Home | History | Annotate | Download | only in Sema
      1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements C++ semantic analysis for scope specifiers.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TypeLocBuilder.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/NestedNameSpecifier.h"
     20 #include "clang/Basic/PartialDiagnostic.h"
     21 #include "clang/Sema/DeclSpec.h"
     22 #include "clang/Sema/Lookup.h"
     23 #include "clang/Sema/Template.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 using namespace clang;
     27 
     28 /// \brief Find the current instantiation that associated with the given type.
     29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
     30                                                 DeclContext *CurContext) {
     31   if (T.isNull())
     32     return nullptr;
     33 
     34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
     35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
     36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
     37     if (!Record->isDependentContext() ||
     38         Record->isCurrentInstantiation(CurContext))
     39       return Record;
     40 
     41     return nullptr;
     42   } else if (isa<InjectedClassNameType>(Ty))
     43     return cast<InjectedClassNameType>(Ty)->getDecl();
     44   else
     45     return nullptr;
     46 }
     47 
     48 /// \brief Compute the DeclContext that is associated with the given type.
     49 ///
     50 /// \param T the type for which we are attempting to find a DeclContext.
     51 ///
     52 /// \returns the declaration context represented by the type T,
     53 /// or NULL if the declaration context cannot be computed (e.g., because it is
     54 /// dependent and not the current instantiation).
     55 DeclContext *Sema::computeDeclContext(QualType T) {
     56   if (!T->isDependentType())
     57     if (const TagType *Tag = T->getAs<TagType>())
     58       return Tag->getDecl();
     59 
     60   return ::getCurrentInstantiationOf(T, CurContext);
     61 }
     62 
     63 /// \brief Compute the DeclContext that is associated with the given
     64 /// scope specifier.
     65 ///
     66 /// \param SS the C++ scope specifier as it appears in the source
     67 ///
     68 /// \param EnteringContext when true, we will be entering the context of
     69 /// this scope specifier, so we can retrieve the declaration context of a
     70 /// class template or class template partial specialization even if it is
     71 /// not the current instantiation.
     72 ///
     73 /// \returns the declaration context represented by the scope specifier @p SS,
     74 /// or NULL if the declaration context cannot be computed (e.g., because it is
     75 /// dependent and not the current instantiation).
     76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
     77                                       bool EnteringContext) {
     78   if (!SS.isSet() || SS.isInvalid())
     79     return nullptr;
     80 
     81   NestedNameSpecifier *NNS = SS.getScopeRep();
     82   if (NNS->isDependent()) {
     83     // If this nested-name-specifier refers to the current
     84     // instantiation, return its DeclContext.
     85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
     86       return Record;
     87 
     88     if (EnteringContext) {
     89       const Type *NNSType = NNS->getAsType();
     90       if (!NNSType) {
     91         return nullptr;
     92       }
     93 
     94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
     95       NNSType = Context.getCanonicalType(NNSType);
     96       if (const TemplateSpecializationType *SpecType
     97             = NNSType->getAs<TemplateSpecializationType>()) {
     98         // We are entering the context of the nested name specifier, so try to
     99         // match the nested name specifier to either a primary class template
    100         // or a class template partial specialization.
    101         if (ClassTemplateDecl *ClassTemplate
    102               = dyn_cast_or_null<ClassTemplateDecl>(
    103                             SpecType->getTemplateName().getAsTemplateDecl())) {
    104           QualType ContextType
    105             = Context.getCanonicalType(QualType(SpecType, 0));
    106 
    107           // If the type of the nested name specifier is the same as the
    108           // injected class name of the named class template, we're entering
    109           // into that class template definition.
    110           QualType Injected
    111             = ClassTemplate->getInjectedClassNameSpecialization();
    112           if (Context.hasSameType(Injected, ContextType))
    113             return ClassTemplate->getTemplatedDecl();
    114 
    115           // If the type of the nested name specifier is the same as the
    116           // type of one of the class template's class template partial
    117           // specializations, we're entering into the definition of that
    118           // class template partial specialization.
    119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
    120                 = ClassTemplate->findPartialSpecialization(ContextType)) {
    121             // A declaration of the partial specialization must be visible.
    122             // We can always recover here, because this only happens when we're
    123             // entering the context, and that can't happen in a SFINAE context.
    124             assert(!isSFINAEContext() &&
    125                    "partial specialization scope specifier in SFINAE context?");
    126             if (!hasVisibleDeclaration(PartialSpec))
    127               diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
    128                                     MissingImportKind::PartialSpecialization,
    129                                     /*Recover*/true);
    130             return PartialSpec;
    131           }
    132         }
    133       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
    134         // The nested name specifier refers to a member of a class template.
