Home | History | Annotate | Download | only in CodeGen
      1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines several CodeGen-specific LLVM IR analysis utilities.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/Analysis.h"
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/CodeGen/MachineModuleInfo.h"
     18 #include "llvm/IR/DataLayout.h"
     19 #include "llvm/IR/DerivedTypes.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/IntrinsicInst.h"
     23 #include "llvm/IR/LLVMContext.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Support/MathExtras.h"
     27 #include "llvm/Target/TargetLowering.h"
     28 #include "llvm/Target/TargetInstrInfo.h"
     29 #include "llvm/Target/TargetSubtargetInfo.h"
     30 #include "llvm/Transforms/Utils/GlobalStatus.h"
     31 
     32 using namespace llvm;
     33 
     34 /// Compute the linearized index of a member in a nested aggregate/struct/array
     35 /// by recursing and accumulating CurIndex as long as there are indices in the
     36 /// index list.
     37 unsigned llvm::ComputeLinearIndex(Type *Ty,
     38                                   const unsigned *Indices,
     39                                   const unsigned *IndicesEnd,
     40                                   unsigned CurIndex) {
     41   // Base case: We're done.
     42   if (Indices && Indices == IndicesEnd)
     43     return CurIndex;
     44 
     45   // Given a struct type, recursively traverse the elements.
     46   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     47     for (StructType::element_iterator EB = STy->element_begin(),
     48                                       EI = EB,
     49                                       EE = STy->element_end();
     50         EI != EE; ++EI) {
     51       if (Indices && *Indices == unsigned(EI - EB))
     52         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
     53       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
     54     }
     55     assert(!Indices && "Unexpected out of bound");
     56     return CurIndex;
     57   }
     58   // Given an array type, recursively traverse the elements.
     59   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
     60     Type *EltTy = ATy->getElementType();
     61     unsigned NumElts = ATy->getNumElements();
     62     // Compute the Linear offset when jumping one element of the array
     63     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
     64     if (Indices) {
     65       assert(*Indices < NumElts && "Unexpected out of bound");
     66       // If the indice is inside the array, compute the index to the requested
     67       // elt and recurse inside the element with the end of the indices list
     68       CurIndex += EltLinearOffset* *Indices;
     69       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
     70     }
     71     CurIndex += EltLinearOffset*NumElts;
     72     return CurIndex;
     73   }
     74   // We haven't found the type we're looking for, so keep searching.
     75   return CurIndex + 1;
     76 }
     77 
     78 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
     79 /// EVTs that represent all the individual underlying
     80 /// non-aggregate types that comprise it.
     81 ///
     82 /// If Offsets is non-null, it points to a vector to be filled in
     83 /// with the in-memory offsets of each of the individual values.
     84 ///
     85 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
     86                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
     87                            SmallVectorImpl<uint64_t> *Offsets,
     88                            uint64_t StartingOffset) {
     89   // Given a struct type, recursively traverse the elements.
     90   if (StructType *STy = dyn_cast<StructType>(Ty)) {
     91     const StructLayout *SL = DL.getStructLayout(STy);
     92     for (StructType::element_iterator EB = STy->element_begin(),
     93                                       EI = EB,
     94                                       EE = STy->element_end();
     95          EI != EE; ++EI)
     96       ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
     97                       StartingOffset + SL->getElementOffset(EI - EB));
     98     return;
     99   }
    100   // Given an array type, recursively traverse the elements.
    101   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    102     Type *EltTy = ATy->getElementType();
    103     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    104     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
    105       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
    106                       StartingOffset + i * EltSize);
    107     return;
    108   }
    109   // Interpret void as zero return values.
    110   if (Ty->isVoidTy())
    111     return;
    112   // Base case: we can get an EVT for this LLVM IR type.
    113   ValueVTs.push_back(TLI.getValueType(DL, Ty));
    114   if (Offsets)
    115     Offsets->push_back(StartingOffset);
    116 }
    117 
    118 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
    119 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
    120   V = V->stripPointerCasts();
    121   GlobalValue *GV = dyn_cast<GlobalValue>(V);
    122   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
    123 
    124   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
    125     assert(Var->hasInitializer() &&
    126            "The EH catch-all value must have an initializer");
    127     Value *Init = Var->getInitializer();
    128     GV = dyn_cast<GlobalValue>(Init);
    129     if (!GV) V = cast<ConstantPointerNull>(Init);
    130   }
    131 
    132   assert((GV || isa<ConstantPointerNull>(V)) &&
    133          "TypeInfo must be a global variable or NULL");
    134   return GV;
    135 }
    136 
    137 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
    138 /// processed uses a memory 'm' constraint.
