1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Place garbage collection safepoints at appropriate locations in the IR. This 11 // does not make relocation semantics or variable liveness explicit. That's 12 // done by RewriteStatepointsForGC. 13 // 14 // Terminology: 15 // - A call is said to be "parseable" if there is a stack map generated for the 16 // return PC of the call. A runtime can determine where values listed in the 17 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located 18 // on the stack when the code is suspended inside such a call. Every parse 19 // point is represented by a call wrapped in an gc.statepoint intrinsic. 20 // - A "poll" is an explicit check in the generated code to determine if the 21 // runtime needs the generated code to cooperate by calling a helper routine 22 // and thus suspending its execution at a known state. The call to the helper 23 // routine will be parseable. The (gc & runtime specific) logic of a poll is 24 // assumed to be provided in a function of the name "gc.safepoint_poll". 25 // 26 // We aim to insert polls such that running code can quickly be brought to a 27 // well defined state for inspection by the collector. In the current 28 // implementation, this is done via the insertion of poll sites at method entry 29 // and the backedge of most loops. We try to avoid inserting more polls than 30 // are necessary to ensure a finite period between poll sites. This is not 31 // because the poll itself is expensive in the generated code; it's not. Polls 32 // do tend to impact the optimizer itself in negative ways; we'd like to avoid 33 // perturbing the optimization of the method as much as we can. 34 // 35 // We also need to make most call sites parseable. The callee might execute a 36 // poll (or otherwise be inspected by the GC). If so, the entire stack 37 // (including the suspended frame of the current method) must be parseable. 38 // 39 // This pass will insert: 40 // - Call parse points ("call safepoints") for any call which may need to 41 // reach a safepoint during the execution of the callee function. 42 // - Backedge safepoint polls and entry safepoint polls to ensure that 43 // executing code reaches a safepoint poll in a finite amount of time. 44 // 45 // We do not currently support return statepoints, but adding them would not 46 // be hard. They are not required for correctness - entry safepoints are an 47 // alternative - but some GCs may prefer them. Patches welcome. 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/Pass.h" 52 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/CFG.h" 56 #include "llvm/Analysis/ScalarEvolution.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/LegacyPassManager.h" 61 #include "llvm/IR/Statepoint.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 69 #define DEBUG_TYPE "safepoint-placement" 70 71 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted"); 72 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted"); 73 74 STATISTIC(CallInLoop, 75 "Number of loops without safepoints due to calls in loop"); 76 STATISTIC(FiniteExecution, 77 "Number of loops without safepoints finite execution"); 78 79 using namespace llvm; 80 81 // Ignore opportunities to avoid placing safepoints on backedges, useful for 82 // validation 83 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden, 84 cl::init(false)); 85 86 /// How narrow does the trip count of a loop have to be to have to be considered 87 /// "counted"? Counted loops do not get safepoints at backedges. 88 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width", 89 cl::Hidden, cl::init(32)); 90 91 // If true, split the backedge of a loop when placing the safepoint, otherwise 92 // split the latch block itself. Both are useful to support for 93 // experimentation, but in practice, it looks like splitting the backedge 94 // optimizes better. 95 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden, 96 cl::init(false)); 97 98 namespace { 99 100 /// An analysis pass whose purpose is to identify each of the backedges in 101 /// the function which require a safepoint poll to be inserted. 102 struct PlaceBackedgeSafepointsImpl : public FunctionPass { 103 static char ID; 104 105 /// The output of the pass - gives a list of each backedge (described by 106 /// pointing at the branch) which need a poll inserted. 