Home | History | Annotate | Download | only in invoke
      1 /*
      2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
      3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
      4  *
      5  * This code is free software; you can redistribute it and/or modify it
      6  * under the terms of the GNU General Public License version 2 only, as
      7  * published by the Free Software Foundation.  Oracle designates this
      8  * particular file as subject to the "Classpath" exception as provided
      9  * by Oracle in the LICENSE file that accompanied this code.
     10  *
     11  * This code is distributed in the hope that it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
     14  * version 2 for more details (a copy is included in the LICENSE file that
     15  * accompanied this code).
     16  *
     17  * You should have received a copy of the GNU General Public License version
     18  * 2 along with this work; if not, write to the Free Software Foundation,
     19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
     20  *
     21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
     22  * or visit www.oracle.com if you need additional information or have any
     23  * questions.
     24  */
     25 
     26 package java.lang.invoke;
     27 
     28 import java.lang.reflect.*;
     29 import java.nio.ByteOrder;
     30 import java.util.List;
     31 import java.util.Arrays;
     32 import java.util.ArrayList;
     33 import java.util.NoSuchElementException;
     34 
     35 import dalvik.system.VMStack;
     36 import sun.invoke.util.VerifyAccess;
     37 import sun.invoke.util.Wrapper;
     38 import static java.lang.invoke.MethodHandleStatics.*;
     39 
     40 /**
     41  * This class consists exclusively of static methods that operate on or return
     42  * method handles. They fall into several categories:
     43  * <ul>
     44  * <li>Lookup methods which help create method handles for methods and fields.
     45  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
     46  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
     47  * </ul>
     48  * <p>
     49  * @author John Rose, JSR 292 EG
     50  * @since 1.7
     51  */
     52 public class MethodHandles {
     53 
     54     private MethodHandles() { }  // do not instantiate
     55 
     56     // Android-changed: We do not use MemberName / MethodHandleImpl.
     57     //
     58     // private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
     59     // static { MethodHandleImpl.initStatics(); }
     60     // See IMPL_LOOKUP below.
     61 
     62     //// Method handle creation from ordinary methods.
     63 
     64     /**
     65      * Returns a {@link Lookup lookup object} with
     66      * full capabilities to emulate all supported bytecode behaviors of the caller.
     67      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
     68      * Factory methods on the lookup object can create
     69      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
     70      * for any member that the caller has access to via bytecodes,
     71      * including protected and private fields and methods.
     72      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
     73      * Do not store it in place where untrusted code can access it.
     74      * <p>
     75      * This method is caller sensitive, which means that it may return different
     76      * values to different callers.
     77      * <p>
     78      * For any given caller class {@code C}, the lookup object returned by this call
     79      * has equivalent capabilities to any lookup object
     80      * supplied by the JVM to the bootstrap method of an
     81      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
     82      * executing in the same caller class {@code C}.
     83      * @return a lookup object for the caller of this method, with private access
     84      */
     85     // Android-changed: Remove caller sensitive.
     86     // @CallerSensitive
     87     public static Lookup lookup() {
     88         // Android-changed: Do not use Reflection.getCallerClass().
     89         return new Lookup(VMStack.getStackClass1());
     90     }
     91 
     92     /**
     93      * Returns a {@link Lookup lookup object} which is trusted minimally.
     94      * It can only be used to create method handles to
     95      * publicly accessible fields and methods.
     96      * <p>
     97      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
     98      * of this lookup object will be {@link java.lang.Object}.
     99      *
    100      * <p style="font-size:smaller;">
    101      * <em>Discussion:</em>
    102      * The lookup class can be changed to any other class {@code C} using an expression of the form
    103      * {@link Lookup#in publicLookup().in(C.class)}.
    104      * Since all classes have equal access to public names,
    105      * such a change would confer no new access rights.
    106      * A public lookup object is always subject to
    107      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
    108      * Also, it cannot access
    109      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
    110      * @return a lookup object which is trusted minimally
    111      */
    112     public static Lookup publicLookup() {
    113         return Lookup.PUBLIC_LOOKUP;
    114     }
    115 
    116     /**
    117      * Performs an unchecked "crack" of a
    118      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
    119      * The result is as if the user had obtained a lookup object capable enough
    120      * to crack the target method handle, called
    121      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
    122      * on the target to obtain its symbolic reference, and then called
    123      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
    124      * to resolve the symbolic reference to a member.
    125      * <p>
    126      * If there is a security manager, its {@code checkPermission} method
    127      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
    128      * @param <T> the desired type of the result, either {@link Member} or a subtype
    129      * @param target a direct method handle to crack into symbolic reference components
    130      * @param expected a class object representing the desired result type {@code T}
    131      * @return a reference to the method, constructor, or field object
    132      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
    133      * @exception NullPointerException if either argument is {@code null}
    134      * @exception IllegalArgumentException if the target is not a direct method handle
    135      * @exception ClassCastException if the member is not of the expected type
    136      * @since 1.8
    137      */
    138     public static <T extends Member> T
    139     reflectAs(Class<T> expected, MethodHandle target) {
    140         MethodHandleImpl directTarget = getMethodHandleImpl(target);
    141         // Given that this is specified to be an "unchecked" crack, we can directly allocate
    142         // a member from the underlying ArtField / Method and bypass all associated access checks.
    143         return expected.cast(directTarget.getMemberInternal());
    144     }
    145 
    146     /**
    147      * A <em>lookup object</em> is a factory for creating method handles,
    148      * when the creation requires access checking.
    149      * Method handles do not perform
    150      * access checks when they are called, but rather when they are created.
    151      * Therefore, method handle access
    152      * restrictions must be enforced when a method handle is created.
    153      * The caller class against which those restrictions are enforced
    154      * is known as the {@linkplain #lookupClass lookup class}.
    155      * <p>
    156      * A lookup class which needs to create method handles will call
    157      * {@link #lookup MethodHandles.lookup} to create a factory for itself.
    158      * When the {@code Lookup} factory object is created, the identity of the lookup class is
    159      * determined, and securely stored in the {@code Lookup} object.
    160      * The lookup class (or its delegates) may then use factory methods
    161      * on the {@code Lookup} object to create method handles for access-checked members.
    162      * This includes all methods, constructors, and fields which are allowed to the lookup class,
    163      * even private ones.
    164      *
    165      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
    166      * The factory methods on a {@code Lookup} object correspond to all major
    167      * use cases for methods, constructors, and fields.
    168      * Each method handle created by a factory method is the functional
    169      * equivalent of a particular <em>bytecode behavior</em>.
