Home | History | Annotate | Download | only in Analysis
      1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines vectorizer utilities.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/ADT/EquivalenceClasses.h"
     15 #include "llvm/Analysis/DemandedBits.h"
     16 #include "llvm/Analysis/LoopInfo.h"
     17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     18 #include "llvm/Analysis/ScalarEvolution.h"
     19 #include "llvm/Analysis/TargetTransformInfo.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/Analysis/VectorUtils.h"
     22 #include "llvm/IR/GetElementPtrTypeIterator.h"
     23 #include "llvm/IR/PatternMatch.h"
     24 #include "llvm/IR/Value.h"
     25 #include "llvm/IR/Constants.h"
     26 
     27 using namespace llvm;
     28 using namespace llvm::PatternMatch;
     29 
     30 /// \brief Identify if the intrinsic is trivially vectorizable.
     31 /// This method returns true if the intrinsic's argument types are all
     32 /// scalars for the scalar form of the intrinsic and all vectors for
     33 /// the vector form of the intrinsic.
     34 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
     35   switch (ID) {
     36   case Intrinsic::sqrt:
     37   case Intrinsic::sin:
     38   case Intrinsic::cos:
     39   case Intrinsic::exp:
     40   case Intrinsic::exp2:
     41   case Intrinsic::log:
     42   case Intrinsic::log10:
     43   case Intrinsic::log2:
     44   case Intrinsic::fabs:
     45   case Intrinsic::minnum:
     46   case Intrinsic::maxnum:
     47   case Intrinsic::copysign:
     48   case Intrinsic::floor:
     49   case Intrinsic::ceil:
     50   case Intrinsic::trunc:
     51   case Intrinsic::rint:
     52   case Intrinsic::nearbyint:
     53   case Intrinsic::round:
     54   case Intrinsic::bswap:
     55   case Intrinsic::bitreverse:
     56   case Intrinsic::ctpop:
     57   case Intrinsic::pow:
     58   case Intrinsic::fma:
     59   case Intrinsic::fmuladd:
     60   case Intrinsic::ctlz:
     61   case Intrinsic::cttz:
     62   case Intrinsic::powi:
     63     return true;
     64   default:
     65     return false;
     66   }
     67 }
     68 
     69 /// \brief Identifies if the intrinsic has a scalar operand. It check for
     70 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
     71 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
     72                                         unsigned ScalarOpdIdx) {
     73   switch (ID) {
     74   case Intrinsic::ctlz:
     75   case Intrinsic::cttz:
     76   case Intrinsic::powi:
     77     return (ScalarOpdIdx == 1);
     78   default:
     79     return false;
     80   }
     81 }
     82 
     83 /// \brief Returns intrinsic ID for call.
     84 /// For the input call instruction it finds mapping intrinsic and returns
     85 /// its ID, in case it does not found it return not_intrinsic.
     86 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
     87                                                 const TargetLibraryInfo *TLI) {
     88   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
     89   if (ID == Intrinsic::not_intrinsic)
     90     return Intrinsic::not_intrinsic;
     91 
     92   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
     93       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
     94     return ID;
     95   return Intrinsic::not_intrinsic;
     96 }
     97 
     98 /// \brief Find the operand of the GEP that should be checked for consecutive
     99 /// stores. This ignores trailing indices that have no effect on the final
    100 /// pointer.
    101 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
    102   const DataLayout &DL = Gep->getModule()->getDataLayout();
    103   unsigned LastOperand = Gep->getNumOperands() - 1;
    104   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
    105 
    106   // Walk backwards and try to peel off zeros.
    107   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
    108     // Find the type we're currently indexing into.
    109     gep_type_iterator GEPTI = gep_type_begin(Gep);
    110     std::advance(GEPTI, LastOperand - 1);
    111 
    112     // If it's a type with the same allocation size as the result of the GEP we
    113     // can peel off the zero index.
    114     if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
    115       break;
    116     --LastOperand;
    117   }
    118 
    119   return LastOperand;
    120 }
    121 
    122 /// \brief If the argument is a GEP, then returns the operand identified by
    123 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
    124 /// operand, it returns that instead.