    135         return RecordT->getDecl();
    136       }
    137     }
    138 
    139     return nullptr;
    140   }
    141 
    142   switch (NNS->getKind()) {
    143   case NestedNameSpecifier::Identifier:
    144     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
    145 
    146   case NestedNameSpecifier::Namespace:
    147     return NNS->getAsNamespace();
    148 
    149   case NestedNameSpecifier::NamespaceAlias:
    150     return NNS->getAsNamespaceAlias()->getNamespace();
    151 
    152   case NestedNameSpecifier::TypeSpec:
    153   case NestedNameSpecifier::TypeSpecWithTemplate: {
    154     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
    155     assert(Tag && "Non-tag type in nested-name-specifier");
    156     return Tag->getDecl();
    157   }
    158 
    159   case NestedNameSpecifier::Global:
    160     return Context.getTranslationUnitDecl();
    161 
    162   case NestedNameSpecifier::Super:
    163     return NNS->getAsRecordDecl();
    164   }
    165 
    166   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
    167 }
    168 
    169 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
    170   if (!SS.isSet() || SS.isInvalid())
    171     return false;
    172 
    173   return SS.getScopeRep()->isDependent();
    174 }
    175 
    176 /// \brief If the given nested name specifier refers to the current
    177 /// instantiation, return the declaration that corresponds to that
    178 /// current instantiation (C++0x [temp.dep.type]p1).
    179 ///
    180 /// \param NNS a dependent nested name specifier.
    181 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
    182   assert(getLangOpts().CPlusPlus && "Only callable in C++");
    183   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
    184 
    185   if (!NNS->getAsType())
    186     return nullptr;
    187 
    188   QualType T = QualType(NNS->getAsType(), 0);
    189   return ::getCurrentInstantiationOf(T, CurContext);
    190 }
    191 
    192 /// \brief Require that the context specified by SS be complete.
    193 ///
    194 /// If SS refers to a type, this routine checks whether the type is
    195 /// complete enough (or can be made complete enough) for name lookup
    196 /// into the DeclContext. A type that is not yet completed can be
    197 /// considered "complete enough" if it is a class/struct/union/enum
    198 /// that is currently being defined. Or, if we have a type that names
    199 /// a class template specialization that is not a complete type, we
    200 /// will attempt to instantiate that class template.
    201 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
    202                                       DeclContext *DC) {
    203   assert(DC && "given null context");
    204 
    205   TagDecl *tag = dyn_cast<TagDecl>(DC);
    206 
    207   // If this is a dependent type, then we consider it complete.
    208   // FIXME: This is wrong; we should require a (visible) definition to
    209   // exist in this case too.
    210   if (!tag || tag->isDependentContext())
    211     return false;
    212 
    213   // If we're currently defining this type, then lookup into the
    214   // type is okay: don't complain that it isn't complete yet.
    215   QualType type = Context.getTypeDeclType(tag);
    216   const TagType *tagType = type->getAs<TagType>();
    217   if (tagType && tagType->isBeingDefined())
    218     return false;
    219 
    220   SourceLocation loc = SS.getLastQualifierNameLoc();
    221   if (loc.isInvalid()) loc = SS.getRange().getBegin();
    222 
    223   // The type must be complete.
    224   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
    225                           SS.getRange())) {
    226     SS.SetInvalid(SS.getRange());
    227     return true;
    228   }
    229 
    230   // Fixed enum types are complete, but they aren't valid as scopes
    231   // until we see a definition, so awkwardly pull out this special
    232   // case.
    233   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
    234   if (!enumType)
    235     return false;
    236   if (enumType->getDecl()->isCompleteDefinition()) {
    237     // If we know about the definition but it is not visible, complain.
    238     NamedDecl *SuggestedDef = nullptr;
    239     if (!hasVisibleDefinition(enumType->getDecl(), &SuggestedDef,
    240                               /*OnlyNeedComplete*/false)) {
    241       // If the user is going to see an error here, recover by making the
    242       // definition visible.
    243       bool TreatAsComplete = !isSFINAEContext();
    244       diagnoseMissingImport(loc, SuggestedDef, MissingImportKind::Definition,
    245                             /*Recover*/TreatAsComplete);
    246       return !TreatAsComplete;
    247     }
    248     return false;
    249   }
    250 
    251   // Try to instantiate the definition, if this is a specialization of an
    252   // enumeration temploid.
