1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "ueventd.h" 18 19 #include <ctype.h> 20 #include <fcntl.h> 21 #include <signal.h> 22 #include <stdio.h> 23 #include <stdlib.h> 24 #include <string.h> 25 #include <sys/wait.h> 26 27 #include <set> 28 #include <thread> 29 30 #include <android-base/chrono_utils.h> 31 #include <android-base/logging.h> 32 #include <android-base/properties.h> 33 #include <fstab/fstab.h> 34 #include <selinux/android.h> 35 #include <selinux/selinux.h> 36 37 #include "devices.h" 38 #include "firmware_handler.h" 39 #include "log.h" 40 #include "selinux.h" 41 #include "uevent_listener.h" 42 #include "ueventd_parser.h" 43 #include "util.h" 44 45 // At a high level, ueventd listens for uevent messages generated by the kernel through a netlink 46 // socket. When ueventd receives such a message it handles it by taking appropriate actions, 47 // which can typically be creating a device node in /dev, setting file permissions, setting selinux 48 // labels, etc. 49 // Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block 50 // and character devices. 51 52 // When ueventd starts, it regenerates uevents for all currently registered devices by traversing 53 // /sys and writing 'add' to each 'uevent' file that it finds. This causes the kernel to generate 54 // and resend uevent messages for all of the currently registered devices. This is done, because 55 // ueventd would not have been running when these devices were registered and therefore was unable 56 // to receive their uevent messages and handle them appropriately. This process is known as 57 // 'cold boot'. 58 59 // 'init' currently waits synchronously on the cold boot process of ueventd before it continues 60 // its boot process. For this reason, cold boot should be as quick as possible. One way to achieve 61 // a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the 62 // time during cold boot. 63 64 // Handling of uevent messages has two unique properties: 65 // 1) It can be done in isolation; it doesn't need to read or write any status once it is started. 66 // 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure 67 // that no file system operations are done while the uevent process has an abnormal egid or 68 // fscreatecon or this handling must happen in a separate process. 69 // Given the above two properties, it is best to fork() subprocesses to handle the uevents. This 70 // reduces the overhead and complexity that would be required in a solution with threads and locks. 71 // In testing, a racy multithreaded solution has the same performance as the fork() solution, so 72 // there is no reason to deal with the complexity of the former. 73 74 // One other important caveat during the boot process is the handling of SELinux restorecon. 75 // Since many devices have child devices, calling selinux_android_restorecon() recursively for each 76 // device when its uevent is handled, results in multiple restorecon operations being done on a 77 // given file. It is more efficient to simply do restorecon recursively on /sys during cold boot, 78 // than to do restorecon on each device as its uevent is handled. This only applies to cold boot; 79 // once that has completed, restorecon is done for each device as its uevent is handled. 80 81 // With all of the above considered, the cold boot process has the below steps: 82 // 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for 83 // the generated uevents. It writes these uevents into a queue represented by a vector. 84 // 85 // 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the 86 // uevents in the queue based on a starting offset (their process number) and a stride (the total 87 // number of processes). Note that no IPC happens at this point and only const functions from 88 // DeviceHandler should be called from this context. 89 // 90 // 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls 91 // selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices. 92 // 93 // 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all 94 // subprocess handlers to complete and exit. Once this happens, it marks coldboot as having 95 // completed. 96 // 97 // At this point, ueventd is single threaded, poll()'s and then handles any future uevents. 98 99 // Lastly, it should be noted that uevents that occur during the coldboot process are handled 100 // without issue after the coldboot process completes. This is because the uevent listener is 101 // paused while the uevent handler and restorecon actions take place. Once coldboot completes, 102 // the uevent listener resumes in polling mode and will handle the uevents that occurred during 103 // coldboot. 