    139 bool
    140 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
    141                                 const TargetLowering &TLI) {
    142   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
    143     InlineAsm::ConstraintInfo &CI = CInfos[i];
    144     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
    145       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
    146       if (CType == TargetLowering::C_Memory)
    147         return true;
    148     }
    149 
    150     // Indirect operand accesses access memory.
    151     if (CI.isIndirect)
    152       return true;
    153   }
    154 
    155   return false;
    156 }
    157 
    158 /// getFCmpCondCode - Return the ISD condition code corresponding to
    159 /// the given LLVM IR floating-point condition code.  This includes
    160 /// consideration of global floating-point math flags.
    161 ///
    162 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
    163   switch (Pred) {
    164   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
    165   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
    166   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
    167   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
    168   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
    169   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
    170   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
    171   case FCmpInst::FCMP_ORD:   return ISD::SETO;
    172   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
    173   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
    174   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
    175   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
    176   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
    177   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
    178   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
    179   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
    180   default: llvm_unreachable("Invalid FCmp predicate opcode!");
    181   }
    182 }
    183 
    184 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
    185   switch (CC) {
    186     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
    187     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
    188     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
    189     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
    190     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
    191     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
    192     default: return CC;
    193   }
    194 }
    195 
    196 /// getICmpCondCode - Return the ISD condition code corresponding to
    197 /// the given LLVM IR integer condition code.
    198 ///
    199 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
    200   switch (Pred) {
    201   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
    202   case ICmpInst::ICMP_NE:  return ISD::SETNE;
    203   case ICmpInst::ICMP_SLE: return ISD::SETLE;
    204   case ICmpInst::ICMP_ULE: return ISD::SETULE;
    205   case ICmpInst::ICMP_SGE: return ISD::SETGE;
    206   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
    207   case ICmpInst::ICMP_SLT: return ISD::SETLT;
    208   case ICmpInst::ICMP_ULT: return ISD::SETULT;
    209   case ICmpInst::ICMP_SGT: return ISD::SETGT;
    210   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
    211   default:
    212     llvm_unreachable("Invalid ICmp predicate opcode!");
    213   }
    214 }
    215 
    216 static bool isNoopBitcast(Type *T1, Type *T2,
    217                           const TargetLoweringBase& TLI) {
    218   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
    219          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
    220           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
    221 }
    222 
    223 /// Look through operations that will be free to find the earliest source of
    224 /// this value.
    225 ///
    226 /// @param ValLoc If V has aggegate type, we will be interested in a particular
    227 /// scalar component. This records its address; the reverse of this list gives a
    228 /// sequence of indices appropriate for an extractvalue to locate the important
    229 /// value. This value is updated during the function and on exit will indicate
    230 /// similar information for the Value returned.
    231 ///
    232 /// @param DataBits If this function looks through truncate instructions, this
    233 /// will record the smallest size attained.
    234 static const Value *getNoopInput(const Value *V,
    235                                  SmallVectorImpl<unsigned> &ValLoc,
    236                                  unsigned &DataBits,
    237                                  const TargetLoweringBase &TLI,
    238                                  const DataLayout &DL) {
    239   while (true) {
    240     // Try to look through V1; if V1 is not an instruction, it can't be looked
    241     // through.
    242     const Instruction *I = dyn_cast<Instruction>(V);
    243     if (!I || I->getNumOperands() == 0) return V;
    244     const Value *NoopInput = nullptr;
    245 
    246     Value *Op = I->getOperand(0);
    247     if (isa<BitCastInst>(I)) {
    248       // Look through truly no-op bitcasts.
    249       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
    250         NoopInput = Op;
    251     } else if (isa<GetElementPtrInst>(I)) {
    252       // Look through getelementptr
    253       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
    254         NoopInput = Op;
    255     } else if (isa<IntToPtrInst>(I)) {
    256       // Look through inttoptr.
    257       // Make sure this isn't a truncating or extending cast.  We could
    258       // support this eventually, but don't bother for now.
