Home | History | Annotate | Download | only in cpuset_lib
      1 /*
      2  * cpuset user library implementation.
      3  *
      4  * Copyright (c) 2006-2007 Silicon Graphics, Inc. All rights reserved.
      5  *
      6  * Paul Jackson <pj (at) sgi.com>
      7  */
      8 
      9 /*
     10  *  This program is free software; you can redistribute it and/or modify
     11  *  it under the terms of the GNU Lesser General Public License as published by
     12  *  the Free Software Foundation; either version 2.1 of the License, or
     13  *  (at your option) any later version.
     14  *
     15  *  This program is distributed in the hope that it will be useful,
     16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     18  *  GNU Lesser General Public License for more details.
     19  *
     20  *  You should have received a copy of the GNU Lesser General Public License
     21  *  along with this program; if not, write to the Free Software
     22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
     23  */
     24 
     25 #define _XOPEN_SOURCE 500	/* need to see pread() */
     26 #define _BSD_SOURCE 1		/* need to see syscall() */
     27 #include <unistd.h>
     28 
     29 #include <ctype.h>
     30 #include <dirent.h>
     31 #include <errno.h>
     32 #include <fcntl.h>
     33 #include <fts.h>
     34 #include <limits.h>
     35 #include <signal.h>
     36 #include <stdint.h>
     37 #include <stdio.h>
     38 #include <stdlib.h>
     39 #include <string.h>
     40 #include <sys/stat.h>
     41 #include <sys/syscall.h>
     42 #include <sys/types.h>
     43 #include <time.h>
     44 #include <utime.h>
     45 #include <sys/utsname.h>	/* for cpuset_would_crash_kernel() */
     46 
     47 #include "bitmask.h"
     48 #include "cpuset.h"
     49 #include "common.h"
     50 #include "test.h"
     51 #include "lapi/syscalls.h"
     52 #include "config.h"
     53 
     54 #if HAVE_LINUX_MEMPOLICY_H
     55 #include <linux/mempolicy.h>
     56 
     57 /* Bump version, and update Change History, when libcpuset API changes */
     58 #define CPUSET_VERSION 3
     59 
     60 /*
     61  * For a history of what changed in each version, see the "Change
     62  * History" section, at the end of the libcpuset master document.
     63  */
     64 
     65 int cpuset_version(void)
     66 {
     67 	return CPUSET_VERSION;
     68 }
     69 
     70 struct cpuset {
     71 	struct bitmask *cpus;
     72 	struct bitmask *mems;
     73 	char cpu_exclusive;
     74 	char mem_exclusive;
     75 	char mem_hardwall;
     76 	char notify_on_release;
     77 	char memory_migrate;
     78 	char memory_pressure_enabled;
     79 	char memory_spread_page;
     80 	char memory_spread_slab;
     81 	char sched_load_balance;
     82 	int sched_relax_domain_level;
     83 
     84 	/*
     85 	 * Each field 'x' above gets an 'x_valid' field below.
     86 	 * The apply_cpuset_settings() will only set those fields whose
     87 	 * corresponding *_valid flags are set.  The cpuset_alloc()
     88 	 * routine clears these flags as part of the clear in calloc(),
     89 	 * and the various cpuset_set*() routines set these flags when
     90 	 * setting the corresponding value.
     91 	 *
     92 	 * The purpose of these valid fields is to ensure that when
     93 	 * we create a new cpuset, we don't accidentally overwrite
     94 	 * some non-zero kernel default, such as an inherited
     95 	 * memory_spread_* flag, just because the user application
     96 	 * code didn't override the default zero settings resulting
     97 	 * from the calloc() call in cpuset_alloc().
     98 	 *
     99 	 * The choice of 'char' for the type of the flags above,
    100 	 * but a bitfield for the flags below, is somewhat capricious.
    101 	 */
    102 	unsigned cpus_valid:1;
    103 	unsigned mems_valid:1;
    104 	unsigned cpu_exclusive_valid:1;
    105 	unsigned mem_exclusive_valid:1;
    106 	unsigned mem_hardwall_valid:1;
    107 	unsigned notify_on_release_valid:1;
    108 	unsigned memory_migrate_valid:1;
    109 	unsigned memory_pressure_enabled_valid:1;
    110 	unsigned memory_spread_page_valid:1;
    111 	unsigned memory_spread_slab_valid:1;
    112 	unsigned sched_load_balance_valid:1;
    113 	unsigned sched_relax_domain_level_valid:1;
    114 
    115 	/*
    116 	 * if the relative variable was modified, use following flags
    117 	 * to put a mark
    118 	 */
    119 	unsigned cpus_dirty:1;
    120 	unsigned mems_dirty:1;
    121 	unsigned cpu_exclusive_dirty:1;
    122 	unsigned mem_exclusive_dirty:1;
    123 	unsigned mem_hardwall_dirty:1;
    124 	unsigned notify_on_release_dirty:1;
    125 	unsigned memory_migrate_dirty:1;
    126 	unsigned memory_pressure_enabled_dirty:1;
    127 	unsigned memory_spread_page_dirty:1;
    128 	unsigned memory_spread_slab_dirty:1;
    129 	unsigned sched_load_balance_dirty:1;
    130 	unsigned sched_relax_domain_level_dirty:1;
    131 };
    132 
    133 /* Presumed cpuset file system mount point */
    134 static const char *cpusetmnt = "/dev/cpuset";
    135 
    136 /* Stashed copy of cpunodemap[], mapping each cpu to its node. */
    137 static const char *mapfile = "/var/run/cpunodemap";
    138 
    139 /* The primary source for the cpunodemap[] is available below here. */
    140 static const char *sysdevices = "/sys/devices/system";
    141 
    142 /* small buffer size - for reading boolean flags or map file (1 or 2 ints) */
    143 #define SMALL_BUFSZ 16
    144 
    145 /*
    146  * The 'mask_size_file' is used to ferrit out the kernel cpumask_t
    147  * and nodemask_t sizes.  The lines in this file that begin with the
    148  * strings 'cpumask_prefix' and 'nodemask_prefix' display a cpumask
    149  * and nodemask string, respectively.  The lengths of these strings
    150  * reflect the kernel's internal cpumask_t and nodemask_t sizes,
    151  * which sizes are needed to correctly call the sched_setaffinity
    152  * and set_mempolicy system calls, and to size user level
    153  * bitmasks to match the kernels.
    154  */
    155 
    156 static const char *mask_size_file = "/proc/self/status";
    157 static const char *cpumask_prefix = "Cpus_allowed:\t";
    158 static const char *nodemask_prefix = "Mems_allowed:\t";
    159 
    160 /*
    161  * Sizes of kernel cpumask_t and nodemask_t bitmaps, in bits.
    162  *
    163  * The first time we need these, we parse the Cpus_allowed and
    164  * Mems_allowed lines from mask_size_file ("/proc/self/status").
    165  */
    166 
    167 static int cpumask_sz;
    168 static int nodemask_sz;
    169 
    170 /*
    171  * These defaults only kick in if we fail to size the kernel
    172  * cpumask and nodemask by reading the Cpus_allowed and
    173  * Mems_allowed fields from the /proc/self/status file.
    174  */
    175 
    176 #define DEFCPUBITS (512)
    177 #define DEFNODEBITS (DEFCPUBITS/2)
    178 
    179 /*
    180  * Arch-neutral API for obtaining NUMA distances between CPUs
    181  * and Memory Nodes, via the files:
    182  *	/sys/devices/system/node/nodeN/distance
    183  * which have lines such as:
    184  *	46 66 10 20
    185  * which say that for cpu on node N (from the path above), the
    186  * distance to nodes 0, 1, 2, and 3 are 44, 66, 10, and 20,
    187  * respectively.
    188  */
    189 
    190 static const char *distance_directory = "/sys/devices/system/node";
    191 
    192 /*
    193  * Someday, we should disable, then later discard, the SN code
    194  * marked ALTERNATE_SN_DISTMAP.
    195  */
    196 
    197 #define ALTERNATE_SN_DISTMAP 1
    198 #ifdef ALTERNATE_SN_DISTMAP
    199 
    200 /*
    201  * Alternative SN (SGI ia64) architecture specific API for obtaining
    202  * NUMA distances between CPUs and Memory Nodes is via the file
    203  * /proc/sgi_sn/sn_topology, which has lines such as:
    204  *
    205  *   node 2 001c14#0 local asic SHub_1.1, nasid 0x4, dist 46:66:10:20
    206  *
    207  * which says that for each CPU on node 2, the distance to nodes
    208  * 0, 1, 2 and 3 are 46, 66, 10 and 20, respectively.
    209  *
    210  * This file has other lines as well, which start with other
    211  * keywords than "node".  Ignore these other lines.
    212  */
    213 
    214 static const char *sn_topology = "/proc/sgi_sn/sn_topology";
    215 static const char *sn_top_node_prefix = "node ";
    216 
    217 #endif
    218 
    219 /*
    220  * Check that cpusets supported, /dev/cpuset mounted.
    221  * If ok, return 0.
    222  * If not, return -1 and set errno:
    223  *	ENOSYS - kernel doesn't support cpusets
    224  *	ENODEV - /dev/cpuset not mounted
    225  */
    226 
    227 static enum {
    228 	check_notdone,
    229 	check_enosys,
    230 	check_enodev,
    231 	check_ok
    232 } check_state = check_notdone;
    233 
    234 static int check()
    235 {
    236 	if (check_state == check_notdone) {
    237 		struct stat statbuf;
    238 
    239 		if (stat("/proc/self/cpuset", &statbuf) < 0) {
    240 			check_state = check_enosys;
    241 			goto done;
    242 		}
    243 
    244 		if (stat("/dev/cpuset/tasks", &statbuf) < 0) {
    245 			check_state = check_enodev;
    246 			goto done;
    247 		}
    248 
    249 		check_state = check_ok;
    250 	}
    251 done:
    252 	switch (check_state) {
    253 	case check_enosys:
    254 		errno = ENOSYS;
    255 		return -1;
    256 	case check_enodev:
    257 		errno = ENODEV;
    258 		return -1;
    259 	default:
    260 		break;
    261 	}
    262 	return 0;
    263 }
    264 
    265 static void chomp(char *s)
    266 {
    267 	char *t;
    268 
    269 	for (t = s + strlen(s) - 1; t >= s; t--) {
    270 		if (*t == '\n' || *t == '\r')
    271 			*t = '\0';
    272 		else
    273 			break;
    274 	}
    275 }
    276 
    277 /*
    278  * Determine number of bytes in a seekable open file, without
    279  * assuming that stat(2) on that file has a useful size.
    280  * Has side affect of leaving the file rewound to the beginnning.
    281  */
    282 static int filesize(FILE * fp)
    283 {
    284 	int sz = 0;
    285 	rewind(fp);
    286 	while (fgetc(fp) != EOF)
    287 		sz++;
    288 	rewind(fp);
    289 	return sz;
    290 }
    291 
    292 /* Are strings s1 and s2 equal? */
    293 static int streq(const char *s1, const char *s2)
    294 {
    295 	return strcmp(s1, s2) == 0;
    296 }
    297 
    298 /* Is string 'pre' a prefix of string 's'? */
    299 static int strprefix(const char *s, const char *pre)
    300 {
    301 	return strncmp(s, pre, strlen(pre)) == 0;
    302 }
    303 
    304 /*
    305  * char *flgets(char *buf, int buflen, FILE *fp)
    306  *
    307  * Obtain one line from input file fp.  Copy up to first
    308  * buflen-1 chars of line into buffer buf, discarding any remainder
    309  * of line.  Stop reading at newline, discarding newline.
    310  * Nul terminate result and return pointer to buffer buf
    311  * on success, or NULL if nothing more to read or failure.
    312  */
    313 
    314 static char *flgets(char *buf, int buflen, FILE * fp)
    315 {
    316 	int c = -1;
    317 	char *bp;
    318 
    319 	bp = buf;
    320 	while ((--buflen > 0) && ((c = getc(fp)) >= 0)) {
    321 		if (c == '\n')
    322 			goto newline;
    323 		*bp++ = c;
    324 	}
    325 	if ((c < 0) && (bp == buf))
    326 		return NULL;
    327 
    328 	if (c > 0) {
    329 		while ((c = getc(fp)) >= 0) {
    330 			if (c == '\n')
    331 				break;
    332 		}
    333 	}
    334 
    335 newline:
    336 	*bp++ = '\0';
    337 	return buf;
    338 }
    339 
    340 /*
    341  * sgetc(const char *inputbuf, int *offsetptr)
    342  *
    343  * Return next char from nul-terminated input buffer inputbuf,
    344  * starting at offset *offsetptr.  Increment *offsetptr.
    345  * If next char would be nul ('\0'), return EOF and don't
    346  * increment *offsetptr.
    347  */
    348 
    349 static int sgetc(const char *inputbuf, int *offsetptr)
    350 {
    351 	char c;
    352 
    353 	if ((c = inputbuf[*offsetptr]) != 0) {
    354 		*offsetptr = *offsetptr + 1;
    355 		return c;
    356 	} else {
    357 		return EOF;
    358 	}
    359 }
    360 
    361 /*
    362  * char *slgets(char *buf, int buflen, const char *inputbuf, int *offsetptr)
    363  *
    364  * Obtain next line from nul-terminated input buffer 'inputbuf',
    365  * starting at offset *offsetptr.  Copy up to first buflen-1
    366  * chars of line into output buffer buf, discarding any remainder
    367  * of line.  Stop reading at newline, discarding newline.
    368  * Nul terminate result and return pointer to output buffer
    369  * buf on success, or NULL if nothing more to read.
    370  */
    371 
    372 static char *slgets(char *buf, int buflen, const char *inputbuf, int *offsetptr)
    373 {
    374 	int c = -1;
    375 	char *bp;
    376 
    377 	bp = buf;
    378 	while ((--buflen > 0) && ((c = sgetc(inputbuf, offsetptr)) >= 0)) {
    379 		if (c == '\n')
    380 			goto newline;
    381 		*bp++ = c;
    382 	}
    383 	if ((c < 0) && (bp == buf))
    384 		return NULL;
    385 
    386 	if (c > 0) {
    387 		while ((c = sgetc(inputbuf, offsetptr)) >= 0) {
    388 			if (c == '\n')
    389 				break;
    390 		}
    391 	}
    392 
    393 newline:
    394 	*bp++ = '\0';
    395 	return buf;
    396 }
    397 
    398 /*
    399  * time_t get_mtime(char *path)
    400  *
    401  * Return modtime of file at location path, else return 0.
    402  */
    403 
    404 static time_t get_mtime(const char *path)
    405 {
    406 	struct stat statbuf;
    407 
    408 	if (stat(path, &statbuf) != 0)
    409 		return 0;
    410 	return statbuf.st_mtime;
    411 }
    412 
    413 /*
    414  * int set_mtime(const char *path, time_t mtime)
    415  *
    416  * Set modtime of file 'path' to 'mtime'.  Return 0 on success,
    417  * or -1 on error, setting errno.
    418  */
    419 
    420 static int set_mtime(const char *path, time_t mtime)
    421 {
    422 	struct utimbuf times;
    423 
    424 	times.actime = mtime;
    425 	times.modtime = mtime;
    426 	return utime(path, &times);
    427 }
    428 
    429 /*
    430  * True if two pathnames resolve to same file.
    431  * False if either path can not be stat'd,
    432  * or if the two paths resolve to a different file.
    433  */
    434 
    435 static int samefile(const char *path1, const char *path2)
    436 {
    437 	struct stat sb1, sb2;
    438 
    439 	if (stat(path1, &sb1) != 0)
    440 		return 0;
    441 	if (stat(path2, &sb2) != 0)
    442 		return 0;
    443 	return sb1.st_ino == sb2.st_ino && sb1.st_dev == sb2.st_dev;
    444 }
    445 
    446 #define slash(c) (*(c) == '/')
    447 #define eocomp(c) (slash(c) || !*(c))
    448 #define dot1(c) (*(c) == '.' && eocomp(c+1))
    449 
    450 /* In place path compression.  Remove extra dots and slashes. */
    451 static char *pathcomp(char *p)
    452 {
    453 	char *a = p;
    454 	char *b = p;
    455 
    456 	if (!p || !*p)
    457 		return p;
    458 	if (slash(p))
    459 		*b++ = *a++;
    460 	for (;;) {
    461 		if (slash(a))
    462 			while (slash(++a))
    463 				continue;
    464 		if (!*a) {
    465 			if (b == p)
    466 				*b++ = '.';
    467 			*b = '\0';
    468 			return (p);
    469 		} else if (dot1(a)) {
    470 			a++;
    471 		} else {
    472 			if ((b != p) && !slash(b - 1))
    473 				*b++ = '/';
    474 			while (!eocomp(a))
    475 				*b++ = *a++;
    476 		}
    477 	}
    478 }
    479 
    480 #undef slash
    481 #undef eocomp
    482 #undef dot1
    483 
    484 /*
    485  * pathcat2(buf, buflen, name1, name2)
    486  *
    487  * Return buf, of length buflen, with name1/name2 stored in it.
    488  */
    489 
    490 static char *pathcat2(char *buf, int buflen, const char *name1,
    491 		      const char *name2)
    492 {
    493 	(void)snprintf(buf, buflen, "%s/%s", name1, name2);
    494 	return pathcomp(buf);
    495 }
    496 
    497 /*
    498  * pathcat3(buf, buflen, name1, name2, name3)
    499  *
    500  * Return buf, of length buflen, with name1/name2/name3 stored in it.
    501  */
    502 
    503 static char *pathcat3(char *buf, int buflen, const char *name1,
    504 		      const char *name2, const char *name3)
    505 {
    506 	(void)snprintf(buf, buflen, "%s/%s/%s", name1, name2, name3);
    507 	return pathcomp(buf);
    508 }
    509 
    510 /*
    511  * fullpath(buf, buflen, name)
    512  *
    513  * Put full path of cpuset 'name' in buffer 'buf'.  If name
    514  * starts with a slash (``/``) character, then this a path
    515  * relative to ``/dev/cpuset``, otherwise it is relative to
    516  * the current tasks cpuset.  Return 0 on success, else
    517  * -1 on error, setting errno.
    518  */
    519 
    520 static int fullpath(char *buf, int buflen, const char *name)
    521 {
    522 	int len;
    523 
    524 	/* easy case */
    525 	if (*name == '/') {
    526 		pathcat2(buf, buflen, cpusetmnt, name);
    527 		pathcomp(buf);
    528 		return 0;
    529 	}
    530 
    531 	/* hard case */
    532 	snprintf(buf, buflen, "%s/", cpusetmnt);
    533 	len = strlen(buf);
    534 	if (cpuset_getcpusetpath(0, buf + len, buflen - len) == NULL)
    535 		return -1;
    536 	if (strlen(buf) >= buflen - 1 - strlen(name)) {
    537 		errno = E2BIG;
    538 		return -1;
    539 	}
    540 	strcat(buf, "/");
    541 	strcat(buf, name);
    542 	pathcomp(buf);
    543 	return 0;
    544 }
    545 
    546 /*
    547  * fullpath2(buf, buflen, name1, name2)
    548  *
    549  * Like fullpath(), only concatenate two pathname components on end.
    550  */
    551 
    552 static int fullpath2(char *buf, int buflen, const char *name1,
    553 		     const char *name2)
    554 {
    555 	if (fullpath(buf, buflen, name1) < 0)
    556 		return -1;
    557 	if (strlen(buf) >= buflen - 1 - strlen(name2)) {
    558 		errno = E2BIG;
    559 		return -1;
    560 	}
    561 	strcat(buf, "/");
    562 	strcat(buf, name2);
    563 	pathcomp(buf);
    564 	return 0;
    565 }
    566 
    567 /*
    568  * Convert the string length of an ascii hex mask to the number
    569  * of bits represented by that mask.