    253   EnumDecl *ED = enumType->getDecl();
    254   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
    255     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
    256     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
    257       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
    258                           TSK_ImplicitInstantiation)) {
    259         SS.SetInvalid(SS.getRange());
    260         return true;
    261       }
    262       return false;
    263     }
    264   }
    265 
    266   Diag(loc, diag::err_incomplete_nested_name_spec)
    267     << type << SS.getRange();
    268   SS.SetInvalid(SS.getRange());
    269   return true;
    270 }
    271 
    272 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
    273                                         CXXScopeSpec &SS) {
    274   SS.MakeGlobal(Context, CCLoc);
    275   return false;
    276 }
    277 
    278 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
    279                                     SourceLocation ColonColonLoc,
    280                                     CXXScopeSpec &SS) {
    281   CXXRecordDecl *RD = nullptr;
    282   for (Scope *S = getCurScope(); S; S = S->getParent()) {
    283     if (S->isFunctionScope()) {
    284       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
    285         RD = MD->getParent();
    286       break;
    287     }
    288     if (S->isClassScope()) {
    289       RD = cast<CXXRecordDecl>(S->getEntity());
    290       break;
    291     }
    292   }
    293 
    294   if (!RD) {
    295     Diag(SuperLoc, diag::err_invalid_super_scope);
    296     return true;
    297   } else if (RD->isLambda()) {
    298     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
    299     return true;
    300   } else if (RD->getNumBases() == 0) {
    301     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
    302     return true;
    303   }
    304 
    305   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
    306   return false;
    307 }
    308 
    309 /// \brief Determines whether the given declaration is an valid acceptable
    310 /// result for name lookup of a nested-name-specifier.
    311 /// \param SD Declaration checked for nested-name-specifier.
    312 /// \param IsExtension If not null and the declaration is accepted as an
    313 /// extension, the pointed variable is assigned true.
    314 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
    315                                            bool *IsExtension) {
    316   if (!SD)
    317     return false;
    318 
    319   SD = SD->getUnderlyingDecl();
    320 
    321   // Namespace and namespace aliases are fine.
    322   if (isa<NamespaceDecl>(SD))
    323     return true;
    324 
    325   if (!isa<TypeDecl>(SD))
    326     return false;
    327 
    328   // Determine whether we have a class (or, in C++11, an enum) or
    329   // a typedef thereof. If so, build the nested-name-specifier.
    330   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    331   if (T->isDependentType())
    332     return true;
    333   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
    334     if (TD->getUnderlyingType()->isRecordType())
    335       return true;
    336     if (TD->getUnderlyingType()->isEnumeralType()) {
    337       if (Context.getLangOpts().CPlusPlus11)
    338         return true;
    339       if (IsExtension)
    340         *IsExtension = true;
    341     }
    342   } else if (isa<RecordDecl>(SD)) {
    343     return true;
    344   } else if (isa<EnumDecl>(SD)) {
    345     if (Context.getLangOpts().CPlusPlus11)
    346       return true;
    347     if (IsExtension)
    348       *IsExtension = true;
    349   }
    350 
    351   return false;
    352 }
    353 
    354 /// \brief If the given nested-name-specifier begins with a bare identifier
    355 /// (e.g., Base::), perform name lookup for that identifier as a
    356 /// nested-name-specifier within the given scope, and return the result of that
    357 /// name lookup.
    358 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
    359   if (!S || !NNS)
    360     return nullptr;
    361 
    362   while (NNS->getPrefix())
    363     NNS = NNS->getPrefix();
    364 
    365   if (NNS->getKind() != NestedNameSpecifier::Identifier)
    366     return nullptr;
    367 
    368   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
    369                      LookupNestedNameSpecifierName);
    370   LookupName(Found, S);
    371   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
    372 
    373   if (!Found.isSingleResult())
    374     return nullptr;
    375 
    376   NamedDecl *Result = Found.getFoundDecl();
    377   if (isAcceptableNestedNameSpecifier(Result))
    378     return Result;
    379 
    380   return nullptr;
    381 }
    382 
    383 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
    384                                         SourceLocation IdLoc,
    385                                         IdentifierInfo &II,
    386                                         ParsedType ObjectTypePtr) {
    387   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
    388   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
    389 
    390   // Determine where to perform name lookup
    391   DeclContext *LookupCtx = nullptr;
    392   bool isDependent = false;
    393   if (!ObjectType.isNull()) {
    394     // This nested-name-specifier occurs in a member access expression, e.g.,
    395     // x->B::f, and we are looking into the type of the object.
    396     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    397     LookupCtx = computeDeclContext(ObjectType);
    398     isDependent = ObjectType->isDependentType();
    399   } else if (SS.isSet()) {
    400     // This nested-name-specifier occurs after another nested-name-specifier,
    401     // so long into the context associated with the prior nested-name-specifier.
    402     LookupCtx = computeDeclContext(SS, false);
    403     isDependent = isDependentScopeSpecifier(SS);
    404     Found.setContextRange(SS.getRange());
    405   }
    406 
    407   if (LookupCtx) {
    408     // Perform "qualified" name lookup into the declaration context we
    409     // computed, which is either the type of the base of a member access
    410     // expression or the declaration context associated with a prior
    411     // nested-name-specifier.
    412 
    413     // The declaration context must be complete.
