1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/Metadata.h" 25 #include <algorithm> 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Complex Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 34 35 /// Return the complex type that we are meant to emit. 36 static const ComplexType *getComplexType(QualType type) { 37 type = type.getCanonicalType(); 38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 39 return comp; 40 } else { 41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 42 } 43 } 44 45 namespace { 46 class ComplexExprEmitter 47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 48 CodeGenFunction &CGF; 49 CGBuilderTy &Builder; 50 bool IgnoreReal; 51 bool IgnoreImag; 52 public: 53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 55 } 56 57 58 //===--------------------------------------------------------------------===// 59 // Utilities 60 //===--------------------------------------------------------------------===// 61 62 bool TestAndClearIgnoreReal() { 63 bool I = IgnoreReal; 64 IgnoreReal = false; 65 return I; 66 } 67 bool TestAndClearIgnoreImag() { 68 bool I = IgnoreImag; 69 IgnoreImag = false; 70 return I; 71 } 72 73 /// EmitLoadOfLValue - Given an expression with complex type that represents a 74 /// value l-value, this method emits the address of the l-value, then loads 75 /// and returns the result. 76 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 78 } 79 80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 81 82 /// EmitStoreOfComplex - Store the specified real/imag parts into the 83 /// specified value pointer. 84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 85 86 /// Emit a cast from complex value Val to DestType. 87 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 /// Emit a cast from scalar value Val to DestType. 90 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 91 QualType DestType, SourceLocation Loc); 92 93 //===--------------------------------------------------------------------===// 94 // Visitor Methods 95 //===--------------------------------------------------------------------===// 96 97 ComplexPairTy Visit(Expr *E) { 98 ApplyDebugLocation DL(CGF, E); 99 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 100 } 101 102 ComplexPairTy VisitStmt(Stmt *S) { 103 S->dump(CGF.getContext().getSourceManager()); 104 llvm_unreachable("Stmt can't have complex result type!"); 105 } 106 ComplexPairTy VisitExpr(Expr *S); 107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 109 return Visit(GE->getResultExpr()); 110 } 111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 112 ComplexPairTy 113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 114 return Visit(PE->getReplacement()); 115 } 116 117 // l-values. 118 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 119 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 120 if (result.isReference()) 121 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 122 E->getExprLoc()); 123 124 llvm::Constant *pair = result.getValue(); 125 return ComplexPairTy(pair->getAggregateElement(0U), 126 pair->getAggregateElement(1U)); 127 } 128 return EmitLoadOfLValue(E); 129 } 130 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 131 return EmitLoadOfLValue(E); 132 } 133 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 134 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 135 } 136 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 137 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 138 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 139 if (E->isGLValue()) 140 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 141 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 142 } 143 144 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 145 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 146 } 147 148 // FIXME: CompoundLiteralExpr 149 150 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 151 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 152 // Unlike for scalars, we don't have to worry about function->ptr demotion 153 // here. 154 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 155 } 156 ComplexPairTy VisitCastExpr(CastExpr *E) { 157 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 158 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 159 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 160 } 161 ComplexPairTy VisitCallExpr(const CallExpr *E); 162 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 163 164 // Operators. 165 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 166 bool isInc, bool isPre) { 167 LValue LV = CGF.EmitLValue(E->getSubExpr()); 168 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 169 } 170 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 171 return VisitPrePostIncDec(E, false, false); 172 } 173 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 174 return VisitPrePostIncDec(E, true, false); 175 } 176 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 177 return VisitPrePostIncDec(E, false, true); 178 } 179 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 180 return VisitPrePostIncDec(E, true, true); 181 } 182 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 183 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 184 TestAndClearIgnoreReal(); 185 TestAndClearIgnoreImag(); 186 return Visit(E->getSubExpr()); 187 } 188 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 189 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 190 // LNot,Real,Imag never return complex. 