 << 3,
   1098   kDerivedConstructor = 1 << 4,
   1099   kBaseConstructor = 1 << 5,
   1100   kGetterFunction = 1 << 6,
   1101   kSetterFunction = 1 << 7,
   1102   kAsyncFunction = 1 << 8,
   1103   kModule = 1 << 9,
   1104   kAccessorFunction = kGetterFunction | kSetterFunction,
   1105   kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
   1106   kDefaultDerivedConstructor = kDefaultConstructor | kDerivedConstructor,
   1107   kClassConstructor =
   1108       kBaseConstructor | kDerivedConstructor | kDefaultConstructor,
   1109   kAsyncArrowFunction = kArrowFunction | kAsyncFunction,
   1110   kAsyncConciseMethod = kAsyncFunction | kConciseMethod
   1111 };
   1112 
   1113 inline bool IsValidFunctionKind(FunctionKind kind) {
   1114   return kind == FunctionKind::kNormalFunction ||
   1115          kind == FunctionKind::kArrowFunction ||
   1116          kind == FunctionKind::kGeneratorFunction ||
   1117          kind == FunctionKind::kModule ||
   1118          kind == FunctionKind::kConciseMethod ||
   1119          kind == FunctionKind::kConciseGeneratorMethod ||
   1120          kind == FunctionKind::kGetterFunction ||
   1121          kind == FunctionKind::kSetterFunction ||
   1122          kind == FunctionKind::kAccessorFunction ||
   1123          kind == FunctionKind::kDefaultBaseConstructor ||
   1124          kind == FunctionKind::kDefaultDerivedConstructor ||
   1125          kind == FunctionKind::kBaseConstructor ||
   1126          kind == FunctionKind::kDerivedConstructor ||
   1127          kind == FunctionKind::kAsyncFunction ||
   1128          kind == FunctionKind::kAsyncArrowFunction ||
   1129          kind == FunctionKind::kAsyncConciseMethod;
   1130 }
   1131 
   1132 
   1133 inline bool IsArrowFunction(FunctionKind kind) {
   1134   DCHECK(IsValidFunctionKind(kind));
   1135   return kind & FunctionKind::kArrowFunction;
   1136 }
   1137 
   1138 
   1139 inline bool IsGeneratorFunction(FunctionKind kind) {
   1140   DCHECK(IsValidFunctionKind(kind));
   1141   return kind & FunctionKind::kGeneratorFunction;
   1142 }
   1143 
   1144 inline bool IsModule(FunctionKind kind) {
   1145   DCHECK(IsValidFunctionKind(kind));
   1146   return kind & FunctionKind::kModule;
   1147 }
   1148 
   1149 inline bool IsAsyncFunction(FunctionKind kind) {
   1150   DCHECK(IsValidFunctionKind(kind));
   1151   return kind & FunctionKind::kAsyncFunction;
   1152 }
   1153 
   1154 inline bool IsResumableFunction(FunctionKind kind) {
   1155   return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind);
   1156 }
   1157 
   1158 inline bool IsConciseMethod(FunctionKind kind) {
   1159   DCHECK(IsValidFunctionKind(kind));
   1160   return kind & FunctionKind::kConciseMethod;
   1161 }
   1162 
   1163 inline bool IsGetterFunction(FunctionKind kind) {
   1164   DCHECK(IsValidFunctionKind(kind));
   1165   return kind & FunctionKind::kGetterFunction;
   1166 }
   1167 
   1168 inline bool IsSetterFunction(FunctionKind kind) {
   1169   DCHECK(IsValidFunctionKind(kind));
   1170   return kind & FunctionKind::kSetterFunction;
   1171 }
   1172 
   1173 inline bool IsAccessorFunction(FunctionKind kind) {
   1174   DCHECK(IsValidFunctionKind(kind));
   1175   return kind & FunctionKind::kAccessorFunction;
   1176 }
   1177 
   1178 
   1179 inline bool IsDefaultConstructor(FunctionKind kind) {
   1180   DCHECK(IsValidFunctionKind(kind));
   1181   return kind & FunctionKind::kDefaultConstructor;
   1182 }
   1183 
   1184 
   1185 inline bool IsBaseConstructor(FunctionKind kind) {
   1186   DCHECK(IsValidFunctionKind(kind));
   1187   return kind & FunctionKind::kBaseConstructor;
   1188 }
   1189 
   1190 inline bool IsDerivedConstructor(FunctionKind kind) {
   1191   DCHECK(IsValidFunctionKind(kind));
   1192   return kind & FunctionKind::kDerivedConstructor;
   1193 }
   1194 
   1195 
   1196 inline bool IsClassConstructor(FunctionKind kind) {
   1197   DCHECK(IsValidFunctionKind(kind));
   1198   return kind & FunctionKind::kClassConstructor;
   1199 }
   1200 
   1201 
   1202 inline bool IsConstructable(FunctionKind kind, LanguageMode mode) {
   1203   if (IsAccessorFunction(kind)) return false;
   1204   if (IsConciseMethod(kind)) return false;
   1205   if (IsArrowFunction(kind)) return false;
   1206   if (IsGeneratorFunction(kind)) return false;
   1207   if (IsAsyncFunction(kind)) return false;
   1208   return true;
   1209 }
   1210 
   1211 enum class InterpreterPushArgsMode : unsigned {
   1212   kJSFunction,
   1213   kWithFinalSpread,
   1214   kOther
   1215 };
   1216 
   1217 inline size_t hash_value(InterpreterPushArgsMode mode) {
   1218   return bit_cast<unsigned>(mode);
   1219 }
   1220 
   1221 inline std::ostream& operator<<(std::ostream& os,
   1222                                 InterpreterPushArgsMode mode) {
   1223   switch (mode) {
   1224     case InterpreterPushArgsMode::kJSFunction:
   1225       return os << "JSFunction";
   1226     case InterpreterPushArgsMode::kWithFinalSpread:
   1227       return os << "WithFinalSpread";
   1228     case InterpreterPushArgsMode::kOther:
   1229       return os << "Other";
   1230   }
   1231   UNREACHABLE();
   1232   return os;
   1233 }
   1234 
   1235 inline uint32_t ObjectHash(Address address) {
   1236   // All objects are at least pointer aligned, so we can remove the trailing
   1237   // zeros.