107 std::vector<TerminatorInst *> PollLocations; 108 109 /// True unless we're running spp-no-calls in which case we need to disable 110 /// the call-dependent placement opts. 111 bool CallSafepointsEnabled; 112 113 ScalarEvolution *SE = nullptr; 114 DominatorTree *DT = nullptr; 115 LoopInfo *LI = nullptr; 116 117 PlaceBackedgeSafepointsImpl(bool CallSafepoints = false) 118 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) { 119 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry()); 120 } 121 122 bool runOnLoop(Loop *); 123 void runOnLoopAndSubLoops(Loop *L) { 124 // Visit all the subloops 125 for (Loop *I : *L) 126 runOnLoopAndSubLoops(I); 127 runOnLoop(L); 128 } 129 130 bool runOnFunction(Function &F) override { 131 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 132 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 133 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 134 for (Loop *I : *LI) { 135 runOnLoopAndSubLoops(I); 136 } 137 return false; 138 } 139 140 void getAnalysisUsage(AnalysisUsage &AU) const override { 141 AU.addRequired<DominatorTreeWrapperPass>(); 142 AU.addRequired<ScalarEvolutionWrapperPass>(); 143 AU.addRequired<LoopInfoWrapperPass>(); 144 // We no longer modify the IR at all in this pass. Thus all 145 // analysis are preserved. 146 AU.setPreservesAll(); 147 } 148 }; 149 } 150 151 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false)); 152 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false)); 153 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false)); 154 155 namespace { 156 struct PlaceSafepoints : public FunctionPass { 157 static char ID; // Pass identification, replacement for typeid 158 159 PlaceSafepoints() : FunctionPass(ID) { 160 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry()); 161 } 162 bool runOnFunction(Function &F) override; 163 164 void getAnalysisUsage(AnalysisUsage &AU) const override { 165 // We modify the graph wholesale (inlining, block insertion, etc). We 166 // preserve nothing at the moment. We could potentially preserve dom tree 167 // if that was worth doing 168 } 169 }; 170 } 171 172 // Insert a safepoint poll immediately before the given instruction. Does 173 // not handle the parsability of state at the runtime call, that's the 174 // callers job. 175 static void 176 InsertSafepointPoll(Instruction *InsertBefore, 177 std::vector<CallSite> &ParsePointsNeeded /*rval*/); 178 179 static bool needsStatepoint(const CallSite &CS) { 180 if (callsGCLeafFunction(CS)) 181 return false; 182 if (CS.isCall()) { 183 CallInst *call = cast<CallInst>(CS.getInstruction()); 184 if (call->isInlineAsm()) 185 return false; 186 } 187 188 return !(isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)); 189 } 190 191 /// Returns true if this loop is known to contain a call safepoint which 192 /// must unconditionally execute on any iteration of the loop which returns 193 /// to the loop header via an edge from Pred. Returns a conservative correct 194 /// answer; i.e. false is always valid. 195 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, 196 BasicBlock *Pred, 197 DominatorTree &DT) { 198 // In general, we're looking for any cut of the graph which ensures 199 // there's a call safepoint along every edge between Header and Pred. 200 // For the moment, we look only for the 'cuts' that consist of a single call 201 // instruction in a block which is dominated by the Header and dominates the 202 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain 203 // of such dominating blocks gets substantially more occurrences than just 204 // checking the Pred and Header blocks themselves. This may be due to the 205 // density of loop exit conditions caused by range and null checks. 206 // TODO: structure this as an analysis pass, cache the result for subloops, 207 // avoid dom tree recalculations 208 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?"); 209 210 BasicBlock *Current = Pred; 211 while (true) { 212 for (Instruction &I : *Current) { 213 if (auto CS = CallSite(&I)) 214 // Note: Technically, needing a safepoint isn't quite the right 215 // condition here. We should instead be checking if the target method 216 // has an 217 // unconditional poll. In practice, this is only a theoretical concern 218 // since we don't have any methods with conditional-only safepoint 219 // polls. 