1 #ifdef HAVE_CONFIG_H 2 # include <config.h> 3 #endif 4 5 #include <stdlib.h> /* for malloc() */ 6 #include <string.h> /* for memcpy() */ 7 8 #include "private/md5.h" 9 #include "share/alloc.h" 10 #include "share/endswap.h" 11 12 /* 13 * This code implements the MD5 message-digest algorithm. 14 * The algorithm is due to Ron Rivest. This code was 15 * written by Colin Plumb in 1993, no copyright is claimed. 16 * This code is in the public domain; do with it what you wish. 17 * 18 * Equivalent code is available from RSA Data Security, Inc. 19 * This code has been tested against that, and is equivalent, 20 * except that you don't need to include two pages of legalese 21 * with every copy. 22 * 23 * To compute the message digest of a chunk of bytes, declare an 24 * MD5Context structure, pass it to MD5Init, call MD5Update as 25 * needed on buffers full of bytes, and then call MD5Final, which 26 * will fill a supplied 16-byte array with the digest. 27 * 28 * Changed so as no longer to depend on Colin Plumb's `usual.h' header 29 * definitions; now uses stuff from dpkg's config.h. 30 * - Ian Jackson <ijackson (at) nyx.cs.du.edu>. 31 * Still in the public domain. 32 * 33 * Josh Coalson: made some changes to integrate with libFLAC. 34 * Still in the public domain. 35 */ 36 37 /* The four core functions - F1 is optimized somewhat */ 38 39 /* #define F1(x, y, z) (x & y | ~x & z) */ 40 #define F1(x, y, z) (z ^ (x & (y ^ z))) 41 #define F2(x, y, z) F1(z, x, y) 42 #define F3(x, y, z) (x ^ y ^ z) 43 #define F4(x, y, z) (y ^ (x | ~z)) 44 45 /* This is the central step in the MD5 algorithm. */ 46 #define MD5STEP(f,w,x,y,z,in,s) \ 47 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) 48 49 /* 50 * The core of the MD5 algorithm, this alters an existing MD5 hash to 51 * reflect the addition of 16 longwords of new data. MD5Update blocks 52 * the data and converts bytes into longwords for this routine. 53 */ 54 static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16]) 55 { 56 register FLAC__uint32 a, b, c, d; 57 58 a = buf[0]; 59 b = buf[1]; 60 c = buf[2]; 61 d = buf[3]; 62 63 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 64 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 65 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 66 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 67 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 68 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 69 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 70 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 71 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 72 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 73 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 74 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 75 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 76 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 77 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 78 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 79 80 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 81 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 82 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 83 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 84 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 85 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 86 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 87 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 88 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 89 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 90 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 91 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 92 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 93 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 94 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 95 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 96 97 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 98 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 99 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 100 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 101 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 102 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 103 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 104 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 