1 // Copyright 2013 Google Inc. All Rights Reserved. 2 // 3 // Redistribution and use in source and binary forms, with or without 4 // modification, are permitted provided that the following conditions are 5 // met: 6 // 7 // * Redistributions of source code must retain the above copyright 8 // notice, this list of conditions and the following disclaimer. 9 // * Redistributions in binary form must reproduce the above 10 // copyright notice, this list of conditions and the following disclaimer 11 // in the documentation and/or other materials provided with the 12 // distribution. 13 // * Neither the name of Google Inc. nor the names of its 14 // contributors may be used to endorse or promote products derived from 15 // this software without specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 29 // Scopers help you manage ownership of a pointer, helping you easily manage the 30 // a pointer within a scope, and automatically destroying the pointer at the 31 // end of a scope. There are two main classes you will use, which correspond 32 // to the operators new/delete and new[]/delete[]. 33 // 34 // Example usage (scoped_ptr): 35 // { 36 // scoped_ptr<Foo> foo(new Foo("wee")); 37 // } // foo goes out of scope, releasing the pointer with it. 38 // 39 // { 40 // scoped_ptr<Foo> foo; // No pointer managed. 41 // foo.reset(new Foo("wee")); // Now a pointer is managed. 42 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. 43 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. 44 // foo->Method(); // Foo::Method() called. 45 // foo.get()->Method(); // Foo::Method() called. 46 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer 47 // // manages a pointer. 48 // foo.reset(new Foo("wee4")); // foo manages a pointer again. 49 // foo.reset(); // Foo("wee4") destroyed, foo no longer 50 // // manages a pointer. 51 // } // foo wasn't managing a pointer, so nothing was destroyed. 52 // 53 // Example usage (scoped_array): 54 // { 55 // scoped_array<Foo> foo(new Foo[100]); 56 // foo.get()->Method(); // Foo::Method on the 0th element. 57 // foo[10].Method(); // Foo::Method on the 10th element. 58 // } 59 60 #ifndef COMMON_SCOPED_PTR_H_ 61 #define COMMON_SCOPED_PTR_H_ 62 63 // This is an implementation designed to match the anticipated future TR2 64 // implementation of the scoped_ptr class, and its closely-related brethren, 65 // scoped_array, scoped_ptr_malloc. 66 67 #include <assert.h> 68 #include <stddef.h> 69 #include <stdlib.h> 70 71 namespace google_breakpad { 72 73 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 74 // automatically deletes the pointer it holds (if any). 75 // That is, scoped_ptr<T> owns the T object that it points to. 76 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 77 // Also like T*, scoped_ptr<T> is thread-compatible, and once you 78 // dereference it, you get the threadsafety guarantees of T. 79 // 80 // The size of a scoped_ptr is small: 81 // sizeof(scoped_ptr<C>) == sizeof(C*) 82 template <class C> 83 class scoped_ptr { 84 public: 85 86 // The element type 87 typedef C element_type; 88 89 // Constructor. Defaults to initializing with NULL. 90 // There is no way to create an uninitialized scoped_ptr. 91 // The input parameter must be allocated with new. 92 explicit scoped_ptr(C* p = NULL) : ptr_(p) { } 93 94 // Destructor. If there is a C object, delete it. 95 // We don't need to test ptr_ == NULL because C++ does that for us. 96 ~scoped_ptr() { 97 enum { type_must_be_complete = sizeof(C) }; 98 delete ptr_; 99 } 100 101 // Reset. Deletes the current owned object, if any. 102 // Then takes ownership of a new object, if given. 103 // this->reset(this->get()) works. 104 void reset(C* p = NULL) { 105 if (p != ptr_) { 106 enum { type_must_be_complete = sizeof(C) }; 107 delete ptr_; 108 ptr_ = p; 109 } 110 } 111 112 // Accessors to get the owned object. 113 // operator* and operator-> will assert() if there is no current object. 114 C& operator*() const { 115 assert(ptr_ != NULL); 116 return *ptr_; 117 } 118 C* operator->() const { 119 assert(ptr_ != NULL); 120 return ptr_; 121 } 122 C* get() const { return ptr_; } 123 124 // Comparison operators. 