Home | History | Annotate | Download | only in geometry
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 package org.apache.commons.math.geometry;
     19 
     20 import java.io.Serializable;
     21 
     22 import org.apache.commons.math.MathRuntimeException;
     23 import org.apache.commons.math.exception.util.LocalizedFormats;
     24 import org.apache.commons.math.util.FastMath;
     25 
     26 /**
     27  * This class implements rotations in a three-dimensional space.
     28  *
     29  * <p>Rotations can be represented by several different mathematical
     30  * entities (matrices, axe and angle, Cardan or Euler angles,
     31  * quaternions). This class presents an higher level abstraction, more
     32  * user-oriented and hiding this implementation details. Well, for the
     33  * curious, we use quaternions for the internal representation. The
     34  * user can build a rotation from any of these representations, and
     35  * any of these representations can be retrieved from a
     36  * <code>Rotation</code> instance (see the various constructors and
     37  * getters). In addition, a rotation can also be built implicitly
     38  * from a set of vectors and their image.</p>
     39  * <p>This implies that this class can be used to convert from one
     40  * representation to another one. For example, converting a rotation
     41  * matrix into a set of Cardan angles from can be done using the
     42  * following single line of code:</p>
     43  * <pre>
     44  * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
     45  * </pre>
     46  * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
     47  * underlying representation. Once it has been built, and regardless of its
     48  * internal representation, a rotation is an <em>operator</em> which basically
     49  * transforms three dimensional {@link Vector3D vectors} into other three
     50  * dimensional {@link Vector3D vectors}. Depending on the application, the
     51  * meaning of these vectors may vary and the semantics of the rotation also.</p>
     52  * <p>For example in an spacecraft attitude simulation tool, users will often
     53  * consider the vectors are fixed (say the Earth direction for example) and the
     54  * frames change. The rotation transforms the coordinates of the vector in inertial
     55  * frame into the coordinates of the same vector in satellite frame. In this
     56  * case, the rotation implicitly defines the relation between the two frames.</p>
     57  * <p>Another example could be a telescope control application, where the rotation
     58  * would transform the sighting direction at rest into the desired observing
     59  * direction when the telescope is pointed towards an object of interest. In this
     60  * case the rotation transforms the direction at rest in a topocentric frame
     61  * into the sighting direction in the same topocentric frame. This implies in this
     62  * case the frame is fixed and the vector moves.</p>
     63  * <p>In many case, both approaches will be combined. In our telescope example,
     64  * we will probably also need to transform the observing direction in the topocentric
     65  * frame into the observing direction in inertial frame taking into account the observatory
     66  * location and the Earth rotation, which would essentially be an application of the
     67  * first approach.</p>
     68  *
     69  * <p>These examples show that a rotation is what the user wants it to be. This
     70  * class does not push the user towards one specific definition and hence does not
     71  * provide methods like <code>projectVectorIntoDestinationFrame</code> or
     72  * <code>computeTransformedDirection</code>. It provides simpler and more generic
     73  * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
     74  * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
     75  *
     76  * <p>Since a rotation is basically a vectorial operator, several rotations can be
     77  * composed together and the composite operation <code>r = r<sub>1</sub> o
     78  * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
     79  * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
     80  * we can consider that in addition to vectors, a rotation can be applied to other
     81  * rotations as well (or to itself). With our previous notations, we would say we
     82  * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
     83  * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
     84  * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
     85  * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
     86  *
     87  * <p>Rotations are guaranteed to be immutable objects.</p>
     88  *
     89  * @version $Revision: 1067500 $ $Date: 2011-02-05 21:11:30 +0100 (sam. 05 fvr. 2011) $
     90  * @see Vector3D
     91  * @see RotationOrder
     92  * @since 1.2
     93  */
     94 
     95 public class Rotation implements Serializable {
     96 
     97   /** Identity rotation. */
     98   public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);
     99 
    100   /** Serializable version identifier */
    101   private static final long serialVersionUID = -2153622329907944313L;
    102 
    103   /** Scalar coordinate of the quaternion. */
    104   private final double q0;
    105 
    106   /** First coordinate of the vectorial part of the quaternion. */
    107   private final double q1;
    108 
    109   /** Second coordinate of the vectorial part of the quaternion. */
    110   private final double q2;
    111 
    112   /** Third coordinate of the vectorial part of the quaternion. */
    113   private final double q3;
    114 
    115   /** Build a rotation from the quaternion coordinates.
    116    * <p>A rotation can be built from a <em>normalized</em> quaternion,
    117    * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
    118    * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
    119    * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
    120    * the constructor can normalize it in a preprocessing step.</p>
    121    * <p>Note that some conventions put the scalar part of the quaternion
    122    * as the 4<sup>th</sup> component and the vector part as the first three
    123    * components. This is <em>not</em> our convention. We put the scalar part
    124    * as the first component.</p>
    125    * @param q0 scalar part of the quaternion
    126    * @param q1 first coordinate of the vectorial part of the quaternion
    127    * @param q2 second coordinate of the vectorial part of the quaternion
    128    * @param q3 third coordinate of the vectorial part of the quaternion
    129    * @param needsNormalization if true, the coordinates are considered
    130    * not to be normalized, a normalization preprocessing step is performed
    131    * before using them
    132    */
    133   public Rotation(double q0, double q1, double q2, double q3,
    134                   boolean needsNormalization) {
    135 
    136     if (needsNormalization) {
    137       // normalization preprocessing
    138       double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
    139       q0 *= inv;
    140       q1 *= inv;
    141       q2 *= inv;
    142       q3 *= inv;
    143     }
    144 
    145     this.q0 = q0;
    146     this.q1 = q1;
    147     this.q2 = q2;
    148     this.q3 = q3;
    149 
    150   }
    151 
    152   /** Build a rotation from an axis and an angle.
