1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_GLOBALS_H_ 6 #define V8_GLOBALS_H_ 7 8 #include <stddef.h> 9 #include <stdint.h> 10 11 #include <ostream> 12 13 #include "src/base/build_config.h" 14 #include "src/base/flags.h" 15 #include "src/base/logging.h" 16 #include "src/base/macros.h" 17 18 #ifdef V8_OS_WIN 19 20 // Setup for Windows shared library export. 21 #ifdef BUILDING_V8_SHARED 22 #define V8_EXPORT_PRIVATE __declspec(dllexport) 23 #elif USING_V8_SHARED 24 #define V8_EXPORT_PRIVATE __declspec(dllimport) 25 #else 26 #define V8_EXPORT_PRIVATE 27 #endif // BUILDING_V8_SHARED 28 29 #else // V8_OS_WIN 30 31 // Setup for Linux shared library export. 32 #if V8_HAS_ATTRIBUTE_VISIBILITY 33 #ifdef BUILDING_V8_SHARED 34 #define V8_EXPORT_PRIVATE __attribute__((visibility("default"))) 35 #else 36 #define V8_EXPORT_PRIVATE 37 #endif 38 #else 39 #define V8_EXPORT_PRIVATE 40 #endif 41 42 #endif // V8_OS_WIN 43 44 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic' 45 // warning flag and certain versions of GCC due to a bug: 46 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931 47 // For now, we use the more involved template-based version from <limits>, but 48 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x) 49 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0) 50 # include <limits> // NOLINT 51 # define V8_INFINITY std::numeric_limits<double>::infinity() 52 #elif V8_LIBC_MSVCRT 53 # define V8_INFINITY HUGE_VAL 54 #elif V8_OS_AIX 55 #define V8_INFINITY (__builtin_inff()) 56 #else 57 # define V8_INFINITY INFINITY 58 #endif 59 60 namespace v8 { 61 62 namespace base { 63 class Mutex; 64 class RecursiveMutex; 65 class VirtualMemory; 66 } 67 68 namespace internal { 69 70 // Determine whether we are running in a simulated environment. 71 // Setting USE_SIMULATOR explicitly from the build script will force 72 // the use of a simulated environment. 73 #if !defined(USE_SIMULATOR) 74 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64) 75 #define USE_SIMULATOR 1 76 #endif 77 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM) 78 #define USE_SIMULATOR 1 79 #endif 80 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC) 81 #define USE_SIMULATOR 1 82 #endif 83 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS) 84 #define USE_SIMULATOR 1 85 #endif 86 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64) 87 #define USE_SIMULATOR 1 88 #endif 89 #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390) 90 #define USE_SIMULATOR 1 91 #endif 92 #endif 93 94 // Determine whether the architecture uses an embedded constant pool 95 // (contiguous constant pool embedded in code object). 96 #if V8_TARGET_ARCH_PPC 97 #define V8_EMBEDDED_CONSTANT_POOL 1 98 #else 99 #define V8_EMBEDDED_CONSTANT_POOL 0 100 #endif 101 102 #ifdef V8_TARGET_ARCH_ARM 103 // Set stack limit lower for ARM than for other architectures because 104 // stack allocating MacroAssembler takes 120K bytes. 105 // See issue crbug.com/405338 106 #define V8_DEFAULT_STACK_SIZE_KB 864 107 #else 108 // Slightly less than 1MB, since Windows' default stack size for 109 // the main execution thread is 1MB for both 32 and 64-bit. 110 #define V8_DEFAULT_STACK_SIZE_KB 984 111 #endif 112 113 114 // Determine whether double field unboxing feature is enabled. 115 #if V8_TARGET_ARCH_64_BIT 116 #define V8_DOUBLE_FIELDS_UNBOXING 1 117 #else 118 #define V8_DOUBLE_FIELDS_UNBOXING 0 119 #endif 120 121 122 typedef uint8_t byte; 123 typedef byte* Address; 124 125 // ----------------------------------------------------------------------------- 126 // Constants 127 128 const int KB = 1024; 129 const int MB = KB * KB; 130 const int GB = KB * KB * KB; 131 const int kMaxInt = 0x7FFFFFFF; 132 const int kMinInt = -kMaxInt - 1; 133 const int kMaxInt8 = (1 << 7) - 1; 134 const int kMinInt8 = -(1 << 7); 135 const int kMaxUInt8 = (1 << 8) - 1; 136 const int kMinUInt8 = 0; 137 const int kMaxInt16 = (1 << 15) - 1; 138 const int kMinInt16 = -(1 << 15); 139 const int kMaxUInt16 = (1 << 16) - 1; 140 const int kMinUInt16 = 0; 141 142 const uint32_t kMaxUInt32 = 0xFFFFFFFFu; 143 const int kMinUInt32 = 0; 144 145 const int kCharSize = sizeof(char); 146 const int kShortSize = sizeof(short); // NOLINT 147 const int kIntSize = sizeof(int); 148 const int kInt32Size = sizeof(int32_t); 149 const int kInt64Size = sizeof(int64_t); 150 const int kSizetSize = sizeof(size_t); 151 const int kFloatSize = sizeof(float); 152 const int kDoubleSize = sizeof(double); 153 const int kIntptrSize = sizeof(intptr_t); 154 const int kPointerSize = sizeof(void*); 155 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT 156 const int kRegisterSize = kPointerSize + kPointerSize; 157 #else 158 const int kRegisterSize = kPointerSize; 159 #endif 160 const int kPCOnStackSize = kRegisterSize; 161 const int kFPOnStackSize = kRegisterSize; 162 163 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 164 const int kElidedFrameSlots = kPCOnStackSize / kPointerSize; 165 #else 166 const int kElidedFrameSlots = 0; 167 #endif 168 169 const int kDoubleSizeLog2 = 3; 170 171 #if V8_HOST_ARCH_64_BIT 172 const int kPointerSizeLog2 = 3; 173 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000); 174 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF); 175 const bool kRequiresCodeRange = true; 176 #if V8_TARGET_ARCH_MIPS64 177 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit 178 // encoded immediate, the addresses have to be in range of 256MB aligned 179 // region. Used only for large object space. 