191 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 192 return Visit(E->getSubExpr()); 193 } 194 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 195 return Visit(DAE->getExpr()); 196 } 197 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 198 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 199 return Visit(DIE->getExpr()); 200 } 201 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 202 CGF.enterFullExpression(E); 203 CodeGenFunction::RunCleanupsScope Scope(CGF); 204 return Visit(E->getSubExpr()); 205 } 206 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 207 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 208 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 209 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 210 return ComplexPairTy(Null, Null); 211 } 212 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 213 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 214 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 215 llvm::Constant *Null = 216 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 217 return ComplexPairTy(Null, Null); 218 } 219 220 struct BinOpInfo { 221 ComplexPairTy LHS; 222 ComplexPairTy RHS; 223 QualType Ty; // Computation Type. 224 }; 225 226 BinOpInfo EmitBinOps(const BinaryOperator *E); 227 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 228 ComplexPairTy (ComplexExprEmitter::*Func) 229 (const BinOpInfo &), 230 RValue &Val); 231 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 232 ComplexPairTy (ComplexExprEmitter::*Func) 233 (const BinOpInfo &)); 234 235 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 236 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 237 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 238 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 239 240 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 241 const BinOpInfo &Op); 242 243 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 244 return EmitBinAdd(EmitBinOps(E)); 245 } 246 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 247 return EmitBinSub(EmitBinOps(E)); 248 } 249 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 250 return EmitBinMul(EmitBinOps(E)); 251 } 252 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 253 return EmitBinDiv(EmitBinOps(E)); 254 } 255 256 // Compound assignments. 257 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 258 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 259 } 260 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 261 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 262 } 263 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 264 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 265 } 266 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 267 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 268 } 269 270 // GCC rejects rem/and/or/xor for integer complex. 271 // Logical and/or always return int, never complex. 272 273 // No comparisons produce a complex result. 274 275 LValue EmitBinAssignLValue(const BinaryOperator *E, 276 ComplexPairTy &Val); 277 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 278 ComplexPairTy VisitBinComma (const BinaryOperator *E); 279 280 281 ComplexPairTy 282 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 283 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 284 285 ComplexPairTy VisitInitListExpr(InitListExpr *E); 286 287 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 288 return EmitLoadOfLValue(E); 289 } 290 291 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 292 293 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 294 return CGF.EmitAtomicExpr(E).getComplexVal(); 295 } 296 }; 297 } // end anonymous namespace. 298 299 //===----------------------------------------------------------------------===// 300 // Utilities 301 //===----------------------------------------------------------------------===// 302 303 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 304 QualType complexType) { 305 CharUnits offset = CharUnits::Zero(); 306 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 307 } 308 309 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 310 QualType complexType) { 311 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 312 CharUnits offset = getContext().getTypeSizeInChars(eltType); 313 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 314 } 315 316 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 317 /// load the real and imaginary pieces, returning them as Real/Imag. 318 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 319 SourceLocation loc) { 320 assert(lvalue.isSimple() && "non-simple complex l-value?"); 321 if (lvalue.getType()->isAtomicType()) 322 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 323 324 Address SrcPtr = lvalue.getAddress(); 325 bool isVolatile = lvalue.isVolatileQualified(); 326 327 llvm::Value *Real = nullptr, *Imag = nullptr; 328 329 if (!IgnoreReal || isVolatile) { 330 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 331 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 332 } 333 334 if (!IgnoreImag || isVolatile) { 335 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 336 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 337 } 338 339 return ComplexPairTy(Real, Imag); 340 } 341 342 /// EmitStoreOfComplex - Store the specified real/imag parts into the 343 /// specified value pointer. 