    414     if (!LookupCtx->isDependentContext() &&
    415         RequireCompleteDeclContext(SS, LookupCtx))
    416       return false;
    417 
    418     LookupQualifiedName(Found, LookupCtx);
    419   } else if (isDependent) {
    420     return false;
    421   } else {
    422     LookupName(Found, S);
    423   }
    424   Found.suppressDiagnostics();
    425 
    426   return Found.getAsSingle<NamespaceDecl>();
    427 }
    428 
    429 namespace {
    430 
    431 // Callback to only accept typo corrections that can be a valid C++ member
    432 // intializer: either a non-static field member or a base class.
    433 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
    434  public:
    435   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
    436       : SRef(SRef) {}
    437 
    438   bool ValidateCandidate(const TypoCorrection &candidate) override {
    439     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
    440   }
    441 
    442  private:
    443   Sema &SRef;
    444 };
    445 
    446 }
    447 
    448 /// \brief Build a new nested-name-specifier for "identifier::", as described
    449 /// by ActOnCXXNestedNameSpecifier.
    450 ///
    451 /// \param S Scope in which the nested-name-specifier occurs.
    452 /// \param Identifier Identifier in the sequence "identifier" "::".
    453 /// \param IdentifierLoc Location of the \p Identifier.
    454 /// \param CCLoc Location of "::" following Identifier.
    455 /// \param ObjectType Type of postfix expression if the nested-name-specifier
    456 ///        occurs in construct like: <tt>ptr->nns::f</tt>.
    457 /// \param EnteringContext If true, enter the context specified by the
    458 ///        nested-name-specifier.
    459 /// \param SS Optional nested name specifier preceding the identifier.
    460 /// \param ScopeLookupResult Provides the result of name lookup within the
    461 ///        scope of the nested-name-specifier that was computed at template
    462 ///        definition time.
    463 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
    464 ///        error recovery and what kind of recovery is performed.
    465 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
    466 ///        are allowed.  The bool value pointed by this parameter is set to
    467 ///       'true' if the identifier is treated as if it was followed by ':',
    468 ///        not '::'.
    469 ///
    470 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
    471 /// that it contains an extra parameter \p ScopeLookupResult, which provides
    472 /// the result of name lookup within the scope of the nested-name-specifier
    473 /// that was computed at template definition time.
    474 ///
    475 /// If ErrorRecoveryLookup is true, then this call is used to improve error
    476 /// recovery.  This means that it should not emit diagnostics, it should
    477 /// just return true on failure.  It also means it should only return a valid
    478 /// scope if it *knows* that the result is correct.  It should not return in a
    479 /// dependent context, for example. Nor will it extend \p SS with the scope
    480 /// specifier.
    481 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
    482                                        IdentifierInfo &Identifier,
    483                                        SourceLocation IdentifierLoc,
    484                                        SourceLocation CCLoc,
    485                                        QualType ObjectType,
    486                                        bool EnteringContext,
    487                                        CXXScopeSpec &SS,
    488                                        NamedDecl *ScopeLookupResult,
    489                                        bool ErrorRecoveryLookup,
    490                                        bool *IsCorrectedToColon) {
    491   LookupResult Found(*this, &Identifier, IdentifierLoc,
    492                      LookupNestedNameSpecifierName);
    493 
    494   // Determine where to perform name lookup
    495   DeclContext *LookupCtx = nullptr;
    496   bool isDependent = false;
    497   if (IsCorrectedToColon)
    498     *IsCorrectedToColon = false;
    499   if (!ObjectType.isNull()) {
    500     // This nested-name-specifier occurs in a member access expression, e.g.,
    501     // x->B::f, and we are looking into the type of the object.
    502     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    503     LookupCtx = computeDeclContext(ObjectType);
    504     isDependent = ObjectType->isDependentType();
    505   } else if (SS.isSet()) {
    506     // This nested-name-specifier occurs after another nested-name-specifier,
    507     // so look into the context associated with the prior nested-name-specifier.
    508     LookupCtx = computeDeclContext(SS, EnteringContext);
    509     isDependent = isDependentScopeSpecifier(SS);
    510     Found.setContextRange(SS.getRange());
    511   }
    512 
    513   bool ObjectTypeSearchedInScope = false;
    514   if (LookupCtx) {
    515     // Perform "qualified" name lookup into the declaration context we
    516     // computed, which is either the type of the base of a member access
    517     // expression or the declaration context associated with a prior
    518     // nested-name-specifier.
    519 
    520     // The declaration context must be complete.
    521     if (!LookupCtx->isDependentContext() &&
    522         RequireCompleteDeclContext(SS, LookupCtx))
    523       return true;
    524 
    525     LookupQualifiedName(Found, LookupCtx);
    526 
    527     if (!ObjectType.isNull() && Found.empty()) {
    528       // C++ [basic.lookup.classref]p4:
    529       //   If the id-expression in a class member access is a qualified-id of
    530       //   the form
    531       //
    532       //        class-name-or-namespace-name::...
