Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "art_method-inl.h"
     18 #include "base/callee_save_type.h"
     19 #include "base/enums.h"
     20 #include "callee_save_frame.h"
     21 #include "common_throws.h"
     22 #include "debug_print.h"
     23 #include "debugger.h"
     24 #include "dex/dex_file-inl.h"
     25 #include "dex/dex_file_types.h"
     26 #include "dex/dex_instruction-inl.h"
     27 #include "dex/method_reference.h"
     28 #include "entrypoints/entrypoint_utils-inl.h"
     29 #include "entrypoints/runtime_asm_entrypoints.h"
     30 #include "gc/accounting/card_table-inl.h"
     31 #include "imt_conflict_table.h"
     32 #include "imtable-inl.h"
     33 #include "index_bss_mapping.h"
     34 #include "instrumentation.h"
     35 #include "interpreter/interpreter.h"
     36 #include "jit/jit.h"
     37 #include "linear_alloc.h"
     38 #include "method_handles.h"
     39 #include "mirror/class-inl.h"
     40 #include "mirror/dex_cache-inl.h"
     41 #include "mirror/method.h"
     42 #include "mirror/method_handle_impl.h"
     43 #include "mirror/object-inl.h"
     44 #include "mirror/object_array-inl.h"
     45 #include "oat_file.h"
     46 #include "oat_quick_method_header.h"
     47 #include "quick_exception_handler.h"
     48 #include "runtime.h"
     49 #include "scoped_thread_state_change-inl.h"
     50 #include "stack.h"
     51 #include "thread-inl.h"
     52 #include "well_known_classes.h"
     53 
     54 namespace art {
     55 
     56 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
     57 class QuickArgumentVisitor {
     58   // Number of bytes for each out register in the caller method's frame.
     59   static constexpr size_t kBytesStackArgLocation = 4;
     60   // Frame size in bytes of a callee-save frame for RefsAndArgs.
     61   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
     62       GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
     63 #if defined(__arm__)
     64   // The callee save frame is pointed to by SP.
     65   // | argN       |  |
     66   // | ...        |  |
     67   // | arg4       |  |
     68   // | arg3 spill |  |  Caller's frame
     69   // | arg2 spill |  |
     70   // | arg1 spill |  |
     71   // | Method*    | ---
     72   // | LR         |
     73   // | ...        |    4x6 bytes callee saves
     74   // | R3         |
     75   // | R2         |
     76   // | R1         |
     77   // | S15        |
     78   // | :          |
     79   // | S0         |
     80   // |            |    4x2 bytes padding
     81   // | Method*    |  <- sp
     82   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
     83   static constexpr bool kAlignPairRegister = true;
     84   static constexpr bool kQuickSoftFloatAbi = false;
     85   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
     86   static constexpr bool kQuickSkipOddFpRegisters = false;
     87   static constexpr size_t kNumQuickGprArgs = 3;
     88   static constexpr size_t kNumQuickFprArgs = 16;
     89   static constexpr bool kGprFprLockstep = false;
     90   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
     91       arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first FPR arg.
     92   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
     93       arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of first GPR arg.
     94   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
     95       arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);  // Offset of return address.
     96   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
     97     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
     98   }
     99 #elif defined(__aarch64__)
    100   // The callee save frame is pointed to by SP.
    101   // | argN       |  |
    102   // | ...        |  |
    103   // | arg4       |  |
    104   // | arg3 spill |  |  Caller's frame
    105   // | arg2 spill |  |
    106   // | arg1 spill |  |
    107   // | Method*    | ---
    108   // | LR         |
    109   // | X29        |
    110   // |  :         |
    111   // | X20        |
    112   // | X7         |
    113   // | :          |
    114   // | X1         |
    115   // | D7         |
    116   // |  :         |
    117   // | D0         |
    118   // |            |    padding
    119   // | Method*    |  <- sp
    120   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    121   static constexpr bool kAlignPairRegister = false;
    122   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    123   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    124   static constexpr bool kQuickSkipOddFpRegisters = false;
    125   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
    126   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
    127   static constexpr bool kGprFprLockstep = false;
    128   // Offset of first FPR arg.
    129   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
    130       arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
    131   // Offset of first GPR arg.
    132   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
    133       arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
    134   // Offset of return address.
    135   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
    136       arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
    137   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    138     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    139   }
    140 #elif defined(__mips__) && !defined(__LP64__)
    141   // The callee save frame is pointed to by SP.
    142   // | argN       |  |
    143   // | ...        |  |
    144   // | arg4       |  |
    145   // | arg3 spill |  |  Caller's frame
    146   // | arg2 spill |  |
    147   // | arg1 spill |  |
    148   // | Method*    | ---
    149   // | RA         |
    150   // | ...        |    callee saves
    151   // | T1         |    arg5
    152   // | T0         |    arg4
    153   // | A3         |    arg3
    154   // | A2         |    arg2
    155   // | A1         |    arg1
    156   // | F19        |
    157   // | F18        |    f_arg5
    158   // | F17        |
    159   // | F16        |    f_arg4
    160   // | F15        |
    161   // | F14        |    f_arg3
    162   // | F13        |
    163   // | F12        |    f_arg2
    164   // | F11        |
    165   // | F10        |    f_arg1
    166   // | F9         |
    167   // | F8         |    f_arg0
    168   // |            |    padding
    169   // | A0/Method* |  <- sp
    170   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    171   static constexpr bool kAlignPairRegister = true;
    172   static constexpr bool kQuickSoftFloatAbi = false;
    173   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    174   static constexpr bool kQuickSkipOddFpRegisters = true;
    175   static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
    176   static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
    177                                                   // passed only in even numbered registers and each
    178                                                   // double occupies two registers.
    179   static constexpr bool kGprFprLockstep = false;
    180   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
    181   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
    182   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
    183   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    184     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    185   }
    186 #elif defined(__mips__) && defined(__LP64__)
    187   // The callee save frame is pointed to by SP.
    188   // | argN       |  |
    189   // | ...        |  |
    190   // | arg4       |  |
    191   // | arg3 spill |  |  Caller's frame
    192   // | arg2 spill |  |
    193   // | arg1 spill |  |
    194   // | Method*    | ---
    195   // | RA         |
    196   // | ...        |    callee saves
    197   // | A7         |    arg7
    198   // | A6         |    arg6
    199   // | A5         |    arg5
    200   // | A4         |    arg4
    201   // | A3         |    arg3
    202   // | A2         |    arg2
    203   // | A1         |    arg1
    204   // | F19        |    f_arg7
    205   // | F18        |    f_arg6
    206   // | F17        |    f_arg5
    207   // | F16        |    f_arg4
    208   // | F15        |    f_arg3
    209   // | F14        |    f_arg2
    210   // | F13        |    f_arg1
    211   // | F12        |    f_arg0
    212   // |            |    padding
    213   // | A0/Method* |  <- sp
    214   // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
    215   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    216   static constexpr bool kAlignPairRegister = false;
    217   static constexpr bool kQuickSoftFloatAbi = false;
    218   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    219   static constexpr bool kQuickSkipOddFpRegisters = false;
    220   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
    221   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
    222   static constexpr bool kGprFprLockstep = true;
    223 
    224   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
    225   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
    226   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
    227   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    228     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    229   }
    230 #elif defined(__i386__)
    231   // The callee save frame is pointed to by SP.
    232   // | argN        |  |
    233   // | ...         |  |
    234   // | arg4        |  |
    235   // | arg3 spill  |  |  Caller's frame
    236   // | arg2 spill  |  |
    237   // | arg1 spill  |  |
    238   // | Method*     | ---
    239   // | Return      |
    240   // | EBP,ESI,EDI |    callee saves
    241   // | EBX         |    arg3
    242   // | EDX         |    arg2
    243   // | ECX         |    arg1
    244   // | XMM3        |    float arg 4
    245   // | XMM2        |    float arg 3
    246   // | XMM1        |    float arg 2
    247   // | XMM0        |    float arg 1
    248   // | EAX/Method* |  <- sp
    249   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    250   static constexpr bool kAlignPairRegister = false;
    251   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    252   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    253   static constexpr bool kQuickSkipOddFpRegisters = false;
    254   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
    255   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
    256   static constexpr bool kGprFprLockstep = false;
    257   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
    258   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
    259   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
    260   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    261     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
    262   }
    263 #elif defined(__x86_64__)
    264   // The callee save frame is pointed to by SP.
    265   // | argN            |  |
    266   // | ...             |  |
    267   // | reg. arg spills |  |  Caller's frame
    268   // | Method*         | ---
    269   // | Return          |
    270   // | R15             |    callee save
    271   // | R14             |    callee save
    272   // | R13             |    callee save
    273   // | R12             |    callee save
    274   // | R9              |    arg5
    275   // | R8              |    arg4
    276   // | RSI/R6          |    arg1
    277   // | RBP/R5          |    callee save
    278   // | RBX/R3          |    callee save
    279   // | RDX/R2          |    arg2
    280   // | RCX/R1          |    arg3
    281   // | XMM7            |    float arg 8
    282   // | XMM6            |    float arg 7
    283   // | XMM5            |    float arg 6
    284   // | XMM4            |    float arg 5
    285   // | XMM3            |    float arg 4
    286   // | XMM2            |    float arg 3
    287   // | XMM1            |    float arg 2
    288   // | XMM0            |    float arg 1
    289   // | Padding         |
    290   // | RDI/Method*     |  <- sp
    291   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
    292   static constexpr bool kAlignPairRegister = false;
    293   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
    294   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
    295   static constexpr bool kQuickSkipOddFpRegisters = false;
    296   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
    297   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
    298   static constexpr bool kGprFprLockstep = false;
    299   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
    300   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
    301   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
    302   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
    303     switch (gpr_index) {
    304       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
    305       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
    306       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
    307       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
    308       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
    309       default:
    310       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
    311       return 0;
    312     }
    313   }
    314 #else
    315 #error "Unsupported architecture"
    316 #endif
    317 
    318  public:
    319   // Special handling for proxy methods. Proxy methods are instance methods so the
    320   // 'this' object is the 1st argument. They also have the same frame layout as the
    321   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
    322   // 1st GPR.
    323   static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
    324       REQUIRES_SHARED(Locks::mutator_lock_) {
    325     CHECK((*sp)->IsProxyMethod());
    326     CHECK_GT(kNumQuickGprArgs, 0u);
    327     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
    328     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
    329         GprIndexToGprOffset(kThisGprIndex);
    330     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
    331     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
    332   }
    333 
    334   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
    335     DCHECK((*sp)->IsCalleeSaveMethod());
    336     return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
    337   }
    338 
    339   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
    340     DCHECK((*sp)->IsCalleeSaveMethod());
    341     uint8_t* previous_sp =
    342         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
    343     return *reinterpret_cast<ArtMethod**>(previous_sp);
    344   }
    345 
    346   static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
    347     DCHECK((*sp)->IsCalleeSaveMethod());
    348     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
    349                                                             CalleeSaveType::kSaveRefsAndArgs);
    350     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
    351         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
    352     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
    353     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
    354     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
    355 
    356     if (current_code->IsOptimized()) {
    357       CodeInfo code_info = current_code->GetOptimizedCodeInfo();
    358       CodeInfoEncoding encoding = code_info.ExtractEncoding();
    359       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
    360       DCHECK(stack_map.IsValid());
    361       if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
    362         InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
    363         return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
    364                                            inline_info.GetDepth(encoding.inline_info.encoding)-1);
    365       } else {
    366         return stack_map.GetDexPc(encoding.stack_map.encoding);
    367       }
    368     } else {
    369       return current_code->ToDexPc(*caller_sp, outer_pc);
    370     }
    371   }
    372 
    373   static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
    374       REQUIRES_SHARED(Locks::mutator_lock_) {
    375     DCHECK((*sp)->IsCalleeSaveMethod());
    376     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
    377                                                             CalleeSaveType::kSaveRefsAndArgs);
    378     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
    379         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
    380     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
    381     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
    382     if (!current_code->IsOptimized()) {
    383       return false;
    384     }
    385     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
    386     CodeInfo code_info = current_code->GetOptimizedCodeInfo();
    387     CodeInfoEncoding encoding = code_info.ExtractEncoding();
    388     MethodInfo method_info = current_code->GetOptimizedMethodInfo();
    389     InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
    390     if (invoke.IsValid()) {
    391       *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
    392       *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
    393       return true;
    394     }
    395     return false;
    396   }
    397 
    398   // For the given quick ref and args quick frame, return the caller's PC.