220 if (needsStatepoint(CS)) 221 return true; 222 } 223 224 if (Current == Header) 225 break; 226 Current = DT.getNode(Current)->getIDom()->getBlock(); 227 } 228 229 return false; 230 } 231 232 /// Returns true if this loop is known to terminate in a finite number of 233 /// iterations. Note that this function may return false for a loop which 234 /// does actual terminate in a finite constant number of iterations due to 235 /// conservatism in the analysis. 236 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, 237 BasicBlock *Pred) { 238 // A conservative bound on the loop as a whole. 239 const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L); 240 if (MaxTrips != SE->getCouldNotCompute() && 241 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN( 242 CountedLoopTripWidth)) 243 return true; 244 245 // If this is a conditional branch to the header with the alternate path 246 // being outside the loop, we can ask questions about the execution frequency 247 // of the exit block. 248 if (L->isLoopExiting(Pred)) { 249 // This returns an exact expression only. TODO: We really only need an 250 // upper bound here, but SE doesn't expose that. 251 const SCEV *MaxExec = SE->getExitCount(L, Pred); 252 if (MaxExec != SE->getCouldNotCompute() && 253 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN( 254 CountedLoopTripWidth)) 255 return true; 256 } 257 258 return /* not finite */ false; 259 } 260 261 static void scanOneBB(Instruction *Start, Instruction *End, 262 std::vector<CallInst *> &Calls, 263 DenseSet<BasicBlock *> &Seen, 264 std::vector<BasicBlock *> &Worklist) { 265 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(), 266 BBE1 = BasicBlock::iterator(End); 267 BBI != BBE0 && BBI != BBE1; BBI++) { 268 if (CallInst *CI = dyn_cast<CallInst>(&*BBI)) 269 Calls.push_back(CI); 270 271 // FIXME: This code does not handle invokes 272 assert(!isa<InvokeInst>(&*BBI) && 273 "support for invokes in poll code needed"); 274 275 // Only add the successor blocks if we reach the terminator instruction 276 // without encountering end first 277 if (BBI->isTerminator()) { 278 BasicBlock *BB = BBI->getParent(); 279 for (BasicBlock *Succ : successors(BB)) { 280 if (Seen.insert(Succ).second) { 281 Worklist.push_back(Succ); 282 } 283 } 284 } 285 } 286 } 287 288 static void scanInlinedCode(Instruction *Start, Instruction *End, 289 std::vector<CallInst *> &Calls, 290 DenseSet<BasicBlock *> &Seen) { 291 Calls.clear(); 292 std::vector<BasicBlock *> Worklist; 293 Seen.insert(Start->getParent()); 294 scanOneBB(Start, End, Calls, Seen, Worklist); 295 while (!Worklist.empty()) { 296 BasicBlock *BB = Worklist.back(); 297 Worklist.pop_back(); 298 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist); 299 } 300 } 301 302 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) { 303 // Loop through all loop latches (branches controlling backedges). We need 304 // to place a safepoint on every backedge (potentially). 305 // Note: In common usage, there will be only one edge due to LoopSimplify 306 // having run sometime earlier in the pipeline, but this code must be correct 307 // w.r.t. loops with multiple backedges. 308 BasicBlock *Header = L->getHeader(); 309 SmallVector<BasicBlock*, 16> LoopLatches; 310 L->getLoopLatches(LoopLatches); 311 for (BasicBlock *Pred : LoopLatches) { 312 assert(L->contains(Pred)); 313 314 // Make a policy decision about whether this loop needs a safepoint or 315 // not. Note that this is about unburdening the optimizer in loops, not 316 // avoiding the runtime cost of the actual safepoint. 317 if (!AllBackedges) { 318 if (mustBeFiniteCountedLoop(L, SE, Pred)) { 319 DEBUG(dbgs() << "skipping safepoint placement in finite loop\n"); 320 FiniteExecution++; 321 continue; 322 } 323 if (CallSafepointsEnabled && 324 containsUnconditionalCallSafepoint(L, Header, Pred, *DT)) { 325 // Note: This is only semantically legal since we won't do any further 326 // IPO or inlining before the actual call insertion.. If we hadn't, we 327 // might latter loose this call safepoint. 328 DEBUG(dbgs() << "skipping safepoint placement due to unconditional call\n"); 329 CallInLoop++; 330 continue; 331 } 332 } 333 334 // TODO: We can create an inner loop which runs a finite number of 335 // iterations with an outer loop which contains a safepoint. This would 336 // not help runtime performance that much, but it might help our ability to 337 // optimize the inner loop. 338 339 // Safepoint insertion would involve creating a new basic block (as the 340 // target of the current backedge) which does the safepoint (of all live 341 // variables) and branches to the true header 342 TerminatorInst *Term = Pred->getTerminator(); 343 344 DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term); 345 346 PollLocations.push_back(Term); 347 } 348 349 return false; 350 } 351 352 /// Returns true if an entry safepoint is not required before this callsite in 353 /// the caller function. 