    170      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
    171      * Here is a summary of the correspondence between these factory methods and
    172      * the behavior the resulting method handles:
    173      * <table border=1 cellpadding=5 summary="lookup method behaviors">
    174      * <tr>
    175      *     <th><a name="equiv"></a>lookup expression</th>
    176      *     <th>member</th>
    177      *     <th>bytecode behavior</th>
    178      * </tr>
    179      * <tr>
    180      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
    181      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
    182      * </tr>
    183      * <tr>
    184      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
    185      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
    186      * </tr>
    187      * <tr>
    188      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
    189      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
    190      * </tr>
    191      * <tr>
    192      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
    193      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
    194      * </tr>
    195      * <tr>
    196      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
    197      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
    198      * </tr>
    199      * <tr>
    200      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
    201      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
    202      * </tr>
    203      * <tr>
    204      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
    205      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
    206      * </tr>
    207      * <tr>
    208      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
    209      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
    210      * </tr>
    211      * <tr>
    212      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
    213      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
    214      * </tr>
    215      * <tr>
    216      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
    217      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
    218      * </tr>
    219      * <tr>
    220      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
    221      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
    222      * </tr>
    223      * <tr>
    224      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
    225      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
    226      * </tr>
    227      * <tr>
    228      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
    229      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
    230      * </tr>
    231      * </table>
    232      *
    233      * Here, the type {@code C} is the class or interface being searched for a member,
    234      * documented as a parameter named {@code refc} in the lookup methods.
    235      * The method type {@code MT} is composed from the return type {@code T}
    236      * and the sequence of argument types {@code A*}.
    237      * The constructor also has a sequence of argument types {@code A*} and
    238      * is deemed to return the newly-created object of type {@code C}.
    239      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
    240      * The formal parameter {@code this} stands for the self-reference of type {@code C};
    241      * if it is present, it is always the leading argument to the method handle invocation.
    242      * (In the case of some {@code protected} members, {@code this} may be
    243      * restricted in type to the lookup class; see below.)
    244      * The name {@code arg} stands for all the other method handle arguments.
    245      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
    246      * stands for a null reference if the accessed method or field is static,
    247      * and {@code this} otherwise.
    248      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
    249      * for reflective objects corresponding to the given members.
    250      * <p>
    251      * In cases where the given member is of variable arity (i.e., a method or constructor)
    252      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
    253      * In all other cases, the returned method handle will be of fixed arity.
    254      * <p style="font-size:smaller;">
    255      * <em>Discussion:</em>
    256      * The equivalence between looked-up method handles and underlying
    257      * class members and bytecode behaviors
    258      * can break down in a few ways:
    259      * <ul style="font-size:smaller;">
    260      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
    261      * the lookup can still succeed, even when there is no equivalent
    262      * Java expression or bytecoded constant.
    263      * <li>Likewise, if {@code T} or {@code MT}
    264      * is not symbolically accessible from the lookup class's loader,
    265      * the lookup can still succeed.
    266      * For example, lookups for {@code MethodHandle.invokeExact} and
    267      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
    268      * <li>If there is a security manager installed, it can forbid the lookup
    269      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
    270      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
    271      * constant is not subject to security manager checks.
    272      * <li>If the looked-up method has a
    273      * <a href="MethodHandle.html#maxarity">very large arity</a>,
    274      * the method handle creation may fail, due to the method handle
    275      * type having too many parameters.
    276      * </ul>
    277      *
    278      * <h1><a name="access"></a>Access checking</h1>
    279      * Access checks are applied in the factory methods of {@code Lookup},
    280      * when a method handle is created.
    281      * This is a key difference from the Core Reflection API, since
    282      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
    283      * performs access checking against every caller, on every call.
    284      * <p>
    285      * All access checks start from a {@code Lookup} object, which
    286      * compares its recorded lookup class against all requests to
    287      * create method handles.
    288      * A single {@code Lookup} object can be used to create any number
    289      * of access-checked method handles, all checked against a single
    290      * lookup class.
    291      * <p>
    292      * A {@code Lookup} object can be shared with other trusted code,
    293      * such as a metaobject protocol.
    294      * A shared {@code Lookup} object delegates the capability
    295      * to create method handles on private members of the lookup class.
    296      * Even if privileged code uses the {@code Lookup} object,
    297      * the access checking is confined to the privileges of the
    298      * original lookup class.
    299      * <p>
    300      * A lookup can fail, because
    301      * the containing class is not accessible to the lookup class, or
    302      * because the desired class member is missing, or because the
    303      * desired class member is not accessible to the lookup class, or
    304      * because the lookup object is not trusted enough to access the member.
    305      * In any of these cases, a {@code ReflectiveOperationException} will be
    306      * thrown from the attempted lookup.  The exact class will be one of
    307      * the following:
    308      * <ul>
    309      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
    310      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
    311      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
    312      * </ul>
    313      * <p>
    314      * In general, the conditions under which a method handle may be
    315      * looked up for a method {@code M} are no more restrictive than the conditions
    316      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
    317      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
    318      * a method handle lookup will generally raise a corresponding
    319      * checked exception, such as {@code NoSuchMethodException}.
    320      * And the effect of invoking the method handle resulting from the lookup
    321      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
    322      * to executing the compiled, verified, and resolved call to {@code M}.
    323      * The same point is true of fields and constructors.
    324      * <p style="font-size:smaller;">
    325      * <em>Discussion:</em>
    326      * Access checks only apply to named and reflected methods,
    327      * constructors, and fields.
    328      * Other method handle creation methods, such as
    329      * {@link MethodHandle#asType MethodHandle.asType},
    330      * do not require any access checks, and are used
    331      * independently of any {@code Lookup} object.
    332      * <p>
    333      * If the desired member is {@code protected}, the usual JVM rules apply,
    334      * including the requirement that the lookup class must be either be in the
    335      * same package as the desired member, or must inherit that member.
    336      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
    337      * In addition, if the desired member is a non-static field or method
    338      * in a different package, the resulting method handle may only be applied
    339      * to objects of the lookup class or one of its subclasses.
    340      * This requirement is enforced by narrowing the type of the leading
    341      * {@code this} parameter from {@code C}
    342      * (which will necessarily be a superclass of the lookup class)
    343      * to the lookup class itself.
    344      * <p>
    345      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
    346      * that the receiver argument must match both the resolved method <em>and</em>
    347      * the current class.  Again, this requirement is enforced by narrowing the
    348      * type of the leading parameter to the resulting method handle.
    349      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
    350      * <p>
    351      * The JVM represents constructors and static initializer blocks as internal methods
    352      * with special names ({@code "<init>"} and {@code "<clinit>"}).