    399   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
    400     DCHECK((*sp)->IsCalleeSaveMethod());
    401     uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
    402     return *reinterpret_cast<uintptr_t*>(lr);
    403   }
    404 
    405   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
    406                        uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
    407           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
    408           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
    409           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
    410           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
    411               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
    412           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
    413           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
    414     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
    415                   "Number of Quick FPR arguments unexpected");
    416     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
    417                   "Double alignment unexpected");
    418     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
    419     // next register is even.
    420     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
    421                   "Number of Quick FPR arguments not even");
    422     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
    423   }
    424 
    425   virtual ~QuickArgumentVisitor() {}
    426 
    427   virtual void Visit() = 0;
    428 
    429   Primitive::Type GetParamPrimitiveType() const {
    430     return cur_type_;
    431   }
    432 
    433   uint8_t* GetParamAddress() const {
    434     if (!kQuickSoftFloatAbi) {
    435       Primitive::Type type = GetParamPrimitiveType();
    436       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
    437         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
    438           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
    439             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
    440           }
    441         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    442           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
    443         }
    444         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
    445       }
    446     }
    447     if (gpr_index_ < kNumQuickGprArgs) {
    448       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
    449     }
    450     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
    451   }
    452 
    453   bool IsSplitLongOrDouble() const {
    454     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
    455         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
    456       return is_split_long_or_double_;
    457     } else {
    458       return false;  // An optimization for when GPR and FPRs are 64bit.
    459     }
    460   }
    461 
    462   bool IsParamAReference() const {
    463     return GetParamPrimitiveType() == Primitive::kPrimNot;
    464   }
    465 
    466   bool IsParamALongOrDouble() const {
    467     Primitive::Type type = GetParamPrimitiveType();
    468     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
    469   }
    470 
    471   uint64_t ReadSplitLongParam() const {
    472     // The splitted long is always available through the stack.
    473     return *reinterpret_cast<uint64_t*>(stack_args_
    474         + stack_index_ * kBytesStackArgLocation);
    475   }
    476 
    477   void IncGprIndex() {
    478     gpr_index_++;
    479     if (kGprFprLockstep) {
    480       fpr_index_++;
    481     }
    482   }
    483 
    484   void IncFprIndex() {
    485     fpr_index_++;
    486     if (kGprFprLockstep) {
    487       gpr_index_++;
    488     }
    489   }
    490 
    491   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
    492     // (a) 'stack_args_' should point to the first method's argument
    493     // (b) whatever the argument type it is, the 'stack_index_' should
    494     //     be moved forward along with every visiting.
    495     gpr_index_ = 0;
    496     fpr_index_ = 0;
    497     if (kQuickDoubleRegAlignedFloatBackFilled) {
    498       fpr_double_index_ = 0;
    499     }
    500     stack_index_ = 0;
    501     if (!is_static_) {  // Handle this.
    502       cur_type_ = Primitive::kPrimNot;
    503       is_split_long_or_double_ = false;
    504       Visit();
    505       stack_index_++;
    506       if (kNumQuickGprArgs > 0) {
    507         IncGprIndex();
    508       }
    509     }
    510     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
    511       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
    512       switch (cur_type_) {
    513         case Primitive::kPrimNot:
    514         case Primitive::kPrimBoolean:
    515         case Primitive::kPrimByte:
    516         case Primitive::kPrimChar:
    517         case Primitive::kPrimShort:
    518         case Primitive::kPrimInt:
    519           is_split_long_or_double_ = false;
    520           Visit();
    521           stack_index_++;
    522           if (gpr_index_ < kNumQuickGprArgs) {
    523             IncGprIndex();
    524           }
    525           break;
    526         case Primitive::kPrimFloat:
    527           is_split_long_or_double_ = false;
    528           Visit();
    529           stack_index_++;
    530           if (kQuickSoftFloatAbi) {
    531             if (gpr_index_ < kNumQuickGprArgs) {
    532               IncGprIndex();
    533             }
    534           } else {
    535             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    536               IncFprIndex();
    537               if (kQuickDoubleRegAlignedFloatBackFilled) {
    538                 // Double should not overlap with float.
    539                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
    540                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
    541                 // Float should not overlap with double.
    542                 if (fpr_index_ % 2 == 0) {
    543                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
    544                 }
    545               } else if (kQuickSkipOddFpRegisters) {
    546                 IncFprIndex();
    547               }
    548             }
    549           }
    550           break;
    551         case Primitive::kPrimDouble:
    552         case Primitive::kPrimLong:
    553           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
    554             if (cur_type_ == Primitive::kPrimLong &&
    555 #if defined(__mips__) && !defined(__LP64__)
    556                 (gpr_index_ == 0 || gpr_index_ == 2) &&
    557 #else
    558                 gpr_index_ == 0 &&
    559 #endif
    560                 kAlignPairRegister) {
    561               // Currently, this is only for ARM and MIPS, where we align long parameters with
    562               // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
    563               // R2 (on ARM) or A2(T0) (on MIPS) instead.
    564               IncGprIndex();
    565             }
    566             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
    567                 ((gpr_index_ + 1) == kNumQuickGprArgs);
    568             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
    569               // We don't want to split this. Pass over this register.
    570               gpr_index_++;
    571               is_split_long_or_double_ = false;
    572             }
    573             Visit();
    574             if (kBytesStackArgLocation == 4) {
    575               stack_index_+= 2;
    576             } else {
    577               CHECK_EQ(kBytesStackArgLocation, 8U);
    578               stack_index_++;
    579             }
    580             if (gpr_index_ < kNumQuickGprArgs) {
    581               IncGprIndex();
    582               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
    583                 if (gpr_index_ < kNumQuickGprArgs) {
    584                   IncGprIndex();
    585                 }
    586               }
    587             }
    588           } else {
    589             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
    590                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
    591             Visit();
    592             if (kBytesStackArgLocation == 4) {
    593               stack_index_+= 2;
    594             } else {
    595               CHECK_EQ(kBytesStackArgLocation, 8U);
    596               stack_index_++;
    597             }
    598             if (kQuickDoubleRegAlignedFloatBackFilled) {
    599               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
    600                 fpr_double_index_ += 2;
    601                 // Float should not overlap with double.
    602                 if (fpr_index_ % 2 == 0) {
    603                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
    604                 }
    605               }
    606             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    607               IncFprIndex();
    608               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
    609                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
    610                   IncFprIndex();
    611                 }
    612               }
    613             }
    614           }
    615           break;
    616         default:
    617           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
    618       }
    619     }
    620   }
    621 
    622  protected:
    623   const bool is_static_;
    624   const char* const shorty_;
    625   const uint32_t shorty_len_;
    626 
    627  private:
    628   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
    629   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
    630   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
    631   uint32_t gpr_index_;  // Index into spilled GPRs.
    632   // Index into spilled FPRs.
    633   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
    634   // holds a higher register number.
    635   uint32_t fpr_index_;
    636   // Index into spilled FPRs for aligned double.
    637   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
    638   // terms of singles, may be behind fpr_index.
    639   uint32_t fpr_double_index_;
    640   uint32_t stack_index_;  // Index into arguments on the stack.
    641   // The current type of argument during VisitArguments.
    642   Primitive::Type cur_type_;
    643   // Does a 64bit parameter straddle the register and stack arguments?
    644   bool is_split_long_or_double_;
    645 };
    646 
    647 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
    648 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
    649 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
    650     REQUIRES_SHARED(Locks::mutator_lock_) {
    651   return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
    652 }
    653 
    654 // Visits arguments on the stack placing them into the shadow frame.
    655 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
    656  public:
    657   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
    658                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
    659       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
    660 
    661   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
    662 
    663  private:
    664   ShadowFrame* const sf_;
    665   uint32_t cur_reg_;
    666 
    667   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
    668 };
    669 
    670 void BuildQuickShadowFrameVisitor::Visit() {
    671   Primitive::Type type = GetParamPrimitiveType();
    672   switch (type) {
    673     case Primitive::kPrimLong:  // Fall-through.
    674     case Primitive::kPrimDouble:
    675       if (IsSplitLongOrDouble()) {
    676         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
    677       } else {
    678         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
    679       }
    680       ++cur_reg_;
    681       break;
    682     case Primitive::kPrimNot: {
    683         StackReference<mirror::Object>* stack_ref =
    684             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    685         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
    686       }
    687       break;
    688     case Primitive::kPrimBoolean:  // Fall-through.
    689     case Primitive::kPrimByte:     // Fall-through.
    690     case Primitive::kPrimChar:     // Fall-through.
    691     case Primitive::kPrimShort:    // Fall-through.
    692     case Primitive::kPrimInt:      // Fall-through.
    693     case Primitive::kPrimFloat:
    694       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
    695       break;
    696     case Primitive::kPrimVoid:
    697       LOG(FATAL) << "UNREACHABLE";
    698       UNREACHABLE();
    699   }
    700   ++cur_reg_;
    701 }
    702 
    703 // Don't inline. See b/65159206.
    704 NO_INLINE
    705 static void HandleDeoptimization(JValue* result,
    706                                  ArtMethod* method,
    707                                  ShadowFrame* deopt_frame,
    708                                  ManagedStack* fragment)
    709     REQUIRES_SHARED(Locks::mutator_lock_) {
    710   // Coming from partial-fragment deopt.
    711   Thread* self = Thread::Current();
    712   if (kIsDebugBuild) {
    713     // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
    714     // of the call-stack) corresponds to the called method.
    715     ShadowFrame* linked = deopt_frame;
    716     while (linked->GetLink() != nullptr) {
    717       linked = linked->GetLink();
    718     }
    719     CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
    720         << ArtMethod::PrettyMethod(linked->GetMethod());
    721   }
    722 
    723   if (VLOG_IS_ON(deopt)) {
    724     // Print out the stack to verify that it was a partial-fragment deopt.
    725     LOG(INFO) << "Continue-ing from deopt. Stack is:";
    726     QuickExceptionHandler::DumpFramesWithType(self, true);
    727   }
    728 
    729   ObjPtr<mirror::Throwable> pending_exception;
    730   bool from_code = false;
    731   DeoptimizationMethodType method_type;
    732   self->PopDeoptimizationContext(/* out */ result,
    733                                  /* out */ &pending_exception,
    734                                  /* out */ &from_code,
    735                                  /* out */ &method_type);
    736 
    737   // Push a transition back into managed code onto the linked list in thread.
    738   self->PushManagedStackFragment(fragment);
    739 
    740   // Ensure that the stack is still in order.
    741   if (kIsDebugBuild) {
    742     class DummyStackVisitor : public StackVisitor {
    743      public:
    744       explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
    745           : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
    746 
    747       bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
    748         // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
    749         // logic. Just always say we want to continue.
    750         return true;
    751       }
    752     };
    753     DummyStackVisitor dsv(self);
    754     dsv.WalkStack();
    755   }
    756 
    757   // Restore the exception that was pending before deoptimization then interpret the
    758   // deoptimized frames.
    759   if (pending_exception != nullptr) {
    760     self->SetException(pending_exception);
    761   }
    762   interpreter::EnterInterpreterFromDeoptimize(self,
    763                                               deopt_frame,
    764                                               result,
    765                                               from_code,
    766                                               DeoptimizationMethodType::kDefault);
    767 }
    768 
    769 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
    770     REQUIRES_SHARED(Locks::mutator_lock_) {
    771   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
    772   // frame.