    153    * <p>We use the convention that angles are oriented according to
    154    * the effect of the rotation on vectors around the axis. That means
    155    * that if (i, j, k) is a direct frame and if we first provide +k as
    156    * the axis and &pi;/2 as the angle to this constructor, and then
    157    * {@link #applyTo(Vector3D) apply} the instance to +i, we will get
    158    * +j.</p>
    159    * <p>Another way to represent our convention is to say that a rotation
    160    * of angle &theta; about the unit vector (x, y, z) is the same as the
    161    * rotation build from quaternion components { cos(-&theta;/2),
    162    * x * sin(-&theta;/2), y * sin(-&theta;/2), z * sin(-&theta;/2) }.
    163    * Note the minus sign on the angle!</p>
    164    * <p>On the one hand this convention is consistent with a vectorial
    165    * perspective (moving vectors in fixed frames), on the other hand it
    166    * is different from conventions with a frame perspective (fixed vectors
    167    * viewed from different frames) like the ones used for example in spacecraft
    168    * attitude community or in the graphics community.</p>
    169    * @param axis axis around which to rotate
    170    * @param angle rotation angle.
    171    * @exception ArithmeticException if the axis norm is zero
    172    */
    173   public Rotation(Vector3D axis, double angle) {
    174 
    175     double norm = axis.getNorm();
    176     if (norm == 0) {
    177       throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS);
    178     }
    179 
    180     double halfAngle = -0.5 * angle;
    181     double coeff = FastMath.sin(halfAngle) / norm;
    182 
    183     q0 = FastMath.cos (halfAngle);
    184     q1 = coeff * axis.getX();
    185     q2 = coeff * axis.getY();
    186     q3 = coeff * axis.getZ();
    187 
    188   }
    189 
    190   /** Build a rotation from a 3X3 matrix.
    191 
    192    * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
    193    * (which are matrices for which m.m<sup>T</sup> = I) with real
    194    * coefficients. The module of the determinant of unit matrices is
    195    * 1, among the orthogonal 3X3 matrices, only the ones having a
    196    * positive determinant (+1) are rotation matrices.</p>
    197    *
    198    * <p>When a rotation is defined by a matrix with truncated values
    199    * (typically when it is extracted from a technical sheet where only
    200    * four to five significant digits are available), the matrix is not
    201    * orthogonal anymore. This constructor handles this case
    202    * transparently by using a copy of the given matrix and applying a
    203    * correction to the copy in order to perfect its orthogonality. If
    204    * the Frobenius norm of the correction needed is above the given
    205    * threshold, then the matrix is considered to be too far from a
    206    * true rotation matrix and an exception is thrown.<p>
    207    *
    208    * @param m rotation matrix
    209    * @param threshold convergence threshold for the iterative
    210    * orthogonality correction (convergence is reached when the
    211    * difference between two steps of the Frobenius norm of the
    212    * correction is below this threshold)
    213    *
    214    * @exception NotARotationMatrixException if the matrix is not a 3X3
    215    * matrix, or if it cannot be transformed into an orthogonal matrix
    216    * with the given threshold, or if the determinant of the resulting
    217    * orthogonal matrix is negative
    218    *
    219    */
    220   public Rotation(double[][] m, double threshold)
    221     throws NotARotationMatrixException {
    222 
    223     // dimension check
    224     if ((m.length != 3) || (m[0].length != 3) ||
    225         (m[1].length != 3) || (m[2].length != 3)) {
    226       throw new NotARotationMatrixException(
    227               LocalizedFormats.ROTATION_MATRIX_DIMENSIONS,
    228               m.length, m[0].length);
    229     }
    230 
    231     // compute a "close" orthogonal matrix
    232     double[][] ort = orthogonalizeMatrix(m, threshold);
    233 
    234     // check the sign of the determinant
    235     double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
    236                  ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
    237                  ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
    238     if (det < 0.0) {
    239       throw new NotARotationMatrixException(
    240               LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
    241               det);
    242     }
    243 
    244     // There are different ways to compute the quaternions elements
    245     // from the matrix. They all involve computing one element from
    246     // the diagonal of the matrix, and computing the three other ones
    247     // using a formula involving a division by the first element,
    248     // which unfortunately can be zero. Since the norm of the
    249     // quaternion is 1, we know at least one element has an absolute
    250     // value greater or equal to 0.5, so it is always possible to
    251     // select the right formula and avoid division by zero and even
    252     // numerical inaccuracy. Checking the elements in turn and using
    253     // the first one greater than 0.45 is safe (this leads to a simple
    254     // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
    255     double s = ort[0][0] + ort[1][1] + ort[2][2];