    533       //
    534       //   the class-name-or-namespace-name following the . or -> operator is
    535       //   looked up both in the context of the entire postfix-expression and in
    536       //   the scope of the class of the object expression. If the name is found
    537       //   only in the scope of the class of the object expression, the name
    538       //   shall refer to a class-name. If the name is found only in the
    539       //   context of the entire postfix-expression, the name shall refer to a
    540       //   class-name or namespace-name. [...]
    541       //
    542       // Qualified name lookup into a class will not find a namespace-name,
    543       // so we do not need to diagnose that case specifically. However,
    544       // this qualified name lookup may find nothing. In that case, perform
    545       // unqualified name lookup in the given scope (if available) or
    546       // reconstruct the result from when name lookup was performed at template
    547       // definition time.
    548       if (S)
    549         LookupName(Found, S);
    550       else if (ScopeLookupResult)
    551         Found.addDecl(ScopeLookupResult);
    552 
    553       ObjectTypeSearchedInScope = true;
    554     }
    555   } else if (!isDependent) {
    556     // Perform unqualified name lookup in the current scope.
    557     LookupName(Found, S);
    558   }
    559 
    560   if (Found.isAmbiguous())
    561     return true;
    562 
    563   // If we performed lookup into a dependent context and did not find anything,
    564   // that's fine: just build a dependent nested-name-specifier.
    565   if (Found.empty() && isDependent &&
    566       !(LookupCtx && LookupCtx->isRecord() &&
    567         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
    568          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
    569     // Don't speculate if we're just trying to improve error recovery.
    570     if (ErrorRecoveryLookup)
    571       return true;
    572 
    573     // We were not able to compute the declaration context for a dependent
    574     // base object type or prior nested-name-specifier, so this
    575     // nested-name-specifier refers to an unknown specialization. Just build
    576     // a dependent nested-name-specifier.
    577     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    578     return false;
    579   }
    580 
    581   if (Found.empty() && !ErrorRecoveryLookup) {
    582     // If identifier is not found as class-name-or-namespace-name, but is found
    583     // as other entity, don't look for typos.
    584     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
    585     if (LookupCtx)
    586       LookupQualifiedName(R, LookupCtx);
    587     else if (S && !isDependent)
    588       LookupName(R, S);
    589     if (!R.empty()) {
    590       // Don't diagnose problems with this speculative lookup.
    591       R.suppressDiagnostics();
    592       // The identifier is found in ordinary lookup. If correction to colon is
    593       // allowed, suggest replacement to ':'.
    594       if (IsCorrectedToColon) {
    595         *IsCorrectedToColon = true;
    596         Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
    597             << &Identifier << getLangOpts().CPlusPlus
    598             << FixItHint::CreateReplacement(CCLoc, ":");
    599         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
    600           Diag(ND->getLocation(), diag::note_declared_at);
    601         return true;
    602       }
    603       // Replacement '::' -> ':' is not allowed, just issue respective error.
    604       Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
    605           << &Identifier << getLangOpts().CPlusPlus;
    606       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
    607         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
    608       return true;
    609     }
    610   }
    611 
    612   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
    613     // We haven't found anything, and we're not recovering from a
    614     // different kind of error, so look for typos.
    615     DeclarationName Name = Found.getLookupName();
    616     Found.clear();
    617     if (TypoCorrection Corrected = CorrectTypo(
    618             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
    619             llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
    620             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
    621       if (LookupCtx) {
    622         bool DroppedSpecifier =
    623             Corrected.WillReplaceSpecifier() &&
    624             Name.getAsString() == Corrected.getAsString(getLangOpts());
    625         if (DroppedSpecifier)
    626           SS.clear();
    627         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
    628                                   << Name << LookupCtx << DroppedSpecifier
    629                                   << SS.getRange());
    630       } else
    631         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
    632                                   << Name);
    633 
    634       if (Corrected.getCorrectionSpecifier())
    635         SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
    636                        SourceRange(Found.getNameLoc()));
    637 
    638       if (NamedDecl *ND = Corrected.getFoundDecl())
    639         Found.addDecl(ND);
    640       Found.setLookupName(Corrected.getCorrection());
    641     } else {
    642       Found.setLookupName(&Identifier);
    643     }
    644   }
    645 
    646   NamedDecl *SD =
    647       Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
    648   bool IsExtension = false;
    649   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
    650   if (!AcceptSpec && IsExtension) {
    651     AcceptSpec = true;
    652     Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
    653   }
    654   if (AcceptSpec) {
    655     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
    656         !getLangOpts().CPlusPlus11) {
    657       // C++03 [basic.lookup.classref]p4:
    658       //   [...] If the name is found in both contexts, the
    659       //   class-name-or-namespace-name shall refer to the same entity.