105 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 106 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 107 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 108 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 109 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 110 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 111 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 112 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 113 114 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 115 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 116 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 117 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 118 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 119 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 120 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 121 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 122 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 123 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 124 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 125 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 126 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 127 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 128 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 129 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 130 131 buf[0] += a; 132 buf[1] += b; 133 buf[2] += c; 134 buf[3] += d; 135 } 136 137 #if WORDS_BIGENDIAN 138 //@@@@@@ OPT: use bswap/intrinsics 139 static void byteSwap(FLAC__uint32 *buf, unsigned words) 140 { 141 register FLAC__uint32 x; 142 do { 143 x = *buf; 144 x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); 145 *buf++ = (x >> 16) | (x << 16); 146 } while (--words); 147 } 148 static void byteSwapX16(FLAC__uint32 *buf) 149 { 150 register FLAC__uint32 x; 151 152 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 153 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 154 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 155 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 156 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 157 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 158 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 159 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 160 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 161 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 162 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 163 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 164 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 165 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 166 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 167 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16); 168 } 169 #else 170 #define byteSwap(buf, words) 171 #define byteSwapX16(buf) 172 #endif 173 174 /* 175 * Update context to reflect the concatenation of another buffer full 176 * of bytes. 177 */ 178 static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len) 179 { 180 FLAC__uint32 t; 181 182 /* Update byte count */ 183 184 t = ctx->bytes[0]; 185 if ((ctx->bytes[0] = t + len) < t) 186 ctx->bytes[1]++; /* Carry from low to high */ 187 188 t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ 189 if (t > len) { 190 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len); 191 return; 192 } 193 /* First chunk is an odd size */ 194 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t); 195 byteSwapX16(ctx->in); 196 FLAC__MD5Transform(ctx->buf, ctx->in); 197 buf += t; 198 len -= t; 199 200 /* Process data in 64-byte chunks */ 201 while (len >= 64) { 202 memcpy(ctx->in, buf, 64); 203 byteSwapX16(ctx->in); 204 FLAC__MD5Transform(ctx->buf, ctx->in); 205 buf += 64; 206 len -= 64; 207 } 208 209 /* Handle any remaining bytes of data. */ 210 memcpy(ctx->in, buf, len); 211 } 212 213 /* 214 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 215 * initialization constants. 