    570  *
    571  * The cpumask and nodemask values in /proc/self/status are in an
    572  * ascii format that uses 9 characters for each 32 bits of mask.
    573  */
    574 static int s2nbits(const char *s)
    575 {
    576 	return strlen(s) * 32 / 9;
    577 }
    578 
    579 static void update_mask_sizes()
    580 {
    581 	FILE *fp = NULL;
    582 	char *buf = NULL;
    583 	int fsize;
    584 
    585 	if ((fp = fopen(mask_size_file, "r")) == NULL)
    586 		goto done;
    587 	fsize = filesize(fp);
    588 	if ((buf = malloc(fsize)) == NULL)
    589 		goto done;
    590 
    591 	/*
    592 	 * Beware: mask sizing arithmetic is fussy.
    593 	 * The trailing newline left by fgets() is required.
    594 	 */
    595 	while (fgets(buf, fsize, fp)) {
    596 		if (strprefix(buf, cpumask_prefix))
    597 			cpumask_sz = s2nbits(buf + strlen(cpumask_prefix));
    598 		if (strprefix(buf, nodemask_prefix))
    599 			nodemask_sz = s2nbits(buf + strlen(nodemask_prefix));
    600 	}
    601 done:
    602 	free(buf);
    603 	if (fp != NULL)
    604 		fclose(fp);
    605 	if (cpumask_sz == 0)
    606 		cpumask_sz = DEFCPUBITS;
    607 	if (nodemask_sz == 0)
    608 		nodemask_sz = DEFNODEBITS;
    609 }
    610 
    611 /* Allocate a new struct cpuset */
    612 struct cpuset *cpuset_alloc()
    613 {
    614 	struct cpuset *cp = NULL;
    615 	int nbits;
    616 
    617 	if ((cp = calloc(1, sizeof(struct cpuset))) == NULL)
    618 		goto err;
    619 
    620 	nbits = cpuset_cpus_nbits();
    621 	if ((cp->cpus = bitmask_alloc(nbits)) == NULL)
    622 		goto err;
    623 
    624 	nbits = cpuset_mems_nbits();
    625 	if ((cp->mems = bitmask_alloc(nbits)) == NULL)
    626 		goto err;
    627 
    628 	return cp;
    629 err:
    630 	if (cp && cp->cpus)
    631 		bitmask_free(cp->cpus);
    632 	if (cp && cp->mems)
    633 		bitmask_free(cp->mems);
    634 	free(cp);
    635 	return NULL;
    636 }
    637 
    638 /* Free struct cpuset *cp */
    639 void cpuset_free(struct cpuset *cp)
    640 {
    641 	if (!cp)
    642 		return;
    643 	if (cp->cpus)
    644 		bitmask_free(cp->cpus);
    645 	if (cp->mems)
    646 		bitmask_free(cp->mems);
    647 	free(cp);
    648 }
    649 
    650 /* Number of bits in a CPU bitmask on current system */
    651 int cpuset_cpus_nbits()
    652 {
    653 	if (cpumask_sz == 0)
    654 		update_mask_sizes();
    655 	return cpumask_sz;
    656 }
    657 
    658 /* Number of bits in a Memory bitmask on current system */
    659 int cpuset_mems_nbits()
    660 {
    661 	if (nodemask_sz == 0)
    662 		update_mask_sizes();
    663 	return nodemask_sz;
    664 }
    665 
    666 /* Set CPUs in cpuset cp to bitmask cpus */
    667 int cpuset_setcpus(struct cpuset *cp, const struct bitmask *cpus)
    668 {
    669 	if (cp->cpus)
    670 		bitmask_free(cp->cpus);
    671 	cp->cpus = bitmask_alloc(bitmask_nbits(cpus));
    672 	if (cp->cpus == NULL)
    673 		return -1;
    674 	bitmask_copy(cp->cpus, cpus);
    675 	cp->cpus_valid = 1;
    676 	cp->cpus_dirty = 1;
    677 	return 0;
    678 }
    679 
    680 /* Set Memory Nodes in cpuset cp to bitmask mems */
    681 int cpuset_setmems(struct cpuset *cp, const struct bitmask *mems)
    682 {
    683 	if (cp->mems)
    684 		bitmask_free(cp->mems);
    685 	cp->mems = bitmask_alloc(bitmask_nbits(mems));
    686 	if (cp->mems == NULL)
    687 		return -1;
    688 	bitmask_copy(cp->mems, mems);
    689 	cp->mems_valid = 1;
    690 	cp->mems_dirty = 1;
    691 	return 0;
    692 }
    693 
    694 /* Set integer value optname of cpuset cp */
    695 int cpuset_set_iopt(struct cpuset *cp, const char *optionname, int value)
    696 {
    697 	if (streq(optionname, "cpu_exclusive")) {
    698 		cp->cpu_exclusive = ! !value;
    699 		cp->cpu_exclusive_valid = 1;
    700 		cp->cpu_exclusive_dirty = 1;
    701 	} else if (streq(optionname, "mem_exclusive")) {
    702 		cp->mem_exclusive = ! !value;
    703 		cp->mem_exclusive_valid = 1;
    704 		cp->mem_exclusive_dirty = 1;
    705 	} else if (streq(optionname, "mem_hardwall")) {
    706 		cp->mem_hardwall = ! !value;
    707 		cp->mem_hardwall_valid = 1;
    708 		cp->mem_hardwall_dirty = 1;
    709 	} else if (streq(optionname, "notify_on_release")) {
    710 		cp->notify_on_release = ! !value;
    711 		cp->notify_on_release_valid = 1;
    712 		cp->notify_on_release_dirty = 1;
    713 	} else if (streq(optionname, "memory_pressure_enabled")) {
    714 		cp->memory_pressure_enabled = ! !value;
    715 		cp->memory_pressure_enabled_valid = 1;
    716 		cp->memory_pressure_enabled_dirty = 1;
    717 	} else if (streq(optionname, "memory_migrate")) {
    718 		cp->memory_migrate = ! !value;
    719 		cp->memory_migrate_valid = 1;
    720 		cp->memory_migrate_dirty = 1;
    721 	} else if (streq(optionname, "memory_spread_page")) {
    722 		cp->memory_spread_page = ! !value;
    723 		cp->memory_spread_page_valid = 1;
    724 		cp->memory_spread_page_dirty = 1;
    725 	} else if (streq(optionname, "memory_spread_slab")) {
    726 		cp->memory_spread_slab = ! !value;
    727 		cp->memory_spread_slab_valid = 1;
    728 		cp->memory_spread_slab_dirty = 1;
    729 	} else if (streq(optionname, "sched_load_balance")) {
    730 		cp->sched_load_balance = ! !value;
    731 		cp->sched_load_balance_valid = 1;
    732 		cp->sched_load_balance_dirty = 1;
    733 	} else if (streq(optionname, "sched_relax_domain_level")) {
    734 		cp->sched_relax_domain_level = value;
    735 		cp->sched_relax_domain_level_valid = 1;
    736 		cp->sched_relax_domain_level_dirty = 1;
    737 	} else
    738 		return -2;	/* optionname not recognized */
    739 	return 0;
    740 }
    741 
    742 /* [optional] Set string value optname */
    743 int cpuset_set_sopt(UNUSED struct cpuset *cp, UNUSED const char *optionname,
    744 		    UNUSED const char *value)
    745 {
    746 	return -2;		/* For now, all string options unrecognized */
    747 }
    748 
    749 /* Return handle for reading memory_pressure. */
    750 int cpuset_open_memory_pressure(const char *cpusetpath)
    751 {
    752 	char buf[PATH_MAX];
    753 
    754 	fullpath2(buf, sizeof(buf), cpusetpath, "memory_pressure");
    755 	return open(buf, O_RDONLY);
    756 }
    757 
    758 /* Return current memory_pressure of cpuset. */
    759 int cpuset_read_memory_pressure(int han)
    760 {
    761 	char buf[SMALL_BUFSZ];
    762 
    763 	if (pread(han, buf, sizeof(buf), 0L) < 0)
    764 		return -1;
    765 	return atoi(buf);
    766 }
    767 
    768 /* Close handle for reading memory pressure. */
    769 void cpuset_close_memory_pressure(int han)
    770 {
    771 	close(han);
    772 }
    773 
    774 /*
    775  * Resolve cpuset pointer (to that of current task if cp == NULL).
    776  *
    777  * If cp not NULL, just return it.  If cp is NULL, return pointer
    778  * to temporary cpuset for current task, and set *cp_tofree to
    779  * pointer to that same temporary cpuset, to be freed later.
    780  *
    781  * Return NULL and set errno on error.  Errors can occur when
    782  * resolving the current tasks cpuset.
    783  */
    784 static const struct cpuset *resolve_cp(const struct cpuset *cp,
    785 				       struct cpuset **cp_tofree)
    786 {
    787 	const struct cpuset *rcp;
    788 
    789 	if (cp) {
    790 		rcp = cp;
    791 	} else {
    792 		struct cpuset *cp1 = cpuset_alloc();
    793 		if (cp1 == NULL)
    794 			goto err;
    795 		if (cpuset_cpusetofpid(cp1, 0) < 0) {
    796 			cpuset_free(cp1);
    797 			goto err;
    798 		}
    799 		*cp_tofree = cp1;
    800 		rcp = cp1;
    801 	}
    802 	return rcp;
    803 err:
    804 	return NULL;
    805 }
    806 
    807 /* Write CPUs in cpuset cp (current task if cp == NULL) to bitmask cpus */
    808 int cpuset_getcpus(const struct cpuset *cp, struct bitmask *cpus)
    809 {
    810 	struct cpuset *cp_tofree = NULL;
    811 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
    812 
    813 	if (!cp1)
    814 		goto err;
    815 	if (cp1->cpus == NULL) {
    816 		errno = EINVAL;
    817 		goto err;
    818 	}
    819 	bitmask_copy(cpus, cp1->cpus);
    820 	cpuset_free(cp_tofree);
    821 	return 0;
    822 err:
    823 	cpuset_free(cp_tofree);
    824 	return -1;
    825 }
    826 
    827 /* Write Memory Nodes in cp (current task if cp == NULL) to bitmask mems */
    828 int cpuset_getmems(const struct cpuset *cp, struct bitmask *mems)
    829 {
    830 	struct cpuset *cp_tofree = NULL;
    831 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
    832 
    833 	if (!cp1)
    834 		goto err;
    835 	if (cp1->mems == NULL) {
    836 		errno = EINVAL;
    837 		goto err;
    838 	}
    839 	bitmask_copy(mems, cp1->mems);
    840 	cpuset_free(cp_tofree);
    841 	return 0;
    842 err:
    843 	cpuset_free(cp_tofree);
    844 	return -1;
    845 }
    846 
    847 /* Return number of CPUs in cpuset cp (current task if cp == NULL) */
    848 int cpuset_cpus_weight(const struct cpuset *cp)
    849 {
    850 	struct cpuset *cp_tofree = NULL;
    851 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
    852 	int w = -1;
    853 
    854 	if (!cp1)
    855 		goto err;
    856 	if (cp1->cpus == NULL) {
    857 		errno = EINVAL;
    858 		goto err;
    859 	}
    860 	w = bitmask_weight(cp1->cpus);
    861 	/* fall into ... */
    862 err:
    863 	cpuset_free(cp_tofree);
    864 	return w;
    865 }
    866 
    867 /* Return number of Memory Nodes in cpuset cp (current task if cp == NULL) */
    868 int cpuset_mems_weight(const struct cpuset *cp)
    869 {
    870 	struct cpuset *cp_tofree = NULL;
    871 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
    872 	int w = -1;
    873 
    874 	if (!cp1)
    875 		goto err;
    876 	if (cp1->mems == NULL) {
    877 		errno = EINVAL;
    878 		goto err;
    879 	}
    880 	w = bitmask_weight(cp1->mems);
    881 	/* fall into ... */
    882 err:
    883 	cpuset_free(cp_tofree);
    884 	return w;
    885 }
    886 
    887 /* Return integer value of option optname in cp */
    888 int cpuset_get_iopt(const struct cpuset *cp, const char *optionname)
    889 {
    890 	if (streq(optionname, "cpu_exclusive"))
    891 		return cp->cpu_exclusive;
    892 	else if (streq(optionname, "mem_exclusive"))
    893 		return cp->mem_exclusive;
    894 	else if (streq(optionname, "mem_hardwall"))
    895 		return cp->mem_hardwall;
    896 	else if (streq(optionname, "notify_on_release"))
    897 		return cp->notify_on_release;
    898 	else if (streq(optionname, "memory_pressure_enabled"))
    899 		return cp->memory_pressure_enabled;
    900 	else if (streq(optionname, "memory_migrate"))
    901 		return cp->memory_migrate;
    902 	else if (streq(optionname, "memory_spread_page"))
    903 		return cp->memory_spread_page;
    904 	else if (streq(optionname, "memory_spread_slab"))
    905 		return cp->memory_spread_slab;
    906 	else if (streq(optionname, "sched_load_balance"))
    907 		return cp->sched_load_balance;
    908 	else if (streq(optionname, "sched_relax_domain_level"))
    909 		return cp->sched_relax_domain_level;
    910 	else
    911 		return -2;	/* optionname not recognized */
    912 }
    913 
    914 /* [optional] Return string value of optname */
    915 const char *cpuset_get_sopt(UNUSED const struct cpuset *cp,
    916 			    UNUSED const char *optionname)
    917 {
    918 	return NULL;		/* For now, all string options unrecognized */
    919 }
    920 
    921 static int read_flag(const char *filepath, char *flagp)
    922 {
    923 	char buf[SMALL_BUFSZ];	/* buffer a "0" or "1" flag line */
    924 	int fd = -1;
    925 
    926 	if ((fd = open(filepath, O_RDONLY)) < 0)
    927 		goto err;
    928 	if (read(fd, buf, sizeof(buf)) < 1)
    929 		goto err;
    930 	if (atoi(buf))
    931 		*flagp = 1;
    932 	else
    933 		*flagp = 0;
    934 	close(fd);
    935 	return 0;
    936 err:
    937 	if (fd >= 0)
    938 		close(fd);
    939 	return -1;
    940 }
    941 
    942 static int load_flag(const char *path, char *flagp, const char *flag)
    943 {
    944 	char buf[PATH_MAX];
    945 
    946 	pathcat2(buf, sizeof(buf), path, flag);
    947 	return read_flag(buf, flagp);
    948 }
    949 
    950 static int read_number(const char *filepath, int *numberp)
    951 {
    952 	char buf[SMALL_BUFSZ];
    953 	int fd = -1;
    954 
    955 	if ((fd = open(filepath, O_RDONLY)) < 0)
    956 		goto err;
    957 	if (read(fd, buf, sizeof(buf)) < 1)
    958 		goto err;
    959 	*numberp = atoi(buf);
    960 	close(fd);
    961 	return 0;
    962 err:
    963 	if (fd >= 0)
    964 		close(fd);
    965 	return -1;
    966 }
    967 
    968 static int load_number(const char *path, int *numberp, const char *file)
    969 {
    970 	char buf[PATH_MAX];
    971 
    972 	pathcat2(buf, sizeof(buf), path, file);
    973 	return read_number(buf, numberp);
    974 }
    975 
    976 static int read_mask(const char *filepath, struct bitmask **bmpp, int nbits)
    977 {
    978 	FILE *fp = NULL;
    979 	char *buf = NULL;
    980 	int buflen;
    981 	struct bitmask *bmp = NULL;
    982 
    983 	if ((fp = fopen(filepath, "r")) == NULL)
    984 		goto err;
    985 	buflen = filesize(fp) + 1;	/* + 1 for nul term */
    986 	if ((buf = malloc(buflen)) == NULL)
    987 		goto err;
    988 	if (flgets(buf, buflen, fp) == NULL)
    989 		goto err;
    990 	fclose(fp);
    991 	fp = NULL;
    992 
    993 	if ((bmp = bitmask_alloc(nbits)) == NULL)
    994 		goto err;
    995 	if (*buf && bitmask_parselist(buf, bmp) < 0)
    996 		goto err;
    997 	if (*bmpp)
    998 		bitmask_free(*bmpp);
    999 	*bmpp = bmp;
   1000 	free(buf);
   1001 	buf = NULL;
   1002 	return 0;
   1003 err:
   1004 	if (buf != NULL)
   1005 		free(buf);
   1006 	if (fp != NULL)
   1007 		fclose(fp);
   1008 	if (bmp != NULL)
   1009 		bitmask_free(bmp);
   1010 	return -1;
   1011 }
   1012 
   1013 static int load_mask(const char *path, struct bitmask **bmpp,
   1014 		     int nbits, const char *mask)
   1015 {
   1016 	char buf[PATH_MAX];
   1017 
   1018 	pathcat2(buf, sizeof(buf), path, mask);
   1019 	return read_mask(buf, bmpp, nbits);
   1020 }
   1021 
   1022 /* Write string to file at given filepath.  Create or truncate file. */
   1023 static int write_string_file(const char *filepath, const char *str)
   1024 {
   1025 	int fd = -1;
   1026 
   1027 	if ((fd = open(filepath, O_WRONLY | O_CREAT, 0644)) < 0)
   1028 		goto err;
   1029 	if (write(fd, str, strlen(str)) < 0)
   1030 		goto err;
   1031 	close(fd);
   1032 	return 0;
   1033 err:
   1034 	if (fd >= 0)
   1035 		close(fd);
   1036 	return -1;
   1037 }
   1038 
   1039 /* Size and allocate buffer.  Write bitmask into it.  Caller must free */
   1040 static char *sprint_mask_buf(const struct bitmask *bmp)
   1041 {
   1042 	char *buf = NULL;
   1043 	int buflen;
   1044 	char c;
   1045 
   1046 	/* First bitmask_displaylist() call just to get the length */
   1047 	buflen = bitmask_displaylist(&c, 1, bmp) + 1;	/* "+ 1" for nul */
   1048 	if ((buf = malloc(buflen)) == NULL)
   1049 		return NULL;
   1050 	bitmask_displaylist(buf, buflen, bmp);
   1051 	return buf;
   1052 }
   1053 
   1054 static int exists_flag(const char *path, const char *flag)
   1055 {
   1056 	char buf[PATH_MAX];
   1057 	struct stat statbuf;
   1058 	int rc;
   1059 
   1060 	pathcat2(buf, sizeof(buf), path, flag);
   1061 	rc = (stat(buf, &statbuf) == 0);
   1062 	errno = 0;
   1063 	return rc;
   1064 }
   1065 
   1066 static int store_flag(const char *path, const char *flag, int val)
   1067 {
   1068 	char buf[PATH_MAX];
   1069 
   1070 	pathcat2(buf, sizeof(buf), path, flag);
   1071 	return write_string_file(buf, val ? "1" : "0");
   1072 }
   1073 
   1074 static int store_number(const char *path, const char *file, int val)
   1075 {
   1076 	char buf[PATH_MAX];
   1077 	char data[SMALL_BUFSZ];
   1078 
   1079 	memset(data, 0, sizeof(data));
   1080 	pathcat2(buf, sizeof(buf), path, file);
   1081 	snprintf(data, sizeof(data), "%d", val);
   1082 	return write_string_file(buf, data);
   1083 }
   1084 
   1085 static int store_mask(const char *path, const char *mask,
   1086 		      const struct bitmask *bmp)
   1087 {
   1088 	char maskpath[PATH_MAX];
   1089 	char *bp = NULL;
   1090 	int rc;
   1091 
   1092 	if (bmp == NULL)
   1093 		return 0;
   1094 	pathcat2(maskpath, sizeof(maskpath), path, mask);
   1095 	if ((bp = sprint_mask_buf(bmp)) == NULL)
   1096 		return -1;
   1097 	rc = write_string_file(maskpath, bp);
   1098 	free(bp);
   1099 	return rc;
   1100 }
   1101 
   1102 /*
   1103  * Return 1 if 'cpu' is online, else 0 if offline.  Tests the file
   1104  * /sys/devices/system/cpu/cpuN/online file for 0 or 1 contents
   1105  * were N == cpu number.