    259       if (!isa<VectorType>(I->getType()) &&
    260           DL.getPointerSizeInBits() ==
    261               cast<IntegerType>(Op->getType())->getBitWidth())
    262         NoopInput = Op;
    263     } else if (isa<PtrToIntInst>(I)) {
    264       // Look through ptrtoint.
    265       // Make sure this isn't a truncating or extending cast.  We could
    266       // support this eventually, but don't bother for now.
    267       if (!isa<VectorType>(I->getType()) &&
    268           DL.getPointerSizeInBits() ==
    269               cast<IntegerType>(I->getType())->getBitWidth())
    270         NoopInput = Op;
    271     } else if (isa<TruncInst>(I) &&
    272                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
    273       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
    274       NoopInput = Op;
    275     } else if (isa<CallInst>(I)) {
    276       // Look through call (skipping callee)
    277       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
    278            i != e; ++i) {
    279         unsigned attrInd = i - I->op_begin() + 1;
    280         if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
    281             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
    282           NoopInput = *i;
    283           break;
    284         }
    285       }
    286     } else if (isa<InvokeInst>(I)) {
    287       // Look through invoke (skipping BB, BB, Callee)
    288       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
    289            i != e; ++i) {
    290         unsigned attrInd = i - I->op_begin() + 1;
    291         if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
    292             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
    293           NoopInput = *i;
    294           break;
    295         }
    296       }
    297     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
    298       // Value may come from either the aggregate or the scalar
    299       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
    300       if (ValLoc.size() >= InsertLoc.size() &&
    301           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
    302         // The type being inserted is a nested sub-type of the aggregate; we
    303         // have to remove those initial indices to get the location we're
    304         // interested in for the operand.
    305         ValLoc.resize(ValLoc.size() - InsertLoc.size());
    306         NoopInput = IVI->getInsertedValueOperand();
    307       } else {
    308         // The struct we're inserting into has the value we're interested in, no
    309         // change of address.
    310         NoopInput = Op;
    311       }
    312     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
    313       // The part we're interested in will inevitably be some sub-section of the
    314       // previous aggregate. Combine the two paths to obtain the true address of
    315       // our element.
    316       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
    317       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
    318       NoopInput = Op;
    319     }
    320     // Terminate if we couldn't find anything to look through.
    321     if (!NoopInput)
    322       return V;
    323 
    324     V = NoopInput;
    325   }
    326 }
    327 
    328 /// Return true if this scalar return value only has bits discarded on its path
    329 /// from the "tail call" to the "ret". This includes the obvious noop
    330 /// instructions handled by getNoopInput above as well as free truncations (or
    331 /// extensions prior to the call).
    332 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
    333                                  SmallVectorImpl<unsigned> &RetIndices,
    334                                  SmallVectorImpl<unsigned> &CallIndices,
    335                                  bool AllowDifferingSizes,
    336                                  const TargetLoweringBase &TLI,
    337                                  const DataLayout &DL) {
    338 
    339   // Trace the sub-value needed by the return value as far back up the graph as
    340   // possible, in the hope that it will intersect with the value produced by the
    341   // call. In the simple case with no "returned" attribute, the hope is actually
    342   // that we end up back at the tail call instruction itself.
    343   unsigned BitsRequired = UINT_MAX;
    344   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
    345 
    346   // If this slot in the value returned is undef, it doesn't matter what the
    347   // call puts there, it'll be fine.
    348   if (isa<UndefValue>(RetVal))
    349     return true;
    350 
    351   // Now do a similar search up through the graph to find where the value
    352   // actually returned by the "tail call" comes from. In the simple case without
    353   // a "returned" attribute, the search will be blocked immediately and the loop
    354   // a Noop.
    355   unsigned BitsProvided = UINT_MAX;
    356   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
    357 
    358   // There's no hope if we can't actually trace them to (the same part of!) the
    359   // same value.
    360   if (CallVal != RetVal || CallIndices != RetIndices)
    361     return false;
    362 
    363   // However, intervening truncates may have made the call non-tail. Make sure
    364   // all the bits that are needed by the "ret" have been provided by the "tail
    365   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
    366   // extensions too.
    367   if (BitsProvided < BitsRequired ||
    368       (!AllowDifferingSizes && BitsProvided != BitsRequired))
    369     return false;
    370 
    371   return true;
    372 }
    373 
    374 /// For an aggregate type, determine whether a given index is within bounds or
    375 /// not.