    353      * The internal syntax of invocation instructions allows them to refer to such internal
    354      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
    355      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
    356      * <p>
    357      * In some cases, access between nested classes is obtained by the Java compiler by creating
    358      * an wrapper method to access a private method of another class
    359      * in the same top-level declaration.
    360      * For example, a nested class {@code C.D}
    361      * can access private members within other related classes such as
    362      * {@code C}, {@code C.D.E}, or {@code C.B},
    363      * but the Java compiler may need to generate wrapper methods in
    364      * those related classes.  In such cases, a {@code Lookup} object on
    365      * {@code C.E} would be unable to those private members.
    366      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
    367      * which can transform a lookup on {@code C.E} into one on any of those other
    368      * classes, without special elevation of privilege.
    369      * <p>
    370      * The accesses permitted to a given lookup object may be limited,
    371      * according to its set of {@link #lookupModes lookupModes},
    372      * to a subset of members normally accessible to the lookup class.
    373      * For example, the {@link #publicLookup publicLookup}
    374      * method produces a lookup object which is only allowed to access
    375      * public members in public classes.
    376      * The caller sensitive method {@link #lookup lookup}
    377      * produces a lookup object with full capabilities relative to
    378      * its caller class, to emulate all supported bytecode behaviors.
    379      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
    380      * with fewer access modes than the original lookup object.
    381      *
    382      * <p style="font-size:smaller;">
    383      * <a name="privacc"></a>
    384      * <em>Discussion of private access:</em>
    385      * We say that a lookup has <em>private access</em>
    386      * if its {@linkplain #lookupModes lookup modes}
    387      * include the possibility of accessing {@code private} members.
    388      * As documented in the relevant methods elsewhere,
    389      * only lookups with private access possess the following capabilities:
    390      * <ul style="font-size:smaller;">
    391      * <li>access private fields, methods, and constructors of the lookup class
    392      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
    393      *     such as {@code Class.forName}
    394      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
    395      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
    396      *     for classes accessible to the lookup class
    397      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
    398      *     within the same package member
    399      * </ul>
    400      * <p style="font-size:smaller;">
    401      * Each of these permissions is a consequence of the fact that a lookup object
    402      * with private access can be securely traced back to an originating class,
    403      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
    404      * can be reliably determined and emulated by method handles.
    405      *
    406      * <h1><a name="secmgr"></a>Security manager interactions</h1>
    407      * Although bytecode instructions can only refer to classes in
    408      * a related class loader, this API can search for methods in any
    409      * class, as long as a reference to its {@code Class} object is
    410      * available.  Such cross-loader references are also possible with the
    411      * Core Reflection API, and are impossible to bytecode instructions
    412      * such as {@code invokestatic} or {@code getfield}.
    413      * There is a {@linkplain java.lang.SecurityManager security manager API}
    414      * to allow applications to check such cross-loader references.
    415      * These checks apply to both the {@code MethodHandles.Lookup} API
    416      * and the Core Reflection API
    417      * (as found on {@link java.lang.Class Class}).
    418      * <p>
    419      * If a security manager is present, member lookups are subject to
    420      * additional checks.
    421      * From one to three calls are made to the security manager.
    422      * Any of these calls can refuse access by throwing a
    423      * {@link java.lang.SecurityException SecurityException}.
    424      * Define {@code smgr} as the security manager,
    425      * {@code lookc} as the lookup class of the current lookup object,
    426      * {@code refc} as the containing class in which the member
    427      * is being sought, and {@code defc} as the class in which the
    428      * member is actually defined.
    429      * The value {@code lookc} is defined as <em>not present</em>
    430      * if the current lookup object does not have
    431      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
    432      * The calls are made according to the following rules:
    433      * <ul>
    434      * <li><b>Step 1:</b>
    435      *     If {@code lookc} is not present, or if its class loader is not
    436      *     the same as or an ancestor of the class loader of {@code refc},
    437      *     then {@link SecurityManager#checkPackageAccess
    438      *     smgr.checkPackageAccess(refcPkg)} is called,
    439      *     where {@code refcPkg} is the package of {@code refc}.
    440      * <li><b>Step 2:</b>
    441      *     If the retrieved member is not public and
    442      *     {@code lookc} is not present, then
    443      *     {@link SecurityManager#checkPermission smgr.checkPermission}
    444      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
    445      * <li><b>Step 3:</b>
    446      *     If the retrieved member is not public,
    447      *     and if {@code lookc} is not present,
    448      *     and if {@code defc} and {@code refc} are different,
    449      *     then {@link SecurityManager#checkPackageAccess
    450      *     smgr.checkPackageAccess(defcPkg)} is called,
    451      *     where {@code defcPkg} is the package of {@code defc}.
    452      * </ul>
    453      * Security checks are performed after other access checks have passed.
    454      * Therefore, the above rules presuppose a member that is public,
    455      * or else that is being accessed from a lookup class that has
    456      * rights to access the member.
    457      *
    458      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
    459      * A small number of Java methods have a special property called caller sensitivity.
    460      * A <em>caller-sensitive</em> method can behave differently depending on the
    461      * identity of its immediate caller.
    462      * <p>
    463      * If a method handle for a caller-sensitive method is requested,
    464      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
    465      * but they take account of the lookup class in a special way.
    466      * The resulting method handle behaves as if it were called
    467      * from an instruction contained in the lookup class,
    468      * so that the caller-sensitive method detects the lookup class.
    469      * (By contrast, the invoker of the method handle is disregarded.)
    470      * Thus, in the case of caller-sensitive methods,
    471      * different lookup classes may give rise to
    472      * differently behaving method handles.
    473      * <p>
    474      * In cases where the lookup object is
    475      * {@link #publicLookup publicLookup()},
    476      * or some other lookup object without
    477      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
    478      * the lookup class is disregarded.
    479      * In such cases, no caller-sensitive method handle can be created,
    480      * access is forbidden, and the lookup fails with an
    481      * {@code IllegalAccessException}.
    482      * <p style="font-size:smaller;">
    483      * <em>Discussion:</em>
    484      * For example, the caller-sensitive method
    485      * {@link java.lang.Class#forName(String) Class.forName(x)}
    486      * can return varying classes or throw varying exceptions,
    487      * depending on the class loader of the class that calls it.
    488      * A public lookup of {@code Class.forName} will fail, because
    489      * there is no reasonable way to determine its bytecode behavior.
    490      * <p style="font-size:smaller;">
    491      * If an application caches method handles for broad sharing,
    492      * it should use {@code publicLookup()} to create them.