    773   ScopedQuickEntrypointChecks sqec(self);
    774 
    775   if (UNLIKELY(!method->IsInvokable())) {
    776     method->ThrowInvocationTimeError();
    777     return 0;
    778   }
    779 
    780   JValue tmp_value;
    781   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
    782       StackedShadowFrameType::kDeoptimizationShadowFrame, false);
    783   ManagedStack fragment;
    784 
    785   DCHECK(!method->IsNative()) << method->PrettyMethod();
    786   uint32_t shorty_len = 0;
    787   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
    788   DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
    789   CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
    790   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
    791 
    792   JValue result;
    793 
    794   if (UNLIKELY(deopt_frame != nullptr)) {
    795     HandleDeoptimization(&result, method, deopt_frame, &fragment);
    796   } else {
    797     const char* old_cause = self->StartAssertNoThreadSuspension(
    798         "Building interpreter shadow frame");
    799     uint16_t num_regs = accessor.RegistersSize();
    800     // No last shadow coming from quick.
    801     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
    802         CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
    803     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
    804     size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
    805     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
    806                                                       shadow_frame, first_arg_reg);
    807     shadow_frame_builder.VisitArguments();
    808     const bool needs_initialization =
    809         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
    810     // Push a transition back into managed code onto the linked list in thread.
    811     self->PushManagedStackFragment(&fragment);
    812     self->PushShadowFrame(shadow_frame);
    813     self->EndAssertNoThreadSuspension(old_cause);
    814 
    815     if (needs_initialization) {
    816       // Ensure static method's class is initialized.
    817       StackHandleScope<1> hs(self);
    818       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
    819       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
    820         DCHECK(Thread::Current()->IsExceptionPending())
    821             << shadow_frame->GetMethod()->PrettyMethod();
    822         self->PopManagedStackFragment(fragment);
    823         return 0;
    824       }
    825     }
    826 
    827     result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
    828   }
    829 
    830   // Pop transition.
    831   self->PopManagedStackFragment(fragment);
    832 
    833   // Request a stack deoptimization if needed
    834   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
    835   uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
    836   // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
    837   // should be done and it knows the real return pc.
    838   if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
    839                Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
    840     if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
    841       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
    842                    << caller->PrettyMethod();
    843     } else {
    844       // Push the context of the deoptimization stack so we can restore the return value and the
    845       // exception before executing the deoptimized frames.
    846       self->PushDeoptimizationContext(
    847           result,
    848           shorty[0] == 'L' || shorty[0] == '[',  /* class or array */
    849           self->GetException(),
    850           false /* from_code */,
    851           DeoptimizationMethodType::kDefault);
    852 
    853       // Set special exception to cause deoptimization.
    854       self->SetException(Thread::GetDeoptimizationException());
    855     }
    856   }
    857 
    858   // No need to restore the args since the method has already been run by the interpreter.
    859   return result.GetJ();
    860 }
    861 
    862 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
    863 // to jobjects.
    864 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
    865  public:
    866   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
    867                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
    868       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
    869 
    870   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
    871 
    872  private:
    873   ScopedObjectAccessUnchecked* const soa_;
    874   std::vector<jvalue>* const args_;
    875 
    876   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
    877 };
    878 
    879 void BuildQuickArgumentVisitor::Visit() {
    880   jvalue val;
    881   Primitive::Type type = GetParamPrimitiveType();
    882   switch (type) {
    883     case Primitive::kPrimNot: {
    884       StackReference<mirror::Object>* stack_ref =
    885           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    886       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
    887       break;
    888     }
    889     case Primitive::kPrimLong:  // Fall-through.
    890     case Primitive::kPrimDouble:
    891       if (IsSplitLongOrDouble()) {
    892         val.j = ReadSplitLongParam();
    893       } else {
    894         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
    895       }
    896       break;
    897     case Primitive::kPrimBoolean:  // Fall-through.
    898     case Primitive::kPrimByte:     // Fall-through.
    899     case Primitive::kPrimChar:     // Fall-through.
    900     case Primitive::kPrimShort:    // Fall-through.
    901     case Primitive::kPrimInt:      // Fall-through.
    902     case Primitive::kPrimFloat:
    903       val.i = *reinterpret_cast<jint*>(GetParamAddress());
    904       break;
    905     case Primitive::kPrimVoid:
    906       LOG(FATAL) << "UNREACHABLE";
    907       UNREACHABLE();
    908   }
    909   args_->push_back(val);
    910 }
    911 
    912 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
    913 // which is responsible for recording callee save registers. We explicitly place into jobjects the
    914 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
    915 // field within the proxy object, which will box the primitive arguments and deal with error cases.
    916 extern "C" uint64_t artQuickProxyInvokeHandler(
    917     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
    918     REQUIRES_SHARED(Locks::mutator_lock_) {
    919   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
    920   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
    921   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
    922   const char* old_cause =
    923       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
    924   // Register the top of the managed stack, making stack crawlable.
    925   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
    926   self->VerifyStack();
    927   // Start new JNI local reference state.
    928   JNIEnvExt* env = self->GetJniEnv();
    929   ScopedObjectAccessUnchecked soa(env);
    930   ScopedJniEnvLocalRefState env_state(env);
    931   // Create local ref. copies of proxy method and the receiver.
    932   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
    933 
    934   // Placing arguments into args vector and remove the receiver.
    935   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
    936   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
    937                                        << non_proxy_method->PrettyMethod();
    938   std::vector<jvalue> args;
    939   uint32_t shorty_len = 0;
    940   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
    941   BuildQuickArgumentVisitor local_ref_visitor(
    942       sp, /* is_static */ false, shorty, shorty_len, &soa, &args);
    943 
    944   local_ref_visitor.VisitArguments();
    945   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
    946   args.erase(args.begin());
    947 
    948   // Convert proxy method into expected interface method.
    949   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
    950   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
    951   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
    952   self->EndAssertNoThreadSuspension(old_cause);
    953   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
    954   DCHECK(!Runtime::Current()->IsActiveTransaction());
    955   ObjPtr<mirror::Method> interface_reflect_method =
    956       mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
    957   if (interface_reflect_method == nullptr) {
    958     soa.Self()->AssertPendingOOMException();
    959     return 0;
    960   }
    961   jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
    962 
    963   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
    964   // that performs allocations.
    965   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
    966   return result.GetJ();
    967 }
    968 
    969 // Visitor returning a reference argument at a given position in a Quick stack frame.
    970 // NOTE: Only used for testing purposes.
    971 class GetQuickReferenceArgumentAtVisitor FINAL : public QuickArgumentVisitor {
    972  public:
    973   GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
    974                                      const char* shorty,
    975                                      uint32_t shorty_len,
    976                                      size_t arg_pos)
    977       : QuickArgumentVisitor(sp, /* is_static */ false, shorty, shorty_len),
    978         cur_pos_(0u),
    979         arg_pos_(arg_pos),
    980         ref_arg_(nullptr) {
    981           CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
    982         }
    983 
    984   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
    985     if (cur_pos_ == arg_pos_) {
    986       Primitive::Type type = GetParamPrimitiveType();
    987       CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
    988       ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
    989     }
    990     ++cur_pos_;
    991   }
    992 
    993   StackReference<mirror::Object>* GetReferenceArgument() {
    994     return ref_arg_;
    995   }
    996 
    997  private:
    998   // The position of the currently visited argument.
    999   size_t cur_pos_;
   1000   // The position of the searched argument.
   1001   const size_t arg_pos_;
   1002   // The reference argument, if found.
   1003   StackReference<mirror::Object>* ref_arg_;
   1004 
   1005   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
   1006 };
   1007 
   1008 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
   1009 // NOTE: Only used for testing purposes.
   1010 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
   1011                                                                                ArtMethod** sp)
   1012     REQUIRES_SHARED(Locks::mutator_lock_) {
   1013   ArtMethod* proxy_method = *sp;
   1014   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
   1015   CHECK(!non_proxy_method->IsStatic())
   1016       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
   1017   uint32_t shorty_len = 0;
   1018   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
   1019   GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
   1020   ref_arg_visitor.VisitArguments();
   1021   StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
   1022   return ref_arg;
   1023 }
   1024 
   1025 // Visitor returning all the reference arguments in a Quick stack frame.
   1026 class GetQuickReferenceArgumentsVisitor FINAL : public QuickArgumentVisitor {
   1027  public:
   1028   GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
   1029                                     bool is_static,
   1030                                     const char* shorty,
   1031                                     uint32_t shorty_len)
   1032       : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
   1033 
   1034   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
   1035     Primitive::Type type = GetParamPrimitiveType();
   1036     if (type == Primitive::kPrimNot) {
   1037       StackReference<mirror::Object>* ref_arg =
   1038           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
   1039       ref_args_.push_back(ref_arg);
   1040     }
   1041   }
   1042 
   1043   std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
   1044     return ref_args_;
   1045   }
   1046 
   1047  private:
   1048   // The reference arguments.
   1049   std::vector<StackReference<mirror::Object>*> ref_args_;
   1050 
   1051   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
   1052 };
   1053 
   1054 // Returning all reference arguments in Quick stack frame at address `sp`.
   1055 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
   1056     REQUIRES_SHARED(Locks::mutator_lock_) {
   1057   ArtMethod* proxy_method = *sp;
   1058   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
   1059   CHECK(!non_proxy_method->IsStatic())
   1060       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
   1061   uint32_t shorty_len = 0;
   1062   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
   1063   GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /* is_static */ false, shorty, shorty_len);
   1064   ref_args_visitor.VisitArguments();
   1065   std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
   1066   return ref_args;
   1067 }
   1068 
   1069 // Read object references held in arguments from quick frames and place in a JNI local references,
   1070 // so they don't get garbage collected.
   1071 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
   1072  public:
   1073   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
   1074                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
   1075       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
   1076 
   1077   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
   1078 
   1079   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
   1080 
   1081  private:
   1082   ScopedObjectAccessUnchecked* const soa_;
   1083   // References which we must update when exiting in case the GC moved the objects.
   1084   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
   1085 
   1086   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
   1087 };
   1088 
   1089 void RememberForGcArgumentVisitor::Visit() {
   1090   if (IsParamAReference()) {
   1091     StackReference<mirror::Object>* stack_ref =
   1092         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
   1093     jobject reference =
   1094         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
   1095     references_.push_back(std::make_pair(reference, stack_ref));
   1096   }
   1097 }
   1098 
   1099 void RememberForGcArgumentVisitor::FixupReferences() {
   1100   // Fixup any references which may have changed.
   1101   for (const auto& pair : references_) {
   1102     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
   1103     soa_->Env()->DeleteLocalRef(pair.first);
   1104   }
   1105 }
   1106 
   1107 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
   1108                                                              mirror::Object* this_object,
   1109                                                              Thread* self,
   1110                                                              ArtMethod** sp)
   1111     REQUIRES_SHARED(Locks::mutator_lock_) {
   1112   const void* result;
   1113   // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
   1114   // that part.
   1115   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
   1116   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
   1117   if (instrumentation->IsDeoptimized(method)) {
   1118     result = GetQuickToInterpreterBridge();
   1119   } else {
   1120     result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
   1121     DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
   1122   }
   1123 
   1124   bool interpreter_entry = (result == GetQuickToInterpreterBridge());
   1125   bool is_static = method->IsStatic();
   1126   uint32_t shorty_len;
   1127   const char* shorty =
   1128       method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
   1129 
   1130   ScopedObjectAccessUnchecked soa(self);
   1131   RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
   1132   visitor.VisitArguments();
   1133 
   1134   instrumentation->PushInstrumentationStackFrame(self,
   1135                                                  is_static ? nullptr : this_object,
   1136                                                  method,
   1137                                                  QuickArgumentVisitor::GetCallingPc(sp),
   1138                                                  interpreter_entry);
   1139 
   1140   visitor.FixupReferences();
   1141   if (UNLIKELY(self->IsExceptionPending())) {
   1142     return nullptr;
   1143   }
   1144   CHECK(result != nullptr) << method->PrettyMethod();
   1145   return result;
   1146 }
   1147 
   1148 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
   1149                                                               ArtMethod** sp,
   1150                                                               uint64_t* gpr_result,
   1151                                                               uint64_t* fpr_result)
   1152     REQUIRES_SHARED(Locks::mutator_lock_) {
   1153   DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
   1154   CHECK(gpr_result != nullptr);
   1155   CHECK(fpr_result != nullptr);
   1156   // Instrumentation exit stub must not be entered with a pending exception.