   1106  */
   1107 
   1108 char cpu_online(unsigned int cpu)
   1109 {
   1110 	char online;
   1111 	char cpupath[PATH_MAX];
   1112 
   1113 	(void)snprintf(cpupath, sizeof(cpupath),
   1114 		       "/sys/devices/system/cpu/cpu%d/online", cpu);
   1115 	if (read_flag(cpupath, &online) < 0)
   1116 		return 0;	/* oops - guess that cpu's not there */
   1117 	return online;
   1118 }
   1119 
   1120 /*
   1121  * The cpunodemap maps each cpu in [0 ... cpuset_cpus_nbits()),
   1122  * to the node on which that cpu resides or cpuset_mems_nbits().
   1123  *
   1124  * To avoid every user having to recalculate this relation
   1125  * from various clues in the sysfs file system (below the
   1126  * path /sys/devices/system) a copy of this map is kept at
   1127  * /var/run/cpunodemap.
   1128  *
   1129  * The system automatically cleans out files below
   1130  * /var/run on each system reboot (see the init script
   1131  * /etc/rc.d/boot.d/S*boot.localnet), so we don't have to worry
   1132  * about stale data in this file across reboots.  If the file
   1133  * is missing, let the first process that needs it, and has
   1134  * permission to write in the /var/run directory, rebuild it.
   1135  *
   1136  * If using this cached data, remember the mtime of the mapfile
   1137  * the last time we read it in case something like a hotplug
   1138  * event results in the file being removed and rebuilt, so we
   1139  * can detect if we're using a stale cache, and need to reload.
   1140  *
   1141  * The mtime of this file is set to the time when we did
   1142  * the recalculation of the map, from the clues beneath
   1143  * /sys/devices/system.  This is done so that a program
   1144  * won't see the mapfile it just wrote as being newer than what
   1145  * it just wrote out (store_map) and read the same map back in
   1146  * (load_file).
   1147  */
   1148 
   1149 /*
   1150  * Hold flockfile(stdin) while using cpunodemap for posix thread safety.
   1151  *
   1152  * Note on locking and flockfile(FILE *):
   1153  *
   1154  *  We use flockfile() and funlockfile() instead of directly
   1155  *  calling pthread_mutex_lock and pthread_mutex_unlock on
   1156  *  a pthread_mutex_t, because this avoids forcing the app
   1157  *  to link with libpthread.  The glibc implementation of
   1158  *  flockfile/funlockfile will fall back to no-ops if libpthread
   1159  *  doesn't happen to be linked.
   1160  *
   1161  *  Since flockfile already has the moderately convoluted
   1162  *  combination of weak and strong symbols required to accomplish
   1163  *  this, it is easier to use flockfile() on some handy FILE *
   1164  *  stream as a surrogate for pthread locking than it is to so
   1165  *  re-invent that wheel.
   1166  *
   1167  *  Forcing all apps that use cpusets to link with libpthread
   1168  *  would force non-transparent initialization on apps that
   1169  *  might not be prepared to handle it.
   1170  *
   1171  *  The application using libcpuset should never notice this
   1172  *  odd use of flockfile(), because we never return to the
   1173  *  application from any libcpuset call with any such lock held.
   1174  *  We just use this locking for guarding some non-atomic cached
   1175  *  data updates and accesses, internal to some libcpuset calls.
   1176  *  Also, flockfile() allows recursive nesting, so if the app
   1177  *  calls libcpuset holding such a file lock, we won't deadlock
   1178  *  if we go to acquire the same lock.  We'll just get the lock
   1179  *  and increment its counter while we hold it.
   1180  */
   1181 
   1182 static struct cpunodemap {
   1183 	int *map;		/* map[cpumask_sz]: maps cpu to its node */
   1184 	time_t mtime;		/* modtime of mapfile when last read */
   1185 } cpunodemap;
   1186 
   1187 /*
   1188  * rebuild_map() - Rebuild cpunodemap[] from scratch.
   1189  *
   1190  * Situation:
   1191  *	Neither our in-memory cpunodemap[] array nor the
   1192  *	cache of it in mapfile is current.
   1193  * Action:
   1194  *	Rebuild it from first principles and the information
   1195  *	available below /sys/devices/system.
   1196  */
   1197 
   1198 static void rebuild_map()
   1199 {
   1200 	char buf[PATH_MAX];
   1201 	DIR *dir1, *dir2;
   1202 	struct dirent *dent1, *dent2;
   1203 	int ncpus = cpuset_cpus_nbits();
   1204 	int nmems = cpuset_mems_nbits();
   1205 	unsigned int cpu, mem;
   1206 
   1207 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++)
   1208 		cpunodemap.map[cpu] = -1;
   1209 	pathcat2(buf, sizeof(buf), sysdevices, "node");
   1210 	if ((dir1 = opendir(buf)) == NULL)
   1211 		return;
   1212 	while ((dent1 = readdir(dir1)) != NULL) {
   1213 		if (sscanf(dent1->d_name, "node%u", &mem) < 1)
   1214 			continue;
   1215 		pathcat3(buf, sizeof(buf), sysdevices, "node", dent1->d_name);
   1216 		if ((dir2 = opendir(buf)) == NULL)
   1217 			continue;
   1218 		while ((dent2 = readdir(dir2)) != NULL) {
   1219 			if (sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
   1220 				continue;
   1221 			if (cpu >= (unsigned int)ncpus
   1222 			    || mem >= (unsigned int)nmems)
   1223 				continue;
   1224 			cpunodemap.map[cpu] = mem;
   1225 		}
   1226 		closedir(dir2);
   1227 	}
   1228 	closedir(dir1);
   1229 	cpunodemap.mtime = time(0);
   1230 }
   1231 
   1232 /*
   1233  * load_map() - Load cpunodemap[] from mapfile.
   1234  *
   1235  * Situation:
   1236  *	The cpunodemap in mapfile is more recent than
   1237  *	what we have in the cpunodemap[] array.
   1238  * Action:
   1239  *	Reload the cpunodemap[] array from the file.
   1240  */
   1241 
   1242 static void load_map()
   1243 {
   1244 	char buf[SMALL_BUFSZ];	/* buffer 1 line of mapfile */
   1245 	FILE *mapfp;		/* File stream on mapfile */
   1246 	int ncpus = cpuset_cpus_nbits();
   1247 	int nmems = cpuset_mems_nbits();
   1248 	unsigned int cpu, mem;
   1249 
   1250 	if ((cpunodemap.map = calloc(ncpus, sizeof(int))) == NULL)
   1251 		return;
   1252 	cpunodemap.mtime = get_mtime(mapfile);
   1253 	if ((mapfp = fopen(mapfile, "r")) == NULL)
   1254 		return;
   1255 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++)
   1256 		cpunodemap.map[cpu] = nmems;
   1257 	while (flgets(buf, sizeof(buf), mapfp) != NULL) {
   1258 		if (sscanf(buf, "%u %u", &cpu, &mem) < 2)
   1259 			continue;
   1260 		if (cpu >= (unsigned int)ncpus || mem >= (unsigned int)nmems)
   1261 			continue;
   1262 		cpunodemap.map[cpu] = mem;
   1263 	}
   1264 	fclose(mapfp);
   1265 }
   1266 
   1267 /*
   1268  * store_map() - Write cpunodemap[] out to mapfile.
   1269  *
   1270  * Situation:
   1271  *	The cpunodemap in the cpunodemap[] array is
   1272  *	more recent than the one in mapfile.
   1273  * Action:
   1274  *	Write cpunodemap[] out to mapfile.
   1275  */
   1276 
   1277 static void store_map()
   1278 {
   1279 	char buf[PATH_MAX];
   1280 	int fd = -1;
   1281 	FILE *mapfp = NULL;
   1282 	int ncpus = cpuset_cpus_nbits();
   1283 	int nmems = cpuset_mems_nbits();
   1284 	unsigned int cpu, mem;
   1285 
   1286 	snprintf(buf, sizeof(buf), "%s.%s", mapfile, "XXXXXX");
   1287 	if ((fd = mkstemp(buf)) < 0)
   1288 		goto err;
   1289 	if ((mapfp = fdopen(fd, "w")) == NULL)
   1290 		goto err;
   1291 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++) {
   1292 		mem = cpunodemap.map[cpu];
   1293 		if (mem < (unsigned int)nmems)
   1294 			fprintf(mapfp, "%u %u\n", cpu, mem);
   1295 	}
   1296 	fclose(mapfp);
   1297 	set_mtime(buf, cpunodemap.mtime);
   1298 	if (rename(buf, mapfile) < 0)
   1299 		goto err;
   1300 	/* mkstemp() creates mode 0600 - change to world readable */
   1301 	(void)chmod(mapfile, 0444);
   1302 	return;
   1303 err:
   1304 	if (mapfp != NULL) {
   1305 		fclose(mapfp);
   1306 		fd = -1;
   1307 	}
   1308 	if (fd >= 0)
   1309 		close(fd);
   1310 	(void)unlink(buf);
   1311 }
   1312 
   1313 /*
   1314  * Load and gain thread safe access to the <cpu, node> map.
   1315  *
   1316  * Return 0 on success with flockfile(stdin) held.
   1317  * Each successful get_map() call must be matched with a
   1318  * following put_map() call to release the lock.
   1319  *
   1320  * On error, return -1 with errno set and no lock held.
   1321  */
   1322 
   1323 static int get_map()
   1324 {
   1325 	time_t file_mtime;
   1326 
   1327 	flockfile(stdin);
   1328 
   1329 	if (cpunodemap.map == NULL) {
   1330 		cpunodemap.map = calloc(cpuset_cpus_nbits(), sizeof(int));
   1331 		if (cpunodemap.map == NULL)
   1332 			goto err;
   1333 	}
   1334 
   1335 	/* If no one has a good cpunodemap, rebuild from scratch */
   1336 	file_mtime = get_mtime(mapfile);
   1337 	if (cpunodemap.mtime == 0 && file_mtime == 0)
   1338 		rebuild_map();
   1339 
   1340 	/* If either cpunodemap[] or mapfile newer, update other with it */
   1341 	file_mtime = get_mtime(mapfile);
   1342 	if (cpunodemap.mtime < file_mtime)
   1343 		load_map();
   1344 	else if (cpunodemap.mtime > file_mtime)
   1345 		store_map();
   1346 	return 0;
   1347 err:
   1348 	funlockfile(stdin);
   1349 	return -1;
   1350 }
   1351 
   1352 static void put_map()
   1353 {
   1354 	funlockfile(stdin);
   1355 }
   1356 
   1357 /* Set cpus to those local to Memory Nodes mems */
   1358 int cpuset_localcpus(const struct bitmask *mems, struct bitmask *cpus)
   1359 {
   1360 	int ncpus = cpuset_cpus_nbits();
   1361 	unsigned int cpu;
   1362 
   1363 	if (check() < 0)
   1364 		return -1;
   1365 
   1366 	get_map();
   1367 	bitmask_clearall(cpus);
   1368 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++) {
   1369 		if (bitmask_isbitset(mems, cpunodemap.map[cpu]))
   1370 			bitmask_setbit(cpus, cpu);
   1371 	}
   1372 	put_map();
   1373 	return 0;
   1374 }
   1375 
   1376 /* Set mems to those local to CPUs cpus */
   1377 int cpuset_localmems(const struct bitmask *cpus, struct bitmask *mems)
   1378 {
   1379 	int ncpus = cpuset_cpus_nbits();
   1380 	unsigned int cpu;
   1381 
   1382 	if (check() < 0)
   1383 		return -1;
   1384 
   1385 	get_map();
   1386 	bitmask_clearall(mems);
   1387 	for (cpu = 0; cpu < (unsigned int)ncpus; cpu++) {
   1388 		if (bitmask_isbitset(cpus, cpu))
   1389 			bitmask_setbit(mems, cpunodemap.map[cpu]);
   1390 	}
   1391 	put_map();
   1392 	return 0;
   1393 }
   1394 
   1395 /*
   1396  * distmap[]
   1397  *
   1398  * Array of ints of size cpumask_sz by nodemask_sz.
   1399  *
   1400  * Element distmap[cpu][mem] is the distance between CPU cpu
   1401  * and Memory Node mem.  Distances are weighted to roughly
   1402  * approximate the cost of memory references, and scaled so that
   1403  * the distance from a CPU to its local Memory Node is ten (10).
   1404  *
   1405  * The first call to cpuset_cpumemdist() builds this map, from
   1406  * whatever means the kernel provides to obtain these distances.
   1407  *
   1408  * These distances derive from ACPI SLIT table entries, which are
   1409  * eight bits in size.
   1410  *
   1411  * Hold flockfile(stdout) while using distmap for posix thread safety.
   1412  */
   1413 
   1414 typedef unsigned char distmap_entry_t;	/* type of distmap[] entries */
   1415 
   1416 static distmap_entry_t *distmap;	/* maps <cpu, mem> to distance */
   1417 
   1418 #define DISTMAP_MAX UCHAR_MAX	/* maximum value in distmap[] */
   1419 
   1420 #define I(i,j) ((i) * nmems + (j))	/* 2-D array index simulation */
   1421 
   1422 /*
   1423  * Parse arch neutral lines from 'distance' files of form:
   1424  *
   1425  *	46 66 10 20
   1426  *
   1427  * The lines contain a space separated list of distances, which is parsed
   1428  * into array dists[] of each nodes distance from the specified node.
   1429  *
   1430  * Result is placed in distmap[ncpus][nmems]:
   1431  *
   1432  *	For each cpu c on node:
   1433  *		For each node position n in list of distances:
   1434  *			distmap[c][n] = dists[n]
   1435  */
   1436 
   1437 static int parse_distmap_line(unsigned int node, char *buf)
   1438 {
   1439 	char *p, *q;
   1440 	int ncpus = cpuset_cpus_nbits();
   1441 	int nmems = cpuset_mems_nbits();
   1442 	unsigned int c, n;
   1443 	distmap_entry_t *dists = NULL;
   1444 	struct bitmask *cpus = NULL, *mems = NULL;
   1445 	int ret = -1;
   1446 
   1447 	p = buf;
   1448 	if ((dists = calloc(nmems, sizeof(*dists))) == NULL)
   1449 		goto err;
   1450 	for (n = 0; n < (unsigned int)nmems; n++)
   1451 		dists[n] = DISTMAP_MAX;
   1452 
   1453 	for (n = 0; n < (unsigned int)nmems && *p; n++, p = q) {
   1454 		unsigned int d;
   1455 
   1456 		if ((p = strpbrk(p, "0123456789")) == NULL)
   1457 			break;
   1458 		d = strtoul(p, &q, 10);
   1459 		if (p == q)
   1460 			break;
   1461 		if (d < DISTMAP_MAX)
   1462 			dists[n] = (distmap_entry_t) d;
   1463 	}
   1464 
   1465 	if ((mems = bitmask_alloc(nmems)) == NULL)
   1466 		goto err;
   1467 	bitmask_setbit(mems, node);
   1468 
   1469 	if ((cpus = bitmask_alloc(ncpus)) == NULL)
   1470 		goto err;
   1471 	cpuset_localcpus(mems, cpus);
   1472 
   1473 	for (c = bitmask_first(cpus); c < (unsigned int)ncpus;
   1474 	     c = bitmask_next(cpus, c + 1))
   1475 		for (n = 0; n < (unsigned int)nmems; n++)
   1476 			distmap[I(c, n)] = dists[n];
   1477 	ret = 0;
   1478 	/* fall into ... */
   1479 err:
   1480 	bitmask_free(mems);
   1481 	bitmask_free(cpus);
   1482 	free(dists);
   1483 	return ret;
   1484 }
   1485 
   1486 static int parse_distance_file(unsigned int node, const char *path)
   1487 {
   1488 	FILE *fp;
   1489 	char *buf = NULL;
   1490 	int buflen;
   1491 
   1492 	if ((fp = fopen(path, "r")) == NULL)
   1493 		goto err;
   1494 
   1495 	buflen = filesize(fp);
   1496 
   1497 	if ((buf = malloc(buflen)) == NULL)
   1498 		goto err;
   1499 
   1500 	if (flgets(buf, buflen, fp) == NULL)
   1501 		goto err;
   1502 
   1503 	if (parse_distmap_line(node, buf) < 0)
   1504 		goto err;
   1505 
   1506 	free(buf);
   1507 	fclose(fp);
   1508 	return 0;
   1509 err:
   1510 	free(buf);
   1511 	if (fp)
   1512 		fclose(fp);
   1513 	return -1;
   1514 }
   1515 
   1516 static void build_distmap()
   1517 {
   1518 	static int tried_before = 0;
   1519 	int ncpus = cpuset_cpus_nbits();
   1520 	int nmems = cpuset_mems_nbits();
   1521 	int c, m;
   1522 	DIR *dir = NULL;
   1523 	struct dirent *dent;
   1524 
   1525 	if (tried_before)
   1526 		goto err;
   1527 	tried_before = 1;
   1528 
   1529 	if ((distmap = calloc(ncpus * nmems, sizeof(*distmap))) == NULL)
   1530 		goto err;
   1531 
   1532 	for (c = 0; c < ncpus; c++)
   1533 		for (m = 0; m < nmems; m++)
   1534 			distmap[I(c, m)] = DISTMAP_MAX;
   1535 
   1536 	if ((dir = opendir(distance_directory)) == NULL)
   1537 		goto err;
   1538 	while ((dent = readdir(dir)) != NULL) {
   1539 		char buf[PATH_MAX];
   1540 		unsigned int node;
   1541 
   1542 		if (sscanf(dent->d_name, "node%u", &node) < 1)
   1543 			continue;
   1544 		pathcat3(buf, sizeof(buf), distance_directory, dent->d_name,
   1545 			 "distance");
   1546 		if (parse_distance_file(node, buf) < 0)
   1547 			goto err;
   1548 	}
   1549 	closedir(dir);
   1550 	return;
   1551 err:
   1552 	if (dir)
   1553 		closedir(dir);
   1554 	free(distmap);
   1555 	distmap = NULL;
   1556 }
   1557 
   1558 #ifdef ALTERNATE_SN_DISTMAP
   1559 
   1560 /*
   1561  * Parse SN architecture specific line of form:
   1562  *
   1563  *	node 3 001c14#1 local asic SHub_1.1, nasid 0x6, dist 66:46:20:10
   1564  *
   1565  * Second field is node number.  The "dist" field is the colon separated list
   1566  * of distances, which is parsed into array dists[] of each nodes distance
   1567  * from that node.