    493      * If there is a lookup of {@code Class.forName}, it will fail,
    494      * and the application must take appropriate action in that case.
    495      * It may be that a later lookup, perhaps during the invocation of a
    496      * bootstrap method, can incorporate the specific identity
    497      * of the caller, making the method accessible.
    498      * <p style="font-size:smaller;">
    499      * The function {@code MethodHandles.lookup} is caller sensitive
    500      * so that there can be a secure foundation for lookups.
    501      * Nearly all other methods in the JSR 292 API rely on lookup
    502      * objects to check access requests.
    503      */
    504     // Android-changed: Change link targets from MethodHandles#[public]Lookup to
    505     // #[public]Lookup to work around complaints from javadoc.
    506     public static final
    507     class Lookup {
    508         /** The class on behalf of whom the lookup is being performed. */
    509         /* @NonNull */ private final Class<?> lookupClass;
    510 
    511         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
    512         private final int allowedModes;
    513 
    514         /** A single-bit mask representing {@code public} access,
    515          *  which may contribute to the result of {@link #lookupModes lookupModes}.
    516          *  The value, {@code 0x01}, happens to be the same as the value of the
    517          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
    518          */
    519         public static final int PUBLIC = Modifier.PUBLIC;
    520 
    521         /** A single-bit mask representing {@code private} access,
    522          *  which may contribute to the result of {@link #lookupModes lookupModes}.
    523          *  The value, {@code 0x02}, happens to be the same as the value of the
    524          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
    525          */
    526         public static final int PRIVATE = Modifier.PRIVATE;
    527 
    528         /** A single-bit mask representing {@code protected} access,
    529          *  which may contribute to the result of {@link #lookupModes lookupModes}.
    530          *  The value, {@code 0x04}, happens to be the same as the value of the
    531          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
    532          */
    533         public static final int PROTECTED = Modifier.PROTECTED;
    534 
    535         /** A single-bit mask representing {@code package} access (default access),
    536          *  which may contribute to the result of {@link #lookupModes lookupModes}.
    537          *  The value is {@code 0x08}, which does not correspond meaningfully to
    538          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
    539          */
    540         public static final int PACKAGE = Modifier.STATIC;
    541 
    542         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
    543 
    544         // Android-note: Android has no notion of a trusted lookup. If required, such lookups
    545         // are performed by the runtime. As a result, we always use lookupClass, which will always
    546         // be non-null in our implementation.
    547         //
    548         // private static final int TRUSTED   = -1;
    549 
    550         private static int fixmods(int mods) {
    551             mods &= (ALL_MODES - PACKAGE);
    552             return (mods != 0) ? mods : PACKAGE;
    553         }
    554 
    555         /** Tells which class is performing the lookup.  It is this class against
    556          *  which checks are performed for visibility and access permissions.
    557          *  <p>
    558          *  The class implies a maximum level of access permission,
    559          *  but the permissions may be additionally limited by the bitmask
    560          *  {@link #lookupModes lookupModes}, which controls whether non-public members
    561          *  can be accessed.
    562          *  @return the lookup class, on behalf of which this lookup object finds members
    563          */
    564         public Class<?> lookupClass() {
    565             return lookupClass;
    566         }
    567 
    568         /** Tells which access-protection classes of members this lookup object can produce.
    569          *  The result is a bit-mask of the bits
    570          *  {@linkplain #PUBLIC PUBLIC (0x01)},
    571          *  {@linkplain #PRIVATE PRIVATE (0x02)},
    572          *  {@linkplain #PROTECTED PROTECTED (0x04)},
    573          *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
    574          *  <p>
    575          *  A freshly-created lookup object
    576          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
    577          *  has all possible bits set, since the caller class can access all its own members.
    578          *  A lookup object on a new lookup class
    579          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
    580          *  may have some mode bits set to zero.
    581          *  The purpose of this is to restrict access via the new lookup object,
    582          *  so that it can access only names which can be reached by the original
    583          *  lookup object, and also by the new lookup class.
    584          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
    585          */
    586         public int lookupModes() {
    587             return allowedModes & ALL_MODES;
    588         }
    589 
    590         /** Embody the current class (the lookupClass) as a lookup class
    591          * for method handle creation.
    592          * Must be called by from a method in this package,
    593          * which in turn is called by a method not in this package.
    594          */
    595         Lookup(Class<?> lookupClass) {
    596             this(lookupClass, ALL_MODES);
    597             // make sure we haven't accidentally picked up a privileged class:
    598             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
    599         }
    600 
    601         private Lookup(Class<?> lookupClass, int allowedModes) {
    602             this.lookupClass = lookupClass;
    603             this.allowedModes = allowedModes;
    604         }
    605 
    606         /**
    607          * Creates a lookup on the specified new lookup class.
    608          * The resulting object will report the specified
    609          * class as its own {@link #lookupClass lookupClass}.
    610          * <p>
    611          * However, the resulting {@code Lookup} object is guaranteed
    612          * to have no more access capabilities than the original.
    613          * In particular, access capabilities can be lost as follows:<ul>
    614          * <li>If the new lookup class differs from the old one,
    615          * protected members will not be accessible by virtue of inheritance.
    616          * (Protected members may continue to be accessible because of package sharing.)
    617          * <li>If the new lookup class is in a different package
    618          * than the old one, protected and default (package) members will not be accessible.
    619          * <li>If the new lookup class is not within the same package member
    620          * as the old one, private members will not be accessible.
    621          * <li>If the new lookup class is not accessible to the old lookup class,
    622          * then no members, not even public members, will be accessible.
    623          * (In all other cases, public members will continue to be accessible.)
    624          * </ul>
    625          *
    626          * @param requestedLookupClass the desired lookup class for the new lookup object
    627          * @return a lookup object which reports the desired lookup class
    628          * @throws NullPointerException if the argument is null
    629          */
    630         public Lookup in(Class<?> requestedLookupClass) {
    631             requestedLookupClass.getClass();  // null check
    632             // Android-changed: There's no notion of a trusted lookup.
    633             // if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
    634             //    return new Lookup(requestedLookupClass, ALL_MODES);
    635 
    636             if (requestedLookupClass == this.lookupClass)
    637                 return this;  // keep same capabilities
    638             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
    639             if ((newModes & PACKAGE) != 0
    640                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
    641                 newModes &= ~(PACKAGE|PRIVATE);
    642             }
    643             // Allow nestmate lookups to be created without special privilege:
    644             if ((newModes & PRIVATE) != 0
    645                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
    646                 newModes &= ~PRIVATE;
    647             }
    648             if ((newModes & PUBLIC) != 0
    649                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
    650                 // The requested class it not accessible from the lookup class.