    256     if (s > -0.19) {
    257       // compute q0 and deduce q1, q2 and q3
    258       q0 = 0.5 * FastMath.sqrt(s + 1.0);
    259       double inv = 0.25 / q0;
    260       q1 = inv * (ort[1][2] - ort[2][1]);
    261       q2 = inv * (ort[2][0] - ort[0][2]);
    262       q3 = inv * (ort[0][1] - ort[1][0]);
    263     } else {
    264       s = ort[0][0] - ort[1][1] - ort[2][2];
    265       if (s > -0.19) {
    266         // compute q1 and deduce q0, q2 and q3
    267         q1 = 0.5 * FastMath.sqrt(s + 1.0);
    268         double inv = 0.25 / q1;
    269         q0 = inv * (ort[1][2] - ort[2][1]);
    270         q2 = inv * (ort[0][1] + ort[1][0]);
    271         q3 = inv * (ort[0][2] + ort[2][0]);
    272       } else {
    273         s = ort[1][1] - ort[0][0] - ort[2][2];
    274         if (s > -0.19) {
    275           // compute q2 and deduce q0, q1 and q3
    276           q2 = 0.5 * FastMath.sqrt(s + 1.0);
    277           double inv = 0.25 / q2;
    278           q0 = inv * (ort[2][0] - ort[0][2]);
    279           q1 = inv * (ort[0][1] + ort[1][0]);
    280           q3 = inv * (ort[2][1] + ort[1][2]);
    281         } else {
    282           // compute q3 and deduce q0, q1 and q2
    283           s = ort[2][2] - ort[0][0] - ort[1][1];
    284           q3 = 0.5 * FastMath.sqrt(s + 1.0);
    285           double inv = 0.25 / q3;
    286           q0 = inv * (ort[0][1] - ort[1][0]);
    287           q1 = inv * (ort[0][2] + ort[2][0]);
    288           q2 = inv * (ort[2][1] + ort[1][2]);
    289         }
    290       }
    291     }
    292 
    293   }
    294 
    295   /** Build the rotation that transforms a pair of vector into another pair.
    296 
    297    * <p>Except for possible scale factors, if the instance were applied to
    298    * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
    299    * (v<sub>1</sub>, v<sub>2</sub>).</p>
    300    *
    301    * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
    302    * not the same as the angular separation between v<sub>1</sub> and
    303    * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
    304    * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
    305    * v<sub>2</sub>) plane.</p>
    306    *
    307    * @param u1 first vector of the origin pair
    308    * @param u2 second vector of the origin pair
    309    * @param v1 desired image of u1 by the rotation
    310    * @param v2 desired image of u2 by the rotation
    311    * @exception IllegalArgumentException if the norm of one of the vectors is zero
    312    */
    313   public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
    314 
    315   // norms computation
    316   double u1u1 = Vector3D.dotProduct(u1, u1);
    317   double u2u2 = Vector3D.dotProduct(u2, u2);
    318   double v1v1 = Vector3D.dotProduct(v1, v1);
    319   double v2v2 = Vector3D.dotProduct(v2, v2);
    320   if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
    321     throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
    322   }
    323 
    324   double u1x = u1.getX();
    325   double u1y = u1.getY();
    326   double u1z = u1.getZ();
    327 
    328   double u2x = u2.getX();
    329   double u2y = u2.getY();
    330   double u2z = u2.getZ();
    331 
    332   // normalize v1 in order to have (v1'|v1') = (u1|u1)
    333   double coeff = FastMath.sqrt (u1u1 / v1v1);
    334   double v1x   = coeff * v1.getX();
    335   double v1y   = coeff * v1.getY();
    336   double v1z   = coeff * v1.getZ();
    337   v1 = new Vector3D(v1x, v1y, v1z);
    338 
    339   // adjust v2 in order to have (u1|u2) = (v1|v2) and (v2'|v2') = (u2|u2)
    340   double u1u2   = Vector3D.dotProduct(u1, u2);
    341   double v1v2   = Vector3D.dotProduct(v1, v2);
    342   double coeffU = u1u2 / u1u1;
    343   double coeffV = v1v2 / u1u1;
    344   double beta   = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
    345   double alpha  = coeffU - beta * coeffV;
    346   double v2x    = alpha * v1x + beta * v2.getX();
    347   double v2y    = alpha * v1y + beta * v2.getY();
    348   double v2z    = alpha * v1z + beta * v2.getZ();
    349   v2 = new Vector3D(v2x, v2y, v2z);
    350 
    351   // preliminary computation (we use explicit formulation instead
    352   // of relying on the Vector3D class in order to avoid building lots
    353   // of temporary objects)
    354   Vector3D uRef = u1;
    355   Vector3D vRef = v1;
    356   double dx1 = v1x - u1.getX();
    357   double dy1 = v1y - u1.getY();
    358   double dz1 = v1z - u1.getZ();
    359   double dx2 = v2x - u2.getX();
    360   double dy2 = v2y - u2.getY();
    361   double dz2 = v2z - u2.getZ();
    362   Vector3D k = new Vector3D(dy1 * dz2 - dz1 * dy2,
    363                             dz1 * dx2 - dx1 * dz2,
    364                             dx1 * dy2 - dy1 * dx2);
    365   double c = k.getX() * (u1y * u2z - u1z * u2y) +
    366              k.getY() * (u1z * u2x - u1x * u2z) +
    367              k.getZ() * (u1x * u2y - u1y * u2x);
    368 
    369   if (c == 0) {
    370     // the (q1, q2, q3) vector is in the (u1, u2) plane
    371     // we try other vectors
    372     Vector3D u3 = Vector3D.crossProduct(u1, u2);
    373     Vector3D v3 = Vector3D.crossProduct(v1, v2);
    374     double u3x  = u3.getX();
    375     double u3y  = u3.getY();
    376     double u3z  = u3.getZ();
    377     double v3x  = v3.getX();
    378     double v3y  = v3.getY();
    379     double v3z  = v3.getZ();
    380 
    381     double dx3 = v3x - u3x;