   1568  *
   1569  * Result is placed in distmap[ncpus][nmems]:
   1570  *
   1571  *	For each cpu c on that node:
   1572  *		For each node position n in list of distances:
   1573  *			distmap[c][n] = dists[n]
   1574  */
   1575 
   1576 static void parse_distmap_line_sn(char *buf)
   1577 {
   1578 	char *p, *pend, *q;
   1579 	int ncpus = cpuset_cpus_nbits();
   1580 	int nmems = cpuset_mems_nbits();
   1581 	unsigned long c, n, node;
   1582 	distmap_entry_t *dists = NULL;
   1583 	struct bitmask *cpus = NULL, *mems = NULL;
   1584 
   1585 	if ((p = strchr(buf, ' ')) == NULL)
   1586 		goto err;
   1587 	if ((node = strtoul(p, &q, 10)) >= (unsigned int)nmems)
   1588 		goto err;
   1589 	if ((p = strstr(q, " dist ")) == NULL)
   1590 		goto err;
   1591 	p += strlen(" dist ");
   1592 	if ((pend = strchr(p, ' ')) != NULL)
   1593 		*pend = '\0';
   1594 	if ((dists = calloc(nmems, sizeof(*dists))) == NULL)
   1595 		goto err;
   1596 	for (n = 0; n < (unsigned int)nmems; n++)
   1597 		dists[n] = DISTMAP_MAX;
   1598 
   1599 	for (n = 0; n < (unsigned int)nmems && *p; n++, p = q) {
   1600 		unsigned long d;
   1601 
   1602 		if ((p = strpbrk(p, "0123456789")) == NULL)
   1603 			break;
   1604 		d = strtoul(p, &q, 10);
   1605 		if (p == q)
   1606 			break;
   1607 		if (d < DISTMAP_MAX)
   1608 			dists[n] = (distmap_entry_t) d;
   1609 	}
   1610 
   1611 	if ((mems = bitmask_alloc(nmems)) == NULL)
   1612 		goto err;
   1613 	bitmask_setbit(mems, node);
   1614 
   1615 	if ((cpus = bitmask_alloc(ncpus)) == NULL)
   1616 		goto err;
   1617 	cpuset_localcpus(mems, cpus);
   1618 
   1619 	for (c = bitmask_first(cpus); c < (unsigned int)ncpus;
   1620 	     c = bitmask_next(cpus, c + 1))
   1621 		for (n = 0; n < (unsigned int)nmems; n++)
   1622 			distmap[I(c, n)] = dists[n];
   1623 	/* fall into ... */
   1624 err:
   1625 	bitmask_free(mems);
   1626 	bitmask_free(cpus);
   1627 	free(dists);
   1628 }
   1629 
   1630 static void build_distmap_sn()
   1631 {
   1632 	int ncpus = cpuset_cpus_nbits();
   1633 	int nmems = cpuset_mems_nbits();
   1634 	int c, m;
   1635 	static int tried_before = 0;
   1636 	FILE *fp = NULL;
   1637 	char *buf = NULL;
   1638 	int buflen;
   1639 
   1640 	if (tried_before)
   1641 		goto err;
   1642 	tried_before = 1;
   1643 
   1644 	if ((fp = fopen(sn_topology, "r")) == NULL)
   1645 		goto err;
   1646 
   1647 	if ((distmap = calloc(ncpus * nmems, sizeof(*distmap))) == NULL)
   1648 		goto err;
   1649 
   1650 	for (c = 0; c < ncpus; c++)
   1651 		for (m = 0; m < nmems; m++)
   1652 			distmap[I(c, m)] = DISTMAP_MAX;
   1653 
   1654 	buflen = filesize(fp);
   1655 	if ((buf = malloc(buflen)) == NULL)
   1656 		goto err;
   1657 
   1658 	while (flgets(buf, buflen, fp) != NULL)
   1659 		if (strprefix(buf, sn_top_node_prefix))
   1660 			parse_distmap_line_sn(buf);
   1661 
   1662 	free(buf);
   1663 	fclose(fp);
   1664 	return;
   1665 err:
   1666 	free(buf);
   1667 	free(distmap);
   1668 	distmap = NULL;
   1669 	if (fp)
   1670 		fclose(fp);
   1671 }
   1672 
   1673 #endif
   1674 
   1675 /* [optional] Hardware distance from CPU to Memory Node */
   1676 unsigned int cpuset_cpumemdist(int cpu, int mem)
   1677 {
   1678 	int ncpus = cpuset_cpus_nbits();
   1679 	int nmems = cpuset_mems_nbits();
   1680 	distmap_entry_t r = DISTMAP_MAX;
   1681 
   1682 	flockfile(stdout);
   1683 
   1684 	if (check() < 0)
   1685 		goto err;
   1686 
   1687 	if (distmap == NULL)
   1688 		build_distmap();
   1689 
   1690 #ifdef ALTERNATE_SN_DISTMAP
   1691 	if (distmap == NULL)
   1692 		build_distmap_sn();
   1693 #endif
   1694 
   1695 	if (distmap == NULL)
   1696 		goto err;
   1697 
   1698 	if (cpu < 0 || cpu >= ncpus || mem < 0 || mem >= nmems)
   1699 		goto err;
   1700 
   1701 	r = distmap[I(cpu, mem)];
   1702 	/* fall into ... */
   1703 err:
   1704 	funlockfile(stdout);
   1705 	return r;
   1706 }
   1707 
   1708 /* [optional] Return Memory Node closest to cpu */
   1709 int cpuset_cpu2node(int cpu)
   1710 {
   1711 	int ncpus = cpuset_cpus_nbits();
   1712 	int nmems = cpuset_mems_nbits();
   1713 	struct bitmask *cpus = NULL, *mems = NULL;
   1714 	int r = -1;
   1715 
   1716 	if (check() < 0)
   1717 		goto err;
   1718 
   1719 	if ((cpus = bitmask_alloc(ncpus)) == NULL)
   1720 		goto err;
   1721 	bitmask_setbit(cpus, cpu);
   1722 
   1723 	if ((mems = bitmask_alloc(nmems)) == NULL)
   1724 		goto err;
   1725 	cpuset_localmems(cpus, mems);
   1726 	r = bitmask_first(mems);
   1727 	/* fall into ... */
   1728 err:
   1729 	bitmask_free(cpus);
   1730 	bitmask_free(mems);
   1731 	return r;
   1732 }
   1733 
   1734 static int apply_cpuset_settings(const char *path, const struct cpuset *cp)
   1735 {
   1736 	if (cp->cpu_exclusive_valid && cp->cpu_exclusive_dirty) {
   1737 		if (store_flag(path, "cpu_exclusive", cp->cpu_exclusive) < 0)
   1738 			goto err;
   1739 	}
   1740 
   1741 	if (cp->mem_exclusive_valid && cp->mem_exclusive_dirty) {
   1742 		if (store_flag(path, "mem_exclusive", cp->mem_exclusive) < 0)
   1743 			goto err;
   1744 	}
   1745 
   1746 	if (cp->mem_hardwall_valid && cp->mem_hardwall_dirty) {
   1747 		if (store_flag(path, "mem_hardwall", cp->mem_hardwall) < 0)
   1748 			goto err;
   1749 	}
   1750 
   1751 	if (cp->notify_on_release_valid && cp->notify_on_release_dirty) {
   1752 		if (store_flag(path, "notify_on_release", cp->notify_on_release)
   1753 		    < 0)
   1754 			goto err;
   1755 	}
   1756 
   1757 	if (cp->memory_migrate_valid &&
   1758 	    cp->memory_migrate_dirty && exists_flag(path, "memory_migrate")) {
   1759 		if (store_flag(path, "memory_migrate", cp->memory_migrate) < 0)
   1760 			goto err;
   1761 	}
   1762 
   1763 	if (cp->memory_pressure_enabled_valid &&
   1764 	    cp->memory_pressure_enabled_dirty &&
   1765 	    exists_flag(path, "memory_pressure_enabled")) {
   1766 		if (store_flag
   1767 		    (path, "memory_pressure_enabled",
   1768 		     cp->memory_pressure_enabled) < 0)
   1769 			goto err;
   1770 	}
   1771 
   1772 	if (cp->memory_spread_page_valid &&
   1773 	    cp->memory_spread_page_dirty &&
   1774 	    exists_flag(path, "memory_spread_page")) {
   1775 		if (store_flag
   1776 		    (path, "memory_spread_page", cp->memory_spread_page) < 0)
   1777 			goto err;
   1778 	}
   1779 
   1780 	if (cp->memory_spread_slab_valid &&
   1781 	    cp->memory_spread_slab_dirty &&
   1782 	    exists_flag(path, "memory_spread_slab")) {
   1783 		if (store_flag
   1784 		    (path, "memory_spread_slab", cp->memory_spread_slab) < 0)
   1785 			goto err;
   1786 	}
   1787 
   1788 	if (cp->sched_load_balance_valid &&
   1789 	    cp->sched_load_balance_dirty &&
   1790 	    exists_flag(path, "sched_load_balance")) {
   1791 		if (store_flag
   1792 		    (path, "sched_load_balance", cp->sched_load_balance) < 0)
   1793 			goto err;
   1794 	}
   1795 
   1796 	if (cp->sched_relax_domain_level_valid &&
   1797 	    cp->sched_relax_domain_level_dirty &&
   1798 	    exists_flag(path, "sched_relax_domain_level")) {
   1799 		if (store_number
   1800 		    (path, "sched_relax_domain_level",
   1801 		     cp->sched_relax_domain_level) < 0)
   1802 			goto err;
   1803 	}
   1804 
   1805 	if (cp->cpus_valid && cp->cpus_dirty) {
   1806 		if (store_mask(path, "cpus", cp->cpus) < 0)
   1807 			goto err;
   1808 	}
   1809 
   1810 	if (cp->mems_valid && cp->mems_dirty) {
   1811 		if (store_mask(path, "mems", cp->mems) < 0)
   1812 			goto err;
   1813 	}
   1814 	return 0;
   1815 err:
   1816 	return -1;
   1817 }
   1818 
   1819 /*
   1820  * get_siblings() - helper routine for cpuset_would_crash_kernel(), below.
   1821  *
   1822  * Extract max value of any 'siblings' field in /proc/cpuinfo.
   1823  * Cache the result - only need to extract once in lifetime of task.
   1824  *
   1825  * The siblings field is the number of logical CPUs in a physical
   1826  * processor package.  It is equal to the product of the number of
   1827  * cores in that package, times the number of hyper-threads per core.
   1828  * The bug that cpuset_would_crash_kernel() is detecting arises
   1829  * when a cpu_exclusive cpuset tries to include just some, not all,
   1830  * of the sibling logical CPUs available in a processor package.
   1831  *
   1832  * In the improbable case that a system has mixed values of siblings
   1833  * (some processor packages have more than others, perhaps due to
   1834  * partially enabling Hyper-Threading), we take the worse case value,
   1835  * the largest siblings value.  This might be overkill.  I don't know
   1836  * if this kernel bug considers each processor package's siblings
   1837  * separately or not.  But it sure is easier this way ...
   1838  *
   1839  * This routine takes about 0.7 msecs on a 4 CPU 2.8 MHz Xeon, from
   1840  * open to close, the first time called.
   1841  */
   1842 
   1843 static int get_siblings()
   1844 {
   1845 	static int siblings;
   1846 	char buf[32];		/* big enough for one 'siblings' line */
   1847 	FILE *fp;
   1848 
   1849 	if (siblings)
   1850 		return siblings;
   1851 
   1852 	if ((fp = fopen("/proc/cpuinfo", "r")) == NULL)
   1853 		return 4;	/* wing it - /proc not mounted ? */
   1854 	while (flgets(buf, sizeof(buf), fp) != NULL) {
   1855 		int s;
   1856 
   1857 		if (sscanf(buf, "siblings : %d", &s) < 1)
   1858 			continue;
   1859 		if (s > siblings)
   1860 			siblings = s;
   1861 	}
   1862 	fclose(fp);
   1863 	if (siblings == 0)
   1864 		siblings = 1;	/* old kernel, no siblings, default to 1 */
   1865 	return siblings;
   1866 }
   1867 
   1868 /*
   1869  * Some 2.6.16 and 2.6.17 kernel versions have a bug in the dynamic
   1870  * scheduler domain code invoked for cpu_exclusive cpusets that causes
   1871  * the kernel to freeze, requiring a hardware reset.
   1872  *
   1873  * On kernels built with CONFIG_SCHED_MC enabled, if a 'cpu_exclusive'
   1874  * cpuset is defined where that cpusets 'cpus' are not on package
   1875  * boundaries then the kernel will freeze, usually as soon as this
   1876  * cpuset is created, requiring a hardware reset.
   1877  *
   1878  * A cpusets 'cpus' are not on package boundaries if the cpuset
   1879  * includes a proper non-empty subset (some, but not all) of the
   1880  * logical cpus on a processor package.  This requires multiple
   1881  * logical CPUs per package, available with either Hyper-Thread or
   1882  * Multi-Core support.  Without one of these features, there is only
   1883  * one logical CPU per physical package, and it's not possible to
   1884  * have a proper, non-empty subset of a set of cardinality one.
   1885  *
   1886  * SUSE SLES10 kernels, as first released, only enable CONFIG_SCHED_MC
   1887  * on i386 and x86_64 arch's.
   1888  *
   1889  * The objective of this routine cpuset_would_crash_kernel() is to
   1890  * determine if a proposed cpuset setting would crash the kernel due
   1891  * to this bug, so that the caller can avoid the crash.
   1892  *
   1893  * Ideally we'd check for exactly these conditions here, but computing
   1894  * the package (identified by the 'physical id' field of /proc/cpuinfo)
   1895  * of each cpu in a cpuset is more effort than it's worth here.
   1896  *
   1897  * Also there is no obvious way to identify exactly whether the kernel
   1898  * one is executing on has this bug, short of trying it, and seeing
   1899  * if the kernel just crashed.
   1900  *
   1901  * So for now, we look for a simpler set of conditions, that meets
   1902  * our immediate need - avoid this crash on SUSE SLES10 systems that
   1903  * are susceptible to it.  We look for the kernel version 2.6.16.*,
   1904  * which is the base kernel of SUSE SLES10, and for i386 or x86_64
   1905  * processors, which had CONFIG_SCHED_MC enabled.
   1906  *
   1907  * If these simpler conditions are met, we further simplify the check,
   1908  * by presuming that the logical CPUs are numbered on processor
   1909  * package boundaries.  If each package has S siblings, we assume
   1910  * that CPUs numbered N through N + S -1 are on the same package,
   1911  * for any CPU N such that N mod S == 0.
   1912  *
   1913  * Yes, this is a hack, focused on avoiding kernel freezes on
   1914  * susceptible SUSE SLES10 systems.