354 static bool doesNotRequireEntrySafepointBefore(const CallSite &CS) { 355 Instruction *Inst = CS.getInstruction(); 356 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 357 switch (II->getIntrinsicID()) { 358 case Intrinsic::experimental_gc_statepoint: 359 case Intrinsic::experimental_patchpoint_void: 360 case Intrinsic::experimental_patchpoint_i64: 361 // The can wrap an actual call which may grow the stack by an unbounded 362 // amount or run forever. 363 return false; 364 default: 365 // Most LLVM intrinsics are things which do not expand to actual calls, or 366 // at least if they do, are leaf functions that cause only finite stack 367 // growth. In particular, the optimizer likes to form things like memsets 368 // out of stores in the original IR. Another important example is 369 // llvm.localescape which must occur in the entry block. Inserting a 370 // safepoint before it is not legal since it could push the localescape 371 // out of the entry block. 372 return true; 373 } 374 } 375 return false; 376 } 377 378 static Instruction *findLocationForEntrySafepoint(Function &F, 379 DominatorTree &DT) { 380 381 // Conceptually, this poll needs to be on method entry, but in 382 // practice, we place it as late in the entry block as possible. We 383 // can place it as late as we want as long as it dominates all calls 384 // that can grow the stack. This, combined with backedge polls, 385 // give us all the progress guarantees we need. 386 387 // hasNextInstruction and nextInstruction are used to iterate 388 // through a "straight line" execution sequence. 389 390 auto HasNextInstruction = [](Instruction *I) { 391 if (!I->isTerminator()) 392 return true; 393 394 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor(); 395 return nextBB && (nextBB->getUniquePredecessor() != nullptr); 396 }; 397 398 auto NextInstruction = [&](Instruction *I) { 399 assert(HasNextInstruction(I) && 400 "first check if there is a next instruction!"); 401 402 if (I->isTerminator()) 403 return &I->getParent()->getUniqueSuccessor()->front(); 404 return &*++I->getIterator(); 405 }; 406 407 Instruction *Cursor = nullptr; 408 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor); 409 Cursor = NextInstruction(Cursor)) { 410 411 // We need to ensure a safepoint poll occurs before any 'real' call. The 412 // easiest way to ensure finite execution between safepoints in the face of 413 // recursive and mutually recursive functions is to enforce that each take 414 // a safepoint. Additionally, we need to ensure a poll before any call 415 // which can grow the stack by an unbounded amount. This isn't required 416 // for GC semantics per se, but is a common requirement for languages 417 // which detect stack overflow via guard pages and then throw exceptions. 418 if (auto CS = CallSite(Cursor)) { 419 if (doesNotRequireEntrySafepointBefore(CS)) 420 continue; 421 break; 422 } 423 } 424 425 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) && 426 "either we stopped because of a call, or because of terminator"); 427 428 return Cursor; 429 } 430 431 static const char *const GCSafepointPollName = "gc.safepoint_poll"; 432 433 static bool isGCSafepointPoll(Function &F) { 434 return F.getName().equals(GCSafepointPollName); 435 } 436 437 /// Returns true if this function should be rewritten to include safepoint 438 /// polls and parseable call sites. The main point of this function is to be 439 /// an extension point for custom logic. 440 static bool shouldRewriteFunction(Function &F) { 441 // TODO: This should check the GCStrategy 442 if (F.hasGC()) { 443 const auto &FunctionGCName = F.getGC(); 444 const StringRef StatepointExampleName("statepoint-example"); 445 const StringRef CoreCLRName("coreclr"); 446 return (StatepointExampleName == FunctionGCName) || 447 (CoreCLRName == FunctionGCName); 448 } else 449 return false; 450 } 451 452 // TODO: These should become properties of the GCStrategy, possibly with 453 // command line overrides. 