180 const size_t kMaximalCodeRangeSize = 256 * MB; 181 const size_t kCodeRangeAreaAlignment = 256 * MB; 182 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX 183 const size_t kMaximalCodeRangeSize = 512 * MB; 184 const size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux 185 #else 186 const size_t kMaximalCodeRangeSize = 512 * MB; 187 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. 188 #endif 189 #if V8_OS_WIN 190 const size_t kMinimumCodeRangeSize = 4 * MB; 191 const size_t kReservedCodeRangePages = 1; 192 #else 193 const size_t kMinimumCodeRangeSize = 3 * MB; 194 const size_t kReservedCodeRangePages = 0; 195 #endif 196 #else 197 const int kPointerSizeLog2 = 2; 198 const intptr_t kIntptrSignBit = 0x80000000; 199 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu; 200 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT 201 // x32 port also requires code range. 202 const bool kRequiresCodeRange = true; 203 const size_t kMaximalCodeRangeSize = 256 * MB; 204 const size_t kMinimumCodeRangeSize = 3 * MB; 205 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. 206 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX 207 const bool kRequiresCodeRange = false; 208 const size_t kMaximalCodeRangeSize = 0 * MB; 209 const size_t kMinimumCodeRangeSize = 0 * MB; 210 const size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux 211 #else 212 const bool kRequiresCodeRange = false; 213 const size_t kMaximalCodeRangeSize = 0 * MB; 214 const size_t kMinimumCodeRangeSize = 0 * MB; 215 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page. 216 #endif 217 const size_t kReservedCodeRangePages = 0; 218 #endif 219 220 // Trigger an incremental GCs once the external memory reaches this limit. 221 const int kExternalAllocationSoftLimit = 64 * MB; 222 223 // Maximum object size that gets allocated into regular pages. Objects larger 224 // than that size are allocated in large object space and are never moved in 225 // memory. This also applies to new space allocation, since objects are never 226 // migrated from new space to large object space. Takes double alignment into 227 // account. 228 // 229 // Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack). 230 const int kMaxRegularHeapObjectSize = 507136; 231 232 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2)); 233 234 const int kBitsPerByte = 8; 235 const int kBitsPerByteLog2 = 3; 236 const int kBitsPerPointer = kPointerSize * kBitsPerByte; 237 const int kBitsPerInt = kIntSize * kBitsPerByte; 238 239 // IEEE 754 single precision floating point number bit layout. 240 const uint32_t kBinary32SignMask = 0x80000000u; 241 const uint32_t kBinary32ExponentMask = 0x7f800000u; 242 const uint32_t kBinary32MantissaMask = 0x007fffffu; 243 const int kBinary32ExponentBias = 127; 244 const int kBinary32MaxExponent = 0xFE; 245 const int kBinary32MinExponent = 0x01; 246 const int kBinary32MantissaBits = 23; 247 const int kBinary32ExponentShift = 23; 248 249 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no 250 // other bits set. 251 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51; 252 253 // Latin1/UTF-16 constants 254 // Code-point values in Unicode 4.0 are 21 bits wide. 255 // Code units in UTF-16 are 16 bits wide. 256 typedef uint16_t uc16; 257 typedef int32_t uc32; 258 const int kOneByteSize = kCharSize; 259 const int kUC16Size = sizeof(uc16); // NOLINT 260 261 // 128 bit SIMD value size. 262 const int kSimd128Size = 16; 263 264 // Round up n to be a multiple of sz, where sz is a power of 2. 265 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1)) 266 267 268 // FUNCTION_ADDR(f) gets the address of a C function f. 269 #define FUNCTION_ADDR(f) \ 270 (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f))) 271 272 273 // FUNCTION_CAST<F>(addr) casts an address into a function 274 // of type F. Used to invoke generated code from within C. 275 template <typename F> 276 F FUNCTION_CAST(Address addr) { 277 return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr)); 278 } 279 280 281 // Determine whether the architecture uses function descriptors 282 // which provide a level of indirection between the function pointer 283 // and the function entrypoint. 284 #if V8_HOST_ARCH_PPC && \ 285 (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN)) 286 #define USES_FUNCTION_DESCRIPTORS 1 287 #define FUNCTION_ENTRYPOINT_ADDRESS(f) \ 288 (reinterpret_cast<v8::internal::Address*>( \ 289 &(reinterpret_cast<intptr_t*>(f)[0]))) 290 #else 291 #define USES_FUNCTION_DESCRIPTORS 0 292 #endif 293 294 295 // ----------------------------------------------------------------------------- 296 // Forward declarations for frequently used classes 297 // (sorted alphabetically) 298 299 class FreeStoreAllocationPolicy; 300 template <typename T, class P = FreeStoreAllocationPolicy> class List; 301 302 // ----------------------------------------------------------------------------- 303 // Declarations for use in both the preparser and the rest of V8. 304 305 // The Strict Mode (ECMA-262 5th edition, 4.2.2). 306 307 enum LanguageMode : uint32_t { SLOPPY, STRICT, LANGUAGE_END }; 308 309 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) { 310 switch (mode) { 311 case SLOPPY: return os << "sloppy"; 312 case STRICT: return os << "strict"; 313 default: UNREACHABLE(); 314 } 315 return os; 316 } 317 318 inline bool is_sloppy(LanguageMode language_mode) { 319 return language_mode == SLOPPY; 320 } 321 322 inline bool is_strict(LanguageMode language_mode) { 323 return language_mode != SLOPPY; 324 } 325 326 inline bool is_valid_language_mode(int language_mode) { 327 return language_mode == SLOPPY || language_mode == STRICT; 328 } 329 330 inline LanguageMode construct_language_mode(bool strict_bit) { 331 return static_cast<LanguageMode>(strict_bit); 332 } 333 334 enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; 335 336 // This constant is used as an undefined value when passing source positions. 