   1915  */
   1916 
   1917 static int cpuset_would_crash_kernel(const struct cpuset *cp)
   1918 {
   1919 	static int susceptible_system = -1;
   1920 
   1921 	if (!cp->cpu_exclusive)
   1922 		goto ok;
   1923 
   1924 	if (susceptible_system == -1) {
   1925 		struct utsname u;
   1926 		int rel_2_6_16, arch_i386, arch_x86_64;
   1927 
   1928 		if (uname(&u) < 0)
   1929 			goto fail;
   1930 		rel_2_6_16 = strprefix(u.release, "2.6.16.");
   1931 		arch_i386 = streq(u.machine, "i386");
   1932 		arch_x86_64 = streq(u.machine, "x86_64");
   1933 		susceptible_system = rel_2_6_16 && (arch_i386 || arch_x86_64);
   1934 	}
   1935 
   1936 	if (susceptible_system) {
   1937 		int ncpus = cpuset_cpus_nbits();
   1938 		int siblings = get_siblings();
   1939 		unsigned int cpu;
   1940 
   1941 		for (cpu = 0; cpu < (unsigned int)ncpus; cpu += siblings) {
   1942 			int s, num_set = 0;
   1943 
   1944 			for (s = 0; s < siblings; s++) {
   1945 				if (bitmask_isbitset(cp->cpus, cpu + s))
   1946 					num_set++;
   1947 			}
   1948 
   1949 			/* If none or all siblings set, we're still ok */
   1950 			if (num_set == 0 || num_set == siblings)
   1951 				continue;
   1952 
   1953 			/* Found one that would crash kernel.  Fail.  */
   1954 			errno = ENXIO;
   1955 			goto fail;
   1956 		}
   1957 	}
   1958 	/* If not susceptible, or if all ok, fall into "ok" ... */
   1959 ok:
   1960 	return 0;		/* would not crash */
   1961 fail:
   1962 	return 1;		/* would crash */
   1963 }
   1964 
   1965 /* compare two cpuset and mark the dirty variable */
   1966 static void mark_dirty_variable(struct cpuset *cp1, const struct cpuset *cp2)
   1967 {
   1968 	if (cp1->cpu_exclusive_valid &&
   1969 	    cp1->cpu_exclusive != cp2->cpu_exclusive)
   1970 		cp1->cpu_exclusive_dirty = 1;
   1971 
   1972 	if (cp1->mem_exclusive_valid &&
   1973 	    cp1->mem_exclusive != cp2->mem_exclusive)
   1974 		cp1->mem_exclusive_dirty = 1;
   1975 
   1976 	if (cp1->mem_hardwall_valid && cp1->mem_hardwall != cp2->mem_hardwall)
   1977 		cp1->mem_hardwall_dirty = 1;
   1978 
   1979 	if (cp1->notify_on_release_valid &&
   1980 	    cp1->notify_on_release != cp2->notify_on_release)
   1981 		cp1->notify_on_release_dirty = 1;
   1982 
   1983 	if (cp1->memory_migrate_valid &&
   1984 	    cp1->memory_migrate != cp2->memory_migrate)
   1985 		cp1->memory_migrate_dirty = 1;
   1986 
   1987 	if (cp1->memory_pressure_enabled_valid &&
   1988 	    cp1->memory_pressure_enabled != cp2->memory_pressure_enabled)
   1989 		cp1->memory_pressure_enabled_dirty = 1;
   1990 
   1991 	if (cp1->memory_spread_page_valid &&
   1992 	    cp1->memory_spread_page != cp2->memory_spread_page)
   1993 		cp1->memory_spread_page_dirty = 1;
   1994 
   1995 	if (cp1->memory_spread_slab_valid &&
   1996 	    cp1->memory_spread_slab != cp2->memory_spread_slab)
   1997 		cp1->memory_spread_slab_dirty = 1;
   1998 
   1999 	if (cp1->sched_load_balance_valid &&
   2000 	    cp1->sched_load_balance != cp2->sched_load_balance)
   2001 		cp1->sched_load_balance_dirty = 1;
   2002 
   2003 	if (cp1->sched_relax_domain_level_valid &&
   2004 	    cp1->sched_relax_domain_level != cp2->sched_relax_domain_level)
   2005 		cp1->sched_relax_domain_level_dirty = 1;
   2006 
   2007 	if (cp1->cpus_valid && !bitmask_equal(cp1->cpus, cp2->cpus))
   2008 		cp1->cpus_dirty = 1;
   2009 	if (cp1->mems_valid && !bitmask_equal(cp1->mems, cp2->mems))
   2010 		cp1->mems_dirty = 1;
   2011 }
   2012 
   2013 /* Create (if new set) or modify cpuset 'cp' at location 'relpath' */
   2014 static int cr_or_mod(const char *relpath, const struct cpuset *cp, int new)
   2015 {
   2016 	char buf[PATH_MAX];
   2017 	int do_rmdir_on_err = 0;
   2018 	int do_restore_cp_sav_on_err = 0;
   2019 	struct cpuset *cp_sav = NULL;
   2020 	int sav_errno;
   2021 
   2022 	if (check() < 0)
   2023 		goto err;
   2024 
   2025 	if (cpuset_would_crash_kernel(cp))
   2026 		goto err;
   2027 
   2028 	fullpath(buf, sizeof(buf), relpath);
   2029 
   2030 	if (new) {
   2031 		if (mkdir(buf, 0755) < 0)
   2032 			goto err;
   2033 		/* we made it, so we should remove it on error */
   2034 		do_rmdir_on_err = 1;
   2035 	}
   2036 
   2037 	if ((cp_sav = cpuset_alloc()) == NULL)
   2038 		goto err;
   2039 	if (cpuset_query(cp_sav, relpath) < 0)
   2040 		goto err;
   2041 	/* we have old settings to restore on error */
   2042 	do_restore_cp_sav_on_err = 1;
   2043 
   2044 	/* check which variable need to restore on error */
   2045 	mark_dirty_variable(cp_sav, cp);
   2046 
   2047 	if (apply_cpuset_settings(buf, cp) < 0)
   2048 		goto err;
   2049 
   2050 	cpuset_free(cp_sav);
   2051 	return 0;
   2052 err:
   2053 	sav_errno = errno;
   2054 	if (do_restore_cp_sav_on_err)
   2055 		(void)apply_cpuset_settings(buf, cp_sav);
   2056 	if (cp_sav)
   2057 		cpuset_free(cp_sav);
   2058 	if (do_rmdir_on_err)
   2059 		(void)rmdir(buf);
   2060 	errno = sav_errno;
   2061 	return -1;
   2062 }
   2063 
   2064 /* Create cpuset 'cp' at location 'relpath' */
   2065 int cpuset_create(const char *relpath, const struct cpuset *cp)
   2066 {
   2067 	return cr_or_mod(relpath, cp, 1);
   2068 }
   2069 
   2070 /* Delete cpuset at location 'path' (if empty) */
   2071 int cpuset_delete(const char *relpath)
   2072 {
   2073 	char buf[PATH_MAX];
   2074 
   2075 	if (check() < 0)
   2076 		goto err;
   2077 
   2078 	fullpath(buf, sizeof(buf), relpath);
   2079 	if (rmdir(buf) < 0)
   2080 		goto err;
   2081 
   2082 	return 0;
   2083 err:
   2084 	return -1;
   2085 }
   2086 
   2087 /* Set cpuset cp to the cpuset at location 'path' */
   2088 int cpuset_query(struct cpuset *cp, const char *relpath)
   2089 {
   2090 	char buf[PATH_MAX];
   2091 
   2092 	if (check() < 0)
   2093 		goto err;
   2094 
   2095 	fullpath(buf, sizeof(buf), relpath);
   2096 
   2097 	if (load_flag(buf, &cp->cpu_exclusive, "cpu_exclusive") < 0)
   2098 		goto err;
   2099 	cp->cpu_exclusive_valid = 1;
   2100 
   2101 	if (load_flag(buf, &cp->mem_exclusive, "mem_exclusive") < 0)
   2102 		goto err;
   2103 	cp->mem_exclusive_valid = 1;
   2104 
   2105 	if (load_flag(buf, &cp->notify_on_release, "notify_on_release") < 0)
   2106 		goto err;
   2107 	cp->notify_on_release_valid = 1;
   2108 
   2109 	if (exists_flag(buf, "memory_migrate")) {
   2110 		if (load_flag(buf, &cp->memory_migrate, "memory_migrate") < 0)
   2111 			goto err;
   2112 		cp->memory_migrate_valid = 1;
   2113 	}
   2114 
   2115 	if (exists_flag(buf, "mem_hardwall")) {
   2116 		if (load_flag(buf, &cp->mem_hardwall, "mem_hardwall") < 0)
   2117 			goto err;
   2118 		cp->mem_hardwall_valid = 1;
   2119 	}
   2120 
   2121 	if (exists_flag(buf, "memory_pressure_enabled")) {
   2122 		if (load_flag
   2123 		    (buf, &cp->memory_pressure_enabled,
   2124 		     "memory_pressure_enabled") < 0)
   2125 			goto err;
   2126 		cp->memory_pressure_enabled_valid = 1;
   2127 	}
   2128 
   2129 	if (exists_flag(buf, "memory_spread_page")) {
   2130 		if (load_flag
   2131 		    (buf, &cp->memory_spread_page, "memory_spread_page") < 0)
   2132 			goto err;
   2133 		cp->memory_spread_page_valid = 1;
   2134 	}
   2135 
   2136 	if (exists_flag(buf, "memory_spread_slab")) {
   2137 		if (load_flag
   2138 		    (buf, &cp->memory_spread_slab, "memory_spread_slab") < 0)
   2139 			goto err;
   2140 		cp->memory_spread_slab_valid = 1;
   2141 	}
   2142 
   2143 	if (exists_flag(buf, "sched_load_balance")) {
   2144 		if (load_flag
   2145 		    (buf, &cp->sched_load_balance, "sched_load_balance") < 0)
   2146 			goto err;
   2147 		cp->sched_load_balance_valid = 1;
   2148 	}
   2149 
   2150 	if (exists_flag(buf, "sched_relax_domain_level")) {
   2151 		if (load_number
   2152 		    (buf, &cp->sched_relax_domain_level,
   2153 		     "sched_relax_domain_level") < 0)
   2154 			goto err;
   2155 		cp->sched_relax_domain_level_valid = 1;
   2156 	}
   2157 
   2158 	if (load_mask(buf, &cp->cpus, cpuset_cpus_nbits(), "cpus") < 0)
   2159 		goto err;
   2160 	cp->cpus_valid = 1;
   2161 
   2162 	if (load_mask(buf, &cp->mems, cpuset_mems_nbits(), "mems") < 0)
   2163 		goto err;
   2164 	cp->mems_valid = 1;
   2165 
   2166 	return 0;
   2167 err:
   2168 	return -1;
   2169 }
   2170 
   2171 /* Modify cpuset at location 'relpath' to values of 'cp' */
   2172 int cpuset_modify(const char *relpath, const struct cpuset *cp)
   2173 {
   2174 	return cr_or_mod(relpath, cp, 0);
   2175 }
   2176 
   2177 /* Get cpuset path of pid into buf */
   2178 char *cpuset_getcpusetpath(pid_t pid, char *buf, size_t size)
   2179 {
   2180 	int fd;			/* dual use: cpuset file for pid and self */
   2181 	int rc;			/* dual use: snprintf and read return codes */
   2182 
   2183 	if (check() < 0)
   2184 		return NULL;
   2185 
   2186 	/* borrow result buf[] to build cpuset file path */
   2187 	if (pid == 0)
   2188 		rc = snprintf(buf, size, "/proc/self/cpuset");
   2189 	else
   2190 		rc = snprintf(buf, size, "/proc/%d/cpuset", pid);
   2191 	if (rc >= (int)size) {
   2192 		errno = E2BIG;
   2193 		return NULL;
   2194 	}
   2195 	if ((fd = open(buf, O_RDONLY)) < 0) {
   2196 		int e = errno;
   2197 		if (e == ENOENT)
   2198 			e = ESRCH;
   2199 		if ((fd = open("/proc/self/cpuset", O_RDONLY)) < 0)
   2200 			e = ENOSYS;
   2201 		else
   2202 			close(fd);
   2203 		errno = e;
   2204 		return NULL;
   2205 	}
   2206 	rc = read(fd, buf, size);
   2207 	close(fd);
   2208 	if (rc < 0)
   2209 		return NULL;
   2210 	if (rc >= (int)size) {
   2211 		errno = E2BIG;
   2212 		return NULL;
   2213 	}
   2214 	buf[rc] = 0;
   2215 	chomp(buf);
   2216 	return buf;
   2217 
   2218 }
   2219 
   2220 /* Get cpuset 'cp' of pid */
   2221 int cpuset_cpusetofpid(struct cpuset *cp, pid_t pid)
   2222 {
   2223 	char buf[PATH_MAX];
   2224 
   2225 	if (cpuset_getcpusetpath(pid, buf, sizeof(buf)) == NULL)
   2226 		return -1;
   2227 	if (cpuset_query(cp, buf) < 0)
   2228 		return -1;
   2229 	return 0;
   2230 }
   2231 
   2232 /* [optional] Return mountpoint of cpuset filesystem */
   2233 const char *cpuset_mountpoint()
   2234 {
   2235 	if (check() < 0) {
   2236 		switch (errno) {
   2237 		case ENODEV:
   2238 			return "[cpuset filesystem not mounted]";
   2239 		default:
   2240 			return "[cpuset filesystem not supported]";
   2241 		}
   2242 	}
   2243 	return cpusetmnt;
   2244 }
   2245 
   2246 /* Return true if path is a directory. */
   2247 static int isdir(const char *path)
   2248 {
   2249 	struct stat statbuf;
   2250 
   2251 	if (stat(path, &statbuf) < 0)
   2252 		return 0;
   2253 	return S_ISDIR(statbuf.st_mode);
   2254 }
   2255 
   2256 /*
   2257  * [optional] cpuset_collides_exclusive() - True if would collide exclusive.
   2258  *
   2259  * Return true iff the specified cpuset would overlap with any
   2260  * sibling cpusets in either cpus or mems, where either this
   2261  * cpuset or the sibling is cpu_exclusive or mem_exclusive.
   2262  *
   2263  * cpuset_create() fails with errno == EINVAL if the requested cpuset
   2264  * would overlap with any sibling, where either one is cpu_exclusive or
   2265  * mem_exclusive.  This is a common, and not obvious error.  The
   2266  * following routine checks for this particular case, so that code
   2267  * creating cpusets can better identify the situation, perhaps to issue
   2268  * a more informative error message.
   2269  *
   2270  * Can also be used to diagnose cpuset_modify failures.  This
   2271  * routine ignores any existing cpuset with the same path as the
   2272  * given 'cpusetpath', and only looks for exclusive collisions with
   2273  * sibling cpusets of that path.
   2274  *
   2275  * In case of any error, returns (0) -- does not collide.  Presumably
   2276  * any actual attempt to create or modify a cpuset will encounter the
   2277  * same error, and report it usefully.
   2278  *
   2279  * This routine is not particularly efficient; most likely code creating or
   2280  * modifying a cpuset will want to try the operation first, and then if that
   2281  * fails with errno EINVAL, perhaps call this routine to determine if an
   2282  * exclusive cpuset collision caused the error.
   2283  */
   2284 
   2285 int cpuset_collides_exclusive(const char *cpusetpath, const struct cpuset *cp1)
   2286 {
   2287 	char parent[PATH_MAX];
   2288 	char *p;
   2289 	char *pathcopy = NULL;
   2290 	char *base;
   2291 	DIR *dir = NULL;
   2292 	struct dirent *dent;
   2293 	struct cpuset *cp2 = NULL;
   2294 	struct bitmask *cpus1 = NULL, *cpus2 = NULL;
   2295 	struct bitmask *mems1 = NULL, *mems2 = NULL;
   2296 	int ret;
   2297 
   2298 	if (check() < 0)
   2299 		goto err;
   2300 
   2301 	fullpath(parent, sizeof(parent), cpusetpath);
   2302 	if (streq(parent, cpusetmnt))
   2303 		goto err;	/* only one cpuset root - can't collide */
   2304 	pathcopy = strdup(parent);
   2305 	p = strrchr(parent, '/');
   2306 	if (!p)
   2307 		goto err;	/* huh? - impossible - run and hide */
   2308 	*p = 0;			/* now parent is dirname of fullpath */
   2309 
   2310 	p = strrchr(pathcopy, '/');
   2311 	base = p + 1;		/* now base is basename of fullpath */
   2312 	if (!*base)
   2313 		goto err;	/* this is also impossible - run away */
   2314 
   2315 	if ((dir = opendir(parent)) == NULL)
   2316 		goto err;
   2317 	if ((cp2 = cpuset_alloc()) == NULL)
   2318 		goto err;
   2319 	if ((cpus1 = bitmask_alloc(cpuset_cpus_nbits())) == NULL)
   2320 		goto err;
   2321 	if ((cpus2 = bitmask_alloc(cpuset_cpus_nbits())) == NULL)
   2322 		goto err;
   2323 	if ((mems1 = bitmask_alloc(cpuset_mems_nbits())) == NULL)
   2324 		goto err;
   2325 	if ((mems2 = bitmask_alloc(cpuset_mems_nbits())) == NULL)
   2326 		goto err;
   2327 
   2328 	while ((dent = readdir(dir)) != NULL) {
   2329 		char child[PATH_MAX];
   2330 
   2331 		if (streq(dent->d_name, ".") || streq(dent->d_name, ".."))
   2332 			continue;
   2333 		if (streq(dent->d_name, base))
   2334 			continue;
   2335 		pathcat2(child, sizeof(child), parent, dent->d_name);
   2336 		if (!isdir(child))
   2337 			continue;
   2338 		if (cpuset_query(cp2, child + strlen(cpusetmnt)) < 0)
   2339 			goto err;
   2340 		if (cp1->cpu_exclusive || cp2->cpu_exclusive) {
   2341 			cpuset_getcpus(cp1, cpus1);
   2342 			cpuset_getcpus(cp2, cpus2);
   2343 			if (bitmask_intersects(cpus1, cpus2))
   2344 				goto collides;
   2345 		}
   2346 		if (cp1->mem_exclusive || cp2->mem_exclusive) {
   2347 			cpuset_getmems(cp1, mems1);
   2348 			cpuset_getmems(cp2, mems2);
   2349 			if (bitmask_intersects(mems1, mems2))
   2350 				goto collides;
   2351 		}
   2352 	}
   2353 err:
   2354 	/* error, or did not collide */
   2355 	ret = 0;
   2356 	goto done;
   2357 collides:
   2358 	/* collides */
   2359 	ret = 1;
   2360 	/* fall into ... */
   2361 done:
   2362 	if (dir)
   2363 		closedir(dir);
   2364 	cpuset_free(cp2);
   2365 	free(pathcopy);
   2366 	bitmask_free(cpus1);
   2367 	bitmask_free(cpus2);
   2368 	bitmask_free(mems1);
   2369 	bitmask_free(mems2);
   2370 	return ret;
   2371 }
   2372 
   2373 /*
   2374  * [optional] cpuset_nuke() - Remove cpuset anyway possible
   2375  *
   2376  * Remove a cpuset, including killing tasks in it, and
   2377  * removing any descendent cpusets and killing their tasks.
   2378  *
   2379  * Tasks can take a long time (minutes on some configurations)
   2380  * to exit.  Loop up to 'seconds' seconds, trying to kill them.
   2381  *
   2382  * How we do it:
   2383  *	1) First, kill all the pids, looping until there are
   2384  *	   no more pids in this cpuset or below, or until the
   2385  *	   'seconds' timeout limit is exceeded.
   2386  *	2) Then depth first recursively rmdir the cpuset directories.
   2387  *	3) If by this point the original cpuset is gone, we succeeded.
   2388  *
   2389  * If the timeout is exceeded, and tasks still exist, fail with
   2390  * errno == ETIME.
   2391  *
   2392  * We sleep a variable amount of time.  After the first attempt to
   2393  * kill all the tasks in the cpuset or its descendents, we sleep 1
   2394  * second, the next time 2 seconds, increasing 1 second each loop
   2395  * up to a max of 10 seconds.  If more loops past 10 are required
   2396  * to kill all the tasks, we sleep 10 seconds each subsequent loop.
   2397  * In any case, before the last loop, we sleep however many seconds
   2398  * remain of the original timeout 'seconds' requested.  The total
   2399  * time of all sleeps will be no more than the requested 'seconds'.
   2400  *
   2401  * If the cpuset started out empty of any tasks, or if the passed in
   2402  * 'seconds' was zero, then this routine will return quickly, having
   2403  * not slept at all.  Otherwise, this routine will at a minimum send
   2404  * a SIGKILL to all the tasks in this cpuset subtree, then sleep one
   2405  * second, before looking to see if any tasks remain.  If tasks remain
   2406  * in the cpuset subtree, and a longer 'seconds' timeout was requested
   2407  * (more than one), it will continue to kill remaining tasks and sleep,
   2408  * in a loop, for as long as time and tasks remain.
   2409  *
   2410  * The signal sent for the kill is hardcoded to SIGKILL (9).  If some
   2411  * other signal should be sent first, use a separate code loop,
   2412  * perhaps based on cpuset_init_pidlist and cpuset_get_pidlist, to
   2413  * scan the task pids in a cpuset.  If SIGKILL should -not- be sent,
   2414  * this cpuset_nuke() routine can still be called to recursively
   2415  * remove a cpuset subtree, by specifying a timeout of zero 'seconds'.
   2416  *
   2417  * On success, returns 0 with errno == 0.
   2418  *
   2419  * On failure, returns -1, with errno possibly one of:
   2420  *  EACCES - search permission denied on intervening directory
   2421  *  ETIME - timed out - tasks remain after 'seconds' timeout
   2422  *  EMFILE - too many open files
   2423  *  ENODEV - /dev/cpuset not mounted
   2424  *  ENOENT - component of cpuset path doesn't exist
   2425  *  ENOMEM - out of memory
   2426  *  ENOSYS - kernel doesn't support cpusets
   2427  *  ENOTDIR - component of cpuset path is not a directory
   2428  *  EPERM - lacked permission to kill a task
   2429  *  EPERM - lacked permission to read cpusets or files therein
   2430  */
   2431 
   2432 void cpuset_fts_reverse(struct cpuset_fts_tree *cs_tree);
   2433 
   2434 int cpuset_nuke(const char *relpath, unsigned int seconds)
   2435 {
   2436 	unsigned int secs_left = seconds;	/* total sleep seconds left */
   2437 	unsigned int secs_loop = 1;	/* how much sleep next loop */
   2438 	unsigned int secs_slept;	/* seconds slept in sleep() */
   2439 	struct cpuset_pidlist *pl = NULL;	/* pids in cpuset subtree */
   2440 	struct cpuset_fts_tree *cs_tree;
   2441 	const struct cpuset_fts_entry *cs_entry;
   2442 	int ret, sav_errno = 0;
   2443 
   2444 	if (check() < 0)
   2445 		return -1;
   2446 
   2447 	if (seconds == 0)
   2448 		goto rmdir_cpusets;
   2449 
   2450 	while (1) {
   2451 		int plen, j;
   2452 
   2453 		if ((pl = cpuset_init_pidlist(relpath, 1)) == NULL) {
   2454 			/* missing cpuset is as good as if already nuked */
   2455 			if (errno == ENOENT) {
   2456 				ret = 0;
   2457 				goto no_more_cpuset;
   2458 			}
   2459 
   2460 			/* other problems reading cpuset are bad news */
   2461 			sav_errno = errno;
   2462 			goto failed;
   2463 		}
   2464 
   2465 		if ((plen = cpuset_pidlist_length(pl)) == 0)
   2466 			goto rmdir_cpusets;
   2467 
   2468 		for (j = 0; j < plen; j++) {
   2469 			pid_t pid;
   2470 
   2471 			if ((pid = cpuset_get_pidlist(pl, j)) > 1) {
   2472 				if (kill(pid, SIGKILL) < 0 && errno != ESRCH) {
   2473 					sav_errno = errno;
   2474 					goto failed;
   2475 				}
   2476 			}
   2477 		}
   2478 
   2479 		if (secs_left == 0)
   2480 			goto took_too_long;
   2481 
   2482 		cpuset_freepidlist(pl);
   2483 		pl = NULL;
   2484 
   2485 		secs_slept = secs_loop - sleep(secs_loop);
   2486 
   2487 		/* Ensure forward progress */
   2488 		if (secs_slept == 0)
   2489 			secs_slept = 1;
   2490 
   2491 		/* Ensure sane sleep() return (unnecessary?) */
   2492 		if (secs_slept > secs_loop)
   2493 			secs_slept = secs_loop;
   2494 
   2495 		secs_left -= secs_slept;
   2496 
   2497 		if (secs_loop < 10)
   2498 			secs_loop++;
   2499 
   2500 		secs_loop = MIN(secs_left, secs_loop);
   2501 	}
   2502 
   2503 took_too_long:
   2504 	sav_errno = ETIME;
   2505 	/* fall into ... */
   2506 failed:
   2507 	cpuset_freepidlist(pl);
   2508 	errno = sav_errno;
   2509 	return -1;
   2510 
   2511 rmdir_cpusets:
   2512 	/* Let's try removing cpuset(s) now. */
   2513 	cpuset_freepidlist(pl);
   2514 
   2515 	if ((cs_tree = cpuset_fts_open(relpath)) == NULL && errno != ENOENT)
   2516 		return -1;
   2517 	ret = 0;
   2518 	cpuset_fts_reverse(cs_tree);	/* rmdir's must be done bottom up */
   2519 	while ((cs_entry = cpuset_fts_read(cs_tree)) != NULL) {
   2520 		char buf[PATH_MAX];
   2521 
   2522 		fullpath(buf, sizeof(buf), cpuset_fts_get_path(cs_entry));
   2523 		if (rmdir(buf) < 0 && errno != ENOENT) {
   2524 			sav_errno = errno;
   2525 			ret = -1;
   2526 		}
   2527 	}
   2528 	cpuset_fts_close(cs_tree);
   2529 	/* fall into ... */
   2530 no_more_cpuset:
   2531 	if (ret == 0)
   2532 		errno = 0;
   2533 	else
   2534 		errno = sav_errno;
   2535 	return ret;
   2536 }
   2537 
   2538 /*
   2539  * When recursively reading all the tasks files from a subtree,
   2540  * chain together the read results, one pidblock per tasks file,
   2541  * containing the raw unprocessed ascii as read(2) in.  After
   2542  * we gather up this raw data, we then go back to count how
   2543  * many pid's there are in total, allocate an array of pid_t
   2544  * of that size, and transform the raw ascii data into this
   2545  * array of pid_t's.