   1157   CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
   1158                                      << self->GetException()->Dump();
   1159   // Compute address of return PC and sanity check that it currently holds 0.
   1160   size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA,
   1161                                                         CalleeSaveType::kSaveEverything);
   1162   uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
   1163                                                       return_pc_offset);
   1164   CHECK_EQ(*return_pc, 0U);
   1165 
   1166   // Pop the frame filling in the return pc. The low half of the return value is 0 when
   1167   // deoptimization shouldn't be performed with the high-half having the return address. When
   1168   // deoptimization should be performed the low half is zero and the high-half the address of the
   1169   // deoptimization entry point.
   1170   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
   1171   TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
   1172       self, return_pc, gpr_result, fpr_result);
   1173   if (self->IsExceptionPending() || self->ObserveAsyncException()) {
   1174     return GetTwoWordFailureValue();
   1175   }
   1176   return return_or_deoptimize_pc;
   1177 }
   1178 
   1179 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
   1180     REQUIRES_SHARED(Locks::mutator_lock_) {
   1181   if (dex_pc == static_cast<uint32_t>(-1)) {
   1182     CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
   1183     return "<native>";
   1184   } else {
   1185     CodeItemInstructionAccessor accessor = method->DexInstructions();
   1186     CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
   1187     return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
   1188   }
   1189 }
   1190 
   1191 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
   1192     REQUIRES_SHARED(Locks::mutator_lock_) {
   1193   std::string storage;
   1194   const char* descriptor = klass->GetDescriptor(&storage);
   1195   LOG(FATAL_WITHOUT_ABORT) << "  " << DescribeLoaders(klass->GetClassLoader(), descriptor);
   1196   const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
   1197   if (oat_dex_file != nullptr) {
   1198     const OatFile* oat_file = oat_dex_file->GetOatFile();
   1199     const char* dex2oat_cmdline =
   1200         oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
   1201     LOG(FATAL_WITHOUT_ABORT) << "    OatFile: " << oat_file->GetLocation()
   1202         << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
   1203   }
   1204 }
   1205 
   1206 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
   1207   // Mimick the search for the caller and dump some data while doing so.
   1208   LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
   1209 
   1210   constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
   1211   CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
   1212 
   1213   const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, type);
   1214   auto** caller_sp = reinterpret_cast<ArtMethod**>(
   1215       reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
   1216   const size_t callee_return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, type);
   1217   uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
   1218       (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
   1219   ArtMethod* outer_method = *caller_sp;
   1220 
   1221   if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
   1222     LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
   1223         << " native pc: " << caller_pc << " Instrumented!";
   1224     return;
   1225   }
   1226 
   1227   const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
   1228   CHECK(current_code != nullptr);
   1229   CHECK(current_code->IsOptimized());
   1230   uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
   1231   CodeInfo code_info = current_code->GetOptimizedCodeInfo();
   1232   MethodInfo method_info = current_code->GetOptimizedMethodInfo();
   1233   CodeInfoEncoding encoding = code_info.ExtractEncoding();
   1234   StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
   1235   CHECK(stack_map.IsValid());
   1236   uint32_t dex_pc = stack_map.GetDexPc(encoding.stack_map.encoding);
   1237 
   1238   // Log the outer method and its associated dex file and class table pointer which can be used
   1239   // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
   1240   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1241   LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
   1242       << " native pc: " << caller_pc
   1243       << " dex pc: " << dex_pc
   1244       << " dex file: " << outer_method->GetDexFile()->GetLocation()
   1245       << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
   1246   DumpB74410240ClassData(outer_method->GetDeclaringClass());
   1247   LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(outer_method, dex_pc);
   1248 
   1249   ArtMethod* caller = outer_method;
   1250   if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
   1251     InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
   1252     const InlineInfoEncoding& inline_info_encoding = encoding.inline_info.encoding;
   1253     size_t depth = inline_info.GetDepth(inline_info_encoding);
   1254     for (size_t d = 0; d < depth; ++d) {
   1255       const char* tag = "";
   1256       dex_pc = inline_info.GetDexPcAtDepth(inline_info_encoding, d);
   1257       if (inline_info.EncodesArtMethodAtDepth(inline_info_encoding, d)) {
   1258         tag = "encoded ";
   1259         caller = inline_info.GetArtMethodAtDepth(inline_info_encoding, d);
   1260       } else {
   1261         uint32_t method_index = inline_info.GetMethodIndexAtDepth(inline_info_encoding,
   1262                                                                   method_info,
   1263                                                                   d);
   1264         if (dex_pc == static_cast<uint32_t>(-1)) {
   1265           tag = "special ";
   1266           CHECK_EQ(d + 1u, depth);
   1267           caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
   1268           CHECK_EQ(caller->GetDexMethodIndex(), method_index);
   1269         } else {
   1270           ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
   1271           ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
   1272           caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
   1273           CHECK(caller != nullptr);
   1274         }
   1275       }
   1276       LOG(FATAL_WITHOUT_ABORT) << "Inlined method #" << d << ": " << tag << caller->PrettyMethod()
   1277           << " dex pc: " << dex_pc
   1278           << " dex file: " << caller->GetDexFile()->GetLocation()
   1279           << " class table: "
   1280           << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
   1281       DumpB74410240ClassData(caller->GetDeclaringClass());
   1282       LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(caller, dex_pc);
   1283     }
   1284   }
   1285 }
   1286 
   1287 // Lazily resolve a method for quick. Called by stub code.
   1288 extern "C" const void* artQuickResolutionTrampoline(
   1289     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
   1290     REQUIRES_SHARED(Locks::mutator_lock_) {
   1291   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
   1292   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
   1293   // does not have the same stack layout as the callee-save method).
   1294   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
   1295   // Start new JNI local reference state
   1296   JNIEnvExt* env = self->GetJniEnv();
   1297   ScopedObjectAccessUnchecked soa(env);
   1298   ScopedJniEnvLocalRefState env_state(env);
   1299   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
   1300 
   1301   // Compute details about the called method (avoid GCs)
   1302   ClassLinker* linker = Runtime::Current()->GetClassLinker();
   1303   InvokeType invoke_type;
   1304   MethodReference called_method(nullptr, 0);
   1305   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
   1306   ArtMethod* caller = nullptr;
   1307   if (!called_method_known_on_entry) {
   1308     caller = QuickArgumentVisitor::GetCallingMethod(sp);
   1309     called_method.dex_file = caller->GetDexFile();
   1310 
   1311     InvokeType stack_map_invoke_type;
   1312     uint32_t stack_map_dex_method_idx;
   1313     const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
   1314                                                                      &stack_map_invoke_type,
   1315                                                                      &stack_map_dex_method_idx);
   1316     // For debug builds, we make sure both of the paths are consistent by also looking at the dex
   1317     // code.
   1318     if (!found_stack_map || kIsDebugBuild) {
   1319       uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
   1320       CodeItemInstructionAccessor accessor(caller->DexInstructions());
   1321       CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
   1322       const Instruction& instr = accessor.InstructionAt(dex_pc);
   1323       Instruction::Code instr_code = instr.Opcode();
   1324       bool is_range;
   1325       switch (instr_code) {
   1326         case Instruction::INVOKE_DIRECT:
   1327           invoke_type = kDirect;
   1328           is_range = false;
   1329           break;
   1330         case Instruction::INVOKE_DIRECT_RANGE:
   1331           invoke_type = kDirect;
   1332           is_range = true;
   1333           break;
   1334         case Instruction::INVOKE_STATIC:
   1335           invoke_type = kStatic;
   1336           is_range = false;
   1337           break;
   1338         case Instruction::INVOKE_STATIC_RANGE:
   1339           invoke_type = kStatic;
   1340           is_range = true;
   1341           break;
   1342         case Instruction::INVOKE_SUPER:
   1343           invoke_type = kSuper;
   1344           is_range = false;
   1345           break;
   1346         case Instruction::INVOKE_SUPER_RANGE:
   1347           invoke_type = kSuper;
   1348           is_range = true;
   1349           break;
   1350         case Instruction::INVOKE_VIRTUAL:
   1351           invoke_type = kVirtual;
   1352           is_range = false;
   1353           break;
   1354         case Instruction::INVOKE_VIRTUAL_RANGE:
   1355           invoke_type = kVirtual;
   1356           is_range = true;
   1357           break;
   1358         case Instruction::INVOKE_INTERFACE:
   1359           invoke_type = kInterface;
   1360           is_range = false;
   1361           break;
   1362         case Instruction::INVOKE_INTERFACE_RANGE:
   1363           invoke_type = kInterface;
   1364           is_range = true;
   1365           break;
   1366         default:
   1367           DumpB74410240DebugData(sp);
   1368           LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
   1369           UNREACHABLE();
   1370       }
   1371       called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
   1372       // Check that the invoke matches what we expected, note that this path only happens for debug
   1373       // builds.
   1374       if (found_stack_map) {
   1375         DCHECK_EQ(stack_map_invoke_type, invoke_type);
   1376         if (invoke_type != kSuper) {
   1377           // Super may be sharpened.
   1378           DCHECK_EQ(stack_map_dex_method_idx, called_method.index)
   1379               << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
   1380               << called_method.PrettyMethod();
   1381         }
   1382       } else {
   1383         VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
   1384                   << called_method.index;
   1385       }
   1386     } else {
   1387       invoke_type = stack_map_invoke_type;
   1388       called_method.index = stack_map_dex_method_idx;
   1389     }
   1390   } else {
   1391     invoke_type = kStatic;
   1392     called_method.dex_file = called->GetDexFile();
   1393     called_method.index = called->GetDexMethodIndex();
   1394   }
   1395   uint32_t shorty_len;
   1396   const char* shorty =
   1397       called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
   1398   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
   1399   visitor.VisitArguments();
   1400   self->EndAssertNoThreadSuspension(old_cause);
   1401   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
   1402   // Resolve method filling in dex cache.
   1403   if (!called_method_known_on_entry) {
   1404     StackHandleScope<1> hs(self);
   1405     mirror::Object* dummy = nullptr;
   1406     HandleWrapper<mirror::Object> h_receiver(
   1407         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
   1408     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
   1409     called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
   1410         self, called_method.index, caller, invoke_type);
   1411 
   1412     // Update .bss entry in oat file if any.
   1413     if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
   1414       size_t bss_offset = IndexBssMappingLookup::GetBssOffset(
   1415           called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(),
   1416           called_method.index,
   1417           called_method.dex_file->NumMethodIds(),
   1418           static_cast<size_t>(kRuntimePointerSize));
   1419       if (bss_offset != IndexBssMappingLookup::npos) {
   1420         DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
   1421         const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
   1422         ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
   1423             oat_file->BssBegin() + bss_offset));
   1424         DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
   1425         DCHECK_LT(method_entry,
   1426                   oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
   1427         *method_entry = called;
   1428       }
   1429     }
   1430   }
   1431   const void* code = nullptr;
   1432   if (LIKELY(!self->IsExceptionPending())) {
   1433     // Incompatible class change should have been handled in resolve method.
   1434     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
   1435         << called->PrettyMethod() << " " << invoke_type;
   1436     if (virtual_or_interface || invoke_type == kSuper) {
   1437       // Refine called method based on receiver for kVirtual/kInterface, and
   1438       // caller for kSuper.
   1439       ArtMethod* orig_called = called;
   1440       if (invoke_type == kVirtual) {
   1441         CHECK(receiver != nullptr) << invoke_type;
   1442         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
   1443       } else if (invoke_type == kInterface) {
   1444         CHECK(receiver != nullptr) << invoke_type;
   1445         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
   1446       } else {
   1447         DCHECK_EQ(invoke_type, kSuper);
   1448         CHECK(caller != nullptr) << invoke_type;
   1449         ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
   1450             caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
   1451         if (ref_class->IsInterface()) {
   1452           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
   1453         } else {
   1454           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
   1455               called->GetMethodIndex(), kRuntimePointerSize);
   1456         }
   1457       }
   1458 
   1459       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
   1460                                << mirror::Object::PrettyTypeOf(receiver) << " "
   1461                                << invoke_type << " " << orig_called->GetVtableIndex();
   1462     }
   1463 
   1464     // Ensure that the called method's class is initialized.
