1 /* 2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include <limits.h> 12 13 #include "vpx_mem/vpx_mem.h" 14 15 #include "vp9/common/vp9_pred_common.h" 16 #include "vp9/common/vp9_tile_common.h" 17 18 #include "vp9/encoder/vp9_cost.h" 19 #include "vp9/encoder/vp9_segmentation.h" 20 21 void vp9_enable_segmentation(struct segmentation *seg) { 22 seg->enabled = 1; 23 seg->update_map = 1; 24 seg->update_data = 1; 25 } 26 27 void vp9_disable_segmentation(struct segmentation *seg) { 28 seg->enabled = 0; 29 seg->update_map = 0; 30 seg->update_data = 0; 31 } 32 33 void vp9_set_segment_data(struct segmentation *seg, signed char *feature_data, 34 unsigned char abs_delta) { 35 seg->abs_delta = abs_delta; 36 37 memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data)); 38 } 39 void vp9_disable_segfeature(struct segmentation *seg, int segment_id, 40 SEG_LVL_FEATURES feature_id) { 41 seg->feature_mask[segment_id] &= ~(1 << feature_id); 42 } 43 44 void vp9_clear_segdata(struct segmentation *seg, int segment_id, 45 SEG_LVL_FEATURES feature_id) { 46 seg->feature_data[segment_id][feature_id] = 0; 47 } 48 49 // Based on set of segment counts calculate a probability tree 50 static void calc_segtree_probs(int *segcounts, vpx_prob *segment_tree_probs) { 51 // Work out probabilities of each segment 52 const int c01 = segcounts[0] + segcounts[1]; 53 const int c23 = segcounts[2] + segcounts[3]; 54 const int c45 = segcounts[4] + segcounts[5]; 55 const int c67 = segcounts[6] + segcounts[7]; 56 57 segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67); 58 segment_tree_probs[1] = get_binary_prob(c01, c23); 59 segment_tree_probs[2] = get_binary_prob(c45, c67); 60 segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]); 61 segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]); 62 segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]); 63 segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]); 64 } 65 66 // Based on set of segment counts and probabilities calculate a cost estimate 67 static int cost_segmap(int *segcounts, vpx_prob *probs) { 68 const int c01 = segcounts[0] + segcounts[1]; 69 const int c23 = segcounts[2] + segcounts[3]; 70 const int c45 = segcounts[4] + segcounts[5]; 71 const int c67 = segcounts[6] + segcounts[7]; 72 const int c0123 = c01 + c23; 73 const int c4567 = c45 + c67; 74 75 // Cost the top node of the tree 76 int cost = c0123 * vp9_cost_zero(probs[0]) + c4567 * vp9_cost_one(probs[0]); 77 78 // Cost subsequent levels 79 if (c0123 > 0) { 80 cost += c01 * vp9_cost_zero(probs[1]) + c23 * vp9_cost_one(probs[1]); 81 82 if (c01 > 0) 83 cost += segcounts[0] * vp9_cost_zero(probs[3]) + 84 segcounts[1] * vp9_cost_one(probs[3]); 85 if (c23 > 0) 86 cost += segcounts[2] * vp9_cost_zero(probs[4]) + 87 segcounts[3] * vp9_cost_one(probs[4]); 88 } 89 90 if (c4567 > 0) { 91 cost += c45 * vp9_cost_zero(probs[2]) + c67 * vp9_cost_one(probs[2]); 92 93 if (c45 > 0) 94 cost += segcounts[4] * vp9_cost_zero(probs[5]) + 95 segcounts[5] * vp9_cost_one(probs[5]); 96 if (c67 > 0) 97 cost += segcounts[6] * vp9_cost_zero(probs[6]) + 98 segcounts[7] * vp9_cost_one(probs[6]); 99 } 100 101 return cost; 102 } 103 104 static void count_segs(const VP9_COMMON *cm, MACROBLOCKD *xd, 105 const TileInfo *tile, MODE_INFO **mi, 106 int *no_pred_segcounts, 107 int (*temporal_predictor_count)[2], 108 int *t_unpred_seg_counts, int bw, int bh, int mi_row, 109 int mi_col) { 110 int segment_id; 111 112 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; 113 114 xd->mi = mi; 115 segment_id = xd->mi[0]->segment_id; 116 117 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); 118 119 // Count the number of hits on each segment with no prediction 120 no_pred_segcounts[segment_id]++; 121 122 // Temporal prediction not allowed on key frames 123 if (cm->frame_type != KEY_FRAME) { 124 const BLOCK_SIZE bsize = xd->mi[0]->sb_type; 125 // Test to see if the segment id matches the predicted value. 126 const int pred_segment_id = 127 get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col); 128 const int pred_flag = pred_segment_id == segment_id; 129 const int pred_context = vp9_get_pred_context_seg_id(xd); 130 131 // Store the prediction status for this mb and update counts 132 // as appropriate 133 xd->mi[0]->seg_id_predicted = pred_flag; 134 temporal_predictor_count[pred_context][pred_flag]++; 135 136 // Update the "unpredicted" segment count 137 if (!pred_flag) t_unpred_seg_counts[segment_id]++; 138 } 139 } 140 141 static void count_segs_sb(const VP9_COMMON *cm, MACROBLOCKD *xd, 142 const TileInfo *tile, MODE_INFO **mi, 143 int *no_pred_segcounts, 144 int (*temporal_predictor_count)[2], 