344 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 345 bool isInit) { 346 if (lvalue.getType()->isAtomicType() || 347 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 348 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 349 350 Address Ptr = lvalue.getAddress(); 351 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 352 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 353 354 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 355 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 356 } 357 358 359 360 //===----------------------------------------------------------------------===// 361 // Visitor Methods 362 //===----------------------------------------------------------------------===// 363 364 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 365 CGF.ErrorUnsupported(E, "complex expression"); 366 llvm::Type *EltTy = 367 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 368 llvm::Value *U = llvm::UndefValue::get(EltTy); 369 return ComplexPairTy(U, U); 370 } 371 372 ComplexPairTy ComplexExprEmitter:: 373 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 374 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 375 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 376 } 377 378 379 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 380 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 381 return EmitLoadOfLValue(E); 382 383 return CGF.EmitCallExpr(E).getComplexVal(); 384 } 385 386 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 387 CodeGenFunction::StmtExprEvaluation eval(CGF); 388 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 389 assert(RetAlloca.isValid() && "Expected complex return value"); 390 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 391 E->getExprLoc()); 392 } 393 394 /// Emit a cast from complex value Val to DestType. 395 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 396 QualType SrcType, 397 QualType DestType, 398 SourceLocation Loc) { 399 // Get the src/dest element type. 400 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 401 DestType = DestType->castAs<ComplexType>()->getElementType(); 402 403 // C99 6.3.1.6: When a value of complex type is converted to another 404 // complex type, both the real and imaginary parts follow the conversion 405 // rules for the corresponding real types. 406 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 407 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 408 return Val; 409 } 410 411 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 412 QualType SrcType, 413 QualType DestType, 414 SourceLocation Loc) { 415 // Convert the input element to the element type of the complex. 416 DestType = DestType->castAs<ComplexType>()->getElementType(); 417 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 418 419 // Return (realval, 0). 420 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 421 } 422 423 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 424 QualType DestTy) { 425 switch (CK) { 426 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 427 428 // Atomic to non-atomic casts may be more than a no-op for some platforms and 429 // for some types. 430 case CK_AtomicToNonAtomic: 431 case CK_NonAtomicToAtomic: 432 case CK_NoOp: 433 case CK_LValueToRValue: 434 case CK_UserDefinedConversion: 435 return Visit(Op); 436 437 case CK_LValueBitCast: { 438 LValue origLV = CGF.EmitLValue(Op); 439 Address V = origLV.getAddress(); 440 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 441 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 442 } 443 444 case CK_BitCast: 445 case CK_BaseToDerived: 446 case CK_DerivedToBase: 447 case CK_UncheckedDerivedToBase: 448 case CK_Dynamic: 449 case CK_ToUnion: 450 case CK_ArrayToPointerDecay: 451 case CK_FunctionToPointerDecay: 452 case CK_NullToPointer: 453 case CK_NullToMemberPointer: 454 case CK_BaseToDerivedMemberPointer: 455 case CK_DerivedToBaseMemberPointer: 456 case CK_MemberPointerToBoolean: 457 case CK_ReinterpretMemberPointer: 458 case CK_ConstructorConversion: 459 case CK_IntegralToPointer: 460 case CK_PointerToIntegral: 461 case CK_PointerToBoolean: 462 case CK_ToVoid: 463 case CK_VectorSplat: 464 case CK_IntegralCast: 465 case CK_BooleanToSignedIntegral: 466 case CK_IntegralToBoolean: 467 case CK_IntegralToFloating: 468 case CK_FloatingToIntegral: 469 case CK_FloatingToBoolean: 470 case CK_FloatingCast: 471 case CK_CPointerToObjCPointerCast: 472 case CK_BlockPointerToObjCPointerCast: 473 case CK_AnyPointerToBlockPointerCast: 474 case CK_ObjCObjectLValueCast: 475 case CK_FloatingComplexToReal: 476 case CK_FloatingComplexToBoolean: 477 case CK_IntegralComplexToReal: 478 case CK_IntegralComplexToBoolean: 479 case CK_ARCProduceObject: 480 case CK_ARCConsumeObject: 481 case CK_ARCReclaimReturnedObject: 482 case CK_ARCExtendBlockObject: 483 case CK_CopyAndAutoreleaseBlockObject: 484 case CK_BuiltinFnToFnPtr: 485 case CK_ZeroToOCLEvent: 486 case CK_AddressSpaceConversion: 487 llvm_unreachable("invalid cast kind for complex value"); 488 489 case CK_FloatingRealToComplex: 490 case CK_IntegralRealToComplex: 491 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 492 DestTy, Op->getExprLoc()); 493 494 case CK_FloatingComplexCast: 495 case CK_FloatingComplexToIntegralComplex: 496 case CK_IntegralComplexCast: 497 case CK_IntegralComplexToFloatingComplex: 498 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 499 Op->getExprLoc()); 500 } 501 502 llvm_unreachable("unknown cast resulting in complex value"); 503 } 504 505 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 506 TestAndClearIgnoreReal(); 507 TestAndClearIgnoreImag(); 508 ComplexPairTy Op = Visit(E->getSubExpr()); 509 510 llvm::Value *ResR, *ResI; 511 if (Op.first->getType()->isFloatingPointTy()) { 512 