   1465     StackHandleScope<1> hs(soa.Self());
   1466     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
   1467     linker->EnsureInitialized(soa.Self(), called_class, true, true);
   1468     if (LIKELY(called_class->IsInitialized())) {
   1469       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
   1470         // If we are single-stepping or the called method is deoptimized (by a
   1471         // breakpoint, for example), then we have to execute the called method
   1472         // with the interpreter.
   1473         code = GetQuickToInterpreterBridge();
   1474       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
   1475         // If the caller is deoptimized (by a breakpoint, for example), we have to
   1476         // continue its execution with interpreter when returning from the called
   1477         // method. Because we do not want to execute the called method with the
   1478         // interpreter, we wrap its execution into the instrumentation stubs.
   1479         // When the called method returns, it will execute the instrumentation
   1480         // exit hook that will determine the need of the interpreter with a call
   1481         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
   1482         // it is needed.
   1483         code = GetQuickInstrumentationEntryPoint();
   1484       } else {
   1485         code = called->GetEntryPointFromQuickCompiledCode();
   1486       }
   1487     } else if (called_class->IsInitializing()) {
   1488       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
   1489         // If we are single-stepping or the called method is deoptimized (by a
   1490         // breakpoint, for example), then we have to execute the called method
   1491         // with the interpreter.
   1492         code = GetQuickToInterpreterBridge();
   1493       } else if (invoke_type == kStatic) {
   1494         // Class is still initializing, go to oat and grab code (trampoline must be left in place
   1495         // until class is initialized to stop races between threads).
   1496         code = linker->GetQuickOatCodeFor(called);
   1497       } else {
   1498         // No trampoline for non-static methods.
   1499         code = called->GetEntryPointFromQuickCompiledCode();
   1500       }
   1501     } else {
   1502       DCHECK(called_class->IsErroneous());
   1503     }
   1504   }
   1505   CHECK_EQ(code == nullptr, self->IsExceptionPending());
   1506   // Fixup any locally saved objects may have moved during a GC.
   1507   visitor.FixupReferences();
   1508   // Place called method in callee-save frame to be placed as first argument to quick method.
   1509   *sp = called;
   1510 
   1511   return code;
   1512 }
   1513 
   1514 /*
   1515  * This class uses a couple of observations to unite the different calling conventions through
   1516  * a few constants.
   1517  *
   1518  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
   1519  *    possible alignment.
   1520  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
   1521  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
   1522  *    when we have to split things
   1523  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
   1524  *    and we can use Int handling directly.
   1525  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
   1526  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
   1527  *    extension should be compatible with Aarch64, which mandates copying the available bits
   1528  *    into LSB and leaving the rest unspecified.
   1529  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
   1530  *    the stack.
   1531  * 6) There is only little endian.
   1532  *
   1533  *
   1534  * Actual work is supposed to be done in a delegate of the template type. The interface is as
   1535  * follows:
   1536  *
   1537  * void PushGpr(uintptr_t):   Add a value for the next GPR
   1538  *
   1539  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
   1540  *                            padding, that is, think the architecture is 32b and aligns 64b.
   1541  *
   1542  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
   1543  *                            split this if necessary. The current state will have aligned, if
   1544  *                            necessary.
   1545  *
   1546  * void PushStack(uintptr_t): Push a value to the stack.
   1547  *
   1548  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
   1549  *                                          as this might be important for null initialization.
   1550  *                                          Must return the jobject, that is, the reference to the
   1551  *                                          entry in the HandleScope (nullptr if necessary).
   1552  *
   1553  */
   1554 template<class T> class BuildNativeCallFrameStateMachine {
   1555  public:
   1556 #if defined(__arm__)
   1557   // TODO: These are all dummy values!
   1558   static constexpr bool kNativeSoftFloatAbi = true;
   1559   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
   1560   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
   1561 
   1562   static constexpr size_t kRegistersNeededForLong = 2;
   1563   static constexpr size_t kRegistersNeededForDouble = 2;
   1564   static constexpr bool kMultiRegistersAligned = true;
   1565   static constexpr bool kMultiFPRegistersWidened = false;
   1566   static constexpr bool kMultiGPRegistersWidened = false;
   1567   static constexpr bool kAlignLongOnStack = true;
   1568   static constexpr bool kAlignDoubleOnStack = true;
   1569 #elif defined(__aarch64__)
   1570   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
   1571   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
   1572   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
   1573 
   1574   static constexpr size_t kRegistersNeededForLong = 1;
   1575   static constexpr size_t kRegistersNeededForDouble = 1;
   1576   static constexpr bool kMultiRegistersAligned = false;
   1577   static constexpr bool kMultiFPRegistersWidened = false;
   1578   static constexpr bool kMultiGPRegistersWidened = false;
   1579   static constexpr bool kAlignLongOnStack = false;
   1580   static constexpr bool kAlignDoubleOnStack = false;
   1581 #elif defined(__mips__) && !defined(__LP64__)
   1582   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
   1583   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
   1584   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
   1585 
   1586   static constexpr size_t kRegistersNeededForLong = 2;
   1587   static constexpr size_t kRegistersNeededForDouble = 2;
   1588   static constexpr bool kMultiRegistersAligned = true;
   1589   static constexpr bool kMultiFPRegistersWidened = true;
   1590   static constexpr bool kMultiGPRegistersWidened = false;
   1591   static constexpr bool kAlignLongOnStack = true;
   1592   static constexpr bool kAlignDoubleOnStack = true;
   1593 #elif defined(__mips__) && defined(__LP64__)
   1594   // Let the code prepare GPRs only and we will load the FPRs with same data.
   1595   static constexpr bool kNativeSoftFloatAbi = true;
   1596   static constexpr size_t kNumNativeGprArgs = 8;
   1597   static constexpr size_t kNumNativeFprArgs = 0;
   1598 
   1599   static constexpr size_t kRegistersNeededForLong = 1;
   1600   static constexpr size_t kRegistersNeededForDouble = 1;
   1601   static constexpr bool kMultiRegistersAligned = false;
   1602   static constexpr bool kMultiFPRegistersWidened = false;
   1603   static constexpr bool kMultiGPRegistersWidened = true;
   1604   static constexpr bool kAlignLongOnStack = false;
   1605   static constexpr bool kAlignDoubleOnStack = false;
   1606 #elif defined(__i386__)
   1607   // TODO: Check these!
   1608   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
   1609   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
   1610   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
   1611 
   1612   static constexpr size_t kRegistersNeededForLong = 2;
   1613   static constexpr size_t kRegistersNeededForDouble = 2;
   1614   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
   1615   static constexpr bool kMultiFPRegistersWidened = false;
   1616   static constexpr bool kMultiGPRegistersWidened = false;
   1617   static constexpr bool kAlignLongOnStack = false;
   1618   static constexpr bool kAlignDoubleOnStack = false;
   1619 #elif defined(__x86_64__)
   1620   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
   1621   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
   1622   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
   1623 
   1624   static constexpr size_t kRegistersNeededForLong = 1;
   1625   static constexpr size_t kRegistersNeededForDouble = 1;
   1626   static constexpr bool kMultiRegistersAligned = false;
   1627   static constexpr bool kMultiFPRegistersWidened = false;
   1628   static constexpr bool kMultiGPRegistersWidened = false;
   1629   static constexpr bool kAlignLongOnStack = false;
   1630   static constexpr bool kAlignDoubleOnStack = false;
   1631 #else
   1632 #error "Unsupported architecture"
   1633 #endif
   1634 
   1635  public:
   1636   explicit BuildNativeCallFrameStateMachine(T* delegate)
   1637       : gpr_index_(kNumNativeGprArgs),
   1638         fpr_index_(kNumNativeFprArgs),
   1639         stack_entries_(0),
   1640         delegate_(delegate) {
   1641     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
   1642     // the next register is even; counting down is just to make the compiler happy...
   1643     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
   1644     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
   1645   }
   1646 
   1647   virtual ~BuildNativeCallFrameStateMachine() {}
   1648 
   1649   bool HavePointerGpr() const {
   1650     return gpr_index_ > 0;
   1651   }
   1652 
   1653   void AdvancePointer(const void* val) {
   1654     if (HavePointerGpr()) {
   1655       gpr_index_--;
   1656       PushGpr(reinterpret_cast<uintptr_t>(val));
   1657     } else {
   1658       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
   1659       PushStack(reinterpret_cast<uintptr_t>(val));
   1660       gpr_index_ = 0;
   1661     }
   1662   }
   1663 
   1664   bool HaveHandleScopeGpr() const {
   1665     return gpr_index_ > 0;
   1666   }
   1667 
   1668   void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
   1669     uintptr_t handle = PushHandle(ptr);
   1670     if (HaveHandleScopeGpr()) {
   1671       gpr_index_--;
   1672       PushGpr(handle);
   1673     } else {
   1674       stack_entries_++;
   1675       PushStack(handle);
   1676       gpr_index_ = 0;
   1677     }
   1678   }
   1679 
   1680   bool HaveIntGpr() const {
   1681     return gpr_index_ > 0;
   1682   }
   1683 
   1684   void AdvanceInt(uint32_t val) {
   1685     if (HaveIntGpr()) {
   1686       gpr_index_--;
   1687       if (kMultiGPRegistersWidened) {
   1688         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
   1689         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
   1690       } else {
   1691         PushGpr(val);
   1692       }
   1693     } else {
   1694       stack_entries_++;
   1695       if (kMultiGPRegistersWidened) {
   1696         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
   1697         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
   1698       } else {
   1699         PushStack(val);
   1700       }
   1701       gpr_index_ = 0;
   1702     }
   1703   }
   1704 
   1705   bool HaveLongGpr() const {
   1706     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
   1707   }
   1708 
   1709   bool LongGprNeedsPadding() const {
   1710     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
   1711         kAlignLongOnStack &&                  // and when it needs alignment
   1712         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
   1713   }
   1714 
   1715   bool LongStackNeedsPadding() const {
   1716     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
   1717         kAlignLongOnStack &&                  // and when it needs 8B alignment
   1718         (stack_entries_ & 1) == 1;            // counter is odd
   1719   }
   1720 
   1721   void AdvanceLong(uint64_t val) {
   1722     if (HaveLongGpr()) {
   1723       if (LongGprNeedsPadding()) {
   1724         PushGpr(0);
   1725         gpr_index_--;
   1726       }
   1727       if (kRegistersNeededForLong == 1) {
   1728         PushGpr(static_cast<uintptr_t>(val));
   1729       } else {
   1730         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1731         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1732       }
   1733       gpr_index_ -= kRegistersNeededForLong;
   1734     } else {
   1735       if (LongStackNeedsPadding()) {
   1736         PushStack(0);
   1737         stack_entries_++;
   1738       }
   1739       if (kRegistersNeededForLong == 1) {
   1740         PushStack(static_cast<uintptr_t>(val));
   1741         stack_entries_++;
   1742       } else {
   1743         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1744         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1745         stack_entries_ += 2;
   1746       }
   1747       gpr_index_ = 0;
   1748     }
   1749   }
   1750 
   1751   bool HaveFloatFpr() const {
   1752     return fpr_index_ > 0;
   1753   }
   1754 
   1755   void AdvanceFloat(float val) {
   1756     if (kNativeSoftFloatAbi) {
   1757       AdvanceInt(bit_cast<uint32_t, float>(val));
   1758     } else {
   1759       if (HaveFloatFpr()) {
   1760         fpr_index_--;
   1761         if (kRegistersNeededForDouble == 1) {
   1762           if (kMultiFPRegistersWidened) {
   1763             PushFpr8(bit_cast<uint64_t, double>(val));
   1764           } else {
   1765             // No widening, just use the bits.