    660       //
    661       // We already found the name in the scope of the object. Now, look
    662       // into the current scope (the scope of the postfix-expression) to
    663       // see if we can find the same name there. As above, if there is no
    664       // scope, reconstruct the result from the template instantiation itself.
    665       //
    666       // Note that C++11 does *not* perform this redundant lookup.
    667       NamedDecl *OuterDecl;
    668       if (S) {
    669         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
    670                                 LookupNestedNameSpecifierName);
    671         LookupName(FoundOuter, S);
    672         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
    673       } else
    674         OuterDecl = ScopeLookupResult;
    675 
    676       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
    677           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
    678           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
    679            !Context.hasSameType(
    680                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
    681                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
    682         if (ErrorRecoveryLookup)
    683           return true;
    684 
    685          Diag(IdentifierLoc,
    686               diag::err_nested_name_member_ref_lookup_ambiguous)
    687            << &Identifier;
    688          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
    689            << ObjectType;
    690          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
    691 
    692          // Fall through so that we'll pick the name we found in the object
    693          // type, since that's probably what the user wanted anyway.
    694        }
    695     }
    696 
    697     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
    698       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
    699 
    700     // If we're just performing this lookup for error-recovery purposes,
    701     // don't extend the nested-name-specifier. Just return now.
    702     if (ErrorRecoveryLookup)
    703       return false;
    704 
    705     // The use of a nested name specifier may trigger deprecation warnings.
    706     DiagnoseUseOfDecl(SD, CCLoc);
    707 
    708 
    709     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
    710       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
    711       return false;
    712     }
    713 
    714     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
    715       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
    716       return false;
    717     }
    718 
    719     QualType T =
    720         Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
    721     TypeLocBuilder TLB;
    722     if (isa<InjectedClassNameType>(T)) {
    723       InjectedClassNameTypeLoc InjectedTL
    724         = TLB.push<InjectedClassNameTypeLoc>(T);
    725       InjectedTL.setNameLoc(IdentifierLoc);
    726     } else if (isa<RecordType>(T)) {
    727       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
    728       RecordTL.setNameLoc(IdentifierLoc);
    729     } else if (isa<TypedefType>(T)) {
    730       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
    731       TypedefTL.setNameLoc(IdentifierLoc);
    732     } else if (isa<EnumType>(T)) {
    733       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
    734       EnumTL.setNameLoc(IdentifierLoc);
    735     } else if (isa<TemplateTypeParmType>(T)) {
    736       TemplateTypeParmTypeLoc TemplateTypeTL
    737         = TLB.push<TemplateTypeParmTypeLoc>(T);
    738       TemplateTypeTL.setNameLoc(IdentifierLoc);
    739     } else if (isa<UnresolvedUsingType>(T)) {
    740       UnresolvedUsingTypeLoc UnresolvedTL
    741         = TLB.push<UnresolvedUsingTypeLoc>(T);
    742       UnresolvedTL.setNameLoc(IdentifierLoc);
    743     } else if (isa<SubstTemplateTypeParmType>(T)) {
    744       SubstTemplateTypeParmTypeLoc TL
    745         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
    746       TL.setNameLoc(IdentifierLoc);
    747     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
    748       SubstTemplateTypeParmPackTypeLoc TL
    749         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
    750       TL.setNameLoc(IdentifierLoc);
    751     } else {
    752       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
    753     }
    754 
    755     if (T->isEnumeralType())
    756       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
    757 
    758     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    759               CCLoc);
    760     return false;
    761   }
    762 
    763   // Otherwise, we have an error case.  If we don't want diagnostics, just
    764   // return an error now.
    765   if (ErrorRecoveryLookup)
    766     return true;
    767 
    768   // If we didn't find anything during our lookup, try again with
    769   // ordinary name lookup, which can help us produce better error
    770   // messages.
    771   if (Found.empty()) {
    772     Found.clear(LookupOrdinaryName);
    773     LookupName(Found, S);
    774   }
    775 
    776   // In Microsoft mode, if we are within a templated function and we can't
    777   // resolve Identifier, then extend the SS with Identifier. This will have
    778   // the effect of resolving Identifier during template instantiation.
    779   // The goal is to be able to resolve a function call whose
    780   // nested-name-specifier is located inside a dependent base class.