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 513 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 514 } else { 515 ResR = Builder.CreateNeg(Op.first, "neg.r"); 516 ResI = Builder.CreateNeg(Op.second, "neg.i"); 517 } 518 return ComplexPairTy(ResR, ResI); 519 } 520 521 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 522 TestAndClearIgnoreReal(); 523 TestAndClearIgnoreImag(); 524 // ~(a+ib) = a + i*-b 525 ComplexPairTy Op = Visit(E->getSubExpr()); 526 llvm::Value *ResI; 527 if (Op.second->getType()->isFloatingPointTy()) 528 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 529 else 530 ResI = Builder.CreateNeg(Op.second, "conj.i"); 531 532 return ComplexPairTy(Op.first, ResI); 533 } 534 535 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 536 llvm::Value *ResR, *ResI; 537 538 if (Op.LHS.first->getType()->isFloatingPointTy()) { 539 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 540 if (Op.LHS.second && Op.RHS.second) 541 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 542 else 543 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 544 assert(ResI && "Only one operand may be real!"); 545 } else { 546 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 547 assert(Op.LHS.second && Op.RHS.second && 548 "Both operands of integer complex operators must be complex!"); 549 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 550 } 551 return ComplexPairTy(ResR, ResI); 552 } 553 554 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 555 llvm::Value *ResR, *ResI; 556 if (Op.LHS.first->getType()->isFloatingPointTy()) { 557 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 558 if (Op.LHS.second && Op.RHS.second) 559 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 560 else 561 ResI = Op.LHS.second ? Op.LHS.second 562 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 563 assert(ResI && "Only one operand may be real!"); 564 } else { 565 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 566 assert(Op.LHS.second && Op.RHS.second && 567 "Both operands of integer complex operators must be complex!"); 568 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 569 } 570 return ComplexPairTy(ResR, ResI); 571 } 572 573 /// \brief Emit a libcall for a binary operation on complex types. 574 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 575 const BinOpInfo &Op) { 576 CallArgList Args; 577 Args.add(RValue::get(Op.LHS.first), 578 Op.Ty->castAs<ComplexType>()->getElementType()); 579 Args.add(RValue::get(Op.LHS.second), 580 Op.Ty->castAs<ComplexType>()->getElementType()); 581 Args.add(RValue::get(Op.RHS.first), 582 Op.Ty->castAs<ComplexType>()->getElementType()); 583 Args.add(RValue::get(Op.RHS.second), 584 Op.Ty->castAs<ComplexType>()->getElementType()); 585 586 // We *must* use the full CG function call building logic here because the 587 // complex type has special ABI handling. We also should not forget about 588 // special calling convention which may be used for compiler builtins. 589 590 // We create a function qualified type to state that this call does not have 591 // any exceptions. 592 FunctionProtoType::ExtProtoInfo EPI; 593 EPI = EPI.withExceptionSpec( 594 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 595 SmallVector<QualType, 4> ArgsQTys( 596 4, Op.Ty->castAs<ComplexType>()->getElementType()); 597 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 598 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 599 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 600 601 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 602 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 603 llvm::Instruction *Call; 604 605 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args, 606 FQTy->getAs<FunctionProtoType>(), &Call); 607 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 608 return Res.getComplexVal(); 609 } 610 611 /// \brief Lookup the libcall name for a given floating point type complex 612 /// multiply. 613 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 614 switch (Ty->getTypeID()) { 615 default: 616 llvm_unreachable("Unsupported floating point type!"); 617 case llvm::Type::HalfTyID: 618 return "__mulhc3"; 619 case llvm::Type::FloatTyID: 620 return "__mulsc3"; 621 case llvm::Type::DoubleTyID: 622 return "__muldc3"; 623 case llvm::Type::PPC_FP128TyID: 624 return "__multc3"; 625 case llvm::Type::X86_FP80TyID: 626 return "__mulxc3"; 627 case llvm::Type::FP128TyID: 628 return "__multc3"; 629 } 630 } 631 632 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 633 // typed values. 634 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 635 using llvm::Value; 636 Value *ResR, *ResI; 637 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 638 639 if (Op.LHS.first->getType()->isFloatingPointTy()) { 640 // The general formulation is: 641 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 642 // 643 // But we can fold away components which would be zero due to a real 644 // operand according to C11 Annex G.5.1p2. 645 // FIXME: C11 also provides for imaginary types which would allow folding 646 // still more of this within the type system. 647 648 if (Op.LHS.second && Op.RHS.second) { 649 // If both operands are complex, emit the core math directly, and then 650 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 651 // to carefully re-compute the correct infinity representation if 652 // possible. The expectation is that the presence of NaNs here is 653 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 654 // This is good, because the libcall re-computes the core multiplication 655 // exactly the same as we do here and re-tests for NaNs in order to be 656 // a generic complex*complex libcall. 