   1766             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
   1767           }
   1768         } else {
   1769           PushFpr4(val);
   1770         }
   1771       } else {
   1772         stack_entries_++;
   1773         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
   1774           // Need to widen before storing: Note the "double" in the template instantiation.
   1775           // Note: We need to jump through those hoops to make the compiler happy.
   1776           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
   1777           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
   1778         } else {
   1779           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
   1780         }
   1781         fpr_index_ = 0;
   1782       }
   1783     }
   1784   }
   1785 
   1786   bool HaveDoubleFpr() const {
   1787     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
   1788   }
   1789 
   1790   bool DoubleFprNeedsPadding() const {
   1791     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
   1792         kAlignDoubleOnStack &&                  // and when it needs alignment
   1793         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
   1794   }
   1795 
   1796   bool DoubleStackNeedsPadding() const {
   1797     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
   1798         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
   1799         (stack_entries_ & 1) == 1;              // counter is odd
   1800   }
   1801 
   1802   void AdvanceDouble(uint64_t val) {
   1803     if (kNativeSoftFloatAbi) {
   1804       AdvanceLong(val);
   1805     } else {
   1806       if (HaveDoubleFpr()) {
   1807         if (DoubleFprNeedsPadding()) {
   1808           PushFpr4(0);
   1809           fpr_index_--;
   1810         }
   1811         PushFpr8(val);
   1812         fpr_index_ -= kRegistersNeededForDouble;
   1813       } else {
   1814         if (DoubleStackNeedsPadding()) {
   1815           PushStack(0);
   1816           stack_entries_++;
   1817         }
   1818         if (kRegistersNeededForDouble == 1) {
   1819           PushStack(static_cast<uintptr_t>(val));
   1820           stack_entries_++;
   1821         } else {
   1822           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
   1823           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
   1824           stack_entries_ += 2;
   1825         }
   1826         fpr_index_ = 0;
   1827       }
   1828     }
   1829   }
   1830 
   1831   uint32_t GetStackEntries() const {
   1832     return stack_entries_;
   1833   }
   1834 
   1835   uint32_t GetNumberOfUsedGprs() const {
   1836     return kNumNativeGprArgs - gpr_index_;
   1837   }
   1838 
   1839   uint32_t GetNumberOfUsedFprs() const {
   1840     return kNumNativeFprArgs - fpr_index_;
   1841   }
   1842 
   1843  private:
   1844   void PushGpr(uintptr_t val) {
   1845     delegate_->PushGpr(val);
   1846   }
   1847   void PushFpr4(float val) {
   1848     delegate_->PushFpr4(val);
   1849   }
   1850   void PushFpr8(uint64_t val) {
   1851     delegate_->PushFpr8(val);
   1852   }
   1853   void PushStack(uintptr_t val) {
   1854     delegate_->PushStack(val);
   1855   }
   1856   uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
   1857     return delegate_->PushHandle(ref);
   1858   }
   1859 
   1860   uint32_t gpr_index_;      // Number of free GPRs
   1861   uint32_t fpr_index_;      // Number of free FPRs
   1862   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
   1863                             // extended
   1864   T* const delegate_;             // What Push implementation gets called
   1865 };
   1866 
   1867 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
   1868 // in subclasses.
   1869 //
   1870 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
   1871 // them with handles.
   1872 class ComputeNativeCallFrameSize {
   1873  public:
   1874   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
   1875 
   1876   virtual ~ComputeNativeCallFrameSize() {}
   1877 
   1878   uint32_t GetStackSize() const {
   1879     return num_stack_entries_ * sizeof(uintptr_t);
   1880   }
   1881 
   1882   uint8_t* LayoutCallStack(uint8_t* sp8) const {
   1883     sp8 -= GetStackSize();
   1884     // Align by kStackAlignment.
   1885     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
   1886     return sp8;
   1887   }
   1888 
   1889   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
   1890       const {
   1891     // Assumption is OK right now, as we have soft-float arm
   1892     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
   1893     sp8 -= fregs * sizeof(uintptr_t);
   1894     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
   1895     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
   1896     sp8 -= iregs * sizeof(uintptr_t);
   1897     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
   1898     return sp8;
   1899   }
   1900 
   1901   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
   1902                             uint32_t** start_fpr) const {
   1903     // Native call stack.
   1904     sp8 = LayoutCallStack(sp8);
   1905     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
   1906 
   1907     // Put fprs and gprs below.
   1908     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
   1909 
   1910     // Return the new bottom.
   1911     return sp8;
   1912   }
   1913 
   1914   virtual void WalkHeader(
   1915       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
   1916       REQUIRES_SHARED(Locks::mutator_lock_) {
   1917   }
   1918 
   1919   void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
   1920     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
   1921 
   1922     WalkHeader(&sm);
   1923 
   1924     for (uint32_t i = 1; i < shorty_len; ++i) {
   1925       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
   1926       switch (cur_type_) {
   1927         case Primitive::kPrimNot:
   1928           // TODO: fix abuse of mirror types.
   1929           sm.AdvanceHandleScope(
   1930               reinterpret_cast<mirror::Object*>(0x12345678));
   1931           break;
   1932 
   1933         case Primitive::kPrimBoolean:
   1934         case Primitive::kPrimByte:
   1935         case Primitive::kPrimChar:
   1936         case Primitive::kPrimShort:
   1937         case Primitive::kPrimInt:
   1938           sm.AdvanceInt(0);
   1939           break;
   1940         case Primitive::kPrimFloat:
   1941           sm.AdvanceFloat(0);
   1942           break;
   1943         case Primitive::kPrimDouble:
   1944           sm.AdvanceDouble(0);
   1945           break;
   1946         case Primitive::kPrimLong:
   1947           sm.AdvanceLong(0);
   1948           break;
   1949         default:
   1950           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
   1951           UNREACHABLE();
   1952       }
   1953     }
   1954 
   1955     num_stack_entries_ = sm.GetStackEntries();
   1956   }
   1957 
   1958   void PushGpr(uintptr_t /* val */) {
   1959     // not optimizing registers, yet
   1960   }
   1961 
   1962   void PushFpr4(float /* val */) {
   1963     // not optimizing registers, yet
   1964   }
   1965 
   1966   void PushFpr8(uint64_t /* val */) {
   1967     // not optimizing registers, yet
   1968   }
   1969 
   1970   void PushStack(uintptr_t /* val */) {
   1971     // counting is already done in the superclass
   1972   }
   1973 
   1974   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
   1975     return reinterpret_cast<uintptr_t>(nullptr);
   1976   }
   1977 
   1978  protected:
   1979   uint32_t num_stack_entries_;
   1980 };
   1981 
   1982 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
   1983  public:
   1984   explicit ComputeGenericJniFrameSize(bool critical_native)
   1985     : num_handle_scope_references_(0), critical_native_(critical_native) {}
   1986 
   1987   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
   1988   // is at *m = sp. Will update to point to the bottom of the save frame.
   1989   //
   1990   // Note: assumes ComputeAll() has been run before.
   1991   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
   1992       REQUIRES_SHARED(Locks::mutator_lock_) {
   1993     ArtMethod* method = **m;
   1994 
   1995     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
   1996 
   1997     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
   1998 
   1999     // First, fix up the layout of the callee-save frame.
   2000     // We have to squeeze in the HandleScope, and relocate the method pointer.
   2001 
   2002     // "Free" the slot for the method.
   2003     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
   2004 
   2005     // Under the callee saves put handle scope and new method stack reference.
   2006     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
   2007     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
   2008 
   2009     sp8 -= scope_and_method;
   2010     // Align by kStackAlignment.
   2011     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
   2012 
   2013     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
   2014     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
   2015                                         num_handle_scope_references_);
   2016 
   2017     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
   2018     uint8_t* method_pointer = sp8;
   2019     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
   2020     *new_method_ref = method;
   2021     *m = new_method_ref;
   2022   }
   2023 
   2024   // Adds space for the cookie. Note: may leave stack unaligned.
   2025   void LayoutCookie(uint8_t** sp) const {
   2026     // Reference cookie and padding
   2027     *sp -= 8;
   2028   }
   2029 
   2030   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
   2031   // Returns the new bottom. Note: this may be unaligned.
   2032   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
   2033       REQUIRES_SHARED(Locks::mutator_lock_) {
   2034     // First, fix up the layout of the callee-save frame.
   2035     // We have to squeeze in the HandleScope, and relocate the method pointer.
   2036     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
   2037 
   2038     // The bottom of the callee-save frame is now where the method is, *m.
   2039     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
   2040 
   2041     // Add space for cookie.
   2042     LayoutCookie(&sp8);
   2043 
   2044     return sp8;
   2045   }
   2046 
   2047   // WARNING: After this, *sp won't be pointing to the method anymore!
   2048   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
   2049                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
   2050                          uint32_t** start_fpr)
   2051       REQUIRES_SHARED(Locks::mutator_lock_) {
   2052     Walk(shorty, shorty_len);
   2053 
   2054     // JNI part.
   2055     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
   2056 
   2057     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
   2058 
   2059     // Return the new bottom.
   2060     return sp8;
   2061   }
   2062 
   2063   uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
   2064 
   2065   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
   2066   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
   2067       REQUIRES_SHARED(Locks::mutator_lock_);
   2068 
   2069  private:
   2070   uint32_t num_handle_scope_references_;
   2071   const bool critical_native_;
   2072 };
   2073 
   2074 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
   2075   num_handle_scope_references_++;
   2076   return reinterpret_cast<uintptr_t>(nullptr);
   2077 }
   2078 
   2079 void ComputeGenericJniFrameSize::WalkHeader(
   2080     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
   2081   // First 2 parameters are always excluded for @CriticalNative.
   2082   if (UNLIKELY(critical_native_)) {
   2083     return;
   2084   }
   2085 
   2086   // JNIEnv
   2087   sm->AdvancePointer(nullptr);
   2088 
   2089   // Class object or this as first argument
   2090   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
   2091 }
   2092 
   2093 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
   2094 // the template requirements of BuildGenericJniFrameStateMachine.
   2095 class FillNativeCall {
   2096  public:
   2097   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
   2098       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
   2099 
   2100   virtual ~FillNativeCall() {}
   2101 
   2102   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
   2103     cur_gpr_reg_ = gpr_regs;
   2104     cur_fpr_reg_ = fpr_regs;
   2105     cur_stack_arg_ = stack_args;
   2106   }
   2107 
   2108   void PushGpr(uintptr_t val) {
   2109     *cur_gpr_reg_ = val;
   2110     cur_gpr_reg_++;
   2111   }
   2112 
   2113   void PushFpr4(float val) {
   2114     *cur_fpr_reg_ = val;
   2115     cur_fpr_reg_++;
   2116   }
   2117 
   2118   void PushFpr8(uint64_t val) {
   2119     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
   2120     *tmp = val;
   2121     cur_fpr_reg_ += 2;
   2122   }
   2123 
   2124   void PushStack(uintptr_t val) {
   2125     *cur_stack_arg_ = val;
   2126     cur_stack_arg_++;
   2127   }
   2128 
   2129   virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
   2130     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
   2131     UNREACHABLE();
   2132   }
   2133 
   2134  private:
   2135   uintptr_t* cur_gpr_reg_;
   2136   uint32_t* cur_fpr_reg_;
   2137   uintptr_t* cur_stack_arg_;
   2138 };
   2139 
   2140 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
   2141 // of transitioning into native code.
   2142 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
   2143  public:
   2144   BuildGenericJniFrameVisitor(Thread* self,
   2145                               bool is_static,
   2146                               bool critical_native,
   2147                               const char* shorty,
   2148                               uint32_t shorty_len,
   2149                               ArtMethod*** sp)
   2150      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
   2151        jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
   2152        sm_(&jni_call_) {
   2153     ComputeGenericJniFrameSize fsc(critical_native);
   2154     uintptr_t* start_gpr_reg;
   2155     uint32_t* start_fpr_reg;
   2156     uintptr_t* start_stack_arg;
   2157     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
   2158                                              &handle_scope_,
   2159                                              &start_stack_arg,
   2160                                              &start_gpr_reg, &start_fpr_reg);
   2161 
   2162     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
   2163 
   2164     // First 2 parameters are always excluded for CriticalNative methods.