    376 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
    377   if (ArrayType *AT = dyn_cast<ArrayType>(T))
    378     return Idx < AT->getNumElements();
    379 
    380   return Idx < cast<StructType>(T)->getNumElements();
    381 }
    382 
    383 /// Move the given iterators to the next leaf type in depth first traversal.
    384 ///
    385 /// Performs a depth-first traversal of the type as specified by its arguments,
    386 /// stopping at the next leaf node (which may be a legitimate scalar type or an
    387 /// empty struct or array).
    388 ///
    389 /// @param SubTypes List of the partial components making up the type from
    390 /// outermost to innermost non-empty aggregate. The element currently
    391 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
    392 ///
    393 /// @param Path Set of extractvalue indices leading from the outermost type
    394 /// (SubTypes[0]) to the leaf node currently represented.
    395 ///
    396 /// @returns true if a new type was found, false otherwise. Calling this
    397 /// function again on a finished iterator will repeatedly return
    398 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
    399 /// aggregate or a non-aggregate
    400 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
    401                                   SmallVectorImpl<unsigned> &Path) {
    402   // First march back up the tree until we can successfully increment one of the
    403   // coordinates in Path.
    404   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
    405     Path.pop_back();
    406     SubTypes.pop_back();
    407   }
    408 
    409   // If we reached the top, then the iterator is done.
    410   if (Path.empty())
    411     return false;
    412 
    413   // We know there's *some* valid leaf now, so march back down the tree picking
    414   // out the left-most element at each node.
    415   ++Path.back();
    416   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
    417   while (DeeperType->isAggregateType()) {
    418     CompositeType *CT = cast<CompositeType>(DeeperType);
    419     if (!indexReallyValid(CT, 0))
    420       return true;
    421 
    422     SubTypes.push_back(CT);
    423     Path.push_back(0);
    424 
    425     DeeperType = CT->getTypeAtIndex(0U);
    426   }
    427 
    428   return true;
    429 }
    430 
    431 /// Find the first non-empty, scalar-like type in Next and setup the iterator
    432 /// components.
    433 ///
    434 /// Assuming Next is an aggregate of some kind, this function will traverse the
    435 /// tree from left to right (i.e. depth-first) looking for the first
    436 /// non-aggregate type which will play a role in function return.
    437 ///
    438 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
    439 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
    440 /// i32 in that type.
    441 static bool firstRealType(Type *Next,
    442                           SmallVectorImpl<CompositeType *> &SubTypes,
    443                           SmallVectorImpl<unsigned> &Path) {
    444   // First initialise the iterator components to the first "leaf" node
    445   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
    446   // despite nominally being an aggregate).
    447   while (Next->isAggregateType() &&
    448          indexReallyValid(cast<CompositeType>(Next), 0)) {
    449     SubTypes.push_back(cast<CompositeType>(Next));
    450     Path.push_back(0);
    451     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
    452   }
    453 
    454   // If there's no Path now, Next was originally scalar already (or empty
    455   // leaf). We're done.
    456   if (Path.empty())
    457     return true;
    458 
    459   // Otherwise, use normal iteration to keep looking through the tree until we
    460   // find a non-aggregate type.
    461   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
    462     if (!advanceToNextLeafType(SubTypes, Path))
    463       return false;
    464   }
    465 
    466   return true;
    467 }
    468 
    469 /// Set the iterator data-structures to the next non-empty, non-aggregate
    470 /// subtype.
    471 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
    472                          SmallVectorImpl<unsigned> &Path) {
    473   do {
    474     if (!advanceToNextLeafType(SubTypes, Path))
    475       return false;
    476 
    477     assert(!Path.empty() && "found a leaf but didn't set the path?");
    478   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
    479 
    480   return true;
    481 }
    482 
    483 
    484 /// Test if the given instruction is in a position to be optimized
    485 /// with a tail-call. This roughly means that it's in a block with
    486 /// a return and there's nothing that needs to be scheduled
    487 /// between it and the return.
    488 ///
    489 /// This function only tests target-independent requirements.
    490 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
    491   const Instruction *I = CS.getInstruction();
    492   const BasicBlock *ExitBB = I->getParent();
    493   const TerminatorInst *Term = ExitBB->getTerminator();
    494   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
    495 
    496   // The block must end in a return statement or unreachable.