    382     double dy3 = v3y - u3y;
    383     double dz3 = v3z - u3z;
    384     k = new Vector3D(dy1 * dz3 - dz1 * dy3,
    385                      dz1 * dx3 - dx1 * dz3,
    386                      dx1 * dy3 - dy1 * dx3);
    387     c = k.getX() * (u1y * u3z - u1z * u3y) +
    388         k.getY() * (u1z * u3x - u1x * u3z) +
    389         k.getZ() * (u1x * u3y - u1y * u3x);
    390 
    391     if (c == 0) {
    392       // the (q1, q2, q3) vector is aligned with u1:
    393       // we try (u2, u3) and (v2, v3)
    394       k = new Vector3D(dy2 * dz3 - dz2 * dy3,
    395                        dz2 * dx3 - dx2 * dz3,
    396                        dx2 * dy3 - dy2 * dx3);
    397       c = k.getX() * (u2y * u3z - u2z * u3y) +
    398           k.getY() * (u2z * u3x - u2x * u3z) +
    399           k.getZ() * (u2x * u3y - u2y * u3x);
    400 
    401       if (c == 0) {
    402         // the (q1, q2, q3) vector is aligned with everything
    403         // this is really the identity rotation
    404         q0 = 1.0;
    405         q1 = 0.0;
    406         q2 = 0.0;
    407         q3 = 0.0;
    408         return;
    409       }
    410 
    411       // we will have to use u2 and v2 to compute the scalar part
    412       uRef = u2;
    413       vRef = v2;
    414 
    415     }
    416 
    417   }
    418 
    419   // compute the vectorial part
    420   c = FastMath.sqrt(c);
    421   double inv = 1.0 / (c + c);
    422   q1 = inv * k.getX();
    423   q2 = inv * k.getY();
    424   q3 = inv * k.getZ();
    425 
    426   // compute the scalar part
    427    k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
    428                     uRef.getZ() * q1 - uRef.getX() * q3,
    429                     uRef.getX() * q2 - uRef.getY() * q1);
    430    c = Vector3D.dotProduct(k, k);
    431   q0 = Vector3D.dotProduct(vRef, k) / (c + c);
    432 
    433   }
    434 
    435   /** Build one of the rotations that transform one vector into another one.
    436 
    437    * <p>Except for a possible scale factor, if the instance were
    438    * applied to the vector u it will produce the vector v. There is an
    439    * infinite number of such rotations, this constructor choose the
    440    * one with the smallest associated angle (i.e. the one whose axis
    441    * is orthogonal to the (u, v) plane). If u and v are colinear, an
    442    * arbitrary rotation axis is chosen.</p>
    443    *
    444    * @param u origin vector
    445    * @param v desired image of u by the rotation
    446    * @exception IllegalArgumentException if the norm of one of the vectors is zero
    447    */
    448   public Rotation(Vector3D u, Vector3D v) {
    449 
    450     double normProduct = u.getNorm() * v.getNorm();
    451     if (normProduct == 0) {
    452         throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
    453     }
    454 
    455     double dot = Vector3D.dotProduct(u, v);
    456 
    457     if (dot < ((2.0e-15 - 1.0) * normProduct)) {
    458       // special case u = -v: we select a PI angle rotation around
    459       // an arbitrary vector orthogonal to u
    460       Vector3D w = u.orthogonal();
    461       q0 = 0.0;
    462       q1 = -w.getX();
    463       q2 = -w.getY();
    464       q3 = -w.getZ();
    465     } else {
    466       // general case: (u, v) defines a plane, we select
    467       // the shortest possible rotation: axis orthogonal to this plane
    468       q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
    469       double coeff = 1.0 / (2.0 * q0 * normProduct);
    470       q1 = coeff * (v.getY() * u.getZ() - v.getZ() * u.getY());
    471       q2 = coeff * (v.getZ() * u.getX() - v.getX() * u.getZ());
    472       q3 = coeff * (v.getX() * u.getY() - v.getY() * u.getX());
    473     }
    474 
    475   }
    476 
    477   /** Build a rotation from three Cardan or Euler elementary rotations.
    478 
    479    * <p>Cardan rotations are three successive rotations around the
    480    * canonical axes X, Y and Z, each axis being used once. There are
    481    * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
    482    * rotations are three successive rotations around the canonical
    483    * axes X, Y and Z, the first and last rotations being around the
    484    * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
    485    * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
    486    * <p>Beware that many people routinely use the term Euler angles even
    487    * for what really are Cardan angles (this confusion is especially
    488    * widespread in the aerospace business where Roll, Pitch and Yaw angles
    489    * are often wrongly tagged as Euler angles).</p>
    490    *
    491    * @param order order of rotations to use
    492    * @param alpha1 angle of the first elementary rotation
    493    * @param alpha2 angle of the second elementary rotation
    494    * @param alpha3 angle of the third elementary rotation
    495    */
    496   public Rotation(RotationOrder order,
    497                   double alpha1, double alpha2, double alpha3) {
    498     Rotation r1 = new Rotation(order.getA1(), alpha1);
    499     Rotation r2 = new Rotation(order.getA2(), alpha2);
    500     Rotation r3 = new Rotation(order.getA3(), alpha3);
    501     Rotation composed = r1.applyTo(r2.applyTo(r3));
    502     q0 = composed.q0;
    503     q1 = composed.q1;
    504     q2 = composed.q2;
    505     q3 = composed.q3;
    506   }
    507 
    508   /** Revert a rotation.