   2546  */
   2547 
   2548 struct pidblock {
   2549 	char *buf;
   2550 	int buflen;
   2551 	struct pidblock *next;
   2552 };
   2553 
   2554 /*
   2555  * Chain the raw contents of a file onto the pbhead list.
   2556  *
   2557  * We malloc "+ 1" extra byte for a nul-terminator, so that
   2558  * the strtoul() loop in pid_transform() won't scan past
   2559  * the end of pb->buf[] and accidentally find more pids.
   2560  */
   2561 static void add_pidblock(const char *file, struct pidblock **ppbhead)
   2562 {
   2563 	FILE *fp = NULL;
   2564 	struct pidblock *pb = NULL;
   2565 	int fsz;
   2566 
   2567 	if ((fp = fopen(file, "r")) == NULL)
   2568 		goto err;
   2569 	fsz = filesize(fp);
   2570 	if (fsz == 0)
   2571 		goto err;
   2572 	if ((pb = calloc(1, sizeof(*pb))) == NULL)
   2573 		goto err;
   2574 	pb->buflen = fsz;
   2575 	if ((pb->buf = malloc(pb->buflen + 1)) == NULL)
   2576 		goto err;
   2577 	if (fread(pb->buf, 1, pb->buflen, fp) > 0) {
   2578 		pb->buf[pb->buflen] = '\0';
   2579 		pb->next = *ppbhead;
   2580 		*ppbhead = pb;
   2581 	}
   2582 	fclose(fp);
   2583 	return;
   2584 err:
   2585 	if (fp)
   2586 		fclose(fp);
   2587 	free(pb);
   2588 }
   2589 
   2590 static void read_task_file(const char *relpath, struct pidblock **ppbhead)
   2591 {
   2592 	char buf[PATH_MAX];
   2593 
   2594 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2595 	add_pidblock(buf, ppbhead);
   2596 }
   2597 
   2598 struct cpuset_pidlist {
   2599 	pid_t *pids;
   2600 	int npids;
   2601 };
   2602 
   2603 /* Count how many pids in buf (one per line - just count newlines) */
   2604 static int pidcount(const char *buf, int buflen)
   2605 {
   2606 	int n = 0;
   2607 	const char *cp;
   2608 
   2609 	for (cp = buf; cp < buf + buflen; cp++) {
   2610 		if (*cp == '\n')
   2611 			n++;
   2612 	}
   2613 	return n;
   2614 }
   2615 
   2616 /* Transform one-per-line ascii pids in pb to pid_t entries in pl */
   2617 static int pid_transform(struct pidblock *pb, struct cpuset_pidlist *pl, int n)
   2618 {
   2619 	char *a, *b;
   2620 
   2621 	for (a = pb->buf; a < pb->buf + pb->buflen; a = b) {
   2622 		pid_t p = strtoul(a, &b, 10);
   2623 		if (a == b)
   2624 			break;
   2625 		pl->pids[n++] = p;
   2626 	}
   2627 	return n;
   2628 }
   2629 
   2630 static void free_pidblocks(struct pidblock *pbhead)
   2631 {
   2632 	struct pidblock *pb, *nextpb;
   2633 
   2634 	for (pb = pbhead; pb; pb = nextpb) {
   2635 		nextpb = pb->next;
   2636 		free(pb->buf);
   2637 		free(pb);
   2638 	}
   2639 }
   2640 
   2641 /* numeric comparison routine for qsort */
   2642 static int numericsort(const void *m1, const void *m2)
   2643 {
   2644 	pid_t p1 = *(pid_t *) m1;
   2645 	pid_t p2 = *(pid_t *) m2;
   2646 
   2647 	return p1 - p2;
   2648 }
   2649 
   2650 /* Return list pids in cpuset 'path' */
   2651 struct cpuset_pidlist *cpuset_init_pidlist(const char *relpath,
   2652 					   int recursiveflag)
   2653 {
   2654 	struct pidblock *pb = NULL;
   2655 	struct cpuset_pidlist *pl = NULL;
   2656 	struct pidblock *pbhead = NULL;
   2657 	int n;
   2658 
   2659 	if (check() < 0)
   2660 		goto err;
   2661 
   2662 	if (recursiveflag) {
   2663 		struct cpuset_fts_tree *cs_tree;
   2664 		const struct cpuset_fts_entry *cs_entry;
   2665 
   2666 		if ((cs_tree = cpuset_fts_open(relpath)) == NULL)
   2667 			goto err;
   2668 		while ((cs_entry = cpuset_fts_read(cs_tree)) != NULL) {
   2669 			if (cpuset_fts_get_info(cs_entry) != CPUSET_FTS_CPUSET)
   2670 				continue;
   2671 			read_task_file(cpuset_fts_get_path(cs_entry), &pbhead);
   2672 		}
   2673 		cpuset_fts_close(cs_tree);
   2674 	} else {
   2675 		read_task_file(relpath, &pbhead);
   2676 	}
   2677 
   2678 	if ((pl = calloc(1, sizeof(*pl))) == NULL)
   2679 		goto err;
   2680 	pl->npids = 0;
   2681 	for (pb = pbhead; pb; pb = pb->next)
   2682 		pl->npids += pidcount(pb->buf, pb->buflen);
   2683 	if ((pl->pids = calloc(pl->npids, sizeof(pid_t))) == NULL)
   2684 		goto err;
   2685 	n = 0;
   2686 	for (pb = pbhead; pb; pb = pb->next)
   2687 		n = pid_transform(pb, pl, n);
   2688 	free_pidblocks(pbhead);
   2689 	qsort(pl->pids, pl->npids, sizeof(pid_t), numericsort);
   2690 	return pl;
   2691 err:
   2692 	cpuset_freepidlist(pl);
   2693 	free_pidblocks(pbhead);
   2694 	return NULL;
   2695 }
   2696 
   2697 /* Return number of elements in pidlist */
   2698 int cpuset_pidlist_length(const struct cpuset_pidlist *pl)
   2699 {
   2700 	if (pl)
   2701 		return pl->npids;
   2702 	else
   2703 		return 0;
   2704 }
   2705 
   2706 /* Return i'th element of pidlist */
   2707 pid_t cpuset_get_pidlist(const struct cpuset_pidlist * pl, int i)
   2708 {
   2709 	if (pl && i >= 0 && i < pl->npids)
   2710 		return pl->pids[i];
   2711 	else
   2712 		return (pid_t) - 1;
   2713 }
   2714 
   2715 /* Free pidlist */
   2716 void cpuset_freepidlist(struct cpuset_pidlist *pl)
   2717 {
   2718 	if (pl && pl->pids)
   2719 		free(pl->pids);
   2720 	free(pl);
   2721 }
   2722 
   2723 static int __cpuset_move(pid_t pid, const char *path)
   2724 {
   2725 	char buf[SMALL_BUFSZ];
   2726 
   2727 	snprintf(buf, sizeof(buf), "%u", pid);
   2728 	return write_string_file(path, buf);
   2729 }
   2730 
   2731 /* Move task (pid == 0 for current) to a cpuset */
   2732 int cpuset_move(pid_t pid, const char *relpath)
   2733 {
   2734 	char buf[PATH_MAX];
   2735 
   2736 	if (check() < 0)
   2737 		return -1;
   2738 
   2739 	if (pid == 0)
   2740 		pid = getpid();
   2741 
   2742 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2743 	return __cpuset_move(pid, buf);
   2744 }
   2745 
   2746 /* Move all tasks in pidlist to a cpuset */
   2747 int cpuset_move_all(struct cpuset_pidlist *pl, const char *relpath)
   2748 {
   2749 	int i;
   2750 	char buf[PATH_MAX];
   2751 	int ret;
   2752 
   2753 	if (check() < 0)
   2754 		return -1;
   2755 
   2756 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2757 
   2758 	ret = 0;
   2759 	for (i = 0; i < pl->npids; i++)
   2760 		if (__cpuset_move(pl->pids[i], buf) < 0)
   2761 			ret = -1;
   2762 	return ret;
   2763 }
   2764 
   2765 /*
   2766  * [optional] cpuset_move_cpuset_tasks() - Move all tasks in a
   2767  *                                      cpuset to another cpuset
   2768  *
   2769  * Move all tasks in cpuset fromrelpath to cpuset torelpath. This may
   2770  * race with tasks being added to or forking into fromrelpath. Loop
   2771  * repeatedly, reading the tasks file of cpuset fromrelpath and writing
   2772  * any task pid's found there to the tasks file of cpuset torelpath,
   2773  * up to ten attempts, or until the tasks file of cpuset fromrelpath
   2774  * is empty, or until fromrelpath is no longer present.
   2775  *
   2776  * Returns 0 with errno == 0 if able to empty the tasks file of cpuset
   2777  * fromrelpath. Of course it is still possible that some independent
   2778  * task could add another task to cpuset fromrelpath at the same time
   2779  * that such a successful result is being returned, so there can be
   2780  * no guarantee that a successful return means that fromrelpath is
   2781  * still empty of tasks.
   2782  *
   2783  * We are careful to allow for the possibility that the cpuset
   2784  * fromrelpath might disappear out from under us, perhaps because it
   2785  * has notify_on_release set and gets automatically removed as soon
   2786  * as we detach its last task from it.  Consider a missing fromrelpath
   2787  * to be a successful move.
   2788  *
   2789  * If called with fromrelpath and torelpath pathnames that evaluate to
   2790  * the same cpuset, then treat that as if cpuset_reattach() was called,
   2791  * rebinding each task in this cpuset one time, and return success or
   2792  * failure depending on the return of that cpuset_reattach() call.
   2793  *
   2794  * On failure, returns -1, with errno possibly one of:
   2795  *  EACCES - search permission denied on intervening directory
   2796  *  ENOTEMPTY - tasks remain after multiple attempts to move them
   2797  *  EMFILE - too many open files
   2798  *  ENODEV - /dev/cpuset not mounted
   2799  *  ENOENT - component of cpuset path doesn't exist
   2800  *  ENOMEM - out of memory
   2801  *  ENOSYS - kernel doesn't support cpusets
   2802  *  ENOTDIR - component of cpuset path is not a directory
   2803  *  EPERM - lacked permission to kill a task
   2804  *  EPERM - lacked permission to read cpusets or files therein
   2805  *
   2806  * This is an [optional] function. Use cpuset_function to invoke it.
   2807  */
   2808 
   2809 #define NUMBER_MOVE_TASK_ATTEMPTS 10
   2810 
   2811 int cpuset_move_cpuset_tasks(const char *fromrelpath, const char *torelpath)
   2812 {
   2813 	char fromfullpath[PATH_MAX];
   2814 	char tofullpath[PATH_MAX];
   2815 	int i;
   2816 	struct cpuset_pidlist *pl = NULL;
   2817 	int sav_errno;
   2818 
   2819 	fullpath(fromfullpath, sizeof(fromfullpath), fromrelpath);
   2820 	fullpath(tofullpath, sizeof(tofullpath), torelpath);
   2821 
   2822 	if (samefile(fromfullpath, tofullpath))
   2823 		return cpuset_reattach(fromrelpath);
   2824 
   2825 	for (i = 0; i < NUMBER_MOVE_TASK_ATTEMPTS; i++) {
   2826 		int plen, j;
   2827 
   2828 		if ((pl = cpuset_init_pidlist(fromrelpath, 0)) == NULL) {
   2829 			/* missing cpuset is as good as if all moved */
   2830 			if (errno == ENOENT)
   2831 				goto no_more_cpuset;
   2832 
   2833 			/* other problems reading cpuset are bad news */
   2834 			sav_errno = errno;
   2835 			goto failed;
   2836 		}
   2837 
   2838 		if ((plen = cpuset_pidlist_length(pl)) == 0)
   2839 			goto no_more_pids;
   2840 
   2841 		for (j = 0; j < plen; j++) {
   2842 			pid_t pid;
   2843 
   2844 			pid = cpuset_get_pidlist(pl, j);
   2845 			if (cpuset_move(pid, torelpath) < 0) {
   2846 				/* missing task is as good as if moved */
   2847 				if (errno == ESRCH)
   2848 					continue;
   2849 
   2850 				/* other per-task errors are bad news */
   2851 				sav_errno = errno;
   2852 				goto failed;
   2853 			}
   2854 		}
   2855 
   2856 		cpuset_freepidlist(pl);
   2857 		pl = NULL;
   2858 	}
   2859 
   2860 	sav_errno = ENOTEMPTY;
   2861 	/* fall into ... */
   2862 failed:
   2863 	cpuset_freepidlist(pl);
   2864 	errno = sav_errno;
   2865 	return -1;
   2866 
   2867 no_more_pids:
   2868 no_more_cpuset:
   2869 	/* Success - all tasks (or entire cpuset ;) gone. */
   2870 	cpuset_freepidlist(pl);
   2871 	errno = 0;
   2872 	return 0;
   2873 }
   2874 
   2875 /* Migrate task (pid == 0 for current) to a cpuset (moves task and memory) */
   2876 int cpuset_migrate(pid_t pid, const char *relpath)
   2877 {
   2878 	char buf[PATH_MAX];
   2879 	char buf2[PATH_MAX];
   2880 	char memory_migrate_flag;
   2881 	int r;
   2882 
   2883 	if (check() < 0)
   2884 		return -1;
   2885 
   2886 	if (pid == 0)
   2887 		pid = getpid();
   2888 
   2889 	fullpath(buf2, sizeof(buf2), relpath);
   2890 
   2891 	if (load_flag(buf2, &memory_migrate_flag, "memory_migrate") < 0)
   2892 		return -1;
   2893 	if (store_flag(buf2, "memory_migrate", 1) < 0)
   2894 		return -1;
   2895 
   2896 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2897 
   2898 	r = __cpuset_move(pid, buf);
   2899 
   2900 	store_flag(buf2, "memory_migrate", memory_migrate_flag);
   2901 	return r;
   2902 }
   2903 
   2904 /* Migrate all tasks in pidlist to a cpuset (moves task and memory) */
   2905 int cpuset_migrate_all(struct cpuset_pidlist *pl, const char *relpath)
   2906 {
   2907 	int i;
   2908 	char buf[PATH_MAX];
   2909 	char buf2[PATH_MAX];
   2910 	char memory_migrate_flag;
   2911 	int ret;
   2912 
   2913 	if (check() < 0)
   2914 		return -1;
   2915 
   2916 	fullpath(buf2, sizeof(buf2), relpath);
   2917 
   2918 	if (load_flag(buf2, &memory_migrate_flag, "memory_migrate") < 0)
   2919 		return -1;
   2920 	if (store_flag(buf2, "memory_migrate", 1) < 0)
   2921 		return -1;
   2922 
   2923 	fullpath2(buf, sizeof(buf), relpath, "tasks");
   2924 
   2925 	ret = 0;
   2926 	for (i = 0; i < pl->npids; i++)
   2927 		if (__cpuset_move(pl->pids[i], buf) < 0)
   2928 			ret = -1;
   2929 
   2930 	if (store_flag(buf2, "memory_migrate", memory_migrate_flag) < 0)
   2931 		ret = -1;
   2932 	return ret;
   2933 }
   2934 
   2935 /* Rebind cpus_allowed of each task in cpuset 'path' */
   2936 int cpuset_reattach(const char *relpath)
   2937 {
   2938 	struct cpuset_pidlist *pl;
   2939 	int rc;
   2940 
   2941 	if ((pl = cpuset_init_pidlist(relpath, 0)) == NULL)
   2942 		return -1;
   2943 	rc = cpuset_move_all(pl, relpath);
   2944 	cpuset_freepidlist(pl);
   2945 	return rc;
   2946 }
   2947 
   2948 /* Map cpuset relative cpu number to system wide cpu number */
   2949 int cpuset_c_rel_to_sys_cpu(const struct cpuset *cp, int cpu)
   2950 {
   2951 	struct cpuset *cp_tofree = NULL;
   2952 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
   2953 	int pos = -1;
   2954 
   2955 	if (!cp1)
   2956 		goto err;
   2957 	pos = bitmask_rel_to_abs_pos(cp1->cpus, cpu);
   2958 	/* fall into ... */
   2959 err:
   2960 	cpuset_free(cp_tofree);
   2961 	return pos;
   2962 }
   2963 
   2964 /* Map system wide cpu number to cpuset relative cpu number */
   2965 int cpuset_c_sys_to_rel_cpu(const struct cpuset *cp, int cpu)
   2966 {
   2967 	struct cpuset *cp_tofree = NULL;
   2968 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
   2969 	int pos = -1;
   2970 
   2971 	if (!cp1)
   2972 		goto err;
   2973 	pos = bitmask_abs_to_rel_pos(cp1->cpus, cpu);
   2974 	/* fall into ... */
   2975 err:
   2976 	cpuset_free(cp_tofree);
   2977 	return pos;
   2978 }
   2979 
   2980 /* Map cpuset relative mem number to system wide mem number */
   2981 int cpuset_c_rel_to_sys_mem(const struct cpuset *cp, int mem)
   2982 {
   2983 	struct cpuset *cp_tofree = NULL;
   2984 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
   2985 	int pos = -1;
   2986 
   2987 	if (!cp1)
   2988 		goto err;
   2989 	pos = bitmask_rel_to_abs_pos(cp1->mems, mem);
   2990 	/* fall into ... */
   2991 err:
   2992 	cpuset_free(cp_tofree);
   2993 	return pos;
   2994 }
   2995 
   2996 /* Map system wide mem number to cpuset relative mem number */
   2997 int cpuset_c_sys_to_rel_mem(const struct cpuset *cp, int mem)
   2998 {
   2999 	struct cpuset *cp_tofree = NULL;
   3000 	const struct cpuset *cp1 = resolve_cp(cp, &cp_tofree);
   3001 	int pos = -1;
   3002 
   3003 	if (!cp1)
   3004 		goto err;
   3005 	pos = bitmask_abs_to_rel_pos(cp1->mems, mem);
   3006 	/* fall into ... */
   3007 err:
   3008 	cpuset_free(cp_tofree);
   3009 	return pos;
   3010 }
   3011 
   3012 /* Map pid's cpuset relative cpu number to system wide cpu number */
   3013 int cpuset_p_rel_to_sys_cpu(pid_t pid, int cpu)
   3014 {
   3015 	struct cpuset *cp;
   3016 	int rc = -1;
   3017 
   3018 	if ((cp = cpuset_alloc()) == NULL)
   3019 		goto done;
   3020 	if (cpuset_cpusetofpid(cp, pid) < 0)
   3021 		goto done;
   3022 	rc = cpuset_c_rel_to_sys_cpu(cp, cpu);
   3023 done:
   3024 	cpuset_free(cp);
   3025 	return rc;
   3026 }
   3027 
   3028 /* Map system wide cpu number to pid's cpuset relative cpu number */
   3029 int cpuset_p_sys_to_rel_cpu(pid_t pid, int cpu)
   3030 {
   3031 	struct cpuset *cp;
   3032 	int rc = -1;
   3033 
   3034 	if ((cp = cpuset_alloc()) == NULL)
   3035 		goto done;
   3036 	if (cpuset_cpusetofpid(cp, pid) < 0)
   3037 		goto done;
   3038 	rc = cpuset_c_sys_to_rel_cpu(cp, cpu);
   3039 done:
   3040 	cpuset_free(cp);
   3041 	return rc;
   3042 }
   3043 
   3044 /* Map pid's cpuset relative mem number to system wide mem number */
   3045 int cpuset_p_rel_to_sys_mem(pid_t pid, int mem)
   3046 {
   3047 	struct cpuset *cp;
   3048 	int rc = -1;
   3049 
   3050 	if ((cp = cpuset_alloc()) == NULL)
   3051 		goto done;
   3052 	if (cpuset_cpusetofpid(cp, pid) < 0)
   3053 		goto done;
   3054 	rc = cpuset_c_rel_to_sys_mem(cp, mem);
   3055 done:
   3056 	cpuset_free(cp);
   3057 	return rc;
   3058 }
   3059 
   3060 /* Map system wide mem number to pid's cpuset relative mem number */
   3061 int cpuset_p_sys_to_rel_mem(pid_t pid, int mem)
   3062 {
   3063 	struct cpuset *cp;
   3064 	int rc = -1;
   3065 
   3066 	if ((cp = cpuset_alloc()) == NULL)
   3067 		goto done;
   3068 	if (cpuset_cpusetofpid(cp, pid) < 0)
   3069 		goto done;
   3070 	rc = cpuset_c_sys_to_rel_mem(cp, mem);
   3071 done:
   3072 	cpuset_free(cp);
   3073 	return rc;
   3074 }
   3075 
   3076 /*
   3077  * Override glibc's calls for get/set affinity - they have
   3078  * something using cpu_set_t that will die when NR_CPUS > 1024.