    781   // Example:
    782   //
    783   // class C {
    784   // public:
    785   //    static void foo2() {  }
    786   // };
    787   // template <class T> class A { public: typedef C D; };
    788   //
    789   // template <class T> class B : public A<T> {
    790   // public:
    791   //   void foo() { D::foo2(); }
    792   // };
    793   if (getLangOpts().MSVCCompat) {
    794     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
    795     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
    796       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
    797       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
    798         Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
    799             << &Identifier << ContainingClass;
    800         SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    801         return false;
    802       }
    803     }
    804   }
    805 
    806   if (!Found.empty()) {
    807     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
    808       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
    809           << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
    810     else {
    811       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
    812           << &Identifier << getLangOpts().CPlusPlus;
    813       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
    814         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
    815     }
    816   } else if (SS.isSet())
    817     Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
    818                                              << SS.getRange();
    819   else
    820     Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
    821 
    822   return true;
    823 }
    824 
    825 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    826                                        IdentifierInfo &Identifier,
    827                                        SourceLocation IdentifierLoc,
    828                                        SourceLocation CCLoc,
    829                                        ParsedType ObjectType,
    830                                        bool EnteringContext,
    831                                        CXXScopeSpec &SS,
    832                                        bool ErrorRecoveryLookup,
    833                                        bool *IsCorrectedToColon) {
    834   if (SS.isInvalid())
    835     return true;
    836 
    837   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
    838                                      GetTypeFromParser(ObjectType),
    839                                      EnteringContext, SS,
    840                                      /*ScopeLookupResult=*/nullptr, false,
    841                                      IsCorrectedToColon);
    842 }
    843 
    844 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
    845                                                const DeclSpec &DS,
    846                                                SourceLocation ColonColonLoc) {
    847   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
    848     return true;
    849 
    850   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
    851 
    852   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    853   if (!T->isDependentType() && !T->getAs<TagType>()) {
    854     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
    855       << T << getLangOpts().CPlusPlus;
    856     return true;
    857   }
    858 
    859   TypeLocBuilder TLB;
    860   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
    861   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
    862   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    863             ColonColonLoc);
    864   return false;
    865 }
    866 
    867 /// IsInvalidUnlessNestedName - This method is used for error recovery
    868 /// purposes to determine whether the specified identifier is only valid as
    869 /// a nested name specifier, for example a namespace name.  It is
    870 /// conservatively correct to always return false from this method.
    871 ///
    872 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
    873 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
    874                                      IdentifierInfo &Identifier,
    875                                      SourceLocation IdentifierLoc,
    876                                      SourceLocation ColonLoc,
    877                                      ParsedType ObjectType,
    878                                      bool EnteringContext) {
    879   if (SS.isInvalid())
    880     return false;
    881 
    882   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
    883                                       GetTypeFromParser(ObjectType),
    884                                       EnteringContext, SS,
    885                                       /*ScopeLookupResult=*/nullptr, true);
    886 }
    887 
    888 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    889                                        CXXScopeSpec &SS,
    890                                        SourceLocation TemplateKWLoc,
    891                                        TemplateTy Template,
    892                                        SourceLocation TemplateNameLoc,
    893                                        SourceLocation LAngleLoc,
    894                                        ASTTemplateArgsPtr TemplateArgsIn,
    895                                        SourceLocation RAngleLoc,
    896                                        SourceLocation CCLoc,
    897                                        bool EnteringContext) {
    898   if (SS.isInvalid())
    899     return true;
    900 
    901   // Translate the parser's template argument list in our AST format.
    902   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
    903   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
    904 
    905   DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
    906   if (DTN && DTN->isIdentifier()) {
    907     // Handle a dependent template specialization for which we cannot resolve
    908     // the template name.
    909     assert(DTN->getQualifier() == SS.getScopeRep());
    910     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
    911                                                           DTN->getQualifier(),
    912                                                           DTN->getIdentifier(),
    913                                                                 TemplateArgs);
    914 
    915     // Create source-location information for this type.
    916     TypeLocBuilder Builder;
    917     DependentTemplateSpecializationTypeLoc SpecTL
    918       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
    919     SpecTL.setElaboratedKeywordLoc(SourceLocation());
    920     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
    921     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    922     SpecTL.setTemplateNameLoc(TemplateNameLoc);
    923     SpecTL.setLAngleLoc(LAngleLoc);
    924     SpecTL.setRAngleLoc(RAngleLoc);
    925     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    926       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    927 
    928     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
    929               CCLoc);
    930     return false;
    931   }
    932 
    933   TemplateDecl *TD = Template.get().getAsTemplateDecl();
    934   if (Template.get().getAsOverloadedTemplate() || DTN ||
    935       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
    936     SourceRange R(TemplateNameLoc, RAngleLoc);
    937     if (SS.getRange().isValid())
    938       R.setBegin(SS.getRange().getBegin());
    939 
    940     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
    941       << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
    942     NoteAllFoundTemplates(Template.get());
    943     return true;
    944   }
    945 
    946   // We were able to resolve the template name to an actual template.
    947   // Build an appropriate nested-name-specifier.
    948   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
    949                                    TemplateArgs);
    950   if (T.isNull())
    951     return true;
    952 
    953   // Alias template specializations can produce types which are not valid
    954   // nested name specifiers.