454 static bool enableEntrySafepoints(Function &F) { return !NoEntry; } 455 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; } 456 static bool enableCallSafepoints(Function &F) { return !NoCall; } 457 458 bool PlaceSafepoints::runOnFunction(Function &F) { 459 if (F.isDeclaration() || F.empty()) { 460 // This is a declaration, nothing to do. Must exit early to avoid crash in 461 // dom tree calculation 462 return false; 463 } 464 465 if (isGCSafepointPoll(F)) { 466 // Given we're inlining this inside of safepoint poll insertion, this 467 // doesn't make any sense. Note that we do make any contained calls 468 // parseable after we inline a poll. 469 return false; 470 } 471 472 if (!shouldRewriteFunction(F)) 473 return false; 474 475 bool Modified = false; 476 477 // In various bits below, we rely on the fact that uses are reachable from 478 // defs. When there are basic blocks unreachable from the entry, dominance 479 // and reachablity queries return non-sensical results. Thus, we preprocess 480 // the function to ensure these properties hold. 481 Modified |= removeUnreachableBlocks(F); 482 483 // STEP 1 - Insert the safepoint polling locations. We do not need to 484 // actually insert parse points yet. That will be done for all polls and 485 // calls in a single pass. 486 487 DominatorTree DT; 488 DT.recalculate(F); 489 490 SmallVector<Instruction *, 16> PollsNeeded; 491 std::vector<CallSite> ParsePointNeeded; 492 493 if (enableBackedgeSafepoints(F)) { 494 // Construct a pass manager to run the LoopPass backedge logic. We 495 // need the pass manager to handle scheduling all the loop passes 496 // appropriately. Doing this by hand is painful and just not worth messing 497 // with for the moment. 498 legacy::FunctionPassManager FPM(F.getParent()); 499 bool CanAssumeCallSafepoints = enableCallSafepoints(F); 500 auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints); 501 FPM.add(PBS); 502 FPM.run(F); 503 504 // We preserve dominance information when inserting the poll, otherwise 505 // we'd have to recalculate this on every insert 506 DT.recalculate(F); 507 508 auto &PollLocations = PBS->PollLocations; 509 510 auto OrderByBBName = [](Instruction *a, Instruction *b) { 511 return a->getParent()->getName() < b->getParent()->getName(); 512 }; 513 // We need the order of list to be stable so that naming ends up stable 514 // when we split edges. This makes test cases much easier to write. 515 std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName); 516 517 // We can sometimes end up with duplicate poll locations. This happens if 518 // a single loop is visited more than once. The fact this happens seems 519 // wrong, but it does happen for the split-backedge.ll test case. 520 PollLocations.erase(std::unique(PollLocations.begin(), 521 PollLocations.end()), 522 PollLocations.end()); 523 524 // Insert a poll at each point the analysis pass identified 525 // The poll location must be the terminator of a loop latch block. 526 for (TerminatorInst *Term : PollLocations) { 527 // We are inserting a poll, the function is modified 528 Modified = true; 529 530 if (SplitBackedge) { 531 // Split the backedge of the loop and insert the poll within that new 532 // basic block. This creates a loop with two latches per original 533 // latch (which is non-ideal), but this appears to be easier to 534 // optimize in practice than inserting the poll immediately before the 535 // latch test. 536 537 // Since this is a latch, at least one of the successors must dominate 538 // it. Its possible that we have a) duplicate edges to the same header 539 // and b) edges to distinct loop headers. We need to insert pools on 540 // each. 541 SetVector<BasicBlock *> Headers; 542 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) { 543 BasicBlock *Succ = Term->getSuccessor(i); 544 if (DT.dominates(Succ, Term->getParent())) { 545 Headers.insert(Succ); 546 } 547 } 548 assert(!Headers.empty() && "poll location is not a loop latch?"); 549 550 // The split loop structure here is so that we only need to recalculate 551 // the dominator tree once. Alternatively, we could just keep it up to 552 // date and use a more natural merged loop. 553 SetVector<BasicBlock *> SplitBackedges; 554 for (BasicBlock *Header : Headers) { 555 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT); 556 PollsNeeded.push_back(NewBB->getTerminator()); 557 NumBackedgeSafepoints++; 558 } 559 } else { 560 // Split the latch block itself, right before the terminator. 