337 const int kNoSourcePosition = -1; 338 339 // This constant is used to indicate missing deoptimization information. 340 const int kNoDeoptimizationId = -1; 341 342 // Deoptimize bailout kind. 343 enum class DeoptimizeKind : uint8_t { kEager, kSoft }; 344 inline size_t hash_value(DeoptimizeKind kind) { 345 return static_cast<size_t>(kind); 346 } 347 inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) { 348 switch (kind) { 349 case DeoptimizeKind::kEager: 350 return os << "Eager"; 351 case DeoptimizeKind::kSoft: 352 return os << "Soft"; 353 } 354 UNREACHABLE(); 355 return os; 356 } 357 358 // Mask for the sign bit in a smi. 359 const intptr_t kSmiSignMask = kIntptrSignBit; 360 361 const int kObjectAlignmentBits = kPointerSizeLog2; 362 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits; 363 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1; 364 365 // Desired alignment for pointers. 366 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2); 367 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1; 368 369 // Desired alignment for double values. 370 const intptr_t kDoubleAlignment = 8; 371 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1; 372 373 // Desired alignment for generated code is 32 bytes (to improve cache line 374 // utilization). 375 const int kCodeAlignmentBits = 5; 376 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits; 377 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1; 378 379 // The owner field of a page is tagged with the page header tag. We need that 380 // to find out if a slot is part of a large object. If we mask out the lower 381 // 0xfffff bits (1M pages), go to the owner offset, and see that this field 382 // is tagged with the page header tag, we can just look up the owner. 383 // Otherwise, we know that we are somewhere (not within the first 1M) in a 384 // large object. 385 const int kPageHeaderTag = 3; 386 const int kPageHeaderTagSize = 2; 387 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1; 388 389 390 // Zap-value: The value used for zapping dead objects. 391 // Should be a recognizable hex value tagged as a failure. 392 #ifdef V8_HOST_ARCH_64_BIT 393 const Address kZapValue = 394 reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef)); 395 const Address kHandleZapValue = 396 reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf)); 397 const Address kGlobalHandleZapValue = 398 reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf)); 399 const Address kFromSpaceZapValue = 400 reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf)); 401 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb); 402 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef); 403 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf; 404 #else 405 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef); 406 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf); 407 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf); 408 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf); 409 const uint32_t kSlotsZapValue = 0xbeefdeef; 410 const uint32_t kDebugZapValue = 0xbadbaddb; 411 const uint32_t kFreeListZapValue = 0xfeed1eaf; 412 #endif 413 414 const int kCodeZapValue = 0xbadc0de; 415 const uint32_t kPhantomReferenceZap = 0xca11bac; 416 417 // On Intel architecture, cache line size is 64 bytes. 418 // On ARM it may be less (32 bytes), but as far this constant is 419 // used for aligning data, it doesn't hurt to align on a greater value. 420 #define PROCESSOR_CACHE_LINE_SIZE 64 421 422 // Constants relevant to double precision floating point numbers. 423 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30. 424 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32); 425 426 427 // ----------------------------------------------------------------------------- 428 // Forward declarations for frequently used classes 429 430 class AccessorInfo; 431 class Allocation; 432 class Arguments; 433 class Assembler; 434 class Code; 435 class CodeGenerator; 436 class CodeStub; 437 class Context; 438 class Debug; 439 class DebugInfo; 440 class Descriptor; 441 class DescriptorArray; 442 class TransitionArray; 443 class ExternalReference; 444 class FixedArray; 445 class FunctionTemplateInfo; 446 class MemoryChunk; 447 class SeededNumberDictionary; 448 class UnseededNumberDictionary; 449 class NameDictionary; 450 class GlobalDictionary; 451 template <typename T> class MaybeHandle; 452 template <typename T> class Handle; 453 class Heap; 454 class HeapObject; 455 class IC; 456 class InterceptorInfo; 457 class Isolate; 458 class JSReceiver; 459 class JSArray; 460 class JSFunction; 461 class JSObject; 462 class LargeObjectSpace; 463 class MacroAssembler; 464 class Map; 465 class MapSpace; 466 class MarkCompactCollector; 467 class NewSpace; 468 class Object; 469 class OldSpace; 470 class ParameterCount; 471 class Foreign; 472 class Scope; 473 class DeclarationScope; 474 class ModuleScope; 475 class ScopeInfo; 476 class Script; 477 class Smi; 478 template <typename Config, class Allocator = FreeStoreAllocationPolicy> 479 class SplayTree; 480 class String; 481 class Symbol; 482 class Name; 483 class Struct; 484 class FeedbackVector; 485 class Variable; 486 class RelocInfo; 487 class Deserializer; 488 class MessageLocation; 489 490 typedef bool (*WeakSlotCallback)(Object** pointer); 491 492 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer); 493 494 // ----------------------------------------------------------------------------- 495 // Miscellaneous 496 497 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being 498 // consecutive. 