657 658 // First compute the four products. 659 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 660 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 661 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 662 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 663 664 // The real part is the difference of the first two, the imaginary part is 665 // the sum of the second. 666 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 667 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 668 669 // Emit the test for the real part becoming NaN and create a branch to 670 // handle it. We test for NaN by comparing the number to itself. 671 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 672 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 673 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 674 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 675 llvm::BasicBlock *OrigBB = Branch->getParent(); 676 677 // Give hint that we very much don't expect to see NaNs. 678 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 679 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 680 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 681 682 // Now test the imaginary part and create its branch. 683 CGF.EmitBlock(INaNBB); 684 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 685 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 686 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 687 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 688 689 // Now emit the libcall on this slowest of the slow paths. 690 CGF.EmitBlock(LibCallBB); 691 Value *LibCallR, *LibCallI; 692 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 693 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 694 Builder.CreateBr(ContBB); 695 696 // Finally continue execution by phi-ing together the different 697 // computation paths. 698 CGF.EmitBlock(ContBB); 699 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 700 RealPHI->addIncoming(ResR, OrigBB); 701 RealPHI->addIncoming(ResR, INaNBB); 702 RealPHI->addIncoming(LibCallR, LibCallBB); 703 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 704 ImagPHI->addIncoming(ResI, OrigBB); 705 ImagPHI->addIncoming(ResI, INaNBB); 706 ImagPHI->addIncoming(LibCallI, LibCallBB); 707 return ComplexPairTy(RealPHI, ImagPHI); 708 } 709 assert((Op.LHS.second || Op.RHS.second) && 710 "At least one operand must be complex!"); 711 712 // If either of the operands is a real rather than a complex, the 713 // imaginary component is ignored when computing the real component of the 714 // result. 715 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 716 717 ResI = Op.LHS.second 718 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 719 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 720 } else { 721 assert(Op.LHS.second && Op.RHS.second && 722 "Both operands of integer complex operators must be complex!"); 723 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 724 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 725 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 726 727 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 728 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 729 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 730 } 731 return ComplexPairTy(ResR, ResI); 732 } 733 734 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 735 // typed values. 736 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 737 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 738 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 739 740 741 llvm::Value *DSTr, *DSTi; 742 if (LHSr->getType()->isFloatingPointTy()) { 743 // If we have a complex operand on the RHS, we delegate to a libcall to 744 // handle all of the complexities and minimize underflow/overflow cases. 745 // 746 // FIXME: We would be able to avoid the libcall in many places if we 747 // supported imaginary types in addition to complex types. 748 if (RHSi) { 749 BinOpInfo LibCallOp = Op; 750 // If LHS was a real, supply a null imaginary part. 751 if (!LHSi) 752 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 753 754 StringRef LibCallName; 755 switch (LHSr->getType()->getTypeID()) { 756 default: 757 llvm_unreachable("Unsupported floating point type!"); 758 case llvm::Type::HalfTyID: 759 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 760 case llvm::Type::FloatTyID: 761 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 762 case llvm::Type::DoubleTyID: 763 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 764 case llvm::Type::PPC_FP128TyID: 765 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 766 case llvm::Type::X86_FP80TyID: 767 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 768 case llvm::Type::FP128TyID: 769 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 770 } 771 } 772 assert(LHSi && "Can have at most one non-complex operand!"); 773 774 DSTr = Builder.CreateFDiv(LHSr, RHSr); 775 DSTi = Builder.CreateFDiv(LHSi, RHSr); 776 } else { 777 assert(Op.LHS.second && Op.RHS.second && 778 "Both operands of integer complex operators must be complex!"); 779 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 780 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 781 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 782 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 783 784 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 785 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 