    509    * Build a rotation which reverse the effect of another
    510    * rotation. This means that if r(u) = v, then r.revert(v) = u. The
    511    * instance is not changed.
    512    * @return a new rotation whose effect is the reverse of the effect
    513    * of the instance
    514    */
    515   public Rotation revert() {
    516     return new Rotation(-q0, q1, q2, q3, false);
    517   }
    518 
    519   /** Get the scalar coordinate of the quaternion.
    520    * @return scalar coordinate of the quaternion
    521    */
    522   public double getQ0() {
    523     return q0;
    524   }
    525 
    526   /** Get the first coordinate of the vectorial part of the quaternion.
    527    * @return first coordinate of the vectorial part of the quaternion
    528    */
    529   public double getQ1() {
    530     return q1;
    531   }
    532 
    533   /** Get the second coordinate of the vectorial part of the quaternion.
    534    * @return second coordinate of the vectorial part of the quaternion
    535    */
    536   public double getQ2() {
    537     return q2;
    538   }
    539 
    540   /** Get the third coordinate of the vectorial part of the quaternion.
    541    * @return third coordinate of the vectorial part of the quaternion
    542    */
    543   public double getQ3() {
    544     return q3;
    545   }
    546 
    547   /** Get the normalized axis of the rotation.
    548    * @return normalized axis of the rotation
    549    * @see #Rotation(Vector3D, double)
    550    */
    551   public Vector3D getAxis() {
    552     double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
    553     if (squaredSine == 0) {
    554       return new Vector3D(1, 0, 0);
    555     } else if (q0 < 0) {
    556       double inverse = 1 / FastMath.sqrt(squaredSine);
    557       return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
    558     }
    559     double inverse = -1 / FastMath.sqrt(squaredSine);
    560     return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
    561   }
    562 
    563   /** Get the angle of the rotation.
    564    * @return angle of the rotation (between 0 and &pi;)
    565    * @see #Rotation(Vector3D, double)
    566    */
    567   public double getAngle() {
    568     if ((q0 < -0.1) || (q0 > 0.1)) {
    569       return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
    570     } else if (q0 < 0) {
    571       return 2 * FastMath.acos(-q0);
    572     }
    573     return 2 * FastMath.acos(q0);
    574   }
    575 
    576   /** Get the Cardan or Euler angles corresponding to the instance.
    577 
    578    * <p>The equations show that each rotation can be defined by two
    579    * different values of the Cardan or Euler angles set. For example
    580    * if Cardan angles are used, the rotation defined by the angles
    581    * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
    582    * the rotation defined by the angles &pi; + a<sub>1</sub>, &pi;
    583    * - a<sub>2</sub> and &pi; + a<sub>3</sub>. This method implements
    584    * the following arbitrary choices:</p>
    585    * <ul>
    586    *   <li>for Cardan angles, the chosen set is the one for which the
    587    *   second angle is between -&pi;/2 and &pi;/2 (i.e its cosine is
    588    *   positive),</li>
    589    *   <li>for Euler angles, the chosen set is the one for which the
    590    *   second angle is between 0 and &pi; (i.e its sine is positive).</li>
    591    * </ul>
    592    *
    593    * <p>Cardan and Euler angle have a very disappointing drawback: all
    594    * of them have singularities. This means that if the instance is
    595    * too close to the singularities corresponding to the given
    596    * rotation order, it will be impossible to retrieve the angles. For
    597    * Cardan angles, this is often called gimbal lock. There is
    598    * <em>nothing</em> to do to prevent this, it is an intrinsic problem
    599    * with Cardan and Euler representation (but not a problem with the
    600    * rotation itself, which is perfectly well defined). For Cardan
    601    * angles, singularities occur when the second angle is close to
    602    * -&pi;/2 or +&pi;/2, for Euler angle singularities occur when the
    603    * second angle is close to 0 or &pi;, this implies that the identity
    604    * rotation is always singular for Euler angles!</p>
    605    *
    606    * @param order rotation order to use
    607    * @return an array of three angles, in the order specified by the set
    608    * @exception CardanEulerSingularityException if the rotation is
    609    * singular with respect to the angles set specified
    610    */
    611   public double[] getAngles(RotationOrder order)
    612     throws CardanEulerSingularityException {
    613 
    614     if (order == RotationOrder.XYZ) {
    615 
    616       // r (Vector3D.plusK) coordinates are :
    617       //  sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi)
    618       // (-r) (Vector3D.plusI) coordinates are :
    619       // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta)
    620       // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
    621       Vector3D v1 = applyTo(Vector3D.PLUS_K);
    622       Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
    623       if  ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
    624         throw new CardanEulerSingularityException(true);
    625       }
    626       return new double[] {
    627         FastMath.atan2(-(v1.getY()), v1.getZ()),
    628         FastMath.asin(v2.getZ()),
    629         FastMath.atan2(-(v2.getY()), v2.getX())
    630       };
    631 
    632     } else if (order == RotationOrder.XZY) {
    633 
    634       // r (Vector3D.plusJ) coordinates are :
    635       // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi)
    636       // (-r) (Vector3D.plusI) coordinates are :
    637       // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi)
    638       // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
    639       Vector3D v1 = applyTo(Vector3D.PLUS_J);