499 // Keep this enum in sync with the ObjectSpace enum in v8.h 500 enum AllocationSpace { 501 NEW_SPACE, // Semispaces collected with copying collector. 502 OLD_SPACE, // May contain pointers to new space. 503 CODE_SPACE, // No pointers to new space, marked executable. 504 MAP_SPACE, // Only and all map objects. 505 LO_SPACE, // Promoted large objects. 506 507 FIRST_SPACE = NEW_SPACE, 508 LAST_SPACE = LO_SPACE, 509 FIRST_PAGED_SPACE = OLD_SPACE, 510 LAST_PAGED_SPACE = MAP_SPACE 511 }; 512 const int kSpaceTagSize = 3; 513 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1; 514 515 enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned }; 516 517 // Possible outcomes for decisions. 518 enum class Decision : uint8_t { kUnknown, kTrue, kFalse }; 519 520 inline size_t hash_value(Decision decision) { 521 return static_cast<uint8_t>(decision); 522 } 523 524 inline std::ostream& operator<<(std::ostream& os, Decision decision) { 525 switch (decision) { 526 case Decision::kUnknown: 527 return os << "Unknown"; 528 case Decision::kTrue: 529 return os << "True"; 530 case Decision::kFalse: 531 return os << "False"; 532 } 533 UNREACHABLE(); 534 return os; 535 } 536 537 // Supported write barrier modes. 538 enum WriteBarrierKind : uint8_t { 539 kNoWriteBarrier, 540 kMapWriteBarrier, 541 kPointerWriteBarrier, 542 kFullWriteBarrier 543 }; 544 545 inline size_t hash_value(WriteBarrierKind kind) { 546 return static_cast<uint8_t>(kind); 547 } 548 549 inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) { 550 switch (kind) { 551 case kNoWriteBarrier: 552 return os << "NoWriteBarrier"; 553 case kMapWriteBarrier: 554 return os << "MapWriteBarrier"; 555 case kPointerWriteBarrier: 556 return os << "PointerWriteBarrier"; 557 case kFullWriteBarrier: 558 return os << "FullWriteBarrier"; 559 } 560 UNREACHABLE(); 561 return os; 562 } 563 564 // A flag that indicates whether objects should be pretenured when 565 // allocated (allocated directly into the old generation) or not 566 // (allocated in the young generation if the object size and type 567 // allows). 568 enum PretenureFlag { NOT_TENURED, TENURED }; 569 570 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) { 571 switch (flag) { 572 case NOT_TENURED: 573 return os << "NotTenured"; 574 case TENURED: 575 return os << "Tenured"; 576 } 577 UNREACHABLE(); 578 return os; 579 } 580 581 enum MinimumCapacity { 582 USE_DEFAULT_MINIMUM_CAPACITY, 583 USE_CUSTOM_MINIMUM_CAPACITY 584 }; 585 586 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR }; 587 588 enum Executability { NOT_EXECUTABLE, EXECUTABLE }; 589 590 enum VisitMode { 591 VISIT_ALL, 592 VISIT_ALL_IN_SCAVENGE, 593 VISIT_ALL_IN_SWEEP_NEWSPACE, 594 VISIT_ONLY_STRONG, 595 VISIT_ONLY_STRONG_FOR_SERIALIZATION, 596 VISIT_ONLY_STRONG_ROOT_LIST, 597 }; 598 599 // Flag indicating whether code is built into the VM (one of the natives files). 600 enum NativesFlag { 601 NOT_NATIVES_CODE, 602 EXTENSION_CODE, 603 NATIVES_CODE, 604 INSPECTOR_CODE 605 }; 606 607 // JavaScript defines two kinds of 'nil'. 608 enum NilValue { kNullValue, kUndefinedValue }; 609 610 // ParseRestriction is used to restrict the set of valid statements in a 611 // unit of compilation. Restriction violations cause a syntax error. 612 enum ParseRestriction { 613 NO_PARSE_RESTRICTION, // All expressions are allowed. 614 ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression. 615 }; 616 617 // A CodeDesc describes a buffer holding instructions and relocation 618 // information. The instructions start at the beginning of the buffer 619 // and grow forward, the relocation information starts at the end of 620 // the buffer and grows backward. A constant pool may exist at the 621 // end of the instructions. 622 // 623 // |<--------------- buffer_size ----------------------------------->| 624 // |<------------- instr_size ---------->| |<-- reloc_size -->| 625 // | |<- const_pool_size ->| | 626 // +=====================================+========+==================+ 627 // | instructions | data | free | reloc info | 628 // +=====================================+========+==================+ 629 // ^ 630 // | 631 // buffer 632 633 struct CodeDesc { 634 byte* buffer; 635 int buffer_size; 636 int instr_size; 637 int reloc_size; 638 int constant_pool_size; 639 byte* unwinding_info; 640 int unwinding_info_size; 641 Assembler* origin; 642 }; 643 644 645 // Callback function used for checking constraints when copying/relocating 646 // objects. Returns true if an object can be copied/relocated from its 647 // old_addr to a new_addr. 648 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr); 649 650 651 // Callback function on inline caches, used for iterating over inline caches 652 // in compiled code. 653 typedef void (*InlineCacheCallback)(Code* code, Address ic); 654 655 656 // State for inline cache call sites. Aliased as IC::State. 657 enum InlineCacheState { 658 // Has never been executed. 659 UNINITIALIZED, 660 // Has been executed but monomorhic state has been delayed. 661 PREMONOMORPHIC, 662 // Has been executed and only one receiver type has been seen. 663 MONOMORPHIC, 664 // Check failed due to prototype (or map deprecation). 