   2165     if (LIKELY(!critical_native)) {
   2166       // jni environment is always first argument
   2167       sm_.AdvancePointer(self->GetJniEnv());
   2168 
   2169       if (is_static) {
   2170         sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
   2171       }  // else "this" reference is already handled by QuickArgumentVisitor.
   2172     }
   2173   }
   2174 
   2175   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
   2176 
   2177   void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
   2178 
   2179   StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
   2180     return handle_scope_->GetHandle(0).GetReference();
   2181   }
   2182 
   2183   jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
   2184     return handle_scope_->GetHandle(0).ToJObject();
   2185   }
   2186 
   2187   void* GetBottomOfUsedArea() const {
   2188     return bottom_of_used_area_;
   2189   }
   2190 
   2191  private:
   2192   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
   2193   class FillJniCall FINAL : public FillNativeCall {
   2194    public:
   2195     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
   2196                 HandleScope* handle_scope, bool critical_native)
   2197       : FillNativeCall(gpr_regs, fpr_regs, stack_args),
   2198                        handle_scope_(handle_scope),
   2199         cur_entry_(0),
   2200         critical_native_(critical_native) {}
   2201 
   2202     uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
   2203 
   2204     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
   2205       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
   2206       handle_scope_ = scope;
   2207       cur_entry_ = 0U;
   2208     }
   2209 
   2210     void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
   2211       // Initialize padding entries.
   2212       size_t expected_slots = handle_scope_->NumberOfReferences();
   2213       while (cur_entry_ < expected_slots) {
   2214         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
   2215       }
   2216 
   2217       if (!critical_native_) {
   2218         // Non-critical natives have at least the self class (jclass) or this (jobject).
   2219         DCHECK_NE(cur_entry_, 0U);
   2220       }
   2221     }
   2222 
   2223     bool CriticalNative() const {
   2224       return critical_native_;
   2225     }
   2226 
   2227    private:
   2228     HandleScope* handle_scope_;
   2229     size_t cur_entry_;
   2230     const bool critical_native_;
   2231   };
   2232 
   2233   HandleScope* handle_scope_;
   2234   FillJniCall jni_call_;
   2235   void* bottom_of_used_area_;
   2236 
   2237   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
   2238 
   2239   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
   2240 };
   2241 
   2242 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
   2243   uintptr_t tmp;
   2244   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
   2245   h.Assign(ref);
   2246   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
   2247   cur_entry_++;
   2248   return tmp;
   2249 }
   2250 
   2251 void BuildGenericJniFrameVisitor::Visit() {
   2252   Primitive::Type type = GetParamPrimitiveType();
   2253   switch (type) {
   2254     case Primitive::kPrimLong: {
   2255       jlong long_arg;
   2256       if (IsSplitLongOrDouble()) {
   2257         long_arg = ReadSplitLongParam();
   2258       } else {
   2259         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
   2260       }
   2261       sm_.AdvanceLong(long_arg);
   2262       break;
   2263     }
   2264     case Primitive::kPrimDouble: {
   2265       uint64_t double_arg;
   2266       if (IsSplitLongOrDouble()) {
   2267         // Read into union so that we don't case to a double.
   2268         double_arg = ReadSplitLongParam();
   2269       } else {
   2270         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
   2271       }
   2272       sm_.AdvanceDouble(double_arg);
   2273       break;
   2274     }
   2275     case Primitive::kPrimNot: {
   2276       StackReference<mirror::Object>* stack_ref =
   2277           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
   2278       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
   2279       break;
   2280     }
   2281     case Primitive::kPrimFloat:
   2282       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
   2283       break;
   2284     case Primitive::kPrimBoolean:  // Fall-through.
   2285     case Primitive::kPrimByte:     // Fall-through.
   2286     case Primitive::kPrimChar:     // Fall-through.
   2287     case Primitive::kPrimShort:    // Fall-through.
   2288     case Primitive::kPrimInt:      // Fall-through.
   2289       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
   2290       break;
   2291     case Primitive::kPrimVoid:
   2292       LOG(FATAL) << "UNREACHABLE";
   2293       UNREACHABLE();
   2294   }
   2295 }
   2296 
   2297 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
   2298   // Clear out rest of the scope.
   2299   jni_call_.ResetRemainingScopeSlots();
   2300   if (!jni_call_.CriticalNative()) {
   2301     // Install HandleScope.
   2302     self->PushHandleScope(handle_scope_);
   2303   }
   2304 }
   2305 
   2306 #if defined(__arm__) || defined(__aarch64__)
   2307 extern "C" const void* artFindNativeMethod();
   2308 #else
   2309 extern "C" const void* artFindNativeMethod(Thread* self);
   2310 #endif
   2311 
   2312 static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
   2313                                             uint32_t cookie,
   2314                                             bool fast_native ATTRIBUTE_UNUSED,
   2315                                             jobject l,
   2316                                             jobject lock) {
   2317   // TODO: add entrypoints for @FastNative returning objects.
   2318   if (lock != nullptr) {
   2319     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
   2320   } else {
   2321     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
   2322   }
   2323 }
   2324 
   2325 static void artQuickGenericJniEndJNINonRef(Thread* self,
   2326                                            uint32_t cookie,
   2327                                            bool fast_native,
   2328                                            jobject lock) {
   2329   if (lock != nullptr) {
   2330     JniMethodEndSynchronized(cookie, lock, self);
   2331     // Ignore "fast_native" here because synchronized functions aren't very fast.
   2332   } else {
   2333     if (UNLIKELY(fast_native)) {
   2334       JniMethodFastEnd(cookie, self);
   2335     } else {
   2336       JniMethodEnd(cookie, self);
   2337     }
   2338   }
   2339 }
   2340 
   2341 /*
   2342  * Initializes an alloca region assumed to be directly below sp for a native call:
   2343  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
   2344  * The final element on the stack is a pointer to the native code.
   2345  *
   2346  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
   2347  * We need to fix this, as the handle scope needs to go into the callee-save frame.
   2348  *
   2349  * The return of this function denotes:
   2350  * 1) How many bytes of the alloca can be released, if the value is non-negative.
   2351  * 2) An error, if the value is negative.
   2352  */
   2353 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
   2354     REQUIRES_SHARED(Locks::mutator_lock_) {
   2355   // Note: We cannot walk the stack properly until fixed up below.
   2356   ArtMethod* called = *sp;
   2357   DCHECK(called->IsNative()) << called->PrettyMethod(true);
   2358   Runtime* runtime = Runtime::Current();
   2359   jit::Jit* jit = runtime->GetJit();
   2360   if (jit != nullptr) {
   2361     jit->AddSamples(self, called, 1u, /*with_backedges*/ false);
   2362   }
   2363   uint32_t shorty_len = 0;
   2364   const char* shorty = called->GetShorty(&shorty_len);
   2365   bool critical_native = called->IsCriticalNative();
   2366   bool fast_native = called->IsFastNative();
   2367   bool normal_native = !critical_native && !fast_native;
   2368 
   2369   // Run the visitor and update sp.
   2370   BuildGenericJniFrameVisitor visitor(self,
   2371                                       called->IsStatic(),
   2372                                       critical_native,
   2373                                       shorty,
   2374                                       shorty_len,
   2375                                       &sp);
   2376   {
   2377     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
   2378     visitor.VisitArguments();
   2379     // FinalizeHandleScope pushes the handle scope on the thread.
   2380     visitor.FinalizeHandleScope(self);
   2381   }
   2382 
   2383   // Fix up managed-stack things in Thread. After this we can walk the stack.
   2384   self->SetTopOfStackTagged(sp);
   2385 
   2386   self->VerifyStack();
   2387 
   2388   uint32_t cookie;
   2389   uint32_t* sp32;
   2390   // Skip calling JniMethodStart for @CriticalNative.
   2391   if (LIKELY(!critical_native)) {
   2392     // Start JNI, save the cookie.
   2393     if (called->IsSynchronized()) {
   2394       DCHECK(normal_native) << " @FastNative and synchronize is not supported";
   2395       cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
   2396       if (self->IsExceptionPending()) {
   2397         self->PopHandleScope();
   2398         // A negative value denotes an error.
   2399         return GetTwoWordFailureValue();
   2400       }
   2401     } else {
   2402       if (fast_native) {
   2403         cookie = JniMethodFastStart(self);
   2404       } else {
   2405         DCHECK(normal_native);
   2406         cookie = JniMethodStart(self);
   2407       }
   2408     }
   2409     sp32 = reinterpret_cast<uint32_t*>(sp);
   2410     *(sp32 - 1) = cookie;
   2411   }
   2412 
   2413   // Retrieve the stored native code.
   2414   void const* nativeCode = called->GetEntryPointFromJni();
   2415 
   2416   // There are two cases for the content of nativeCode:
   2417   // 1) Pointer to the native function.
   2418   // 2) Pointer to the trampoline for native code binding.
   2419   // In the second case, we need to execute the binding and continue with the actual native function
   2420   // pointer.
   2421   DCHECK(nativeCode != nullptr);
   2422   if (nativeCode == GetJniDlsymLookupStub()) {
   2423 #if defined(__arm__) || defined(__aarch64__)
   2424     nativeCode = artFindNativeMethod();
   2425 #else
   2426     nativeCode = artFindNativeMethod(self);
   2427 #endif
   2428 
   2429     if (nativeCode == nullptr) {
   2430       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
   2431 
   2432       // @CriticalNative calls do not need to call back into JniMethodEnd.
   2433       if (LIKELY(!critical_native)) {
   2434         // End JNI, as the assembly will move to deliver the exception.
   2435         jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
   2436         if (shorty[0] == 'L') {
   2437           artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
   2438         } else {
   2439           artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
   2440         }
   2441       }
   2442 
   2443       return GetTwoWordFailureValue();
   2444     }
   2445     // Note that the native code pointer will be automatically set by artFindNativeMethod().
   2446   }
   2447 
   2448 #if defined(__mips__) && !defined(__LP64__)
   2449   // On MIPS32 if the first two arguments are floating-point, we need to know their types
   2450   // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
   2451   // and load into floating-point registers.
   2452   // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
   2453   // view):
   2454   // (1)
   2455   //  |     DOUBLE    |     DOUBLE    | other args, if any
   2456   //  |  F12  |  F13  |  F14  |  F15  |
   2457   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
   2458   // (2)
   2459   //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
   2460   //  |  F12  |  F13  |  F14  |       |
   2461   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
   2462   // (3)
   2463   //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
   2464   //  |  F12  |       |  F14  |  F15  |
   2465   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
   2466   // (4)
   2467   //  | FLOAT | FLOAT | other args, if any
   2468   //  |  F12  |  F14  |
   2469   //  |  SP+0 |  SP+4 | SP+8
   2470   // As you can see, only the last case (4) is special. In all others we can just
   2471   // load F12/F13 and F14/F15 in the same manner.
   2472   // Set bit 0 of the native code address to 1 in this case (valid code addresses
   2473   // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
   2474   if (nativeCode != nullptr &&
   2475       shorty != nullptr &&
   2476       shorty_len >= 3 &&
   2477       shorty[1] == 'F' &&
   2478       shorty[2] == 'F') {
   2479     nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
   2480   }
   2481 #endif
   2482 
   2483   // Return native code addr(lo) and bottom of alloca address(hi).
   2484   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
   2485                                 reinterpret_cast<uintptr_t>(nativeCode));
   2486 }
   2487 
   2488 // Defined in quick_jni_entrypoints.cc.
   2489 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
   2490                                     jvalue result, uint64_t result_f, ArtMethod* called,
   2491                                     HandleScope* handle_scope);
   2492 /*
   2493  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
   2494  * unlocking.
   2495  */
   2496 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
   2497                                                     jvalue result,
   2498                                                     uint64_t result_f) {
   2499   // We're here just back from a native call. We don't have the shared mutator lock at this point
   2500   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
   2501   // anything that requires a mutator lock before that would cause problems as GC may have the
   2502   // exclusive mutator lock and may be moving objects, etc.