    651                 // No permissions.
    652                 newModes = 0;
    653             }
    654             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
    655             return new Lookup(requestedLookupClass, newModes);
    656         }
    657 
    658         // Make sure outer class is initialized first.
    659         //
    660         // Android-changed: Removed unnecessary reference to IMPL_NAMES.
    661         // static { IMPL_NAMES.getClass(); }
    662 
    663         /** Version of lookup which is trusted minimally.
    664          *  It can only be used to create method handles to
    665          *  publicly accessible members.
    666          */
    667         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
    668 
    669         /** Package-private version of lookup which is trusted. */
    670         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, ALL_MODES);
    671 
    672         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
    673             String name = lookupClass.getName();
    674             if (name.startsWith("java.lang.invoke."))
    675                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
    676 
    677             // For caller-sensitive MethodHandles.lookup()
    678             // disallow lookup more restricted packages
    679             //
    680             // Android-changed: The bootstrap classloader isn't null.
    681             if (allowedModes == ALL_MODES &&
    682                     lookupClass.getClassLoader() == Object.class.getClassLoader()) {
    683                 if (name.startsWith("java.") ||
    684                         (name.startsWith("sun.")
    685                                 && !name.startsWith("sun.invoke.")
    686                                 && !name.equals("sun.reflect.ReflectionFactory"))) {
    687                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
    688                 }
    689             }
    690         }
    691 
    692         /**
    693          * Displays the name of the class from which lookups are to be made.
    694          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
    695          * If there are restrictions on the access permitted to this lookup,
    696          * this is indicated by adding a suffix to the class name, consisting
    697          * of a slash and a keyword.  The keyword represents the strongest
    698          * allowed access, and is chosen as follows:
    699          * <ul>
    700          * <li>If no access is allowed, the suffix is "/noaccess".
    701          * <li>If only public access is allowed, the suffix is "/public".
    702          * <li>If only public and package access are allowed, the suffix is "/package".
    703          * <li>If only public, package, and private access are allowed, the suffix is "/private".
    704          * </ul>
    705          * If none of the above cases apply, it is the case that full
    706          * access (public, package, private, and protected) is allowed.
    707          * In this case, no suffix is added.
    708          * This is true only of an object obtained originally from
    709          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
    710          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
    711          * always have restricted access, and will display a suffix.
    712          * <p>
    713          * (It may seem strange that protected access should be
    714          * stronger than private access.  Viewed independently from
    715          * package access, protected access is the first to be lost,
    716          * because it requires a direct subclass relationship between
    717          * caller and callee.)
    718          * @see #in
    719          */
    720         @Override
    721         public String toString() {
    722             String cname = lookupClass.getName();
    723             switch (allowedModes) {
    724             case 0:  // no privileges
    725                 return cname + "/noaccess";
    726             case PUBLIC:
    727                 return cname + "/public";
    728             case PUBLIC|PACKAGE:
    729                 return cname + "/package";
    730             case ALL_MODES & ~PROTECTED:
    731                 return cname + "/private";
    732             case ALL_MODES:
    733                 return cname;
    734             // Android-changed: No support for TRUSTED callers.
    735             // case TRUSTED:
    736             //    return "/trusted";  // internal only; not exported
    737             default:  // Should not happen, but it's a bitfield...
    738                 cname = cname + "/" + Integer.toHexString(allowedModes);
    739                 assert(false) : cname;
    740                 return cname;
    741             }
    742         }
    743 
    744         /**
    745          * Produces a method handle for a static method.
    746          * The type of the method handle will be that of the method.
    747          * (Since static methods do not take receivers, there is no
    748          * additional receiver argument inserted into the method handle type,
    749          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
    750          * The method and all its argument types must be accessible to the lookup object.
    751          * <p>
    752          * The returned method handle will have
    753          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
    754          * the method's variable arity modifier bit ({@code 0x0080}) is set.
    755          * <p>
    756          * If the returned method handle is invoked, the method's class will
    757          * be initialized, if it has not already been initialized.
    758          * <p><b>Example:</b>
    759          * <blockquote><pre>{@code
    760 import static java.lang.invoke.MethodHandles.*;
    761 import static java.lang.invoke.MethodType.*;
    762 ...
    763 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
    764   "asList", methodType(List.class, Object[].class));
    765 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
    766          * }</pre></blockquote>
    767          * @param refc the class from which the method is accessed
    768          * @param name the name of the method
    769          * @param type the type of the method
    770          * @return the desired method handle
    771          * @throws NoSuchMethodException if the method does not exist
    772          * @throws IllegalAccessException if access checking fails,
    773          *                                or if the method is not {@code static},
    774          *                                or if the method's variable arity modifier bit
    775          *                                is set and {@code asVarargsCollector} fails
    776          * @exception SecurityException if a security manager is present and it
    777          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
    778          * @throws NullPointerException if any argument is null
    779          */
    780         public
    781         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
    782             Method method = refc.getDeclaredMethod(name, type.ptypes());
    783             final int modifiers = method.getModifiers();
    784             if (!Modifier.isStatic(modifiers)) {
    785                 throw new IllegalAccessException("Method" + method + " is not static");
    786             }
    787             checkReturnType(method, type);
    788             checkAccess(refc, method.getDeclaringClass(), modifiers, method.getName());
    789             return createMethodHandle(method, MethodHandle.INVOKE_STATIC, type);
    790         }
    791 
    792         private MethodHandle findVirtualForMH(String name, MethodType type) {
    793             // these names require special lookups because of the implicit MethodType argument
    794             if ("invoke".equals(name))
    795                 return invoker(type);
    796             if ("invokeExact".equals(name))
    797                 return exactInvoker(type);
    798             return null;
    799         }
    800 
    801         private MethodHandle findVirtualForVH(String name, MethodType type) {
    802             VarHandle.AccessMode accessMode;
    803             try {
    804                 accessMode = VarHandle.AccessMode.valueFromMethodName(name);
    805             } catch (IllegalArgumentException e) {
    806                 return null;
    807             }
    808             return varHandleInvoker(accessMode, type);
    809         }
    810 
    811         private static MethodHandle createMethodHandle(Method method, int handleKind,
    812                                                        MethodType methodType) {
    813             MethodHandle mh = new MethodHandleImpl(method.getArtMethod(), handleKind, methodType);
    814             if (method.isVarArgs()) {
    815                 return new Transformers.VarargsCollector(mh);
    816             } else {
    817                 return mh;
    818             }
    819         }
    820 
    821         /**
    822          * Produces a method handle for a virtual method.