145 int *t_unpred_seg_counts, int mi_row, int mi_col, 146 BLOCK_SIZE bsize) { 147 const int mis = cm->mi_stride; 148 int bw, bh; 149 const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2; 150 151 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; 152 153 bw = num_8x8_blocks_wide_lookup[mi[0]->sb_type]; 154 bh = num_8x8_blocks_high_lookup[mi[0]->sb_type]; 155 156 if (bw == bs && bh == bs) { 157 count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, 158 t_unpred_seg_counts, bs, bs, mi_row, mi_col); 159 } else if (bw == bs && bh < bs) { 160 count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, 161 t_unpred_seg_counts, bs, hbs, mi_row, mi_col); 162 count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts, 163 temporal_predictor_count, t_unpred_seg_counts, bs, hbs, 164 mi_row + hbs, mi_col); 165 } else if (bw < bs && bh == bs) { 166 count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, 167 t_unpred_seg_counts, hbs, bs, mi_row, mi_col); 168 count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts, 169 temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row, 170 mi_col + hbs); 171 } else { 172 const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; 173 int n; 174 175 assert(bw < bs && bh < bs); 176 177 for (n = 0; n < 4; n++) { 178 const int mi_dc = hbs * (n & 1); 179 const int mi_dr = hbs * (n >> 1); 180 181 count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts, 182 temporal_predictor_count, t_unpred_seg_counts, 183 mi_row + mi_dr, mi_col + mi_dc, subsize); 184 } 185 } 186 } 187 188 void vp9_choose_segmap_coding_method(VP9_COMMON *cm, MACROBLOCKD *xd) { 189 struct segmentation *seg = &cm->seg; 190 191 int no_pred_cost; 192 int t_pred_cost = INT_MAX; 193 194 int i, tile_col, mi_row, mi_col; 195 196 int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } }; 197 int no_pred_segcounts[MAX_SEGMENTS] = { 0 }; 198 int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 }; 199 200 vpx_prob no_pred_tree[SEG_TREE_PROBS]; 201 vpx_prob t_pred_tree[SEG_TREE_PROBS]; 202 vpx_prob t_nopred_prob[PREDICTION_PROBS]; 203 204 // Set default state for the segment tree probabilities and the 205 // temporal coding probabilities 206 memset(seg->tree_probs, 255, sizeof(seg->tree_probs)); 207 memset(seg->pred_probs, 255, sizeof(seg->pred_probs)); 208 209 // First of all generate stats regarding how well the last segment map 210 // predicts this one 211 for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) { 212 TileInfo tile; 213 MODE_INFO **mi_ptr; 214 vp9_tile_init(&tile, cm, 0, tile_col); 215 216 mi_ptr = cm->mi_grid_visible + tile.mi_col_start; 217 for (mi_row = 0; mi_row < cm->mi_rows; 218 mi_row += 8, mi_ptr += 8 * cm->mi_stride) { 219 MODE_INFO **mi = mi_ptr; 220 for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; 221 mi_col += 8, mi += 8) 222 count_segs_sb(cm, xd, &tile, mi, no_pred_segcounts, 223 temporal_predictor_count, t_unpred_seg_counts, mi_row, 224 mi_col, BLOCK_64X64); 225 } 226 } 227 228 // Work out probability tree for coding segments without prediction 229 // and the cost. 230 calc_segtree_probs(no_pred_segcounts, no_pred_tree); 231 no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree); 232 233 // Key frames cannot use temporal prediction 234 if (!frame_is_intra_only(cm)) { 235 // Work out probability tree for coding those segments not 236 // predicted using the temporal method and the cost. 237 calc_segtree_probs(t_unpred_seg_counts, t_pred_tree); 238 t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree); 239 240 // Add in the cost of the signaling for each prediction context. 241 for (i = 0; i < PREDICTION_PROBS; i++) { 242 const int count0 = temporal_predictor_count[i][0]; 243 const int count1 = temporal_predictor_count[i][1]; 244 245 t_nopred_prob[i] = get_binary_prob(count0, count1); 246 247 // Add in the predictor signaling cost 248 t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) + 249 count1 * vp9_cost_one(t_nopred_prob[i]); 250 } 251 } 252 253 // Now choose which coding method to use. 254 if (t_pred_cost < no_pred_cost) { 255 seg->temporal_update = 1; 256 memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree)); 257 memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob)); 258 } else { 259 seg->temporal_update = 0; 260 memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree)); 261 } 262 } 263 264 void vp9_reset_segment_features(struct segmentation *seg) { 265 // Set up default state for MB feature flags 266 seg->enabled = 0; 267 seg->update_map = 0; 268 seg->update_data = 0; 269 memset(seg->tree_probs, 255, sizeof(seg->tree_probs)); 270 vp9_clearall_segfeatures(seg); 271 } 272