   1238   return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >>
   1239                                kPointerSizeLog2);
   1240 }
   1241 
   1242 // Type feedback is encoded in such a way that, we can combine the feedback
   1243 // at different points by performing an 'OR' operation. Type feedback moves
   1244 // to a more generic type when we combine feedback.
   1245 // kSignedSmall -> kNumber  -> kNumberOrOddball -> kAny
   1246 //                             kString          -> kAny
   1247 // TODO(mythria): Remove kNumber type when crankshaft can handle Oddballs
   1248 // similar to Numbers. We don't need kNumber feedback for Turbofan. Extra
   1249 // information about Number might reduce few instructions but causes more
   1250 // deopts. We collect Number only because crankshaft does not handle all
   1251 // cases of oddballs.
   1252 class BinaryOperationFeedback {
   1253  public:
   1254   enum {
   1255     kNone = 0x0,
   1256     kSignedSmall = 0x1,
   1257     kNumber = 0x3,
   1258     kNumberOrOddball = 0x7,
   1259     kString = 0x8,
   1260     kAny = 0x1F
   1261   };
   1262 };
   1263 
   1264 // Type feedback is encoded in such a way that, we can combine the feedback
   1265 // at different points by performing an 'OR' operation. Type feedback moves
   1266 // to a more generic type when we combine feedback.
   1267 // kSignedSmall        -> kNumber   -> kAny
   1268 // kInternalizedString -> kString   -> kAny
   1269 //                        kReceiver -> kAny
   1270 // TODO(epertoso): consider unifying this with BinaryOperationFeedback.
   1271 class CompareOperationFeedback {
   1272  public:
   1273   enum {
   1274     kNone = 0x00,
   1275     kSignedSmall = 0x01,
   1276     kNumber = 0x3,
   1277     kNumberOrOddball = 0x7,
   1278     kInternalizedString = 0x8,
   1279     kString = 0x18,
   1280     kReceiver = 0x20,
   1281     kAny = 0x7F
   1282   };
   1283 };
   1284 
   1285 enum class UnicodeEncoding : uint8_t {
   1286   // Different unicode encodings in a |word32|:
   1287   UTF16,  // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate
   1288   UTF32,  // full UTF32 code unit / Unicode codepoint
   1289 };
   1290 
   1291 inline size_t hash_value(UnicodeEncoding encoding) {
   1292   return static_cast<uint8_t>(encoding);
   1293 }
   1294 
   1295 inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) {
   1296   switch (encoding) {
   1297     case UnicodeEncoding::UTF16:
   1298       return os << "UTF16";
   1299     case UnicodeEncoding::UTF32:
   1300       return os << "UTF32";
   1301   }
   1302   UNREACHABLE();
   1303   return os;
   1304 }
   1305 
   1306 enum class IterationKind { kKeys, kValues, kEntries };
   1307 
   1308 inline std::ostream& operator<<(std::ostream& os, IterationKind kind) {
   1309   switch (kind) {
   1310     case IterationKind::kKeys:
   1311       return os << "IterationKind::kKeys";
   1312     case IterationKind::kValues:
   1313       return os << "IterationKind::kValues";
   1314     case IterationKind::kEntries:
   1315       return os << "IterationKind::kEntries";
   1316   }
   1317   UNREACHABLE();
   1318   return os;
   1319 }
   1320 
   1321 // Flags for the runtime function kDefineDataPropertyInLiteral. A property can
   1322 // be enumerable or not, and, in case of functions, the function name
   1323 // can be set or not.
   1324 enum class DataPropertyInLiteralFlag {
   1325   kNoFlags = 0,
   1326   kDontEnum = 1 << 0,
   1327   kSetFunctionName = 1 << 1
   1328 };
   1329 typedef base::Flags<DataPropertyInLiteralFlag> DataPropertyInLiteralFlags;
   1330 DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags)
   1331 
   1332 enum ExternalArrayType {
   1333   kExternalInt8Array = 1,
   1334   kExternalUint8Array,
   1335   kExternalInt16Array,
   1336   kExternalUint16Array,
   1337   kExternalInt32Array,
   1338   kExternalUint32Array,
   1339   kExternalFloat32Array,
   1340   kExternalFloat64Array,
   1341   kExternalUint8ClampedArray,
   1342 };
   1343 
   1344 }  // namespace internal
   1345 }  // namespace v8
   1346 
   1347 // Used by js-builtin-reducer to identify whether ReduceArrayIterator() is
   1348 // reducing a JSArray method, or a JSTypedArray method.
   1349 enum class ArrayIteratorKind { kArray, kTypedArray };
   1350 
   1351 namespace i = v8::internal;
   1352 
   1353 #endif  // V8_GLOBALS_H_
   1354