   3079  * Go directly to the 'real' system calls.  Also override calls
   3080  * for get_mempolicy and set_mempolicy.  None of these
   3081  * calls are yet (July 2004) guaranteed to be in all glibc versions
   3082  * that we care about.
   3083  */
   3084 
   3085 static int sched_setaffinity(pid_t pid, unsigned len, unsigned long *mask)
   3086 {
   3087 	return ltp_syscall(__NR_sched_setaffinity, pid, len, mask);
   3088 }
   3089 
   3090 #if HAVE_DECL_MPOL_F_ADDR && HAVE_DECL_MPOL_F_NODE
   3091 static int get_mempolicy(int *policy, unsigned long *nmask,
   3092 			 unsigned long maxnode, void *addr, int flags)
   3093 {
   3094 	return ltp_syscall(__NR_get_mempolicy, policy, nmask, maxnode,
   3095 		addr, flags);
   3096 }
   3097 #endif
   3098 
   3099 #if HAVE_DECL_MPOL_BIND || HAVE_DECL_MPOL_DEFAULT
   3100 static int set_mempolicy(int mode, unsigned long *nmask, unsigned long maxnode)
   3101 {
   3102 	return ltp_syscall(__NR_set_mempolicy, mode, nmask, maxnode);
   3103 }
   3104 #endif
   3105 
   3106 struct cpuset_placement {
   3107 	struct bitmask *cpus;
   3108 	struct bitmask *mems;
   3109 	char *path;
   3110 };
   3111 
   3112 /* Allocate and fill in a placement struct - cpatures current placement */
   3113 struct cpuset_placement *cpuset_get_placement(pid_t pid)
   3114 {
   3115 	struct cpuset_placement *plc;
   3116 	struct cpuset *cp = NULL;
   3117 	char buf[PATH_MAX];
   3118 	int nbits;
   3119 
   3120 	if ((plc = calloc(1, sizeof(*plc))) == NULL)
   3121 		goto err;
   3122 
   3123 	nbits = cpuset_cpus_nbits();
   3124 	if ((plc->cpus = bitmask_alloc(nbits)) == NULL)
   3125 		goto err;
   3126 
   3127 	nbits = cpuset_mems_nbits();
   3128 	if ((plc->mems = bitmask_alloc(nbits)) == NULL)
   3129 		goto err;
   3130 
   3131 	if ((cp = cpuset_alloc()) == NULL)
   3132 		goto err;
   3133 	if (cpuset_getcpusetpath(pid, buf, sizeof(buf)) == NULL)
   3134 		goto err;
   3135 	if (cpuset_query(cp, buf) < 0)
   3136 		goto err;
   3137 
   3138 	bitmask_copy(plc->cpus, cp->cpus);
   3139 	bitmask_copy(plc->mems, cp->mems);
   3140 	plc->path = strdup(buf);
   3141 
   3142 	cpuset_free(cp);
   3143 	return plc;
   3144 err:
   3145 	cpuset_free(cp);
   3146 	cpuset_free_placement(plc);
   3147 	return NULL;
   3148 }
   3149 
   3150 /* Compare two placement structs - use to detect changes in placement */
   3151 int cpuset_equal_placement(const struct cpuset_placement *plc1,
   3152 			   const struct cpuset_placement *plc2)
   3153 {
   3154 	return bitmask_equal(plc1->cpus, plc2->cpus) &&
   3155 	    bitmask_equal(plc1->mems, plc2->mems) &&
   3156 	    streq(plc1->path, plc2->path);
   3157 }
   3158 
   3159 /* Free a placement struct */
   3160 void cpuset_free_placement(struct cpuset_placement *plc)
   3161 {
   3162 	if (!plc)
   3163 		return;
   3164 	bitmask_free(plc->cpus);
   3165 	bitmask_free(plc->mems);
   3166 	free(plc->path);
   3167 	free(plc);
   3168 }
   3169 
   3170 /*
   3171  * A cpuset_fts_open() call constructs a linked list of entries
   3172  * called a "cpuset_fts_tree", with one entry per cpuset below
   3173  * the specified path.  The cpuset_fts_read() routine returns the
   3174  * next entry on this list.  The various cpuset_fts_get_*() calls
   3175  * return attributes of the specified entry.  The cpuset_fts_close()
   3176  * call frees the linked list and all associated data.  All cpuset
   3177  * entries and attributes for the cpuset_fts_tree returned from a
   3178  * given cpuset_fts_open() call remain allocated and unchanged until
   3179  * that cpuset_fts_tree is closed by a cpuset_fts_close() call.  Any
   3180  * subsequent changes to the cpuset filesystem will go unnoticed
   3181  * (not affect open cpuset_fts_tree's.)
   3182  */
   3183 
   3184 struct cpuset_fts_entry;
   3185 void cpuset_fts_rewind(struct cpuset_fts_tree *cs_tree);
   3186 
   3187 struct cpuset_fts_tree {
   3188 	struct cpuset_fts_entry *head;	/* head of linked entry list */
   3189 	struct cpuset_fts_entry *next;	/* cpuset_fts_read() offset */
   3190 };
   3191 
   3192 struct cpuset_fts_entry {
   3193 	struct cpuset_fts_entry *next;	/* linked entry list chain */
   3194 	struct cpuset *cpuset;
   3195 	struct stat *stat;
   3196 	char *path;
   3197 	int info;
   3198 	int err;
   3199 };
   3200 
   3201 /* Open a handle on a cpuset hierarchy.  All the real work is done here. */
   3202 struct cpuset_fts_tree *cpuset_fts_open(const char *cpusetpath)
   3203 {
   3204 	FTS *fts = NULL;
   3205 	FTSENT *ftsent;
   3206 	char *path_argv[2];
   3207 	char buf[PATH_MAX];
   3208 	struct cpuset_fts_tree *cs_tree = NULL;
   3209 	struct cpuset_fts_entry *ep;	/* the latest new list entry */
   3210 	struct cpuset_fts_entry **pnlep;	/* ptr to next list entry ptr */
   3211 	char *relpath;
   3212 	int fts_flags;
   3213 
   3214 	fullpath(buf, sizeof(buf), cpusetpath);
   3215 	path_argv[0] = buf;
   3216 	path_argv[1] = NULL;
   3217 
   3218 	fts_flags = FTS_PHYSICAL | FTS_NOCHDIR | FTS_NOSTAT | FTS_XDEV;
   3219 	fts = fts_open(path_argv, fts_flags, NULL);
   3220 	if (fts == NULL)
   3221 		goto err;
   3222 
   3223 	cs_tree = malloc(sizeof(*cs_tree));
   3224 	if (cs_tree == NULL)
   3225 		goto err;
   3226 	pnlep = &cs_tree->head;
   3227 	*pnlep = NULL;
   3228 
   3229 	while ((ftsent = fts_read(fts)) != NULL) {
   3230 		if (ftsent->fts_info != FTS_D && ftsent->fts_info != FTS_DNR)
   3231 			continue;
   3232 
   3233 		/* ftsent is a directory (perhaps unreadable) ==> cpuset */
   3234 		ep = calloc(1, sizeof(*ep));
   3235 		if (ep == NULL)
   3236 			goto err;
   3237 		*pnlep = ep;
   3238 		pnlep = &ep->next;
   3239 
   3240 		/* Set entry's path, and if DNR, error */
   3241 		relpath = ftsent->fts_path + strlen(cpusetmnt);
   3242 		if (strlen(relpath) == 0)
   3243 			relpath = "/";
   3244 		ep->path = strdup(relpath);
   3245 		if (ep->path == NULL)
   3246 			goto err;
   3247 		if (ftsent->fts_info == FTS_DNR) {
   3248 			ep->info = CPUSET_FTS_ERR_DNR;
   3249 			ep->err = ftsent->fts_errno;
   3250 			continue;
   3251 		}
   3252 
   3253 		/* ftsent is a -readable- cpuset: set entry's stat, etc */
   3254 		ep->stat = calloc(1, sizeof(struct stat));
   3255 		if (ep->stat == NULL)
   3256 			goto err;
   3257 		if (stat(ftsent->fts_path, ep->stat) < 0) {
   3258 			ep->info = CPUSET_FTS_ERR_STAT;
   3259 			ep->err = ftsent->fts_errno;
   3260 			continue;
   3261 		}
   3262 
   3263 		ep->cpuset = calloc(1, sizeof(struct cpuset));
   3264 		if (ep->cpuset == NULL)
   3265 			goto err;
   3266 		if (cpuset_query(ep->cpuset, relpath) < 0) {
   3267 			ep->info = CPUSET_FTS_ERR_CPUSET;
   3268 			ep->err = errno;
   3269 			continue;
   3270 		}
   3271 		ep->info = CPUSET_FTS_CPUSET;
   3272 	}
   3273 
   3274 	(void)fts_close(fts);
   3275 	cpuset_fts_rewind(cs_tree);
   3276 	return cs_tree;
   3277 
   3278 err:
   3279 	if (cs_tree)
   3280 		cpuset_fts_close(cs_tree);
   3281 	if (fts)
   3282 		(void)fts_close(fts);
   3283 	return NULL;
   3284 }
   3285 
   3286 /* Return pointer to next cpuset entry in hierarchy */
   3287 const struct cpuset_fts_entry *cpuset_fts_read(struct cpuset_fts_tree *cs_tree)
   3288 {
   3289 	const struct cpuset_fts_entry *cs_entry = cs_tree->next;
   3290 	if (cs_tree->next != NULL)	/* seek to next entry */
   3291 		cs_tree->next = cs_tree->next->next;
   3292 	return cs_entry;
   3293 }
   3294 
   3295 /* Reverse list of cpusets, in place.  Simulates pre-order/post-order flip. */
   3296 void cpuset_fts_reverse(struct cpuset_fts_tree *cs_tree)
   3297 {
   3298 	struct cpuset_fts_entry *cs1, *cs2, *cs3;
   3299 
   3300 	/*
   3301 	 * At each step, cs1 < cs2 < cs3 and the cs2->next pointer
   3302 	 * is redirected from cs3 to cs1.
   3303 	 */
   3304 
   3305 	cs1 = cs2 = NULL;
   3306 	cs3 = cs_tree->head;
   3307 	while (cs3) {
   3308 		cs1 = cs2;
   3309 		cs2 = cs3;
   3310 		cs3 = cs3->next;
   3311 		cs2->next = cs1;
   3312 	}
   3313 	cs_tree->head = cs2;
   3314 	cpuset_fts_rewind(cs_tree);
   3315 }
   3316 
   3317 /* Rewind cpuset list to beginning */
   3318 void cpuset_fts_rewind(struct cpuset_fts_tree *cs_tree)
   3319 {
   3320 	cs_tree->next = cs_tree->head;
   3321 }
   3322 
   3323 /* Return pointer to nul-terminated cpuset path of entry in hierarchy */
   3324 const char *cpuset_fts_get_path(const struct cpuset_fts_entry *cs_entry)
   3325 {
   3326 	return cs_entry->path;
   3327 }
   3328 
   3329 /* Return pointer to stat(2) structure of a cpuset entry's directory */
   3330 const struct stat *cpuset_fts_get_stat(const struct cpuset_fts_entry *cs_entry)
   3331 {
   3332 	return cs_entry->stat;
   3333 }
   3334 
   3335 /* Return pointer to cpuset structure of a cpuset entry */
   3336 const struct cpuset *cpuset_fts_get_cpuset(const struct cpuset_fts_entry
   3337 					   *cs_entry)
   3338 {
   3339 	return cs_entry->cpuset;
   3340 }
   3341 
   3342 /* Return value of errno (0 if no error) on attempted cpuset operations */
   3343 int cpuset_fts_get_errno(const struct cpuset_fts_entry *cs_entry)
   3344 {
   3345 	return cs_entry->err;
   3346 }
   3347 
   3348 /* Return operation identity causing error */
   3349 int cpuset_fts_get_info(const struct cpuset_fts_entry *cs_entry)
   3350 {
   3351 	return cs_entry->info;
   3352 }
   3353 
   3354 /* Close a cpuset hierarchy handle (free's all associated memory) */
   3355 void cpuset_fts_close(struct cpuset_fts_tree *cs_tree)
   3356 {
   3357 	struct cpuset_fts_entry *cs_entry = cs_tree->head;
   3358 
   3359 	while (cs_entry) {
   3360 		struct cpuset_fts_entry *ep = cs_entry;
   3361 
   3362 		cs_entry = cs_entry->next;
   3363 		free(ep->path);
   3364 		free(ep->stat);
   3365 		cpuset_free(ep->cpuset);
   3366 		free(ep);
   3367 	}
   3368 	free(cs_tree);
   3369 }
   3370 
   3371 /* Bind current task to cpu (uses sched_setaffinity(2)) */
   3372 int cpuset_cpubind(int cpu)
   3373 {
   3374 	struct bitmask *bmp;
   3375 	int r;
   3376 
   3377 	if ((bmp = bitmask_alloc(cpuset_cpus_nbits())) == NULL)
   3378 		return -1;
   3379 	bitmask_setbit(bmp, cpu);
   3380 	r = sched_setaffinity(0, bitmask_nbytes(bmp), bitmask_mask(bmp));
   3381 	bitmask_free(bmp);
   3382 	return r;
   3383 }
   3384 
   3385 /*
   3386  * int cpuset_latestcpu(pid_t pid)
   3387  *
   3388  * Return most recent CPU on which task pid executed.  If pid == 0,
   3389  * examine current task.
   3390  *
   3391  * The last used CPU is visible for a given pid as field #39 (starting
   3392  * with #1) in the file /proc/pid/stat.  Currently this file has 41
   3393  * fields, in which case this is the 3rd to the last field.
   3394  *
   3395  * Unfortunately field #2 is a command name and might have embedded
   3396  * whitespace.  So we can't just count white space separated fields.
   3397  * Fortunately, this command name is surrounded by parentheses, as
   3398  * for example "(sh)", and that closing parenthesis is the last ')'
   3399  * character in the line.  No remaining fields can have embedded
   3400  * whitespace or parentheses.  So instead of looking for the 39th
   3401  * white space separated field, we can look for the 37th white space
   3402  * separated field past the last ')' character on the line.
   3403  */
   3404 
   3405 /* Return most recent CPU on which task pid executed */
   3406 int cpuset_latestcpu(pid_t pid)
   3407 {
   3408 	char buf[PATH_MAX];
   3409 	char *bp;
   3410 	int fd = -1;
   3411 	int cpu = -1;
   3412 
   3413 	if (pid == 0)
   3414 		snprintf(buf, sizeof(buf), "/proc/self/stat");
   3415 	else
   3416 		snprintf(buf, sizeof(buf), "/proc/%d/stat", pid);
   3417 
   3418 	if ((fd = open(buf, O_RDONLY)) < 0)
   3419 		goto err;
   3420 	if (read(fd, buf, sizeof(buf)) < 1)
   3421 		goto err;
   3422 	close(fd);
   3423 
   3424 	bp = strrchr(buf, ')');
   3425 	if (bp)
   3426 		sscanf(bp + 1, "%*s %*u %*u %*u %*u %*u %*u %*u " "%*u %*u %*u %*u %*u %*u %*u %*u %*u %*u " "%*u %*u %*u %*u %*u %*u %*u %*u %*u %*u " "%*u %*u %*u %*u %*u %*u %*u %*u %u",	/* 37th field past ')' */
   3427 		       &cpu);
   3428 	if (cpu < 0)
   3429 		errno = EINVAL;
   3430 	return cpu;
   3431 err:
   3432 	if (fd >= 0)
   3433 		close(fd);
   3434 	return -1;
   3435 }
   3436 
   3437 /* Bind current task to memory (uses set_mempolicy(2)) */
   3438 int cpuset_membind(int mem)
   3439 {
   3440 	struct bitmask *bmp;
   3441 	int r;
   3442 
   3443 	if ((bmp = bitmask_alloc(cpuset_mems_nbits())) == NULL)
   3444 		return -1;
   3445 	bitmask_setbit(bmp, mem);
   3446 #if HAVE_DECL_MPOL_BIND
   3447 	r = set_mempolicy(MPOL_BIND, bitmask_mask(bmp), bitmask_nbits(bmp) + 1);
   3448 #else
   3449 	r = -1;
   3450 	errno = ENOSYS;
   3451 #endif
   3452 	bitmask_free(bmp);
   3453 	return r;
   3454 }
   3455 
   3456 /* [optional] Return Memory Node holding page at specified addr */
   3457 int cpuset_addr2node(void *addr)
   3458 {
   3459 	int node = -1;
   3460 
   3461 #if HAVE_DECL_MPOL_F_ADDR && HAVE_DECL_MPOL_F_NODE
   3462 	if (get_mempolicy(&node, NULL, 0, addr, MPOL_F_NODE | MPOL_F_ADDR)) {
   3463 		/* I realize this seems redundant, but I _want_ to make sure
   3464 		 * that this value is -1. */
   3465 		node = -1;
   3466 	}
   3467 #endif
   3468 	return node;
   3469 }
   3470 
   3471 /*
   3472  * Transform cpuset into Text Format Representation in buffer 'buf',
   3473  * of length 'buflen', nul-terminated if space allows.  Return number
   3474  * of characters that would have been written, if enough space had
   3475  * been available, in the same way that snprintf() does.