665 RECOMPUTE_HANDLER, 666 // Multiple receiver types have been seen. 667 POLYMORPHIC, 668 // Many receiver types have been seen. 669 MEGAMORPHIC, 670 // A generic handler is installed and no extra typefeedback is recorded. 671 GENERIC, 672 }; 673 674 enum CacheHolderFlag { 675 kCacheOnPrototype, 676 kCacheOnPrototypeReceiverIsDictionary, 677 kCacheOnPrototypeReceiverIsPrimitive, 678 kCacheOnReceiver 679 }; 680 681 enum WhereToStart { kStartAtReceiver, kStartAtPrototype }; 682 683 // The Store Buffer (GC). 684 typedef enum { 685 kStoreBufferFullEvent, 686 kStoreBufferStartScanningPagesEvent, 687 kStoreBufferScanningPageEvent 688 } StoreBufferEvent; 689 690 691 typedef void (*StoreBufferCallback)(Heap* heap, 692 MemoryChunk* page, 693 StoreBufferEvent event); 694 695 // Union used for customized checking of the IEEE double types 696 // inlined within v8 runtime, rather than going to the underlying 697 // platform headers and libraries 698 union IeeeDoubleLittleEndianArchType { 699 double d; 700 struct { 701 unsigned int man_low :32; 702 unsigned int man_high :20; 703 unsigned int exp :11; 704 unsigned int sign :1; 705 } bits; 706 }; 707 708 709 union IeeeDoubleBigEndianArchType { 710 double d; 711 struct { 712 unsigned int sign :1; 713 unsigned int exp :11; 714 unsigned int man_high :20; 715 unsigned int man_low :32; 716 } bits; 717 }; 718 719 #if V8_TARGET_LITTLE_ENDIAN 720 typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType; 721 const int kIeeeDoubleMantissaWordOffset = 0; 722 const int kIeeeDoubleExponentWordOffset = 4; 723 #else 724 typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType; 725 const int kIeeeDoubleMantissaWordOffset = 4; 726 const int kIeeeDoubleExponentWordOffset = 0; 727 #endif 728 729 // AccessorCallback 730 struct AccessorDescriptor { 731 Object* (*getter)(Isolate* isolate, Object* object, void* data); 732 Object* (*setter)( 733 Isolate* isolate, JSObject* object, Object* value, void* data); 734 void* data; 735 }; 736 737 738 // ----------------------------------------------------------------------------- 739 // Macros 740 741 // Testers for test. 742 743 #define HAS_SMI_TAG(value) \ 744 ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag) 745 746 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer 747 #define OBJECT_POINTER_ALIGN(value) \ 748 (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask) 749 750 // POINTER_SIZE_ALIGN returns the value aligned as a pointer. 751 #define POINTER_SIZE_ALIGN(value) \ 752 (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask) 753 754 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment. 755 #define CODE_POINTER_ALIGN(value) \ 756 (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask) 757 758 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers. 759 #define DOUBLE_POINTER_ALIGN(value) \ 760 (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask) 761 762 763 // CPU feature flags. 764 enum CpuFeature { 765 // x86 766 SSE4_1, 767 SSSE3, 768 SSE3, 769 SAHF, 770 AVX, 771 FMA3, 772 BMI1, 773 BMI2, 774 LZCNT, 775 POPCNT, 776 ATOM, 777 // ARM 778 // - Standard configurations. The baseline is ARMv6+VFPv2. 779 ARMv7, // ARMv7-A + VFPv3-D32 + NEON 780 ARMv7_SUDIV, // ARMv7-A + VFPv4-D32 + NEON + SUDIV 781 ARMv8, // ARMv8-A (+ all of the above) 782 // MIPS, MIPS64 783 FPU, 784 FP64FPU, 785 MIPSr1, 786 MIPSr2, 787 MIPSr6, 788 // ARM64 789 ALWAYS_ALIGN_CSP, 790 // PPC 791 FPR_GPR_MOV, 792 LWSYNC, 793 ISELECT, 794 VSX, 795 MODULO, 796 // S390 797 DISTINCT_OPS, 798 GENERAL_INSTR_EXT, 799 FLOATING_POINT_EXT, 800 VECTOR_FACILITY, 801 MISC_INSTR_EXT2, 802 803 NUMBER_OF_CPU_FEATURES, 804 805 // ARM feature aliases (based on the standard configurations above). 806 VFPv3 = ARMv7, 807 NEON = ARMv7, 808 VFP32DREGS = ARMv7, 809 SUDIV = ARMv7_SUDIV 810 }; 811 812 // Defines hints about receiver values based on structural knowledge. 813 enum class ConvertReceiverMode : unsigned { 814 kNullOrUndefined, // Guaranteed to be null or undefined. 815 kNotNullOrUndefined, // Guaranteed to never be null or undefined. 816 kAny // No specific knowledge about receiver. 817 }; 818 819 inline size_t hash_value(ConvertReceiverMode mode) { 820 return bit_cast<unsigned>(mode); 821 } 822 823 inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) { 824 switch (mode) { 825 case ConvertReceiverMode::kNullOrUndefined: 826 return os << "NULL_OR_UNDEFINED"; 827 case ConvertReceiverMode::kNotNullOrUndefined: 828 return os << "NOT_NULL_OR_UNDEFINED"; 829 case ConvertReceiverMode::kAny: 830 return os << "ANY"; 831 } 832 UNREACHABLE(); 833 return os; 834 } 835 836 // Defines whether tail call optimization is allowed. 837 enum class TailCallMode : unsigned { kAllow, kDisallow }; 838 839 inline size_t hash_value(TailCallMode mode) { return bit_cast<unsigned>(mode); } 840 841 inline std::ostream& operator<<(std::ostream& os, TailCallMode mode) { 842 switch (mode) { 843 case TailCallMode::kAllow: 844 return os << "ALLOW_TAIL_CALLS"; 845 case TailCallMode::kDisallow: 846 return os << "DISALLOW_TAIL_CALLS"; 847 } 848 UNREACHABLE(); 849 return os; 850 } 851 852 // Valid hints for the abstract operation OrdinaryToPrimitive, 853 // implemented according to ES6, section 7.1.1. 854 enum class OrdinaryToPrimitiveHint { kNumber, kString }; 855 856 // Valid hints for the abstract operation ToPrimitive, 857 // implemented according to ES6, section 7.1.1. 858 enum class ToPrimitiveHint { kDefault, kNumber, kString }; 859 860 // Defines specifics about arguments object or rest parameter creation. 