786 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 787 788 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 789 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 790 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 791 792 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 793 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 794 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 795 } else { 796 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 797 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 798 } 799 } 800 801 return ComplexPairTy(DSTr, DSTi); 802 } 803 804 ComplexExprEmitter::BinOpInfo 805 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 806 TestAndClearIgnoreReal(); 807 TestAndClearIgnoreImag(); 808 BinOpInfo Ops; 809 if (E->getLHS()->getType()->isRealFloatingType()) 810 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 811 else 812 Ops.LHS = Visit(E->getLHS()); 813 if (E->getRHS()->getType()->isRealFloatingType()) 814 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 815 else 816 Ops.RHS = Visit(E->getRHS()); 817 818 Ops.Ty = E->getType(); 819 return Ops; 820 } 821 822 823 LValue ComplexExprEmitter:: 824 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 825 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 826 RValue &Val) { 827 TestAndClearIgnoreReal(); 828 TestAndClearIgnoreImag(); 829 QualType LHSTy = E->getLHS()->getType(); 830 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 831 LHSTy = AT->getValueType(); 832 833 BinOpInfo OpInfo; 834 835 // Load the RHS and LHS operands. 836 // __block variables need to have the rhs evaluated first, plus this should 837 // improve codegen a little. 838 OpInfo.Ty = E->getComputationResultType(); 839 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 840 841 // The RHS should have been converted to the computation type. 842 if (E->getRHS()->getType()->isRealFloatingType()) { 843 assert( 844 CGF.getContext() 845 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 846 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 847 } else { 848 assert(CGF.getContext() 849 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 850 OpInfo.RHS = Visit(E->getRHS()); 851 } 852 853 LValue LHS = CGF.EmitLValue(E->getLHS()); 854 855 // Load from the l-value and convert it. 856 SourceLocation Loc = E->getExprLoc(); 857 if (LHSTy->isAnyComplexType()) { 858 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 859 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 860 } else { 861 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 862 // For floating point real operands we can directly pass the scalar form 863 // to the binary operator emission and potentially get more efficient code. 864 if (LHSTy->isRealFloatingType()) { 865 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 866 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 867 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 868 } else { 869 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 870 } 871 } 872 873 // Expand the binary operator. 874 ComplexPairTy Result = (this->*Func)(OpInfo); 875 876 // Truncate the result and store it into the LHS lvalue. 877 if (LHSTy->isAnyComplexType()) { 878 ComplexPairTy ResVal = 879 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 880 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 881 Val = RValue::getComplex(ResVal); 882 } else { 883 llvm::Value *ResVal = 884 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 885 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 886 Val = RValue::get(ResVal); 887 } 888 889 return LHS; 890 } 891 892 // Compound assignments. 893 ComplexPairTy ComplexExprEmitter:: 894 EmitCompoundAssign(const CompoundAssignOperator *E, 895 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 896 RValue Val; 897 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 898 899 // The result of an assignment in C is the assigned r-value. 900 if (!CGF.getLangOpts().CPlusPlus) 901 return Val.getComplexVal(); 902 903 // If the lvalue is non-volatile, return the computed value of the assignment. 904 if (!LV.isVolatileQualified()) 905 return Val.getComplexVal(); 906 907 return EmitLoadOfLValue(LV, E->getExprLoc()); 908 } 909 910 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 911 ComplexPairTy &Val) { 912 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 913 E->getRHS()->getType()) && 914 "Invalid assignment"); 915 TestAndClearIgnoreReal(); 916 TestAndClearIgnoreImag(); 917 918 // Emit the RHS. __block variables need the RHS evaluated first. 919 Val = Visit(E->getRHS()); 920 921 // Compute the address to store into. 922 LValue LHS = CGF.EmitLValue(E->getLHS()); 923 924 // Store the result value into the LHS lvalue. 925 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 926 927 return LHS; 928 } 929 930 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 931 ComplexPairTy Val; 932 LValue LV = EmitBinAssignLValue(E, Val); 933 934 // The result of an assignment in C is the assigned r-value. 935 if (!CGF.getLangOpts().CPlusPlus) 936 return Val; 937 938 // If the lvalue is non-volatile, return the computed value of the assignment. 939 if (!LV.isVolatileQualified()) 940 return Val; 941 942 return EmitLoadOfLValue(LV, E->getExprLoc()); 943 } 944 945 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 946 CGF.EmitIgnoredExpr(E->getLHS()); 947 return Visit(E->getRHS()); 948 } 949 950 ComplexPairTy ComplexExprEmitter:: 951 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 952 TestAndClearIgnoreReal(); 953 TestAndClearIgnoreImag(); 954 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 955 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 956 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 957 958 // Bind the common expression if necessary. 