    497   //
    498   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
    499   // an unreachable, for now. The way tailcall optimization is currently
    500   // implemented means it will add an epilogue followed by a jump. That is
    501   // not profitable. Also, if the callee is a special function (e.g.
    502   // longjmp on x86), it can end up causing miscompilation that has not
    503   // been fully understood.
    504   if (!Ret &&
    505       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
    506     return false;
    507 
    508   // If I will have a chain, make sure no other instruction that will have a
    509   // chain interposes between I and the return.
    510   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
    511       !isSafeToSpeculativelyExecute(I))
    512     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
    513       if (&*BBI == I)
    514         break;
    515       // Debug info intrinsics do not get in the way of tail call optimization.
    516       if (isa<DbgInfoIntrinsic>(BBI))
    517         continue;
    518       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
    519           !isSafeToSpeculativelyExecute(&*BBI))
    520         return false;
    521     }
    522 
    523   const Function *F = ExitBB->getParent();
    524   return returnTypeIsEligibleForTailCall(
    525       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
    526 }
    527 
    528 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
    529                                            const Instruction *I,
    530                                            const ReturnInst *Ret,
    531                                            const TargetLoweringBase &TLI) {
    532   // If the block ends with a void return or unreachable, it doesn't matter
    533   // what the call's return type is.
    534   if (!Ret || Ret->getNumOperands() == 0) return true;
    535 
    536   // If the return value is undef, it doesn't matter what the call's
    537   // return type is.
    538   if (isa<UndefValue>(Ret->getOperand(0))) return true;
    539 
    540   // Make sure the attributes attached to each return are compatible.
    541   AttrBuilder CallerAttrs(F->getAttributes(),
    542                           AttributeSet::ReturnIndex);
    543   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
    544                           AttributeSet::ReturnIndex);
    545 
    546   // Noalias is completely benign as far as calling convention goes, it
    547   // shouldn't affect whether the call is a tail call.
    548   CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
    549   CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
    550 
    551   bool AllowDifferingSizes = true;
    552   if (CallerAttrs.contains(Attribute::ZExt)) {
    553     if (!CalleeAttrs.contains(Attribute::ZExt))
    554       return false;
    555 
    556     AllowDifferingSizes = false;
    557     CallerAttrs.removeAttribute(Attribute::ZExt);
    558     CalleeAttrs.removeAttribute(Attribute::ZExt);
    559   } else if (CallerAttrs.contains(Attribute::SExt)) {
    560     if (!CalleeAttrs.contains(Attribute::SExt))
    561       return false;
    562 
    563     AllowDifferingSizes = false;
    564     CallerAttrs.removeAttribute(Attribute::SExt);
    565     CalleeAttrs.removeAttribute(Attribute::SExt);
    566   }
    567 
    568   // If they're still different, there's some facet we don't understand
    569   // (currently only "inreg", but in future who knows). It may be OK but the
    570   // only safe option is to reject the tail call.
    571   if (CallerAttrs != CalleeAttrs)
    572     return false;
    573 
    574   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
    575   SmallVector<unsigned, 4> RetPath, CallPath;
    576   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
    577 
    578   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
    579   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
    580 
    581   // Nothing's actually returned, it doesn't matter what the callee put there
    582   // it's a valid tail call.
    583   if (RetEmpty)
    584     return true;
    585 
    586   // Iterate pairwise through each of the value types making up the tail call
    587   // and the corresponding return. For each one we want to know whether it's
    588   // essentially going directly from the tail call to the ret, via operations
    589   // that end up not generating any code.
    590   //
    591   // We allow a certain amount of covariance here. For example it's permitted
    592   // for the tail call to define more bits than the ret actually cares about
    593   // (e.g. via a truncate).
    594   do {
    595     if (CallEmpty) {
    596       // We've exhausted the values produced by the tail call instruction, the
    597       // rest are essentially undef. The type doesn't really matter, but we need
    598       // *something*.
    599       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
    600       CallVal = UndefValue::get(SlotType);
    601     }
    602 
    603     // The manipulations performed when we're looking through an insertvalue or
    604     // an extractvalue would happen at the front of the RetPath list, so since
    605     // we have to copy it anyway it's more efficient to create a reversed copy.
    606     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
    607     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
    608 
    609     // Finally, we can check whether the value produced by the tail call at this
    610     // index is compatible with the value we return.