104 105 namespace android { 106 namespace init { 107 108 class ColdBoot { 109 public: 110 ColdBoot(UeventListener& uevent_listener, DeviceHandler& device_handler) 111 : uevent_listener_(uevent_listener), 112 device_handler_(device_handler), 113 num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4) {} 114 115 void Run(); 116 117 private: 118 void UeventHandlerMain(unsigned int process_num, unsigned int total_processes); 119 void RegenerateUevents(); 120 void ForkSubProcesses(); 121 void DoRestoreCon(); 122 void WaitForSubProcesses(); 123 124 UeventListener& uevent_listener_; 125 DeviceHandler& device_handler_; 126 127 unsigned int num_handler_subprocesses_; 128 std::vector<Uevent> uevent_queue_; 129 130 std::set<pid_t> subprocess_pids_; 131 }; 132 133 void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) { 134 for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) { 135 auto& uevent = uevent_queue_[i]; 136 device_handler_.HandleDeviceEvent(uevent); 137 } 138 _exit(EXIT_SUCCESS); 139 } 140 141 void ColdBoot::RegenerateUevents() { 142 uevent_listener_.RegenerateUevents([this](const Uevent& uevent) { 143 HandleFirmwareEvent(uevent); 144 145 uevent_queue_.emplace_back(std::move(uevent)); 146 return ListenerAction::kContinue; 147 }); 148 } 149 150 void ColdBoot::ForkSubProcesses() { 151 for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) { 152 auto pid = fork(); 153 if (pid < 0) { 154 PLOG(FATAL) << "fork() failed!"; 155 } 156 157 if (pid == 0) { 158 UeventHandlerMain(i, num_handler_subprocesses_); 159 } 160 161 subprocess_pids_.emplace(pid); 162 } 163 } 164 165 void ColdBoot::DoRestoreCon() { 166 selinux_android_restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE); 167 device_handler_.set_skip_restorecon(false); 168 } 169 170 void ColdBoot::WaitForSubProcesses() { 171 // Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets 172 // stuck. 173 // 174 // When a subprocess crashes, we fatally abort from ueventd. init will restart ueventd when 175 // init reaps it, and the cold boot process will start again. If this continues to fail, then 176 // since ueventd is marked as a critical service, init will reboot to recovery. 177 // 178 // When a subprocess gets stuck, keep ueventd spinning waiting for it. init has a timeout for 179 // cold boot and will reboot to the bootloader if ueventd does not complete in time. 180 while (!subprocess_pids_.empty()) { 181 int status; 182 pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0)); 183 if (pid == -1) { 184 PLOG(ERROR) << "waitpid() failed"; 185 continue; 186 } 187 188 auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid); 189 if (it == subprocess_pids_.end()) continue; 190 191 if (WIFEXITED(status)) { 192 if (WEXITSTATUS(status) == EXIT_SUCCESS) { 193 subprocess_pids_.erase(it); 194 } else { 195 LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status); 196 } 197 } else if (WIFSIGNALED(status)) { 198 LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status); 199 } 200 } 201 } 202 203 void ColdBoot::Run() { 204 android::base::Timer cold_boot_timer; 205 206 RegenerateUevents(); 207 208 ForkSubProcesses(); 209 210 DoRestoreCon(); 211 212 WaitForSubProcesses(); 213 214 close(open(COLDBOOT_DONE, O_WRONLY | O_CREAT | O_CLOEXEC, 0000)); 215 LOG(INFO) << "Coldboot took " << cold_boot_timer.duration().count() / 1000.0f << " seconds"; 216 } 217 218 DeviceHandler CreateDeviceHandler() { 219 Parser parser; 220 221 std::vector<Subsystem> subsystems; 222 parser.AddSectionParser("subsystem", std::make_unique<SubsystemParser>(&subsystems)); 223 224 using namespace std::placeholders; 225 std::vector<SysfsPermissions> sysfs_permissions; 226 std::vector<Permissions> dev_permissions; 227 parser.AddSingleLineParser("/sys/", 228 std::bind(ParsePermissionsLine, _1, &sysfs_permissions, nullptr)); 229 parser.AddSingleLineParser("/dev/", 230 std::bind(ParsePermissionsLine, _1, nullptr, &dev_permissions)); 231 232 parser.ParseConfig("/ueventd.rc"); 233 parser.ParseConfig("/vendor/ueventd.rc"); 234 parser.ParseConfig("/odm/ueventd.rc"); 235 236 /* 237 * keep the current product name base configuration so 238 * we remain backwards compatible and allow it to override 239 * everything 240 * TODO: cleanup platform ueventd.rc to remove vendor specific 241 * device node entries (b/34968103) 242 */ 243 std::string hardware = android::base::GetProperty("ro.hardware", ""); 244 parser.ParseConfig("/ueventd." + hardware + ".rc"); 245 246 auto boot_devices = fs_mgr_get_boot_devices(); 247 return DeviceHandler(std::move(dev_permissions), std::move(sysfs_permissions), 248 std::move(subsystems), std::move(boot_devices), true); 249 } 250 251 int ueventd_main(int argc, char** argv) { 252 /* 253 * init sets the umask to 077 for forked processes. We need to 254 * create files with exact permissions, without modification by 255 * the umask. 256 */ 257 umask(000); 258 259 InitKernelLogging(argv); 260 261 LOG(INFO) << "ueventd started!"; 262 263 SelinuxSetupKernelLogging(); 264 SelabelInitialize(); 265 266 DeviceHandler device_handler = CreateDeviceHandler(); 267 UeventListener uevent_listener; 268 269 if (access(COLDBOOT_DONE, F_OK) != 0) { 270 ColdBoot cold_boot(uevent_listener, device_handler); 271 cold_boot.Run(); 272 } 273 274 // We use waitpid() in ColdBoot, so we can't ignore SIGCHLD until now. 275 signal(SIGCHLD, SIG_IGN); 276 // Reap and pending children that exited between the last call to waitpid() and setting SIG_IGN 277 // for SIGCHLD above. 278 while (waitpid(-1, nullptr, WNOHANG) > 0) { 279 } 280 281 uevent_listener.Poll([&device_handler](const Uevent& uevent) { 282 HandleFirmwareEvent(uevent); 283 device_handler.HandleDeviceEvent(uevent); 284 return ListenerAction::kContinue; 285 }); 286 287 return 0; 288 } 289 290 } // namespace init 291 } // namespace android 292