    955   if (!T->isDependentType() && !T->getAs<TagType>()) {
    956     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
    957     NoteAllFoundTemplates(Template.get());
    958     return true;
    959   }
    960 
    961   // Provide source-location information for the template specialization type.
    962   TypeLocBuilder Builder;
    963   TemplateSpecializationTypeLoc SpecTL
    964     = Builder.push<TemplateSpecializationTypeLoc>(T);
    965   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    966   SpecTL.setTemplateNameLoc(TemplateNameLoc);
    967   SpecTL.setLAngleLoc(LAngleLoc);
    968   SpecTL.setRAngleLoc(RAngleLoc);
    969   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    970     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    971 
    972 
    973   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
    974             CCLoc);
    975   return false;
    976 }
    977 
    978 namespace {
    979   /// \brief A structure that stores a nested-name-specifier annotation,
    980   /// including both the nested-name-specifier
    981   struct NestedNameSpecifierAnnotation {
    982     NestedNameSpecifier *NNS;
    983   };
    984 }
    985 
    986 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
    987   if (SS.isEmpty() || SS.isInvalid())
    988     return nullptr;
    989 
    990   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
    991                                                         SS.location_size()),
    992                                llvm::alignOf<NestedNameSpecifierAnnotation>());
    993   NestedNameSpecifierAnnotation *Annotation
    994     = new (Mem) NestedNameSpecifierAnnotation;
    995   Annotation->NNS = SS.getScopeRep();
    996   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
    997   return Annotation;
    998 }
    999 
   1000 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
   1001                                                 SourceRange AnnotationRange,
   1002                                                 CXXScopeSpec &SS) {
   1003   if (!AnnotationPtr) {
   1004     SS.SetInvalid(AnnotationRange);
   1005     return;
   1006   }
   1007 
   1008   NestedNameSpecifierAnnotation *Annotation
   1009     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
   1010   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
   1011 }
   1012 
   1013 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
   1014   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
   1015 
   1016   NestedNameSpecifier *Qualifier = SS.getScopeRep();
   1017 
   1018   // There are only two places a well-formed program may qualify a
   1019   // declarator: first, when defining a namespace or class member
   1020   // out-of-line, and second, when naming an explicitly-qualified
   1021   // friend function.  The latter case is governed by
   1022   // C++03 [basic.lookup.unqual]p10:
   1023   //   In a friend declaration naming a member function, a name used
   1024   //   in the function declarator and not part of a template-argument
   1025   //   in a template-id is first looked up in the scope of the member
   1026   //   function's class. If it is not found, or if the name is part of
   1027   //   a template-argument in a template-id, the look up is as
   1028   //   described for unqualified names in the definition of the class
   1029   //   granting friendship.
   1030   // i.e. we don't push a scope unless it's a class member.
   1031 
   1032   switch (Qualifier->getKind()) {
   1033   case NestedNameSpecifier::Global:
   1034   case NestedNameSpecifier::Namespace:
   1035   case NestedNameSpecifier::NamespaceAlias:
   1036     // These are always namespace scopes.  We never want to enter a
   1037     // namespace scope from anything but a file context.
   1038     return CurContext->getRedeclContext()->isFileContext();
   1039 
   1040   case NestedNameSpecifier::Identifier:
   1041   case NestedNameSpecifier::TypeSpec:
   1042   case NestedNameSpecifier::TypeSpecWithTemplate:
   1043   case NestedNameSpecifier::Super:
   1044     // These are never namespace scopes.
   1045     return true;
   1046   }
   1047 
   1048   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
   1049 }
   1050 
   1051 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
   1052 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
   1053 /// After this method is called, according to [C++ 3.4.3p3], names should be
   1054 /// looked up in the declarator-id's scope, until the declarator is parsed and
   1055 /// ActOnCXXExitDeclaratorScope is called.
   1056 /// The 'SS' should be a non-empty valid CXXScopeSpec.
   1057 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
   1058   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
   1059 
   1060   if (SS.isInvalid()) return true;
   1061 
   1062   DeclContext *DC = computeDeclContext(SS, true);
   1063   if (!DC) return true;
   1064 
   1065   // Before we enter a declarator's context, we need to make sure that
   1066   // it is a complete declaration context.
   1067   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
   1068     return true;
   1069 
   1070   EnterDeclaratorContext(S, DC);
   1071 
   1072   // Rebuild the nested name specifier for the new scope.
   1073   if (DC->isDependentContext())
   1074     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
   1075 
   1076   return false;
   1077 }
   1078 
   1079 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
   1080 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
   1081 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
   1082 /// Used to indicate that names should revert to being looked up in the
   1083 /// defining scope.
   1084 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
   1085   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
   1086   if (SS.isInvalid())
   1087     return;
   1088   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
   1089          "exiting declarator scope we never really entered");
   1090   ExitDeclaratorContext(S);
   1091 }
   1092