216 */ 217 void FLAC__MD5Init(FLAC__MD5Context *ctx) 218 { 219 ctx->buf[0] = 0x67452301; 220 ctx->buf[1] = 0xefcdab89; 221 ctx->buf[2] = 0x98badcfe; 222 ctx->buf[3] = 0x10325476; 223 224 ctx->bytes[0] = 0; 225 ctx->bytes[1] = 0; 226 227 ctx->internal_buf.p8 = 0; 228 ctx->capacity = 0; 229 } 230 231 /* 232 * Final wrapup - pad to 64-byte boundary with the bit pattern 233 * 1 0* (64-bit count of bits processed, MSB-first) 234 */ 235 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx) 236 { 237 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ 238 FLAC__byte *p = (FLAC__byte *)ctx->in + count; 239 240 /* Set the first char of padding to 0x80. There is always room. */ 241 *p++ = 0x80; 242 243 /* Bytes of padding needed to make 56 bytes (-8..55) */ 244 count = 56 - 1 - count; 245 246 if (count < 0) { /* Padding forces an extra block */ 247 memset(p, 0, count + 8); 248 byteSwapX16(ctx->in); 249 FLAC__MD5Transform(ctx->buf, ctx->in); 250 p = (FLAC__byte *)ctx->in; 251 count = 56; 252 } 253 memset(p, 0, count); 254 byteSwap(ctx->in, 14); 255 256 /* Append length in bits and transform */ 257 ctx->in[14] = ctx->bytes[0] << 3; 258 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; 259 FLAC__MD5Transform(ctx->buf, ctx->in); 260 261 byteSwap(ctx->buf, 4); 262 memcpy(digest, ctx->buf, 16); 263 if (0 != ctx->internal_buf.p8) { 264 free(ctx->internal_buf.p8); 265 ctx->internal_buf.p8 = 0; 266 ctx->capacity = 0; 267 } 268 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 269 } 270 271 /* 272 * Convert the incoming audio signal to a byte stream 273 */ 274 static void format_input_(FLAC__multibyte *mbuf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample) 275 { 276 FLAC__byte *buf_ = mbuf->p8; 277 FLAC__int16 *buf16 = mbuf->p16; 278 FLAC__int32 *buf32 = mbuf->p32; 279 FLAC__int32 a_word; 280 unsigned channel, sample; 281 282 /* Storage in the output buffer, buf, is little endian. */ 283 284 #define BYTES_CHANNEL_SELECTOR(bytes, channels) (bytes * 100 + channels) 285 286 /* First do the most commonly used combinations. */ 287 switch (BYTES_CHANNEL_SELECTOR (bytes_per_sample, channels)) { 288 /* One byte per sample. */ 289 case (BYTES_CHANNEL_SELECTOR (1, 1)): 290 for (sample = 0; sample < samples; sample++) 291 *buf_++ = signal[0][sample]; 292 return; 293 294 case (BYTES_CHANNEL_SELECTOR (1, 2)): 295 for (sample = 0; sample < samples; sample++) { 296 *buf_++ = signal[0][sample]; 297 *buf_++ = signal[1][sample]; 298 } 299 return; 300 301 case (BYTES_CHANNEL_SELECTOR (1, 4)): 302 for (sample = 0; sample < samples; sample++) { 303 *buf_++ = signal[0][sample]; 304 *buf_++ = signal[1][sample]; 305 *buf_++ = signal[2][sample]; 306 *buf_++ = signal[3][sample]; 307 } 308 return; 309 310 case (BYTES_CHANNEL_SELECTOR (1, 6)): 311 for (sample = 0; sample < samples; sample++) { 312 *buf_++ = signal[0][sample]; 313 *buf_++ = signal[1][sample]; 314 *buf_++ = signal[2][sample]; 315 *buf_++ = signal[3][sample]; 316 *buf_++ = signal[4][sample]; 317 *buf_++ = signal[5][sample]; 318 } 319 return; 320 321 case (BYTES_CHANNEL_SELECTOR (1, 8)): 322 for (sample = 0; sample < samples; sample++) { 323 *buf_++ = signal[0][sample]; 324 *buf_++ = signal[1][sample]; 325 *buf_++ = signal[2][sample]; 326 *buf_++ = signal[3][sample]; 327 *buf_++ = signal[4][sample]; 328 *buf_++ = signal[5][sample]; 329 *buf_++ = signal[6][sample]; 330 *buf_++ = signal[7][sample]; 331 } 332 return; 333 334 /* Two bytes per sample. */ 335 case (BYTES_CHANNEL_SELECTOR (2, 1)): 336 for (sample = 0; sample < samples; sample++) 337 *buf16++ = H2LE_16(signal[0][sample]); 338 return; 339 340 case (BYTES_CHANNEL_SELECTOR (2, 2)): 341 for (sample = 0; sample < samples; sample++) { 342 *buf16++ = H2LE_16(signal[0][sample]); 343 *buf16++ = H2LE_16(signal[1][sample]); 344 } 345 return; 346 347 case (BYTES_CHANNEL_SELECTOR (2, 4)): 348 for (sample = 0; sample < samples; sample++) { 349 *buf16++ = H2LE_16(signal[0][sample]); 350 *buf16++ = H2LE_16(signal[1][sample]); 351 *buf16++ = H2LE_16(signal[2][sample]); 352 *buf16++ = H2LE_16(signal[3][sample]); 353 } 354 return; 355 356 case (BYTES_CHANNEL_SELECTOR (2, 6)): 357 for (sample = 0; sample < samples; sample++) { 358 *buf16++ = H2LE_16(signal[0][sample]); 359 *buf16++ = H2LE_16(signal[1][sample]); 360 *buf16++ = H2LE_16(signal[2][sample]); 361 *buf16++ = H2LE_16(signal[3][sample]); 362 *buf16++ = H2LE_16(signal[4][sample]); 363 *buf16++ = H2LE_16(signal[5][sample]); 364 } 365 return; 366 367 case (BYTES_CHANNEL_SELECTOR (2, 8)): 368 for (sample = 0; sample < samples; sample++) { 369 *buf16++ = H2LE_16(signal[0][sample]); 370 *buf16++ = H2LE_16(signal[1][sample]); 371 *buf16++ = H2LE_16(signal[2][sample]); 372 *buf16++ = H2LE_16(signal[3][sample]); 373 *buf16++ = H2LE_16(signal[4][sample]); 374 *buf16++ = H2LE_16(signal[5][sample]); 375 *buf16++ = H2LE_16(signal[6][sample]); 376 *buf16++ = H2LE_16(signal[7][sample]); 377 } 378 return; 379 380 /* Three bytes per sample. */ 381 case (BYTES_CHANNEL_SELECTOR (3, 1)): 382 for (sample = 0; sample < samples; sample++) { 383 a_word = signal[0][sample]; 384 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 385 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 386 *buf_++ = (FLAC__byte)a_word; 387 } 388 return; 389 390 case (BYTES_CHANNEL_SELECTOR (3, 2)): 391 for (sample = 0; sample < samples; sample++) { 392 a_word = signal[0][sample]; 393 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 394 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 395 *buf_++ = (FLAC__byte)a_word; 396 a_word = signal[1][sample]; 397 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 398 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 399 *buf_++ = (FLAC__byte)a_word; 400 } 401 return; 402 403 /* Four bytes per sample. */ 404 case (BYTES_CHANNEL_SELECTOR (4, 1)): 405 for (sample = 0; sample < samples; sample++) 406 *buf32++ = H2LE_32(signal[0][sample]); 407 return; 408 409 case (BYTES_CHANNEL_SELECTOR (4, 2)): 410 for (sample = 0; sample < samples; sample++) { 411 *buf32++ = H2LE_32(signal[0][sample]); 412 *buf32++ = H2LE_32(signal[1][sample]); 413 } 414 return; 415 416 case (BYTES_CHANNEL_SELECTOR (4, 4)): 417 for (sample = 0; sample < samples; sample++) { 418 *buf32++ = H2LE_32(signal[0][sample]); 419 *buf32++ = H2LE_32(signal[1][sample]); 420 *buf32++ = H2LE_32(signal[2][sample]); 421 *buf32++ = H2LE_32(signal[3][sample]); 422 } 423 return; 424 425 case (BYTES_CHANNEL_SELECTOR (4, 6)): 426 for (sample = 0; sample < samples; sample++) { 427 *buf32++ = H2LE_32(signal[0][sample]); 428 *buf32++ = H2LE_32(signal[1][sample]); 429 *buf32++ = H2LE_32(signal[2][sample]); 430 *buf32++ = H2LE_32(signal[3][sample]); 431 *buf32++ = H2LE_32(signal[4][sample]); 432 *buf32++ = H2LE_32(signal[5][sample]); 433 } 434 return; 435 436 case (BYTES_CHANNEL_SELECTOR (4, 8)): 437 for (sample = 0; sample < samples; sample++) { 438 *buf32++ = H2LE_32(signal[0][sample]); 439 *buf32++ = H2LE_32(signal[1][sample]); 440 *buf32++ = H2LE_32(signal[2][sample]); 441 *buf32++ = H2LE_32(signal[3][sample]); 442 *buf32++ = H2LE_32(signal[4][sample]); 443 *buf32++ = H2LE_32(signal[5][sample]); 444 *buf32++ = H2LE_32(signal[6][sample]); 445 *buf32++ = H2LE_32(signal[7][sample]); 446 } 447 return; 448 449 default: 450 break; 451 } 452 453 /* General version. */ 454 switch (bytes_per_sample) { 455 case 1: 456 for (sample = 0; sample < samples; sample++) 457 for (channel = 0; channel < channels; channel++) 458 *buf_++ = signal[channel][sample]; 459 return; 460 461 case 2: 462 for (sample = 0; sample < samples; sample++) 463 for (channel = 0; channel < channels; channel++) 464 *buf16++ = H2LE_16(signal[channel][sample]); 465 return; 466 467 case 3: 468 for (sample = 0; sample < samples; sample++) 469 for (channel = 0; channel < channels; channel++) { 470 a_word = signal[channel][sample]; 471 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 472 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 473 *buf_++ = (FLAC__byte)a_word; 474 } 475 return; 476 477 case 4: 478 for (sample = 0; sample < samples; sample++) 479 for (channel = 0; channel < channels; channel++) 480 *buf32++ = H2LE_32(signal[channel][sample]); 481 return; 482 483 default: 484 break; 485 } 486 } 487 488 /* 489 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it. 490 */ 491 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample) 492 { 493 const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample; 494 495 /* overflow check */ 496 if ((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample) 497 return false; 498 if ((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples) 499 return false; 500 501 if (ctx->capacity < bytes_needed) { 502 if (0 == (ctx->internal_buf.p8 = safe_realloc_(ctx->internal_buf.p8, bytes_needed))) { 503 if (0 == (ctx->internal_buf.p8 = safe_malloc_(bytes_needed))) { 504 ctx->capacity = 0; 505 return false; 506 } 507 } 508 ctx->capacity = bytes_needed; 509 } 510 511 format_input_(&ctx->internal_buf, signal, channels, samples, bytes_per_sample); 512 513 FLAC__MD5Update(ctx, ctx->internal_buf.p8, bytes_needed); 514 515 return true; 516 } 517