    125 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
    126   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
    127   if (!GEP)
    128     return Ptr;
    129 
    130   unsigned InductionOperand = getGEPInductionOperand(GEP);
    131 
    132   // Check that all of the gep indices are uniform except for our induction
    133   // operand.
    134   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
    135     if (i != InductionOperand &&
    136         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
    137       return Ptr;
    138   return GEP->getOperand(InductionOperand);
    139 }
    140 
    141 /// \brief If a value has only one user that is a CastInst, return it.
    142 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
    143   Value *UniqueCast = nullptr;
    144   for (User *U : Ptr->users()) {
    145     CastInst *CI = dyn_cast<CastInst>(U);
    146     if (CI && CI->getType() == Ty) {
    147       if (!UniqueCast)
    148         UniqueCast = CI;
    149       else
    150         return nullptr;
    151     }
    152   }
    153   return UniqueCast;
    154 }
    155 
    156 /// \brief Get the stride of a pointer access in a loop. Looks for symbolic
    157 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
    158 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
    159   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
    160   if (!PtrTy || PtrTy->isAggregateType())
    161     return nullptr;
    162 
    163   // Try to remove a gep instruction to make the pointer (actually index at this
    164   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
    165   // pointer, otherwise, we are analyzing the index.
    166   Value *OrigPtr = Ptr;
    167 
    168   // The size of the pointer access.
    169   int64_t PtrAccessSize = 1;
    170 
    171   Ptr = stripGetElementPtr(Ptr, SE, Lp);
    172   const SCEV *V = SE->getSCEV(Ptr);
    173 
    174   if (Ptr != OrigPtr)
    175     // Strip off casts.
    176     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
    177       V = C->getOperand();
    178 
    179   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
    180   if (!S)
    181     return nullptr;
    182 
    183   V = S->getStepRecurrence(*SE);
    184   if (!V)
    185     return nullptr;
    186 
    187   // Strip off the size of access multiplication if we are still analyzing the
    188   // pointer.
    189   if (OrigPtr == Ptr) {
    190     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
    191       if (M->getOperand(0)->getSCEVType() != scConstant)
    192         return nullptr;
    193 
    194       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
    195 
    196       // Huge step value - give up.
    197       if (APStepVal.getBitWidth() > 64)
    198         return nullptr;
    199 
    200       int64_t StepVal = APStepVal.getSExtValue();
    201       if (PtrAccessSize != StepVal)
    202         return nullptr;
    203       V = M->getOperand(1);
    204     }
    205   }
    206 
    207   // Strip off casts.
    208   Type *StripedOffRecurrenceCast = nullptr;
    209   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
    210     StripedOffRecurrenceCast = C->getType();
    211     V = C->getOperand();
    212   }
    213 
    214   // Look for the loop invariant symbolic value.
    215   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
    216   if (!U)
    217     return nullptr;
    218 
    219   Value *Stride = U->getValue();
    220   if (!Lp->isLoopInvariant(Stride))
    221     return nullptr;
    222 
    223   // If we have stripped off the recurrence cast we have to make sure that we
    224   // return the value that is used in this loop so that we can replace it later.
    225   if (StripedOffRecurrenceCast)
    226     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
    227 
    228   return Stride;
    229 }
    230 
    231 /// \brief Given a vector and an element number, see if the scalar value is
    232 /// already around as a register, for example if it were inserted then extracted
    233 /// from the vector.
    234 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
    235   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
    236   VectorType *VTy = cast<VectorType>(V->getType());
    237   unsigned Width = VTy->getNumElements();
    238   if (EltNo >= Width)  // Out of range access.
    239     return UndefValue::get(VTy->getElementType());
    240 
    241   if (Constant *C = dyn_cast<Constant>(V))
    242     return C->getAggregateElement(EltNo);
    243 
    244   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
    245     // If this is an insert to a variable element, we don't know what it is.
    246     if (!isa<ConstantInt>(III->getOperand(2)))
    247       return nullptr;
    248     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
    249 
    250     // If this is an insert to the element we are looking for, return the
    251     // inserted value.
    252     if (EltNo == IIElt)
    253       return III->getOperand(1);
    254 
    255     // Otherwise, the insertelement doesn't modify the value, recurse on its
    256     // vector input.