   2503   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
   2504   DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
   2505   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
   2506   ArtMethod* called = *sp;
   2507   uint32_t cookie = *(sp32 - 1);
   2508   HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
   2509   return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
   2510 }
   2511 
   2512 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
   2513 // for the method pointer.
   2514 //
   2515 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
   2516 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
   2517 
   2518 template <InvokeType type, bool access_check>
   2519 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
   2520                                      ObjPtr<mirror::Object> this_object,
   2521                                      Thread* self,
   2522                                      ArtMethod** sp) {
   2523   ScopedQuickEntrypointChecks sqec(self);
   2524   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
   2525   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
   2526   ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
   2527   if (UNLIKELY(method == nullptr)) {
   2528     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
   2529     uint32_t shorty_len;
   2530     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
   2531     {
   2532       // Remember the args in case a GC happens in FindMethodFromCode.
   2533       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
   2534       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
   2535       visitor.VisitArguments();
   2536       method = FindMethodFromCode<type, access_check>(method_idx,
   2537                                                       &this_object,
   2538                                                       caller_method,
   2539                                                       self);
   2540       visitor.FixupReferences();
   2541     }
   2542 
   2543     if (UNLIKELY(method == nullptr)) {
   2544       CHECK(self->IsExceptionPending());
   2545       return GetTwoWordFailureValue();  // Failure.
   2546     }
   2547   }
   2548   DCHECK(!self->IsExceptionPending());
   2549   const void* code = method->GetEntryPointFromQuickCompiledCode();
   2550 
   2551   // When we return, the caller will branch to this address, so it had better not be 0!
   2552   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
   2553                           << " location: "
   2554                           << method->GetDexFile()->GetLocation();
   2555 
   2556   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
   2557                                 reinterpret_cast<uintptr_t>(method));
   2558 }
   2559 
   2560 // Explicit artInvokeCommon template function declarations to please analysis tool.
   2561 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
   2562   template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
   2563   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
   2564       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
   2565 
   2566 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
   2567 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
   2568 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
   2569 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
   2570 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
   2571 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
   2572 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
   2573 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
   2574 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
   2575 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
   2576 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
   2577 
   2578 // See comments in runtime_support_asm.S
   2579 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
   2580     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2581     REQUIRES_SHARED(Locks::mutator_lock_) {
   2582   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
   2583 }
   2584 
   2585 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
   2586     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2587     REQUIRES_SHARED(Locks::mutator_lock_) {
   2588   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
   2589 }
   2590 
   2591 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
   2592     uint32_t method_idx,
   2593     mirror::Object* this_object ATTRIBUTE_UNUSED,
   2594     Thread* self,
   2595     ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
   2596   // For static, this_object is not required and may be random garbage. Don't pass it down so that
   2597   // it doesn't cause ObjPtr alignment failure check.
   2598   return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
   2599 }
   2600 
   2601 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
   2602     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2603     REQUIRES_SHARED(Locks::mutator_lock_) {
   2604   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
   2605 }
   2606 
   2607 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
   2608     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
   2609     REQUIRES_SHARED(Locks::mutator_lock_) {
   2610   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
   2611 }
   2612 
   2613 // Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
   2614 extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
   2615     REQUIRES_SHARED(Locks::mutator_lock_) {
   2616   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
   2617   DCHECK(!referrer->IsProxyMethod());
   2618   ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
   2619       method_index, referrer->GetDexCache(), referrer->GetClassLoader());
   2620   DCHECK(result == nullptr ||
   2621          result->GetDeclaringClass()->IsInterface() ||
   2622          result->GetDeclaringClass() ==
   2623              WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
   2624       << result->PrettyMethod();
   2625   return result;
   2626 }
   2627 
   2628 // Determine target of interface dispatch. The interface method and this object are known non-null.
   2629 // The interface method is the method returned by the dex cache in the conflict trampoline.
   2630 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
   2631                                                       mirror::Object* raw_this_object,
   2632                                                       Thread* self,
   2633                                                       ArtMethod** sp)
   2634     REQUIRES_SHARED(Locks::mutator_lock_) {
   2635   ScopedQuickEntrypointChecks sqec(self);
   2636   StackHandleScope<2> hs(self);
   2637   Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
   2638   Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
   2639 
   2640   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
   2641   ArtMethod* method = nullptr;
   2642   ImTable* imt = cls->GetImt(kRuntimePointerSize);
   2643 
   2644   if (UNLIKELY(interface_method == nullptr)) {
   2645     // The interface method is unresolved, so resolve it in the dex file of the caller.
   2646     // Fetch the dex_method_idx of the target interface method from the caller.
   2647     uint32_t dex_method_idx;
   2648     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
   2649     const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
   2650     Instruction::Code instr_code = instr.Opcode();
   2651     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
   2652            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
   2653         << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
   2654     if (instr_code == Instruction::INVOKE_INTERFACE) {
   2655       dex_method_idx = instr.VRegB_35c();
   2656     } else {
   2657       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
   2658       dex_method_idx = instr.VRegB_3rc();
   2659     }
   2660 
   2661     const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile();
   2662     uint32_t shorty_len;
   2663     const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
   2664                                                   &shorty_len);
   2665     {
   2666       // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
   2667       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
   2668       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
   2669       visitor.VisitArguments();
   2670       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2671       interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
   2672           self, dex_method_idx, caller_method, kInterface);
   2673       visitor.FixupReferences();
   2674     }
   2675 
   2676     if (UNLIKELY(interface_method == nullptr)) {
   2677       CHECK(self->IsExceptionPending());
   2678       return GetTwoWordFailureValue();  // Failure.
   2679     }
   2680   }
   2681 
   2682   DCHECK(!interface_method->IsRuntimeMethod());
   2683   // Look whether we have a match in the ImtConflictTable.
   2684   uint32_t imt_index = ImTable::GetImtIndex(interface_method);
   2685   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
   2686   if (LIKELY(conflict_method->IsRuntimeMethod())) {
   2687     ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
   2688     DCHECK(current_table != nullptr);
   2689     method = current_table->Lookup(interface_method, kRuntimePointerSize);
   2690   } else {
   2691     // It seems we aren't really a conflict method!
   2692     if (kIsDebugBuild) {
   2693       ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
   2694       CHECK_EQ(conflict_method, m)
   2695           << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
   2696           << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
   2697     }
   2698     method = conflict_method;
   2699   }
   2700   if (method != nullptr) {
   2701     return GetTwoWordSuccessValue(
   2702         reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
   2703         reinterpret_cast<uintptr_t>(method));
   2704   }
   2705 
   2706   // No match, use the IfTable.
   2707   method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
   2708   if (UNLIKELY(method == nullptr)) {
   2709     ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
   2710         interface_method, this_object.Get(), caller_method);
   2711     return GetTwoWordFailureValue();  // Failure.
   2712   }
   2713 
   2714   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
   2715   // We create a new table with the new pair { interface_method, method }.
   2716   DCHECK(conflict_method->IsRuntimeMethod());
   2717   ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
   2718       cls.Get(),
   2719       conflict_method,
   2720       interface_method,
   2721       method,
   2722       /*force_new_conflict_method*/false);
   2723   if (new_conflict_method != conflict_method) {
   2724     // Update the IMT if we create a new conflict method. No fence needed here, as the
   2725     // data is consistent.
   2726     imt->Set(imt_index,
   2727              new_conflict_method,
   2728              kRuntimePointerSize);
   2729   }
   2730 
   2731   const void* code = method->GetEntryPointFromQuickCompiledCode();
   2732 
   2733   // When we return, the caller will branch to this address, so it had better not be 0!
   2734   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
   2735                           << " location: " << method->GetDexFile()->GetLocation();
   2736 
   2737   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
   2738                                 reinterpret_cast<uintptr_t>(method));
   2739 }
   2740 
   2741 // Returns shorty type so the caller can determine how to put |result|
   2742 // into expected registers. The shorty type is static so the compiler
   2743 // could call different flavors of this code path depending on the
   2744 // shorty type though this would require different entry points for
   2745 // each type.
   2746 extern "C" uintptr_t artInvokePolymorphic(
   2747     JValue* result,
   2748     mirror::Object* raw_receiver,
   2749     Thread* self,
   2750     ArtMethod** sp)
   2751     REQUIRES_SHARED(Locks::mutator_lock_) {
   2752   ScopedQuickEntrypointChecks sqec(self);
   2753   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
   2754 
   2755   // Start new JNI local reference state
   2756   JNIEnvExt* env = self->GetJniEnv();
   2757   ScopedObjectAccessUnchecked soa(env);
   2758   ScopedJniEnvLocalRefState env_state(env);
   2759   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
   2760 
   2761   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
   2762   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
   2763   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
   2764   const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
   2765   DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
   2766          inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
   2767   const uint32_t proto_idx = inst.VRegH();
   2768   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
   2769   const size_t shorty_length = strlen(shorty);
   2770   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
   2771   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
   2772   gc_visitor.VisitArguments();
   2773 
   2774   // Wrap raw_receiver in a Handle for safety.
   2775   StackHandleScope<3> hs(self);
   2776   Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
   2777   raw_receiver = nullptr;
   2778   self->EndAssertNoThreadSuspension(old_cause);
   2779 
   2780   // Resolve method.
   2781   ClassLinker* linker = Runtime::Current()->GetClassLinker();
   2782   ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
   2783       self, inst.VRegB(), caller_method, kVirtual);
   2784 
   2785   if (UNLIKELY(receiver_handle.IsNull())) {
   2786     ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
   2787     return static_cast<uintptr_t>('V');
   2788   }
   2789 
   2790   // TODO(oth): Ensure this path isn't taken for VarHandle accessors (b/65872996).
   2791   DCHECK_EQ(resolved_method->GetDeclaringClass(),
   2792             WellKnownClasses::ToClass(WellKnownClasses::java_lang_invoke_MethodHandle));
   2793 
   2794   Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
   2795       ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(receiver_handle.Get()))));
   2796 
   2797   Handle<mirror::MethodType> method_type(
   2798       hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
   2799 
   2800   // This implies we couldn't resolve one or more types in this method handle.
   2801   if (UNLIKELY(method_type.IsNull())) {
   2802     CHECK(self->IsExceptionPending());
   2803     return static_cast<uintptr_t>('V');
   2804   }
   2805 
   2806   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
   2807   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
   2808 
   2809   // Fix references before constructing the shadow frame.
   2810   gc_visitor.FixupReferences();
   2811 
   2812   // Construct shadow frame placing arguments consecutively from |first_arg|.
   2813   const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
   2814   const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
   2815   const size_t first_arg = 0;
   2816   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
   2817       CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
   2818   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
   2819   ScopedStackedShadowFramePusher
   2820       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
   2821   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
   2822                                                     kMethodIsStatic,
   2823                                                     shorty,
   2824                                                     strlen(shorty),
   2825                                                     shadow_frame,
   2826                                                     first_arg);
   2827   shadow_frame_builder.VisitArguments();
   2828 
   2829   // Push a transition back into managed code onto the linked list in thread.
   2830   ManagedStack fragment;
   2831   self->PushManagedStackFragment(&fragment);
   2832 
   2833   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
   2834   // consecutive order.
   2835   RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
   2836   bool isExact = (jni::EncodeArtMethod(resolved_method) ==
   2837                   WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact);
   2838   bool success = false;
   2839   if (isExact) {
   2840     success = MethodHandleInvokeExact(self,
   2841                                       *shadow_frame,
   2842                                       method_handle,
   2843                                       method_type,
   2844                                       &operands,
   2845                                       result);
   2846   } else {
   2847     success = MethodHandleInvoke(self,
   2848                                  *shadow_frame,
   2849                                  method_handle,
   2850                                  method_type,
   2851                                  &operands,
   2852                                  result);
   2853   }
   2854   DCHECK(success || self->IsExceptionPending());
   2855 
   2856   // Pop transition record.
   2857   self->PopManagedStackFragment(fragment);
   2858 
   2859   return static_cast<uintptr_t>(shorty[0]);
   2860 }
   2861 
   2862 }  // namespace art
   2863