    640       Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
    641       if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
    642         throw new CardanEulerSingularityException(true);
    643       }
    644       return new double[] {
    645         FastMath.atan2(v1.getZ(), v1.getY()),
    646        -FastMath.asin(v2.getY()),
    647         FastMath.atan2(v2.getZ(), v2.getX())
    648       };
    649 
    650     } else if (order == RotationOrder.YXZ) {
    651 
    652       // r (Vector3D.plusK) coordinates are :
    653       //  cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta)
    654       // (-r) (Vector3D.plusJ) coordinates are :
    655       // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi)
    656       // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
    657       Vector3D v1 = applyTo(Vector3D.PLUS_K);
    658       Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
    659       if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
    660         throw new CardanEulerSingularityException(true);
    661       }
    662       return new double[] {
    663         FastMath.atan2(v1.getX(), v1.getZ()),
    664        -FastMath.asin(v2.getZ()),
    665         FastMath.atan2(v2.getX(), v2.getY())
    666       };
    667 
    668     } else if (order == RotationOrder.YZX) {
    669 
    670       // r (Vector3D.plusI) coordinates are :
    671       // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta)
    672       // (-r) (Vector3D.plusJ) coordinates are :
    673       // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi)
    674       // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
    675       Vector3D v1 = applyTo(Vector3D.PLUS_I);
    676       Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
    677       if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
    678         throw new CardanEulerSingularityException(true);
    679       }
    680       return new double[] {
    681         FastMath.atan2(-(v1.getZ()), v1.getX()),
    682         FastMath.asin(v2.getX()),
    683         FastMath.atan2(-(v2.getZ()), v2.getY())
    684       };
    685 
    686     } else if (order == RotationOrder.ZXY) {
    687 
    688       // r (Vector3D.plusJ) coordinates are :
    689       // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi)
    690       // (-r) (Vector3D.plusK) coordinates are :
    691       // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi)
    692       // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
    693       Vector3D v1 = applyTo(Vector3D.PLUS_J);
    694       Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
    695       if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
    696         throw new CardanEulerSingularityException(true);
    697       }
    698       return new double[] {
    699         FastMath.atan2(-(v1.getX()), v1.getY()),
    700         FastMath.asin(v2.getY()),
    701         FastMath.atan2(-(v2.getX()), v2.getZ())
    702       };
    703 
    704     } else if (order == RotationOrder.ZYX) {
    705 
    706       // r (Vector3D.plusI) coordinates are :
    707       //  cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta)
    708       // (-r) (Vector3D.plusK) coordinates are :
    709       // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta)
    710       // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
    711       Vector3D v1 = applyTo(Vector3D.PLUS_I);
    712       Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
    713       if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
    714         throw new CardanEulerSingularityException(true);
    715       }
    716       return new double[] {
    717         FastMath.atan2(v1.getY(), v1.getX()),
    718        -FastMath.asin(v2.getX()),
    719         FastMath.atan2(v2.getY(), v2.getZ())
    720       };
    721 
    722     } else if (order == RotationOrder.XYX) {
    723 
    724       // r (Vector3D.plusI) coordinates are :
    725       //  cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta)
    726       // (-r) (Vector3D.plusI) coordinates are :
    727       // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2)
    728       // and we can choose to have theta in the interval [0 ; PI]
    729       Vector3D v1 = applyTo(Vector3D.PLUS_I);
    730       Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
    731       if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
    732         throw new CardanEulerSingularityException(false);
    733       }
    734       return new double[] {
    735         FastMath.atan2(v1.getY(), -v1.getZ()),
    736         FastMath.acos(v2.getX()),
    737         FastMath.atan2(v2.getY(), v2.getZ())
    738       };
    739 
    740     } else if (order == RotationOrder.XZX) {
    741 
    742       // r (Vector3D.plusI) coordinates are :
    743       //  cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi)
    744       // (-r) (Vector3D.plusI) coordinates are :
    745       // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2)
    746       // and we can choose to have psi in the interval [0 ; PI]
    747       Vector3D v1 = applyTo(Vector3D.PLUS_I);
    748       Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
    749       if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
    750         throw new CardanEulerSingularityException(false);
    751       }
    752       return new double[] {
    753         FastMath.atan2(v1.getZ(), v1.getY()),
    754         FastMath.acos(v2.getX()),
    755         FastMath.atan2(v2.getZ(), -v2.getY())
    756       };
    757 
    758     } else if (order == RotationOrder.YXY) {
    759 
    760       // r (Vector3D.plusJ) coordinates are :
    761       //  sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi)
    762       // (-r) (Vector3D.plusJ) coordinates are :
    763       // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2)
    764       // and we can choose to have phi in the interval [0 ; PI]
    765       Vector3D v1 = applyTo(Vector3D.PLUS_J);
    766       Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