861 enum class CreateArgumentsType : uint8_t { 862 kMappedArguments, 863 kUnmappedArguments, 864 kRestParameter 865 }; 866 867 inline size_t hash_value(CreateArgumentsType type) { 868 return bit_cast<uint8_t>(type); 869 } 870 871 inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) { 872 switch (type) { 873 case CreateArgumentsType::kMappedArguments: 874 return os << "MAPPED_ARGUMENTS"; 875 case CreateArgumentsType::kUnmappedArguments: 876 return os << "UNMAPPED_ARGUMENTS"; 877 case CreateArgumentsType::kRestParameter: 878 return os << "REST_PARAMETER"; 879 } 880 UNREACHABLE(); 881 return os; 882 } 883 884 // Used to specify if a macro instruction must perform a smi check on tagged 885 // values. 886 enum SmiCheckType { 887 DONT_DO_SMI_CHECK, 888 DO_SMI_CHECK 889 }; 890 891 enum ScopeType : uint8_t { 892 EVAL_SCOPE, // The top-level scope for an eval source. 893 FUNCTION_SCOPE, // The top-level scope for a function. 894 MODULE_SCOPE, // The scope introduced by a module literal 895 SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval. 896 CATCH_SCOPE, // The scope introduced by catch. 897 BLOCK_SCOPE, // The scope introduced by a new block. 898 WITH_SCOPE // The scope introduced by with. 899 }; 900 901 // AllocationSiteMode controls whether allocations are tracked by an allocation 902 // site. 903 enum AllocationSiteMode { 904 DONT_TRACK_ALLOCATION_SITE, 905 TRACK_ALLOCATION_SITE, 906 LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE 907 }; 908 909 // The mips architecture prior to revision 5 has inverted encoding for sNaN. 910 // The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from 911 // memmory. 912 // Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this 913 // issue 914 // for some test cases. 915 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \ 916 (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \ 917 (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \ 918 (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \ 919 (V8_TARGET_ARCH_X87) 920 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF; 921 const uint32_t kHoleNanLower32 = 0xFFFF7FFF; 922 #else 923 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF; 924 const uint32_t kHoleNanLower32 = 0xFFF7FFFF; 925 #endif 926 927 const uint64_t kHoleNanInt64 = 928 (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32; 929 930 931 // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER 932 const double kMaxSafeInteger = 9007199254740991.0; // 2^53-1 933 934 935 // The order of this enum has to be kept in sync with the predicates below. 936 enum VariableMode : uint8_t { 937 // User declared variables: 938 VAR, // declared via 'var', and 'function' declarations 939 940 LET, // declared via 'let' declarations (first lexical) 941 942 CONST, // declared via 'const' declarations (last lexical) 943 944 // Variables introduced by the compiler: 945 TEMPORARY, // temporary variables (not user-visible), stack-allocated 946 // unless the scope as a whole has forced context allocation 947 948 DYNAMIC, // always require dynamic lookup (we don't know 949 // the declaration) 950 951 DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the 952 // variable is global unless it has been shadowed 953 // by an eval-introduced variable 954 955 DYNAMIC_LOCAL, // requires dynamic lookup, but we know that the 956 // variable is local and where it is unless it 957 // has been shadowed by an eval-introduced 958 // variable 959 960 kLastVariableMode = DYNAMIC_LOCAL 961 }; 962 963 // Printing support 964 #ifdef DEBUG 965 inline const char* VariableMode2String(VariableMode mode) { 966 switch (mode) { 967 case VAR: 968 return "VAR"; 969 case LET: 970 return "LET"; 971 case CONST: 972 return "CONST"; 973 case DYNAMIC: 974 return "DYNAMIC"; 975 case DYNAMIC_GLOBAL: 976 return "DYNAMIC_GLOBAL"; 977 case DYNAMIC_LOCAL: 978 return "DYNAMIC_LOCAL"; 979 case TEMPORARY: 980 return "TEMPORARY"; 981 } 982 UNREACHABLE(); 983 return NULL; 984 } 985 #endif 986 987 enum VariableKind : uint8_t { 988 NORMAL_VARIABLE, 989 FUNCTION_VARIABLE, 990 THIS_VARIABLE, 991 SLOPPY_FUNCTION_NAME_VARIABLE, 992 kLastKind = SLOPPY_FUNCTION_NAME_VARIABLE 993 }; 994 995 inline bool IsDynamicVariableMode(VariableMode mode) { 996 return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL; 997 } 998 999 1000 inline bool IsDeclaredVariableMode(VariableMode mode) { 1001 STATIC_ASSERT(VAR == 0); // Implies that mode >= VAR. 1002 return mode <= CONST; 1003 } 1004 1005 1006 inline bool IsLexicalVariableMode(VariableMode mode) { 1007 return mode >= LET && mode <= CONST; 1008 } 1009 1010 enum VariableLocation : uint8_t { 1011 // Before and during variable allocation, a variable whose location is 1012 // not yet determined. After allocation, a variable looked up as a 1013 // property on the global object (and possibly absent). name() is the 1014 // variable name, index() is invalid. 1015 UNALLOCATED, 1016 1017 // A slot in the parameter section on the stack. index() is the 1018 // parameter index, counting left-to-right. The receiver is index -1; 1019 // the first parameter is index 0. 1020 PARAMETER, 1021 1022 // A slot in the local section on the stack. index() is the variable 1023 // index in the stack frame, starting at 0. 1024 LOCAL, 1025 1026 // An indexed slot in a heap context. index() is the variable index in 1027 // the context object on the heap, starting at 0. scope() is the 1028 // corresponding scope. 1029 CONTEXT, 1030 1031 // A named slot in a heap context. name() is the variable name in the 1032 // context object on the heap, with lookup starting at the current 1033 // context. index() is invalid. 