125 // These return whether two scoped_ptr refer to the same object, not just to 126 // two different but equal objects. 127 bool operator==(C* p) const { return ptr_ == p; } 128 bool operator!=(C* p) const { return ptr_ != p; } 129 130 // Swap two scoped pointers. 131 void swap(scoped_ptr& p2) { 132 C* tmp = ptr_; 133 ptr_ = p2.ptr_; 134 p2.ptr_ = tmp; 135 } 136 137 // Release a pointer. 138 // The return value is the current pointer held by this object. 139 // If this object holds a NULL pointer, the return value is NULL. 140 // After this operation, this object will hold a NULL pointer, 141 // and will not own the object any more. 142 C* release() { 143 C* retVal = ptr_; 144 ptr_ = NULL; 145 return retVal; 146 } 147 148 private: 149 C* ptr_; 150 151 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't 152 // make sense, and if C2 == C, it still doesn't make sense because you should 153 // never have the same object owned by two different scoped_ptrs. 154 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; 155 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; 156 157 // Disallow evil constructors 158 scoped_ptr(const scoped_ptr&); 159 void operator=(const scoped_ptr&); 160 }; 161 162 // Free functions 163 template <class C> 164 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { 165 p1.swap(p2); 166 } 167 168 template <class C> 169 bool operator==(C* p1, const scoped_ptr<C>& p2) { 170 return p1 == p2.get(); 171 } 172 173 template <class C> 174 bool operator!=(C* p1, const scoped_ptr<C>& p2) { 175 return p1 != p2.get(); 176 } 177 178 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate 179 // with new [] and the destructor deletes objects with delete []. 180 // 181 // As with scoped_ptr<C>, a scoped_array<C> either points to an object 182 // or is NULL. A scoped_array<C> owns the object that it points to. 183 // scoped_array<T> is thread-compatible, and once you index into it, 184 // the returned objects have only the threadsafety guarantees of T. 185 // 186 // Size: sizeof(scoped_array<C>) == sizeof(C*) 187 template <class C> 188 class scoped_array { 189 public: 190 191 // The element type 192 typedef C element_type; 193 194 // Constructor. Defaults to intializing with NULL. 195 // There is no way to create an uninitialized scoped_array. 196 // The input parameter must be allocated with new []. 197 explicit scoped_array(C* p = NULL) : array_(p) { } 198 199 // Destructor. If there is a C object, delete it. 200 // We don't need to test ptr_ == NULL because C++ does that for us. 201 ~scoped_array() { 202 enum { type_must_be_complete = sizeof(C) }; 203 delete[] array_; 204 } 205 206 // Reset. Deletes the current owned object, if any. 207 // Then takes ownership of a new object, if given. 208 // this->reset(this->get()) works. 209 void reset(C* p = NULL) { 210 if (p != array_) { 211 enum { type_must_be_complete = sizeof(C) }; 212 delete[] array_; 213 array_ = p; 214 } 215 } 216 217 // Get one element of the current object. 218 // Will assert() if there is no current object, or index i is negative. 219 C& operator[](ptrdiff_t i) const { 220 assert(i >= 0); 221 assert(array_ != NULL); 222 return array_[i]; 223 } 224 225 // Get a pointer to the zeroth element of the current object. 226 // If there is no current object, return NULL. 227 C* get() const { 228 return array_; 229 } 230 231 // Comparison operators. 232 // These return whether two scoped_array refer to the same object, not just to 233 // two different but equal objects. 234 bool operator==(C* p) const { return array_ == p; } 235 bool operator!=(C* p) const { return array_ != p; } 236 237 // Swap two scoped arrays. 238 void swap(scoped_array& p2) { 239 C* tmp = array_; 240 array_ = p2.array_; 241 p2.array_ = tmp; 242 } 243 244 // Release an array. 245 // The return value is the current pointer held by this object. 246 // If this object holds a NULL pointer, the return value is NULL. 247 // After this operation, this object will hold a NULL pointer, 248 // and will not own the object any more. 249 C* release() { 250 C* retVal = array_; 251 array_ = NULL; 252 return retVal; 253 } 254 255 private: 256 C* array_; 257 258 // Forbid comparison of different scoped_array types. 