561 PollsNeeded.push_back(Term); 562 NumBackedgeSafepoints++; 563 } 564 } 565 } 566 567 if (enableEntrySafepoints(F)) { 568 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) { 569 PollsNeeded.push_back(Location); 570 Modified = true; 571 NumEntrySafepoints++; 572 } 573 // TODO: else we should assert that there was, in fact, a policy choice to 574 // not insert a entry safepoint poll. 575 } 576 577 // Now that we've identified all the needed safepoint poll locations, insert 578 // safepoint polls themselves. 579 for (Instruction *PollLocation : PollsNeeded) { 580 std::vector<CallSite> RuntimeCalls; 581 InsertSafepointPoll(PollLocation, RuntimeCalls); 582 ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(), 583 RuntimeCalls.end()); 584 } 585 586 return Modified; 587 } 588 589 char PlaceBackedgeSafepointsImpl::ID = 0; 590 char PlaceSafepoints::ID = 0; 591 592 FunctionPass *llvm::createPlaceSafepointsPass() { 593 return new PlaceSafepoints(); 594 } 595 596 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl, 597 "place-backedge-safepoints-impl", 598 "Place Backedge Safepoints", false, false) 599 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 600 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 601 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 602 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl, 603 "place-backedge-safepoints-impl", 604 "Place Backedge Safepoints", false, false) 605 606 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints", 607 false, false) 608 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints", 609 false, false) 610 611 static void 612 InsertSafepointPoll(Instruction *InsertBefore, 613 std::vector<CallSite> &ParsePointsNeeded /*rval*/) { 614 BasicBlock *OrigBB = InsertBefore->getParent(); 615 Module *M = InsertBefore->getModule(); 616 assert(M && "must be part of a module"); 617 618 // Inline the safepoint poll implementation - this will get all the branch, 619 // control flow, etc.. Most importantly, it will introduce the actual slow 620 // path call - where we need to insert a safepoint (parsepoint). 621 622 auto *F = M->getFunction(GCSafepointPollName); 623 assert(F && "gc.safepoint_poll function is missing"); 624 assert(F->getValueType() == 625 FunctionType::get(Type::getVoidTy(M->getContext()), false) && 626 "gc.safepoint_poll declared with wrong type"); 627 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function"); 628 CallInst *PollCall = CallInst::Create(F, "", InsertBefore); 629 630 // Record some information about the call site we're replacing 631 BasicBlock::iterator Before(PollCall), After(PollCall); 632 bool IsBegin = false; 633 if (Before == OrigBB->begin()) 634 IsBegin = true; 635 else 636 Before--; 637 638 After++; 639 assert(After != OrigBB->end() && "must have successor"); 640 641 // Do the actual inlining 642 InlineFunctionInfo IFI; 643 bool InlineStatus = InlineFunction(PollCall, IFI); 644 assert(InlineStatus && "inline must succeed"); 645 (void)InlineStatus; // suppress warning in release-asserts 646 647 // Check post-conditions 648 assert(IFI.StaticAllocas.empty() && "can't have allocs"); 649 650 std::vector<CallInst *> Calls; // new calls 651 DenseSet<BasicBlock *> BBs; // new BBs + insertee 652 653 // Include only the newly inserted instructions, Note: begin may not be valid 654 // if we inserted to the beginning of the basic block 655 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before); 656 657 // If your poll function includes an unreachable at the end, that's not 658 // valid. Bugpoint likes to create this, so check for it. 659 assert(isPotentiallyReachable(&*Start, &*After) && 660 "malformed poll function"); 661 662 scanInlinedCode(&*Start, &*After, Calls, BBs); 663 assert(!Calls.empty() && "slow path not found for safepoint poll"); 664 665 // Record the fact we need a parsable state at the runtime call contained in 666 // the poll function. This is required so that the runtime knows how to 667 // parse the last frame when we actually take the safepoint (i.e. execute 668 // the slow path) 669 assert(ParsePointsNeeded.empty()); 670 for (auto *CI : Calls) { 671 // No safepoint needed or wanted 672 if (!needsStatepoint(CI)) 673 continue; 674 675 // These are likely runtime calls. Should we assert that via calling 676 // convention or something? 677 ParsePointsNeeded.push_back(CallSite(CI)); 678 } 679 assert(ParsePointsNeeded.size() <= Calls.size()); 680 } 681