    767       if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
    768         throw new CardanEulerSingularityException(false);
    769       }
    770       return new double[] {
    771         FastMath.atan2(v1.getX(), v1.getZ()),
    772         FastMath.acos(v2.getY()),
    773         FastMath.atan2(v2.getX(), -v2.getZ())
    774       };
    775 
    776     } else if (order == RotationOrder.YZY) {
    777 
    778       // r (Vector3D.plusJ) coordinates are :
    779       //  -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi)
    780       // (-r) (Vector3D.plusJ) coordinates are :
    781       // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2)
    782       // and we can choose to have psi in the interval [0 ; PI]
    783       Vector3D v1 = applyTo(Vector3D.PLUS_J);
    784       Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
    785       if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
    786         throw new CardanEulerSingularityException(false);
    787       }
    788       return new double[] {
    789         FastMath.atan2(v1.getZ(), -v1.getX()),
    790         FastMath.acos(v2.getY()),
    791         FastMath.atan2(v2.getZ(), v2.getX())
    792       };
    793 
    794     } else if (order == RotationOrder.ZXZ) {
    795 
    796       // r (Vector3D.plusK) coordinates are :
    797       //  sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi)
    798       // (-r) (Vector3D.plusK) coordinates are :
    799       // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi)
    800       // and we can choose to have phi in the interval [0 ; PI]
    801       Vector3D v1 = applyTo(Vector3D.PLUS_K);
    802       Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
    803       if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
    804         throw new CardanEulerSingularityException(false);
    805       }
    806       return new double[] {
    807         FastMath.atan2(v1.getX(), -v1.getY()),
    808         FastMath.acos(v2.getZ()),
    809         FastMath.atan2(v2.getX(), v2.getY())
    810       };
    811 
    812     } else { // last possibility is ZYZ
    813 
    814       // r (Vector3D.plusK) coordinates are :
    815       //  cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta)
    816       // (-r) (Vector3D.plusK) coordinates are :
    817       // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta)
    818       // and we can choose to have theta in the interval [0 ; PI]
    819       Vector3D v1 = applyTo(Vector3D.PLUS_K);
    820       Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
    821       if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
    822         throw new CardanEulerSingularityException(false);
    823       }
    824       return new double[] {
    825         FastMath.atan2(v1.getY(), v1.getX()),
    826         FastMath.acos(v2.getZ()),
    827         FastMath.atan2(v2.getY(), -v2.getX())
    828       };
    829 
    830     }
    831 
    832   }
    833 
    834   /** Get the 3X3 matrix corresponding to the instance
    835    * @return the matrix corresponding to the instance
    836    */
    837   public double[][] getMatrix() {
    838 
    839     // products
    840     double q0q0  = q0 * q0;
    841     double q0q1  = q0 * q1;
    842     double q0q2  = q0 * q2;
    843     double q0q3  = q0 * q3;
    844     double q1q1  = q1 * q1;
    845     double q1q2  = q1 * q2;
    846     double q1q3  = q1 * q3;
    847     double q2q2  = q2 * q2;
    848     double q2q3  = q2 * q3;
    849     double q3q3  = q3 * q3;
    850 
    851     // create the matrix
    852     double[][] m = new double[3][];
    853     m[0] = new double[3];
    854     m[1] = new double[3];
    855     m[2] = new double[3];
    856 
    857     m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
    858     m [1][0] = 2.0 * (q1q2 - q0q3);
    859     m [2][0] = 2.0 * (q1q3 + q0q2);
    860 
    861     m [0][1] = 2.0 * (q1q2 + q0q3);
    862     m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
    863     m [2][1] = 2.0 * (q2q3 - q0q1);
    864 
    865     m [0][2] = 2.0 * (q1q3 - q0q2);
    866     m [1][2] = 2.0 * (q2q3 + q0q1);
    867     m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;
    868 
    869     return m;
    870 
    871   }
    872 
    873   /** Apply the rotation to a vector.
    874    * @param u vector to apply the rotation to
    875    * @return a new vector which is the image of u by the rotation
    876    */
    877   public Vector3D applyTo(Vector3D u) {
    878 
    879     double x = u.getX();
    880     double y = u.getY();
    881     double z = u.getZ();
    882 
    883     double s = q1 * x + q2 * y + q3 * z;
    884 
    885     return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
    886                         2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
    887                         2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);
    888 
    889   }
    890 
    891   /** Apply the inverse of the rotation to a vector.
    892    * @param u vector to apply the inverse of the rotation to
    893    * @return a new vector which such that u is its image by the rotation
    894    */
    895   public Vector3D applyInverseTo(Vector3D u) {
    896 
    897     double x = u.getX();
    898     double y = u.getY();
    899     double z = u.getZ();
    900 
    901     double s = q1 * x + q2 * y + q3 * z;
    902     double m0 = -q0;
    903 
    904     return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
    905                         2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
    906                         2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);
    907 
    908   }
    909 
    910   /** Apply the instance to another rotation.
    911    * Applying the instance to a rotation is computing the composition
    912    * in an order compliant with the following rule : let u be any
    913    * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image
    914    * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u),
    915    * where comp = applyTo(r).