1034 LOOKUP, 1035 1036 // A named slot in a module's export table. 1037 MODULE, 1038 1039 kLastVariableLocation = MODULE 1040 }; 1041 1042 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable 1043 // and immutable bindings that can be in two states: initialized and 1044 // uninitialized. In ES5 only immutable bindings have these two states. When 1045 // accessing a binding, it needs to be checked for initialization. However in 1046 // the following cases the binding is initialized immediately after creation 1047 // so the initialization check can always be skipped: 1048 // 1. Var declared local variables. 1049 // var foo; 1050 // 2. A local variable introduced by a function declaration. 1051 // function foo() {} 1052 // 3. Parameters 1053 // function x(foo) {} 1054 // 4. Catch bound variables. 1055 // try {} catch (foo) {} 1056 // 6. Function variables of named function expressions. 1057 // var x = function foo() {} 1058 // 7. Implicit binding of 'this'. 1059 // 8. Implicit binding of 'arguments' in functions. 1060 // 1061 // ES5 specified object environment records which are introduced by ES elements 1062 // such as Program and WithStatement that associate identifier bindings with the 1063 // properties of some object. In the specification only mutable bindings exist 1064 // (which may be non-writable) and have no distinct initialization step. However 1065 // V8 allows const declarations in global code with distinct creation and 1066 // initialization steps which are represented by non-writable properties in the 1067 // global object. As a result also these bindings need to be checked for 1068 // initialization. 1069 // 1070 // The following enum specifies a flag that indicates if the binding needs a 1071 // distinct initialization step (kNeedsInitialization) or if the binding is 1072 // immediately initialized upon creation (kCreatedInitialized). 1073 enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized }; 1074 1075 enum class HoleCheckMode { kRequired, kElided }; 1076 1077 enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned }; 1078 1079 // Serialized in PreparseData, so numeric values should not be changed. 1080 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 }; 1081 1082 1083 enum MinusZeroMode { 1084 TREAT_MINUS_ZERO_AS_ZERO, 1085 FAIL_ON_MINUS_ZERO 1086 }; 1087 1088 1089 enum Signedness { kSigned, kUnsigned }; 1090 1091 enum FunctionKind : uint16_t { 1092 kNormalFunction = 0, 1093 kArrowFunction = 1 << 0, 1094 kGeneratorFunction = 1 << 1, 1095 kConciseMethod = 1 << 2, 1096 kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod, 1097 kDefaultConstructor = 1 << 3, 1098 kDerivedConstructor = 1 << 4, 1099 kBaseConstructor = 1 << 5, 1100 kGetterFunction = 1 << 6, 1101 kSetterFunction = 1 << 7, 1102 kAsyncFunction = 1 << 8, 1103 kModule = 1 << 9, 1104 kAccessorFunction = kGetterFunction | kSetterFunction, 1105 kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor, 1106 kDefaultDerivedConstructor = kDefaultConstructor | kDerivedConstructor, 1107 kClassConstructor = 1108 kBaseConstructor | kDerivedConstructor | kDefaultConstructor, 1109 kAsyncArrowFunction = kArrowFunction | kAsyncFunction, 1110 kAsyncConciseMethod = kAsyncFunction | kConciseMethod 1111 }; 1112 1113 inline bool IsValidFunctionKind(FunctionKind kind) { 1114 return kind == FunctionKind::kNormalFunction || 1115 kind == FunctionKind::kArrowFunction || 1116 kind == FunctionKind::kGeneratorFunction || 1117 kind == FunctionKind::kModule || 1118 kind == FunctionKind::kConciseMethod || 1119 kind == FunctionKind::kConciseGeneratorMethod || 1120 kind == FunctionKind::kGetterFunction || 1121 kind == FunctionKind::kSetterFunction || 1122 kind == FunctionKind::kAccessorFunction || 1123 kind == FunctionKind::kDefaultBaseConstructor || 1124 kind == FunctionKind::kDefaultDerivedConstructor || 1125 kind == FunctionKind::kBaseConstructor || 1126 kind == FunctionKind::kDerivedConstructor || 1127 kind == FunctionKind::kAsyncFunction || 1128 kind == FunctionKind::kAsyncArrowFunction || 1129 kind == FunctionKind::kAsyncConciseMethod; 1130 } 1131 1132 1133 inline bool IsArrowFunction(FunctionKind kind) { 1134 DCHECK(IsValidFunctionKind(kind)); 1135 return kind & FunctionKind::kArrowFunction; 1136 } 1137 1138 1139 inline bool IsGeneratorFunction(FunctionKind kind) { 1140 DCHECK(IsValidFunctionKind(kind)); 1141 return kind & FunctionKind::kGeneratorFunction; 1142 } 1143 1144 inline bool IsModule(FunctionKind kind) { 1145 DCHECK(IsValidFunctionKind(kind)); 1146 return kind & FunctionKind::kModule; 1147 } 1148 1149 inline bool IsAsyncFunction(FunctionKind kind) { 1150 DCHECK(IsValidFunctionKind(kind)); 1151 return kind & FunctionKind::kAsyncFunction; 1152 } 1153 1154 inline bool IsResumableFunction(FunctionKind kind) { 1155 return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind); 1156 } 1157 1158 inline bool IsConciseMethod(FunctionKind kind) { 1159 DCHECK(IsValidFunctionKind(kind)); 1160 return kind & FunctionKind::kConciseMethod; 1161 } 1162 1163 inline bool IsGetterFunction(FunctionKind kind) { 1164 DCHECK(IsValidFunctionKind(kind)); 1165 return kind & FunctionKind::kGetterFunction; 1166 } 1167 1168 inline bool IsSetterFunction(FunctionKind kind) { 1169 DCHECK(IsValidFunctionKind(kind)); 1170 return kind & FunctionKind::kSetterFunction; 1171 } 1172 1173 inline bool IsAccessorFunction(FunctionKind kind) { 1174 DCHECK(IsValidFunctionKind(kind)); 1175 return kind & FunctionKind::kAccessorFunction; 1176 } 1177 1178 1179 inline