   3476  */
   3477 
   3478 /* Export cpuset settings to a regular file */
   3479 int cpuset_export(const struct cpuset *cp, char *buf, int buflen)
   3480 {
   3481 	char *tmp = NULL;
   3482 	int n = 0;
   3483 
   3484 	if (cp->cpu_exclusive)
   3485 		n += snprintf(buf + n, MAX(buflen - n, 0), "cpu_exclusive\n");
   3486 
   3487 	if (cp->mem_exclusive)
   3488 		n += snprintf(buf + n, MAX(buflen - n, 0), "mem_exclusive\n");
   3489 
   3490 	if (cp->notify_on_release)
   3491 		n += snprintf(buf + n, MAX(buflen - n, 0),
   3492 			      "notify_on_release\n");
   3493 
   3494 	if (cp->memory_pressure_enabled)
   3495 		n += snprintf(buf + n, MAX(buflen - n, 0),
   3496 			      "memory_pressure_enabled\n");
   3497 
   3498 	if (cp->memory_migrate)
   3499 		n += snprintf(buf + n, MAX(buflen - n, 0), "memory_migrate\n");
   3500 
   3501 	if (cp->memory_spread_page)
   3502 		n += snprintf(buf + n, MAX(buflen - n, 0),
   3503 			      "memory_spread_page\n");
   3504 
   3505 	if (cp->memory_spread_slab)
   3506 		n += snprintf(buf + n, MAX(buflen - n, 0),
   3507 			      "memory_spread_slab\n");
   3508 
   3509 	if ((tmp = sprint_mask_buf(cp->cpus)) == NULL)
   3510 		return -1;
   3511 	n += snprintf(buf + n, MAX(buflen - n, 0), "cpus %s\n", tmp);
   3512 	free(tmp);
   3513 	tmp = NULL;
   3514 
   3515 	if ((tmp = sprint_mask_buf(cp->mems)) == NULL)
   3516 		return -1;
   3517 	n += snprintf(buf + n, MAX(buflen - n, 0), "mems %s\n", tmp);
   3518 	free(tmp);
   3519 	tmp = NULL;
   3520 
   3521 	return n;
   3522 }
   3523 
   3524 static int import_list(UNUSED const char *tok, const char *arg,
   3525 		       struct bitmask *bmp, char *emsg, int elen)
   3526 {
   3527 	if (bitmask_parselist(arg, bmp) < 0) {
   3528 		if (emsg)
   3529 			snprintf(emsg, elen, "Invalid list format: %s", arg);
   3530 		return -1;
   3531 	}
   3532 	return 0;
   3533 }
   3534 
   3535 static void stolower(char *s)
   3536 {
   3537 	while (*s) {
   3538 		unsigned char c = *s;
   3539 		*s = tolower(c);
   3540 		s++;
   3541 	}
   3542 }
   3543 
   3544 /* Import cpuset settings from a regular file */
   3545 int cpuset_import(struct cpuset *cp, const char *buf, int *elinenum,
   3546 		  char *emsg, int elen)
   3547 {
   3548 	char *linebuf = NULL;
   3549 	int linebuflen;
   3550 	int linenum = 0;
   3551 	int offset = 0;
   3552 
   3553 	linebuflen = strlen(buf) + 1;
   3554 	if ((linebuf = malloc(linebuflen)) == NULL) {
   3555 		if (emsg)
   3556 			snprintf(emsg, elen, "Insufficient memory");
   3557 		goto err;
   3558 	}
   3559 
   3560 	while (slgets(linebuf, linebuflen, buf, &offset)) {
   3561 		char *tok, *arg;
   3562 		char *ptr;	/* for strtok_r */
   3563 
   3564 		linenum++;
   3565 		if ((tok = strchr(linebuf, '#')) != NULL)
   3566 			*tok = 0;
   3567 		if ((tok = strtok_r(linebuf, " \t", &ptr)) == NULL)
   3568 			continue;
   3569 		stolower(tok);
   3570 
   3571 		arg = strtok_r(0, " \t", &ptr);
   3572 
   3573 		if (streq(tok, "cpu_exclusive")) {
   3574 			cp->cpu_exclusive = 1;
   3575 			goto eol;
   3576 		}
   3577 		if (streq(tok, "mem_exclusive")) {
   3578 			cp->mem_exclusive = 1;
   3579 			goto eol;
   3580 		}
   3581 		if (streq(tok, "notify_on_release")) {
   3582 			cp->notify_on_release = 1;
   3583 			goto eol;
   3584 		}
   3585 		if (streq(tok, "memory_pressure_enabled")) {
   3586 			cp->memory_pressure_enabled = 1;
   3587 			goto eol;
   3588 		}
   3589 		if (streq(tok, "memory_migrate")) {
   3590 			cp->memory_migrate = 1;
   3591 			goto eol;
   3592 		}
   3593 		if (streq(tok, "memory_spread_page")) {
   3594 			cp->memory_spread_page = 1;
   3595 			goto eol;
   3596 		}
   3597 		if (streq(tok, "memory_spread_slab")) {
   3598 			cp->memory_spread_slab = 1;
   3599 			goto eol;
   3600 		}
   3601 		if (streq(tok, "cpu") || streq(tok, "cpus")) {
   3602 			if (import_list(tok, arg, cp->cpus, emsg, elen) < 0)
   3603 				goto err;
   3604 			goto eol;
   3605 		}
   3606 		if (streq(tok, "mem") || streq(tok, "mems")) {
   3607 			if (import_list(tok, arg, cp->mems, emsg, elen) < 0)
   3608 				goto err;
   3609 			goto eol;
   3610 		}
   3611 		if (emsg)
   3612 			snprintf(emsg, elen, "Unrecognized token: '%s'", tok);
   3613 		goto err;
   3614 eol:
   3615 		if ((tok = strtok_r(0, " \t", &ptr)) != NULL) {
   3616 			if (emsg)
   3617 				snprintf(emsg, elen, "Surplus token: '%s'",
   3618 					 tok);
   3619 			goto err;
   3620 		}
   3621 		continue;
   3622 	}
   3623 
   3624 	free(linebuf);
   3625 
   3626 	if (bitmask_isallclear(cp->cpus) && !bitmask_isallclear(cp->mems))
   3627 		cpuset_localcpus(cp->mems, cp->cpus);
   3628 	else if (!bitmask_isallclear(cp->cpus) && bitmask_isallclear(cp->mems))
   3629 		cpuset_localmems(cp->cpus, cp->mems);
   3630 
   3631 	/*
   3632 	 * All cpuset attributes are determined in an import.
   3633 	 * Those that aren't explicitly specified are presumed
   3634 	 * to be unchanged (zero, if it's a freshly allocated
   3635 	 * struct cpuset.)
   3636 	 */
   3637 
   3638 	cp->cpus_valid = 1;
   3639 	cp->mems_valid = 1;
   3640 	cp->cpu_exclusive_valid = 1;
   3641 	cp->mem_exclusive_valid = 1;
   3642 	cp->notify_on_release_valid = 1;
   3643 	cp->memory_migrate_valid = 1;
   3644 	cp->memory_pressure_enabled_valid = 1;
   3645 	cp->memory_spread_page_valid = 1;
   3646 	cp->memory_spread_slab_valid = 1;
   3647 
   3648 	return 0;
   3649 err:
   3650 	if (elinenum)
   3651 		*elinenum = linenum;
   3652 	free(linebuf);
   3653 	return -1;
   3654 }
   3655 
   3656 /* Pin current task CPU (and memory) */
   3657 int cpuset_pin(int relcpu)
   3658 {
   3659 	struct cpuset_placement *plc1 = NULL, *plc2 = NULL;
   3660 	int cpu, r;
   3661 
   3662 	if (check() < 0)
   3663 		return -1;
   3664 
   3665 	do {
   3666 		cpuset_free_placement(plc1);
   3667 		plc1 = cpuset_get_placement(0);
   3668 
   3669 		r = 0;
   3670 		if (cpuset_unpin() < 0)
   3671 			r = -1;
   3672 		cpu = cpuset_p_rel_to_sys_cpu(0, relcpu);
   3673 		if (cpuset_cpubind(cpu) < 0)
   3674 			r = -1;
   3675 
   3676 		cpuset_free_placement(plc2);
   3677 		plc2 = cpuset_get_placement(0);
   3678 	} while (!cpuset_equal_placement(plc1, plc2));
   3679 
   3680 	cpuset_free_placement(plc1);
   3681 	cpuset_free_placement(plc2);
   3682 	return r;
   3683 }
   3684 
   3685 /* Return number CPUs in current tasks cpuset */
   3686 int cpuset_size()
   3687 {
   3688 	struct cpuset_placement *plc1 = NULL, *plc2 = NULL;
   3689 	int r;
   3690 
   3691 	if (check() < 0)
   3692 		return -1;
   3693 
   3694 	do {
   3695 		cpuset_free_placement(plc1);
   3696 		plc1 = cpuset_get_placement(0);
   3697 
   3698 		r = cpuset_cpus_weight(0);
   3699 
   3700 		cpuset_free_placement(plc2);
   3701 		plc2 = cpuset_get_placement(0);
   3702 	} while (!cpuset_equal_placement(plc1, plc2));
   3703 
   3704 	cpuset_free_placement(plc1);
   3705 	cpuset_free_placement(plc2);
   3706 	return r;
   3707 }
   3708 
   3709 /* Return relative CPU number, within current cpuset, last executed on */
   3710 int cpuset_where()
   3711 {
   3712 	struct cpuset_placement *plc1 = NULL, *plc2 = NULL;
   3713 	int r;
   3714 
   3715 	if (check() < 0)
   3716 		return -1;
   3717 
   3718 	do {
   3719 		cpuset_free_placement(plc1);
   3720 		plc1 = cpuset_get_placement(0);
   3721 
   3722 		r = cpuset_p_sys_to_rel_cpu(0, cpuset_latestcpu(0));
   3723 
   3724 		cpuset_free_placement(plc2);
   3725 		plc2 = cpuset_get_placement(0);
   3726 	} while (!cpuset_equal_placement(plc1, plc2));
   3727 
   3728 	cpuset_free_placement(plc1);
   3729 	cpuset_free_placement(plc2);
   3730 	return r;
   3731 }
   3732 
   3733 /* Undo cpuset_pin - let current task have the run of all CPUs in its cpuset */
   3734 int cpuset_unpin()
   3735 {
   3736 	struct bitmask *cpus = NULL, *mems = NULL;
   3737 	int r = -1;
   3738 
   3739 	if (check() < 0)
   3740 		goto err;
   3741 
   3742 	/*
   3743 	 * Don't need cpuset_*_placement() guard against concurrent
   3744 	 * cpuset migration, because none of the following depends
   3745 	 * on the tasks cpuset placement.
   3746 	 */
   3747 
   3748 	if ((cpus = bitmask_alloc(cpuset_cpus_nbits())) == NULL)
   3749 		goto err;
   3750 	bitmask_setall(cpus);
   3751 	if (sched_setaffinity(0, bitmask_nbytes(cpus), bitmask_mask(cpus)) < 0)
   3752 		goto err;
   3753 
   3754 	if ((mems = bitmask_alloc(cpuset_mems_nbits())) == NULL)
   3755 		goto err;
   3756 #if HAVE_DECL_MPOL_DEFAULT
   3757 	if (set_mempolicy(MPOL_DEFAULT, bitmask_mask(mems),
   3758 			  bitmask_nbits(mems) + 1) < 0)
   3759 		goto err;
   3760 	r = 0;
   3761 #endif
   3762 	/* fall into ... */
   3763 err:
   3764 	bitmask_free(cpus);
   3765 	bitmask_free(mems);
   3766 	return r;
   3767 
   3768 }
   3769 
   3770 struct cpuset_function_list {
   3771 	const char *fname;
   3772 	void *func;
   3773 } flist[] = {
   3774 	{
   3775 	"cpuset_version", cpuset_version}, {
   3776 	"cpuset_alloc", cpuset_alloc}, {
   3777 	"cpuset_free", cpuset_free}, {
   3778 	"cpuset_cpus_nbits", cpuset_cpus_nbits}, {
   3779 	"cpuset_mems_nbits", cpuset_mems_nbits}, {
   3780 	"cpuset_setcpus", cpuset_setcpus}, {
   3781 	"cpuset_setmems", cpuset_setmems}, {
   3782 	"cpuset_set_iopt", cpuset_set_iopt}, {
   3783 	"cpuset_set_sopt", cpuset_set_sopt}, {
   3784 	"cpuset_getcpus", cpuset_getcpus}, {
   3785 	"cpuset_getmems", cpuset_getmems}, {
   3786 	"cpuset_cpus_weight", cpuset_cpus_weight}, {
   3787 	"cpuset_mems_weight", cpuset_mems_weight}, {
   3788 	"cpuset_get_iopt", cpuset_get_iopt}, {
   3789 	"cpuset_get_sopt", cpuset_get_sopt}, {
   3790 	"cpuset_localcpus", cpuset_localcpus}, {
   3791 	"cpuset_localmems", cpuset_localmems}, {
   3792 	"cpuset_cpumemdist", cpuset_cpumemdist}, {
   3793 	"cpuset_cpu2node", cpuset_cpu2node}, {
   3794 	"cpuset_addr2node", cpuset_addr2node}, {
   3795 	"cpuset_create", cpuset_create}, {
   3796 	"cpuset_delete", cpuset_delete}, {
   3797 	"cpuset_query", cpuset_query}, {
   3798 	"cpuset_modify", cpuset_modify}, {
   3799 	"cpuset_getcpusetpath", cpuset_getcpusetpath}, {
   3800 	"cpuset_cpusetofpid", cpuset_cpusetofpid}, {
   3801 	"cpuset_mountpoint", cpuset_mountpoint}, {
   3802 	"cpuset_collides_exclusive", cpuset_collides_exclusive}, {
   3803 	"cpuset_nuke", cpuset_nuke}, {
   3804 	"cpuset_init_pidlist", cpuset_init_pidlist}, {
   3805 	"cpuset_pidlist_length", cpuset_pidlist_length}, {
   3806 	"cpuset_get_pidlist", cpuset_get_pidlist}, {
   3807 	"cpuset_freepidlist", cpuset_freepidlist}, {
   3808 	"cpuset_move", cpuset_move}, {
   3809 	"cpuset_move_all", cpuset_move_all}, {
   3810 	"cpuset_move_cpuset_tasks", cpuset_move_cpuset_tasks}, {
   3811 	"cpuset_migrate", cpuset_migrate}, {
   3812 	"cpuset_migrate_all", cpuset_migrate_all}, {
   3813 	"cpuset_reattach", cpuset_reattach}, {
   3814 	"cpuset_open_memory_pressure", cpuset_open_memory_pressure}, {
   3815 	"cpuset_read_memory_pressure", cpuset_read_memory_pressure}, {
   3816 	"cpuset_close_memory_pressure", cpuset_close_memory_pressure}, {
   3817 	"cpuset_c_rel_to_sys_cpu", cpuset_c_rel_to_sys_cpu}, {
   3818 	"cpuset_c_sys_to_rel_cpu", cpuset_c_sys_to_rel_cpu}, {
   3819 	"cpuset_c_rel_to_sys_mem", cpuset_c_rel_to_sys_mem}, {
   3820 	"cpuset_c_sys_to_rel_mem", cpuset_c_sys_to_rel_mem}, {
   3821 	"cpuset_p_rel_to_sys_cpu", cpuset_p_rel_to_sys_cpu}, {
   3822 	"cpuset_p_sys_to_rel_cpu", cpuset_p_sys_to_rel_cpu}, {
   3823 	"cpuset_p_rel_to_sys_mem", cpuset_p_rel_to_sys_mem}, {
   3824 	"cpuset_p_sys_to_rel_mem", cpuset_p_sys_to_rel_mem}, {
   3825 	"cpuset_get_placement", cpuset_get_placement}, {
   3826 	"cpuset_equal_placement", cpuset_equal_placement}, {
   3827 	"cpuset_free_placement", cpuset_free_placement}, {
   3828 	"cpuset_fts_open", cpuset_fts_open}, {
   3829 	"cpuset_fts_read", cpuset_fts_read}, {
   3830 	"cpuset_fts_reverse", cpuset_fts_reverse}, {
   3831 	"cpuset_fts_rewind", cpuset_fts_rewind}, {
   3832 	"cpuset_fts_get_path", cpuset_fts_get_path}, {
   3833 	"cpuset_fts_get_stat", cpuset_fts_get_stat}, {
   3834 	"cpuset_fts_get_cpuset", cpuset_fts_get_cpuset}, {
   3835 	"cpuset_fts_get_errno", cpuset_fts_get_errno}, {
   3836 	"cpuset_fts_get_info", cpuset_fts_get_info}, {
   3837 	"cpuset_fts_close", cpuset_fts_close}, {
   3838 	"cpuset_cpubind", cpuset_cpubind}, {
   3839 	"cpuset_latestcpu", cpuset_latestcpu}, {
   3840 	"cpuset_membind", cpuset_membind}, {
   3841 	"cpuset_export", cpuset_export}, {
   3842 	"cpuset_import", cpuset_import}, {
   3843 	"cpuset_function", cpuset_function}, {
   3844 	"cpuset_pin", cpuset_pin}, {
   3845 	"cpuset_size", cpuset_size}, {
   3846 	"cpuset_where", cpuset_where}, {
   3847 "cpuset_unpin", cpuset_unpin},};
   3848 
   3849 /* Return pointer to a libcpuset.so function, or NULL */
   3850 void *cpuset_function(const char *function_name)
   3851 {
   3852 	unsigned int i;
   3853 
   3854 	for (i = 0; i < sizeof(flist) / sizeof(flist[0]); i++)
   3855 		if (streq(function_name, flist[i].fname))
   3856 			return flist[i].func;
   3857 	return NULL;
   3858 }
   3859 
   3860 /* Fortran interface to basic cpuset routines */
   3861 int cpuset_pin_(int *ptr_relcpu)
   3862 {
   3863 	return cpuset_pin(*ptr_relcpu);
   3864 }
   3865 
   3866 int cpuset_size_(void)
   3867 {
   3868 	return cpuset_size();
   3869 }
   3870 
   3871 int cpuset_where_(void)
   3872 {
   3873 	return cpuset_where();
   3874 }
   3875 
   3876 int cpuset_unpin_(void)
   3877 {
   3878 	return cpuset_unpin();
   3879 }
   3880 
   3881 #endif /* HAVE_LINUX_MEMPOLICY_H */
   3882