    823          * The type of the method handle will be that of the method,
    824          * with the receiver type (usually {@code refc}) prepended.
    825          * The method and all its argument types must be accessible to the lookup object.
    826          * <p>
    827          * When called, the handle will treat the first argument as a receiver
    828          * and dispatch on the receiver's type to determine which method
    829          * implementation to enter.
    830          * (The dispatching action is identical with that performed by an
    831          * {@code invokevirtual} or {@code invokeinterface} instruction.)
    832          * <p>
    833          * The first argument will be of type {@code refc} if the lookup
    834          * class has full privileges to access the member.  Otherwise
    835          * the member must be {@code protected} and the first argument
    836          * will be restricted in type to the lookup class.
    837          * <p>
    838          * The returned method handle will have
    839          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
    840          * the method's variable arity modifier bit ({@code 0x0080}) is set.
    841          * <p>
    842          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
    843          * instructions and method handles produced by {@code findVirtual},
    844          * if the class is {@code MethodHandle} and the name string is
    845          * {@code invokeExact} or {@code invoke}, the resulting
    846          * method handle is equivalent to one produced by
    847          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
    848          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
    849          * with the same {@code type} argument.
    850          *
    851          * <b>Example:</b>
    852          * <blockquote><pre>{@code
    853 import static java.lang.invoke.MethodHandles.*;
    854 import static java.lang.invoke.MethodType.*;
    855 ...
    856 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
    857   "concat", methodType(String.class, String.class));
    858 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
    859   "hashCode", methodType(int.class));
    860 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
    861   "hashCode", methodType(int.class));
    862 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
    863 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
    864 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
    865 // interface method:
    866 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
    867   "subSequence", methodType(CharSequence.class, int.class, int.class));
    868 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
    869 // constructor "internal method" must be accessed differently:
    870 MethodType MT_newString = methodType(void.class); //()V for new String()
    871 try { assertEquals("impossible", lookup()
    872         .findVirtual(String.class, "<init>", MT_newString));
    873  } catch (NoSuchMethodException ex) { } // OK
    874 MethodHandle MH_newString = publicLookup()
    875   .findConstructor(String.class, MT_newString);
    876 assertEquals("", (String) MH_newString.invokeExact());
    877          * }</pre></blockquote>
    878          *
    879          * @param refc the class or interface from which the method is accessed
    880          * @param name the name of the method
    881          * @param type the type of the method, with the receiver argument omitted
    882          * @return the desired method handle
    883          * @throws NoSuchMethodException if the method does not exist
    884          * @throws IllegalAccessException if access checking fails,
    885          *                                or if the method is {@code static}
    886          *                                or if the method's variable arity modifier bit
    887          *                                is set and {@code asVarargsCollector} fails
    888          * @exception SecurityException if a security manager is present and it
    889          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
    890          * @throws NullPointerException if any argument is null
    891          */
    892         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
    893             // Special case : when we're looking up a virtual method on the MethodHandles class
    894             // itself, we can return one of our specialized invokers.
    895             if (refc == MethodHandle.class) {
    896                 MethodHandle mh = findVirtualForMH(name, type);
    897                 if (mh != null) {
    898                     return mh;
    899                 }
    900             } else if (refc == VarHandle.class) {
    901                 // Returns an non-exact invoker.
    902                 MethodHandle mh = findVirtualForVH(name, type);
    903                 if (mh != null) {
    904                     return mh;
    905                 }
    906             }
    907 
    908             Method method = refc.getInstanceMethod(name, type.ptypes());
    909             if (method == null) {
    910                 // This is pretty ugly and a consequence of the MethodHandles API. We have to throw
    911                 // an IAE and not an NSME if the method exists but is static (even though the RI's
    912                 // IAE has a message that says "no such method"). We confine the ugliness and
    913                 // slowness to the failure case, and allow getInstanceMethod to remain fairly
    914                 // general.
    915                 try {
    916                     Method m = refc.getDeclaredMethod(name, type.ptypes());
    917                     if (Modifier.isStatic(m.getModifiers())) {
    918                         throw new IllegalAccessException("Method" + m + " is static");
    919                     }
    920                 } catch (NoSuchMethodException ignored) {
    921                 }
    922 
    923                 throw new NoSuchMethodException(name + " "  + Arrays.toString(type.ptypes()));
    924             }
    925             checkReturnType(method, type);
    926 
    927             // We have a valid method, perform access checks.
    928             checkAccess(refc, method.getDeclaringClass(), method.getModifiers(), method.getName());
    929 
    930             // Insert the leading reference parameter.
    931             MethodType handleType = type.insertParameterTypes(0, refc);
    932             return createMethodHandle(method, MethodHandle.INVOKE_VIRTUAL, handleType);
    933         }
    934 
    935         /**
    936          * Produces a method handle which creates an object and initializes it, using
    937          * the constructor of the specified type.
    938          * The parameter types of the method handle will be those of the constructor,
    939          * while the return type will be a reference to the constructor's class.
    940          * The constructor and all its argument types must be accessible to the lookup object.
    941          * <p>
    942          * The requested type must have a return type of {@code void}.
    943          * (This is consistent with the JVM's treatment of constructor type descriptors.)
    944          * <p>
    945          * The returned method handle will have
    946          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
    947          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
    948          * <p>
    949          * If the returned method handle is invoked, the constructor's class will
    950          * be initialized, if it has not already been initialized.
    951          * <p><b>Example:</b>
    952          * <blockquote><pre>{@code
    953 import static java.lang.invoke.MethodHandles.*;
    954 import static java.lang.invoke.MethodType.*;
    955 ...