bool IsDefaultConstructor(FunctionKind kind) { 1180 DCHECK(IsValidFunctionKind(kind)); 1181 return kind & FunctionKind::kDefaultConstructor; 1182 } 1183 1184 1185 inline bool IsBaseConstructor(FunctionKind kind) { 1186 DCHECK(IsValidFunctionKind(kind)); 1187 return kind & FunctionKind::kBaseConstructor; 1188 } 1189 1190 inline bool IsDerivedConstructor(FunctionKind kind) { 1191 DCHECK(IsValidFunctionKind(kind)); 1192 return kind & FunctionKind::kDerivedConstructor; 1193 } 1194 1195 1196 inline bool IsClassConstructor(FunctionKind kind) { 1197 DCHECK(IsValidFunctionKind(kind)); 1198 return kind & FunctionKind::kClassConstructor; 1199 } 1200 1201 1202 inline bool IsConstructable(FunctionKind kind, LanguageMode mode) { 1203 if (IsAccessorFunction(kind)) return false; 1204 if (IsConciseMethod(kind)) return false; 1205 if (IsArrowFunction(kind)) return false; 1206 if (IsGeneratorFunction(kind)) return false; 1207 if (IsAsyncFunction(kind)) return false; 1208 return true; 1209 } 1210 1211 enum class InterpreterPushArgsMode : unsigned { 1212 kJSFunction, 1213 kWithFinalSpread, 1214 kOther 1215 }; 1216 1217 inline size_t hash_value(InterpreterPushArgsMode mode) { 1218 return bit_cast<unsigned>(mode); 1219 } 1220 1221 inline std::ostream& operator<<(std::ostream& os, 1222 InterpreterPushArgsMode mode) { 1223 switch (mode) { 1224 case InterpreterPushArgsMode::kJSFunction: 1225 return os << "JSFunction"; 1226 case InterpreterPushArgsMode::kWithFinalSpread: 1227 return os << "WithFinalSpread"; 1228 case InterpreterPushArgsMode::kOther: 1229 return os << "Other"; 1230 } 1231 UNREACHABLE(); 1232 return os; 1233 } 1234 1235 inline uint32_t ObjectHash(Address address) { 1236 // All objects are at least pointer aligned, so we can remove the trailing 1237 // zeros. 1238 return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >> 1239 kPointerSizeLog2); 1240 } 1241 1242 // Type feedback is encoded in such a way that, we can combine the feedback 1243 // at different points by performing an 'OR' operation. Type feedback moves 1244 // to a more generic type when we combine feedback. 1245 // kSignedSmall -> kNumber -> kNumberOrOddball -> kAny 1246 // kString -> kAny 1247 // TODO(mythria): Remove kNumber type when crankshaft can handle Oddballs 1248 // similar to Numbers. We don't need kNumber feedback for Turbofan. Extra 1249 // information about Number might reduce few instructions but causes more 1250 // deopts. We collect Number only because crankshaft does not handle all 1251 // cases of oddballs. 1252 class BinaryOperationFeedback { 1253 public: 1254 enum { 1255 kNone = 0x0, 1256 kSignedSmall = 0x1, 1257 kNumber = 0x3, 1258 kNumberOrOddball = 0x7, 1259 kString = 0x8, 1260 kAny = 0x1F 1261 }; 1262 }; 1263 1264 // Type feedback is encoded in such a way that, we can combine the feedback 1265 // at different points by performing an 'OR' operation. Type feedback moves 1266 // to a more generic type when we combine feedback. 1267 // kSignedSmall -> kNumber -> kAny 1268 // kInternalizedString -> kString -> kAny 1269 // kReceiver -> kAny 1270 // TODO(epertoso): consider unifying this with BinaryOperationFeedback. 1271 class CompareOperationFeedback { 1272 public: 1273 enum { 1274 kNone = 0x00, 1275 kSignedSmall = 0x01, 1276 kNumber = 0x3, 1277 kNumberOrOddball = 0x7, 1278 kInternalizedString = 0x8, 1279 kString = 0x18, 1280 kReceiver = 0x20, 1281 kAny = 0x7F 1282 }; 1283 }; 1284 1285 enum class UnicodeEncoding : uint8_t { 1286 // Different unicode encodings in a |word32|: 1287 UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate 1288 UTF32, // full UTF32 code unit / Unicode codepoint 1289 }; 1290 1291 inline size_t hash_value(UnicodeEncoding encoding) { 1292 return static_cast<uint8_t>(encoding); 1293 } 1294 1295 inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) { 1296 switch (encoding) { 1297 case UnicodeEncoding::UTF16: 1298 return os << "UTF16"; 1299 case UnicodeEncoding::UTF32: 1300 return os << "UTF32"; 1301 } 1302 UNREACHABLE(); 1303 return os; 1304 } 1305 1306 enum class IterationKind { kKeys, kValues, kEntries }; 1307 1308 inline std::ostream& operator<<(std::ostream& os, IterationKind kind) { 1309 switch (kind) { 1310 case IterationKind::kKeys: 1311 return os << "IterationKind::kKeys"; 1312 case IterationKind::kValues: 1313 return os << "IterationKind::kValues"; 1314 case IterationKind::kEntries: 1315 return os << "IterationKind::kEntries"; 1316 } 1317 UNREACHABLE(); 1318 return os; 1319 } 1320 1321 // Flags for the runtime function kDefineDataPropertyInLiteral. A property can 1322 // be enumerable or not, and, in case of functions, the function name 1323 // can be set or not. 1324 enum class DataPropertyInLiteralFlag { 1325 kNoFlags = 0, 1326 kDontEnum = 1 << 0, 1327 kSetFunctionName = 1 << 1 1328 }; 1329 typedef base::Flags<DataPropertyInLiteralFlag> DataPropertyInLiteralFlags; 1330 DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags) 1331 1332 enum ExternalArrayType { 1333 kExternalInt8Array = 1, 1334 kExternalUint8Array, 1335 kExternalInt16Array, 1336 kExternalUint16Array, 1337 kExternalInt32Array, 1338 kExternalUint32Array, 1339 kExternalFloat32Array, 1340 kExternalFloat64Array, 1341 kExternalUint8ClampedArray, 1342 }; 1343 1344 } // namespace internal 1345 } // namespace v8 1346 1347 // Used by js-builtin-reducer to identify whether ReduceArrayIterator() is 1348 // reducing a JSArray method, or a JSTypedArray method. 1349 enum class ArrayIteratorKind { kArray, kTypedArray }; 1350 1351 namespace i = v8::internal; 1352 1353 #endif // V8_GLOBALS_H_ 1354