    257     return findScalarElement(III->getOperand(0), EltNo);
    258   }
    259 
    260   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
    261     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
    262     int InEl = SVI->getMaskValue(EltNo);
    263     if (InEl < 0)
    264       return UndefValue::get(VTy->getElementType());
    265     if (InEl < (int)LHSWidth)
    266       return findScalarElement(SVI->getOperand(0), InEl);
    267     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
    268   }
    269 
    270   // Extract a value from a vector add operation with a constant zero.
    271   Value *Val = nullptr; Constant *Con = nullptr;
    272   if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
    273     if (Constant *Elt = Con->getAggregateElement(EltNo))
    274       if (Elt->isNullValue())
    275         return findScalarElement(Val, EltNo);
    276 
    277   // Otherwise, we don't know.
    278   return nullptr;
    279 }
    280 
    281 /// \brief Get splat value if the input is a splat vector or return nullptr.
    282 /// This function is not fully general. It checks only 2 cases:
    283 /// the input value is (1) a splat constants vector or (2) a sequence
    284 /// of instructions that broadcast a single value into a vector.
    285 ///
    286 const llvm::Value *llvm::getSplatValue(const Value *V) {
    287 
    288   if (auto *C = dyn_cast<Constant>(V))
    289     if (isa<VectorType>(V->getType()))
    290       return C->getSplatValue();
    291 
    292   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
    293   if (!ShuffleInst)
    294     return nullptr;
    295   // All-zero (or undef) shuffle mask elements.
    296   for (int MaskElt : ShuffleInst->getShuffleMask())
    297     if (MaskElt != 0 && MaskElt != -1)
    298       return nullptr;
    299   // The first shuffle source is 'insertelement' with index 0.
    300   auto *InsertEltInst =
    301     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
    302   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
    303       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
    304     return nullptr;
    305 
    306   return InsertEltInst->getOperand(1);
    307 }
    308 
    309 MapVector<Instruction *, uint64_t>
    310 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
    311                                const TargetTransformInfo *TTI) {
    312 
    313   // DemandedBits will give us every value's live-out bits. But we want
    314   // to ensure no extra casts would need to be inserted, so every DAG
    315   // of connected values must have the same minimum bitwidth.
    316   EquivalenceClasses<Value *> ECs;
    317   SmallVector<Value *, 16> Worklist;
    318   SmallPtrSet<Value *, 4> Roots;
    319   SmallPtrSet<Value *, 16> Visited;
    320   DenseMap<Value *, uint64_t> DBits;
    321   SmallPtrSet<Instruction *, 4> InstructionSet;
    322   MapVector<Instruction *, uint64_t> MinBWs;
    323 
    324   // Determine the roots. We work bottom-up, from truncs or icmps.
    325   bool SeenExtFromIllegalType = false;
    326   for (auto *BB : Blocks)
    327     for (auto &I : *BB) {
    328       InstructionSet.insert(&I);
    329 
    330       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
    331           !TTI->isTypeLegal(I.getOperand(0)->getType()))
    332         SeenExtFromIllegalType = true;
    333 
    334       // Only deal with non-vector integers up to 64-bits wide.
    335       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
    336           !I.getType()->isVectorTy() &&
    337           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
    338         // Don't make work for ourselves. If we know the loaded type is legal,
    339         // don't add it to the worklist.
    340         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
    341           continue;
    342 
    343         Worklist.push_back(&I);
    344         Roots.insert(&I);
    345       }
    346     }
    347   // Early exit.
    348   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
    349     return MinBWs;
    350 
    351   // Now proceed breadth-first, unioning values together.
    352   while (!Worklist.empty()) {
    353     Value *Val = Worklist.pop_back_val();
    354     Value *Leader = ECs.getOrInsertLeaderValue(Val);
    355 
    356     if (Visited.count(Val))
    357       continue;
    358     Visited.insert(Val);
    359 
    360     // Non-instructions terminate a chain successfully.
    361     if (!isa<Instruction>(Val))
    362       continue;
    363     Instruction *I = cast<Instruction>(Val);
    364 
    365     // If we encounter a type that is larger than 64 bits, we can't represent
    366     // it so bail out.