    956 MethodHandle MH_newArrayList = publicLookup().findConstructor(
    957   ArrayList.class, methodType(void.class, Collection.class));
    958 Collection orig = Arrays.asList("x", "y");
    959 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
    960 assert(orig != copy);
    961 assertEquals(orig, copy);
    962 // a variable-arity constructor:
    963 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
    964   ProcessBuilder.class, methodType(void.class, String[].class));
    965 ProcessBuilder pb = (ProcessBuilder)
    966   MH_newProcessBuilder.invoke("x", "y", "z");
    967 assertEquals("[x, y, z]", pb.command().toString());
    968          * }</pre></blockquote>
    969          * @param refc the class or interface from which the method is accessed
    970          * @param type the type of the method, with the receiver argument omitted, and a void return type
    971          * @return the desired method handle
    972          * @throws NoSuchMethodException if the constructor does not exist
    973          * @throws IllegalAccessException if access checking fails
    974          *                                or if the method's variable arity modifier bit
    975          *                                is set and {@code asVarargsCollector} fails
    976          * @exception SecurityException if a security manager is present and it
    977          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
    978          * @throws NullPointerException if any argument is null
    979          */
    980         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
    981             if (refc.isArray()) {
    982                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
    983             }
    984             // The queried |type| is (PT1,PT2,..)V
    985             Constructor constructor = refc.getDeclaredConstructor(type.ptypes());
    986             if (constructor == null) {
    987                 throw new NoSuchMethodException(
    988                     "No constructor for " + constructor.getDeclaringClass() + " matching " + type);
    989             }
    990             checkAccess(refc, constructor.getDeclaringClass(), constructor.getModifiers(),
    991                     constructor.getName());
    992 
    993             return createMethodHandleForConstructor(constructor);
    994         }
    995 
    996         private MethodHandle createMethodHandleForConstructor(Constructor constructor) {
    997             Class<?> refc = constructor.getDeclaringClass();
    998             MethodType constructorType =
    999                     MethodType.methodType(refc, constructor.getParameterTypes());
   1000             MethodHandle mh;
   1001             if (refc == String.class) {
   1002                 // String constructors have optimized StringFactory methods
   1003                 // that matches returned type. These factory methods combine the
   1004                 // memory allocation and initialization calls for String objects.
   1005                 mh = new MethodHandleImpl(constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT,
   1006                                           constructorType);
   1007             } else {
   1008                 // Constructors for all other classes use a Construct transformer to perform
   1009                 // their memory allocation and call to <init>.
   1010                 MethodType initType = initMethodType(constructorType);
   1011                 MethodHandle initHandle = new MethodHandleImpl(
   1012                     constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, initType);
   1013                 mh = new Transformers.Construct(initHandle, constructorType);
   1014             }
   1015 
   1016             if (constructor.isVarArgs()) {
   1017                 mh = new Transformers.VarargsCollector(mh);
   1018             }
   1019             return mh;
   1020         }
   1021 
   1022         private static MethodType initMethodType(MethodType constructorType) {
   1023             // Returns a MethodType appropriate for class <init>
   1024             // methods. Constructor MethodTypes have the form
   1025             // (PT1,PT2,...)C and class <init> MethodTypes have the
   1026             // form (C,PT1,PT2,...)V.
   1027             assert constructorType.rtype() != void.class;
   1028 
   1029             // Insert constructorType C as the first parameter type in
   1030             // the MethodType for <init>.
   1031             Class<?> [] initPtypes = new Class<?> [constructorType.ptypes().length + 1];
   1032             initPtypes[0] = constructorType.rtype();
   1033             System.arraycopy(constructorType.ptypes(), 0, initPtypes, 1,
   1034                              constructorType.ptypes().length);
   1035 
   1036             // Set the return type for the <init> MethodType to be void.
   1037             return MethodType.methodType(void.class, initPtypes);
   1038         }
   1039 
   1040         /**
   1041          * Produces an early-bound method handle for a virtual method.
   1042          * It will bypass checks for overriding methods on the receiver,
   1043          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
   1044          * instruction from within the explicitly specified {@code specialCaller}.
   1045          * The type of the method handle will be that of the method,
   1046          * with a suitably restricted receiver type prepended.
   1047          * (The receiver type will be {@code specialCaller} or a subtype.)
   1048          * The method and all its argument types must be accessible
   1049          * to the lookup object.
   1050          * <p>
   1051          * Before method resolution,
   1052          * if the explicitly specified caller class is not identical with the
   1053          * lookup class, or if this lookup object does not have
   1054          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
   1055          * privileges, the access fails.
   1056          * <p>
   1057          * The returned method handle will have
   1058          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1059          * the method's variable arity modifier bit ({@code 0x0080}) is set.
   1060          * <p style="font-size:smaller;">
   1061          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
   1062          * even though the {@code invokespecial} instruction can refer to them
   1063          * in special circumstances.  Use {@link #findConstructor findConstructor}
   1064          * to access instance initialization methods in a safe manner.)</em>
   1065          * <p><b>Example:</b>
   1066          * <blockquote><pre>{@code
   1067 import static java.lang.invoke.MethodHandles.*;
   1068 import static java.lang.invoke.MethodType.*;
   1069 ...
   1070 static class Listie extends ArrayList {
   1071   public String toString() { return "[wee Listie]"; }
   1072   static Lookup lookup() { return MethodHandles.lookup(); }
   1073 }
   1074 ...
   1075 // no access to constructor via invokeSpecial:
   1076 MethodHandle MH_newListie = Listie.lookup()
   1077   .findConstructor(Listie.class, methodType(void.class));
   1078 Listie l = (Listie) MH_newListie.invokeExact();
   1079 try { assertEquals("impossible", Listie.lookup().findSpecial(
   1080         Listie.class, "<init>", methodType(void.class), Listie.class));
   1081  } catch (NoSuchMethodException ex) { } // OK
   1082 // access to super and self methods via invokeSpecial:
   1083 MethodHandle MH_super = Listie.lookup().findSpecial(
   1084   ArrayList.class, "toString" , methodType(String.class), Listie.class);
   1085 MethodHandle MH_this = Listie.lookup().findSpecial(
   1086   Listie.class, "toString" , methodType(String.class), Listie.class);
   1087 MethodHandle MH_duper = Listie.lookup().findSpecial(
   1088   Object.class, "toString" , methodType(String.class), Listie.class);
   1089 assertEquals("[]", (String) MH_super.invokeExact(l));
   1090 assertEquals(""+l, (String) MH_this.invokeExact(l));
   1091 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
   1092 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
   1093         String.class, "toString", methodType(String.class), Listie.class));
   1094  } catch (IllegalAccessException ex) { } // OK
   1095 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
   1096 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
   1097          * }</pre></blockquote>
   1098          *
   1099          * @param refc the class or interface from which the method is accessed
   1100          * @param name the name of the method (which must not be "&lt;init&gt;")
   1101          * @param type the type of the method, with the receiver argument omitted
   1102          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
   1103          * @return the desired method handle
   1104          * @throws NoSuchMethodException if the method does not exist
   1105          * @throws IllegalAccessException if access checking fails
   1106          *                                or if the method's variable arity modifier bit
   1107          *                                is set and {@code asVarargsCollector} fails
   1108          * @exception SecurityException if a security manager is present and it
   1109          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1110          * @throws NullPointerException if any argument is null
   1111          */
   1112         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
   1113                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
   1114             if (specialCaller == null) {
   1115                 throw new NullPointerException("specialCaller == null");
   1116             }
   1117 
   1118             if (type == null) {
   1119                 throw new NullPointerException("type == null");
   1120             }
   1121 
   1122             if (name == null) {
   1123                 throw new NullPointerException("name == null");
   1124             }
   1125 
   1126             if (refc == null) {
   1127                 throw new NullPointerException("ref == null");
   1128             }
   1129 
   1130             // Make sure that the special caller is identical to the lookup class or that we have
   1131             // private access.