    611     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
    612                               AllowDifferingSizes, TLI,
    613                               F->getParent()->getDataLayout()))
    614       return false;
    615 
    616     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
    617   } while(nextRealType(RetSubTypes, RetPath));
    618 
    619   return true;
    620 }
    621 
    622 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
    623   if (!GV->hasLinkOnceODRLinkage())
    624     return false;
    625 
    626   // We assume that anyone who sets global unnamed_addr on a non-constant knows
    627   // what they're doing.
    628   if (GV->hasGlobalUnnamedAddr())
    629     return true;
    630 
    631   // If it is a non constant variable, it needs to be uniqued across shared
    632   // objects.
    633   if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
    634     if (!Var->isConstant())
    635       return false;
    636   }
    637 
    638   return GV->hasAtLeastLocalUnnamedAddr();
    639 }
    640 
    641 static void collectFuncletMembers(
    642     DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet,
    643     const MachineBasicBlock *MBB) {
    644   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
    645   while (!Worklist.empty()) {
    646     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
    647     // Don't follow blocks which start new funclets.
    648     if (Visiting->isEHPad() && Visiting != MBB)
    649       continue;
    650 
    651     // Add this MBB to our funclet.
    652     auto P = FuncletMembership.insert(std::make_pair(Visiting, Funclet));
    653 
    654     // Don't revisit blocks.
    655     if (!P.second) {
    656       assert(P.first->second == Funclet && "MBB is part of two funclets!");
    657       continue;
    658     }
    659 
    660     // Returns are boundaries where funclet transfer can occur, don't follow
    661     // successors.
    662     if (Visiting->isReturnBlock())
    663       continue;
    664 
    665     for (const MachineBasicBlock *Succ : Visiting->successors())
    666       Worklist.push_back(Succ);
    667   }
    668 }
    669 
    670 DenseMap<const MachineBasicBlock *, int>
    671 llvm::getFuncletMembership(const MachineFunction &MF) {
    672   DenseMap<const MachineBasicBlock *, int> FuncletMembership;
    673 
    674   // We don't have anything to do if there aren't any EH pads.
    675   if (!MF.getMMI().hasEHFunclets())
    676     return FuncletMembership;
    677 
    678   int EntryBBNumber = MF.front().getNumber();
    679   bool IsSEH = isAsynchronousEHPersonality(
    680       classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
    681 
    682   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
    683   SmallVector<const MachineBasicBlock *, 16> FuncletBlocks;
    684   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
    685   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
    686   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
    687   for (const MachineBasicBlock &MBB : MF) {
    688     if (MBB.isEHFuncletEntry()) {
    689       FuncletBlocks.push_back(&MBB);
    690     } else if (IsSEH && MBB.isEHPad()) {
    691       SEHCatchPads.push_back(&MBB);
    692     } else if (MBB.pred_empty()) {
    693       UnreachableBlocks.push_back(&MBB);
    694     }
    695 
    696     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
    697     // CatchPads are not funclets for SEH so do not consider CatchRet to
    698     // transfer control to another funclet.
    699     if (MBBI->getOpcode() != TII->getCatchReturnOpcode())
    700       continue;
    701 
    702     // FIXME: SEH CatchPads are not necessarily in the parent function:
    703     // they could be inside a finally block.
    704     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
    705     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
    706     CatchRetSuccessors.push_back(
    707         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
    708   }
    709 
    710   // We don't have anything to do if there aren't any EH pads.
    711   if (FuncletBlocks.empty())
    712     return FuncletMembership;
    713 
    714   // Identify all the basic blocks reachable from the function entry.
    715   collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front());
    716   // All blocks not part of a funclet are in the parent function.
    717   for (const MachineBasicBlock *MBB : UnreachableBlocks)
    718     collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
    719   // Next, identify all the blocks inside the funclets.
    720   for (const MachineBasicBlock *MBB : FuncletBlocks)
    721     collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB);
    722   // SEH CatchPads aren't really funclets, handle them separately.
    723   for (const MachineBasicBlock *MBB : SEHCatchPads)
    724     collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
    725   // Finally, identify all the targets of a catchret.
    726   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
    727        CatchRetSuccessors)
    728     collectFuncletMembers(FuncletMembership, CatchRetPair.second,
    729                           CatchRetPair.first);
    730   return FuncletMembership;
    731 }
    732