    916    * @param r rotation to apply the rotation to
    917    * @return a new rotation which is the composition of r by the instance
    918    */
    919   public Rotation applyTo(Rotation r) {
    920     return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
    921                         r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
    922                         r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
    923                         r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
    924                         false);
    925   }
    926 
    927   /** Apply the inverse of the instance to another rotation.
    928    * Applying the inverse of the instance to a rotation is computing
    929    * the composition in an order compliant with the following rule :
    930    * let u be any vector and v its image by r (i.e. r.applyTo(u) = v),
    931    * let w be the inverse image of v by the instance
    932    * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where
    933    * comp = applyInverseTo(r).
    934    * @param r rotation to apply the rotation to
    935    * @return a new rotation which is the composition of r by the inverse
    936    * of the instance
    937    */
    938   public Rotation applyInverseTo(Rotation r) {
    939     return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
    940                         -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
    941                         -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
    942                         -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
    943                         false);
    944   }
    945 
    946   /** Perfect orthogonality on a 3X3 matrix.
    947    * @param m initial matrix (not exactly orthogonal)
    948    * @param threshold convergence threshold for the iterative
    949    * orthogonality correction (convergence is reached when the
    950    * difference between two steps of the Frobenius norm of the
    951    * correction is below this threshold)
    952    * @return an orthogonal matrix close to m
    953    * @exception NotARotationMatrixException if the matrix cannot be
    954    * orthogonalized with the given threshold after 10 iterations
    955    */
    956   private double[][] orthogonalizeMatrix(double[][] m, double threshold)
    957     throws NotARotationMatrixException {
    958     double[] m0 = m[0];
    959     double[] m1 = m[1];
    960     double[] m2 = m[2];
    961     double x00 = m0[0];
    962     double x01 = m0[1];
    963     double x02 = m0[2];
    964     double x10 = m1[0];
    965     double x11 = m1[1];
    966     double x12 = m1[2];
    967     double x20 = m2[0];
    968     double x21 = m2[1];
    969     double x22 = m2[2];
    970     double fn = 0;
    971     double fn1;
    972 
    973     double[][] o = new double[3][3];
    974     double[] o0 = o[0];
    975     double[] o1 = o[1];
    976     double[] o2 = o[2];
    977 
    978     // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
    979     int i = 0;
    980     while (++i < 11) {
    981 
    982       // Mt.Xn
    983       double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
    984       double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
    985       double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
    986       double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
    987       double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
    988       double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
    989       double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
    990       double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
    991       double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;
    992 
    993       // Xn+1
    994       o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
    995       o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
    996       o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
    997       o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
    998       o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
    999       o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
   1000       o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
   1001       o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
   1002       o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);
   1003 
   1004       // correction on each elements
   1005       double corr00 = o0[0] - m0[0];
   1006       double corr01 = o0[1] - m0[1];
   1007       double corr02 = o0[2] - m0[2];
   1008       double corr10 = o1[0] - m1[0];
   1009       double corr11 = o1[1] - m1[1];
   1010       double corr12 = o1[2] - m1[2];
   1011       double corr20 = o2[0] - m2[0];
   1012       double corr21 = o2[1] - m2[1];
   1013       double corr22 = o2[2] - m2[2];
   1014 
   1015       // Frobenius norm of the correction
   1016       fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
   1017             corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
   1018             corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
   1019 
   1020       // convergence test
   1021       if (FastMath.abs(fn1 - fn) <= threshold)
   1022         return o;
   1023 
   1024       // prepare next iteration
   1025       x00 = o0[0];
   1026       x01 = o0[1];
   1027       x02 = o0[2];
   1028       x10 = o1[0];
   1029       x11 = o1[1];
   1030       x12 = o1[2];
   1031       x20 = o2[0];
   1032       x21 = o2[1];
   1033       x22 = o2[2];
   1034       fn  = fn1;
   1035 
   1036     }
   1037 
   1038     // the algorithm did not converge after 10 iterations
   1039     throw new NotARotationMatrixException(
   1040             LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
   1041             i - 1);
   1042   }
   1043 
   1044   /** Compute the <i>distance</i> between two rotations.
   1045    * <p>The <i>distance</i> is intended here as a way to check if two
   1046    * rotations are almost similar (i.e. they transform vectors the same way)
   1047    * or very different. It is mathematically defined as the angle of
   1048    * the rotation r that prepended to one of the rotations gives the other
   1049    * one:</p>
   1050    * <pre>
   1051    *        r<sub>1</sub>(r) = r<sub>2</sub>
   1052    * </pre>
   1053    * <p>This distance is an angle between 0 and &pi;. Its value is the smallest
   1054    * possible upper bound of the angle in radians between r<sub>1</sub>(v)
   1055    * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
   1056    * reached for some v. The distance is equal to 0 if and only if the two
   1057    * rotations are identical.</p>
   1058    * <p>Comparing two rotations should always be done using this value rather
   1059    * than for example comparing the components of the quaternions. It is much
   1060    * more stable, and has a geometric meaning. Also comparing quaternions
   1061    * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
   1062    * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
   1063    * their components are different (they are exact opposites).</p>
   1064    * @param r1 first rotation
   1065    * @param r2 second rotation
   1066    * @return <i>distance</i> between r1 and r2
   1067    */
   1068   public static double distance(Rotation r1, Rotation r2) {
   1069       return r1.applyInverseTo(r2).getAngle();
   1070   }
   1071 
   1072 }
   1073