    367     if (DB.getDemandedBits(I).getBitWidth() > 64)
    368       return MapVector<Instruction *, uint64_t>();
    369 
    370     uint64_t V = DB.getDemandedBits(I).getZExtValue();
    371     DBits[Leader] |= V;
    372     DBits[I] = V;
    373 
    374     // Casts, loads and instructions outside of our range terminate a chain
    375     // successfully.
    376     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
    377         !InstructionSet.count(I))
    378       continue;
    379 
    380     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
    381     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
    382     // transform anything that relies on them.
    383     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
    384         !I->getType()->isIntegerTy()) {
    385       DBits[Leader] |= ~0ULL;
    386       continue;
    387     }
    388 
    389     // We don't modify the types of PHIs. Reductions will already have been
    390     // truncated if possible, and inductions' sizes will have been chosen by
    391     // indvars.
    392     if (isa<PHINode>(I))
    393       continue;
    394 
    395     if (DBits[Leader] == ~0ULL)
    396       // All bits demanded, no point continuing.
    397       continue;
    398 
    399     for (Value *O : cast<User>(I)->operands()) {
    400       ECs.unionSets(Leader, O);
    401       Worklist.push_back(O);
    402     }
    403   }
    404 
    405   // Now we've discovered all values, walk them to see if there are
    406   // any users we didn't see. If there are, we can't optimize that
    407   // chain.
    408   for (auto &I : DBits)
    409     for (auto *U : I.first->users())
    410       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
    411         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
    412 
    413   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
    414     uint64_t LeaderDemandedBits = 0;
    415     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
    416       LeaderDemandedBits |= DBits[*MI];
    417 
    418     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
    419                      llvm::countLeadingZeros(LeaderDemandedBits);
    420     // Round up to a power of 2
    421     if (!isPowerOf2_64((uint64_t)MinBW))
    422       MinBW = NextPowerOf2(MinBW);
    423 
    424     // We don't modify the types of PHIs. Reductions will already have been
    425     // truncated if possible, and inductions' sizes will have been chosen by
    426     // indvars.
    427     // If we are required to shrink a PHI, abandon this entire equivalence class.
    428     bool Abort = false;
    429     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
    430       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
    431         Abort = true;
    432         break;
    433       }
    434     if (Abort)
    435       continue;
    436 
    437     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
    438       if (!isa<Instruction>(*MI))
    439         continue;
    440       Type *Ty = (*MI)->getType();
    441       if (Roots.count(*MI))
    442         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
    443       if (MinBW < Ty->getScalarSizeInBits())
    444         MinBWs[cast<Instruction>(*MI)] = MinBW;
    445     }
    446   }
    447 
    448   return MinBWs;
    449 }
    450 
    451 /// \returns \p I after propagating metadata from \p VL.
    452 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
    453   Instruction *I0 = cast<Instruction>(VL[0]);
    454   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
    455   I0->getAllMetadataOtherThanDebugLoc(Metadata);
    456 
    457   for (auto Kind : { LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
    458                      LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
    459                      LLVMContext::MD_nontemporal }) {
    460     MDNode *MD = I0->getMetadata(Kind);
    461 
    462     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
    463       const Instruction *IJ = cast<Instruction>(VL[J]);
    464       MDNode *IMD = IJ->getMetadata(Kind);
    465       switch (Kind) {
    466       case LLVMContext::MD_tbaa:
    467         MD = MDNode::getMostGenericTBAA(MD, IMD);
    468         break;
    469       case LLVMContext::MD_alias_scope:
    470         MD = MDNode::getMostGenericAliasScope(MD, IMD);
    471         break;
    472       case LLVMContext::MD_noalias:
    473         MD = MDNode::intersect(MD, IMD);
    474         break;
    475       case LLVMContext::MD_fpmath:
    476         MD = MDNode::getMostGenericFPMath(MD, IMD);
    477         break;
    478       case LLVMContext::MD_nontemporal:
    479         MD = MDNode::intersect(MD, IMD);
    480         break;
    481       default:
    482         llvm_unreachable("unhandled metadata");
    483       }
    484     }
    485 
    486     Inst->setMetadata(Kind, MD);
    487   }
    488 
    489   return Inst;
    490 }
    491