259 template <class C2> bool operator==(scoped_array<C2> const& p2) const; 260 template <class C2> bool operator!=(scoped_array<C2> const& p2) const; 261 262 // Disallow evil constructors 263 scoped_array(const scoped_array&); 264 void operator=(const scoped_array&); 265 }; 266 267 // Free functions 268 template <class C> 269 void swap(scoped_array<C>& p1, scoped_array<C>& p2) { 270 p1.swap(p2); 271 } 272 273 template <class C> 274 bool operator==(C* p1, const scoped_array<C>& p2) { 275 return p1 == p2.get(); 276 } 277 278 template <class C> 279 bool operator!=(C* p1, const scoped_array<C>& p2) { 280 return p1 != p2.get(); 281 } 282 283 // This class wraps the c library function free() in a class that can be 284 // passed as a template argument to scoped_ptr_malloc below. 285 class ScopedPtrMallocFree { 286 public: 287 inline void operator()(void* x) const { 288 free(x); 289 } 290 }; 291 292 // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a 293 // second template argument, the functor used to free the object. 294 295 template<class C, class FreeProc = ScopedPtrMallocFree> 296 class scoped_ptr_malloc { 297 public: 298 299 // The element type 300 typedef C element_type; 301 302 // Constructor. Defaults to initializing with NULL. 303 // There is no way to create an uninitialized scoped_ptr. 304 // The input parameter must be allocated with an allocator that matches the 305 // Free functor. For the default Free functor, this is malloc, calloc, or 306 // realloc. 307 explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {} 308 309 // Destructor. If there is a C object, call the Free functor. 310 ~scoped_ptr_malloc() { 311 reset(); 312 } 313 314 // Reset. Calls the Free functor on the current owned object, if any. 315 // Then takes ownership of a new object, if given. 316 // this->reset(this->get()) works. 317 void reset(C* p = NULL) { 318 if (ptr_ != p) { 319 FreeProc free_proc; 320 free_proc(ptr_); 321 ptr_ = p; 322 } 323 } 324 325 // Get the current object. 326 // operator* and operator-> will cause an assert() failure if there is 327 // no current object. 328 C& operator*() const { 329 assert(ptr_ != NULL); 330 return *ptr_; 331 } 332 333 C* operator->() const { 334 assert(ptr_ != NULL); 335 return ptr_; 336 } 337 338 C* get() const { 339 return ptr_; 340 } 341 342 // Comparison operators. 343 // These return whether a scoped_ptr_malloc and a plain pointer refer 344 // to the same object, not just to two different but equal objects. 345 // For compatibility with the boost-derived implementation, these 346 // take non-const arguments. 347 bool operator==(C* p) const { 348 return ptr_ == p; 349 } 350 351 bool operator!=(C* p) const { 352 return ptr_ != p; 353 } 354 355 // Swap two scoped pointers. 356 void swap(scoped_ptr_malloc & b) { 357 C* tmp = b.ptr_; 358 b.ptr_ = ptr_; 359 ptr_ = tmp; 360 } 361 362 // Release a pointer. 363 // The return value is the current pointer held by this object. 364 // If this object holds a NULL pointer, the return value is NULL. 365 // After this operation, this object will hold a NULL pointer, 366 // and will not own the object any more. 367 C* release() { 368 C* tmp = ptr_; 369 ptr_ = NULL; 370 return tmp; 371 } 372 373 private: 374 C* ptr_; 375 376 // no reason to use these: each scoped_ptr_malloc should have its own object 377 template <class C2, class GP> 378 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; 379 template <class C2, class GP> 380 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; 381 382 // Disallow evil constructors 383 scoped_ptr_malloc(const scoped_ptr_malloc&); 384 void operator=(const scoped_ptr_malloc&); 385 }; 386 387 template<class C, class FP> inline 388 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { 389 a.swap(b); 390 } 391 392 template<class C, class FP> inline 393 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { 394 return p == b.get(); 395 } 396 397 template<class C, class FP> inline 398 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { 399 return p != b.get(); 400 } 401 402 } // namespace google_breakpad 403 404 #endif // COMMON_SCOPED_PTR_H_ 405