959 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 960 961 962 CodeGenFunction::ConditionalEvaluation eval(CGF); 963 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 964 CGF.getProfileCount(E)); 965 966 eval.begin(CGF); 967 CGF.EmitBlock(LHSBlock); 968 CGF.incrementProfileCounter(E); 969 ComplexPairTy LHS = Visit(E->getTrueExpr()); 970 LHSBlock = Builder.GetInsertBlock(); 971 CGF.EmitBranch(ContBlock); 972 eval.end(CGF); 973 974 eval.begin(CGF); 975 CGF.EmitBlock(RHSBlock); 976 ComplexPairTy RHS = Visit(E->getFalseExpr()); 977 RHSBlock = Builder.GetInsertBlock(); 978 CGF.EmitBlock(ContBlock); 979 eval.end(CGF); 980 981 // Create a PHI node for the real part. 982 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 983 RealPN->addIncoming(LHS.first, LHSBlock); 984 RealPN->addIncoming(RHS.first, RHSBlock); 985 986 // Create a PHI node for the imaginary part. 987 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 988 ImagPN->addIncoming(LHS.second, LHSBlock); 989 ImagPN->addIncoming(RHS.second, RHSBlock); 990 991 return ComplexPairTy(RealPN, ImagPN); 992 } 993 994 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 995 return Visit(E->getChosenSubExpr()); 996 } 997 998 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 999 bool Ignore = TestAndClearIgnoreReal(); 1000 (void)Ignore; 1001 assert (Ignore == false && "init list ignored"); 1002 Ignore = TestAndClearIgnoreImag(); 1003 (void)Ignore; 1004 assert (Ignore == false && "init list ignored"); 1005 1006 if (E->getNumInits() == 2) { 1007 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1008 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1009 return ComplexPairTy(Real, Imag); 1010 } else if (E->getNumInits() == 1) { 1011 return Visit(E->getInit(0)); 1012 } 1013 1014 // Empty init list intializes to null 1015 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1016 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1017 llvm::Type* LTy = CGF.ConvertType(Ty); 1018 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1019 return ComplexPairTy(zeroConstant, zeroConstant); 1020 } 1021 1022 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1023 Address ArgValue = Address::invalid(); 1024 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1025 1026 if (!ArgPtr.isValid()) { 1027 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1028 llvm::Type *EltTy = 1029 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1030 llvm::Value *U = llvm::UndefValue::get(EltTy); 1031 return ComplexPairTy(U, U); 1032 } 1033 1034 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1035 E->getExprLoc()); 1036 } 1037 1038 //===----------------------------------------------------------------------===// 1039 // Entry Point into this File 1040 //===----------------------------------------------------------------------===// 1041 1042 /// EmitComplexExpr - Emit the computation of the specified expression of 1043 /// complex type, ignoring the result. 1044 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1045 bool IgnoreImag) { 1046 assert(E && getComplexType(E->getType()) && 1047 "Invalid complex expression to emit"); 1048 1049 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1050 .Visit(const_cast<Expr *>(E)); 1051 } 1052 1053 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1054 bool isInit) { 1055 assert(E && getComplexType(E->getType()) && 1056 "Invalid complex expression to emit"); 1057 ComplexExprEmitter Emitter(*this); 1058 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1059 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1060 } 1061 1062 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1063 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1064 bool isInit) { 1065 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1066 } 1067 1068 /// EmitLoadOfComplex - Load a complex number from the specified address. 1069 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1070 SourceLocation loc) { 1071 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1072 } 1073 1074 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1075 assert(E->getOpcode() == BO_Assign); 1076 ComplexPairTy Val; // ignored 1077 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1078 } 1079 1080 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1081 const ComplexExprEmitter::BinOpInfo &); 1082 1083 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1084 switch (Op) { 1085 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1086 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1087 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1088 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1089 default: 1090 llvm_unreachable("unexpected complex compound assignment"); 1091 } 1092 } 1093 1094 LValue CodeGenFunction:: 1095 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1096 CompoundFunc Op = getComplexOp(E->getOpcode()); 1097 RValue Val; 1098 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1099 } 1100 1101 LValue CodeGenFunction:: 1102 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1103 llvm::Value *&Result) { 1104 CompoundFunc Op = getComplexOp(E->getOpcode()); 1105 RValue Val; 1106 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1107 Result = Val.getScalarVal(); 1108 return Ret; 1109 } 1110