   1132             checkSpecialCaller(specialCaller);
   1133 
   1134             // Even though constructors are invoked using a "special" invoke, handles to them can't
   1135             // be created using findSpecial. Callers must use findConstructor instead. Similarly,
   1136             // there is no path for calling static class initializers.
   1137             if (name.startsWith("<")) {
   1138                 throw new NoSuchMethodException(name + " is not a valid method name.");
   1139             }
   1140 
   1141             Method method = refc.getDeclaredMethod(name, type.ptypes());
   1142             checkReturnType(method, type);
   1143             return findSpecial(method, type, refc, specialCaller);
   1144         }
   1145 
   1146         private MethodHandle findSpecial(Method method, MethodType type,
   1147                                          Class<?> refc, Class<?> specialCaller)
   1148                 throws IllegalAccessException {
   1149             if (Modifier.isStatic(method.getModifiers())) {
   1150                 throw new IllegalAccessException("expected a non-static method:" + method);
   1151             }
   1152 
   1153             if (Modifier.isPrivate(method.getModifiers())) {
   1154                 // Since this is a private method, we'll need to also make sure that the
   1155                 // lookup class is the same as the refering class. We've already checked that
   1156                 // the specialCaller is the same as the special lookup class, both of these must
   1157                 // be the same as the declaring class(*) in order to access the private method.
   1158                 //
   1159                 // (*) Well, this isn't true for nested classes but OpenJDK doesn't support those
   1160                 // either.
   1161                 if (refc != lookupClass()) {
   1162                     throw new IllegalAccessException("no private access for invokespecial : "
   1163                             + refc + ", from" + this);
   1164                 }
   1165 
   1166                 // This is a private method, so there's nothing special to do.
   1167                 MethodType handleType = type.insertParameterTypes(0, refc);
   1168                 return createMethodHandle(method, MethodHandle.INVOKE_DIRECT, handleType);
   1169             }
   1170 
   1171             // This is a public, protected or package-private method, which means we're expecting
   1172             // invoke-super semantics. We'll have to restrict the receiver type appropriately on the
   1173             // handle once we check that there really is a "super" relationship between them.
   1174             if (!method.getDeclaringClass().isAssignableFrom(specialCaller)) {
   1175                 throw new IllegalAccessException(refc + "is not assignable from " + specialCaller);
   1176             }
   1177 
   1178             // Note that we restrict the receiver to "specialCaller" instances.
   1179             MethodType handleType = type.insertParameterTypes(0, specialCaller);
   1180             return createMethodHandle(method, MethodHandle.INVOKE_SUPER, handleType);
   1181         }
   1182 
   1183         /**
   1184          * Produces a method handle giving read access to a non-static field.
   1185          * The type of the method handle will have a return type of the field's
   1186          * value type.
   1187          * The method handle's single argument will be the instance containing
   1188          * the field.
   1189          * Access checking is performed immediately on behalf of the lookup class.
   1190          * @param refc the class or interface from which the method is accessed
   1191          * @param name the field's name
   1192          * @param type the field's type
   1193          * @return a method handle which can load values from the field
   1194          * @throws NoSuchFieldException if the field does not exist
   1195          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
   1196          * @exception SecurityException if a security manager is present and it
   1197          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1198          * @throws NullPointerException if any argument is null
   1199          */
   1200         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
   1201             return findAccessor(refc, name, type, MethodHandle.IGET);
   1202         }
   1203 
   1204         private MethodHandle findAccessor(Class<?> refc, String name, Class<?> type, int kind)
   1205             throws NoSuchFieldException, IllegalAccessException {
   1206             final Field field = findFieldOfType(refc, name, type);
   1207             return findAccessor(field, refc, type, kind, true /* performAccessChecks */);
   1208         }
   1209 
   1210         private MethodHandle findAccessor(Field field, Class<?> refc, Class<?> type, int kind,
   1211                                           boolean performAccessChecks)
   1212                 throws IllegalAccessException {
   1213             final boolean isSetterKind = kind == MethodHandle.IPUT || kind == MethodHandle.SPUT;
   1214             final boolean isStaticKind = kind == MethodHandle.SGET || kind == MethodHandle.SPUT;
   1215             commonFieldChecks(field, refc, type, isStaticKind, performAccessChecks);
   1216             if (performAccessChecks) {
   1217                 final int modifiers = field.getModifiers();
   1218                 if (isSetterKind && Modifier.isFinal(modifiers)) {
   1219                     throw new IllegalAccessException("Field " + field + " is final");
   1220                 }
   1221             }
   1222 
   1223             final MethodType methodType;
   1224             switch (kind) {
   1225                 case MethodHandle.SGET:
   1226                     methodType = MethodType.methodType(type);
   1227                     break;
   1228                 case MethodHandle.SPUT:
   1229                     methodType = MethodType.methodType(void.class, type);
   1230                     break;
   1231                 case MethodHandle.IGET:
   1232                     methodType = MethodType.methodType(type, refc);
   1233                     break;
   1234                 case MethodHandle.IPUT:
   1235                     methodType = MethodType.methodType(void.class, refc, type);
   1236                     break;
   1237                 default:
   1238                     throw new IllegalArgumentException("Invalid kind " + kind);
   1239             }
   1240             return new MethodHandleImpl(field.getArtField(), kind, methodType);
   1241         }
   1242 
   1243         /**
   1244          * Produces a method handle giving write access to a non-static field.
   1245          * The type of the method handle will have a void return type.
   1246          * The method handle will take two arguments, the instance containing
   1247          * the field, and the value to be stored.
   1248          * The second argument will be of the field's value type.
   1249          * Access checking is performed immediately on behalf of the lookup class.
   1250          * @param refc the class or interface from which the method is accessed
   1251          * @param name the field's name
   1252          * @param type the field's type
   1253          * @return a method handle which can store values into the field
   1254          * @throws NoSuchFieldException if the field does not exist
   1255          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
   1256          * @exception SecurityException if a security manager is present and it
   1257          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1258          * @throws NullPointerException if any argument is null
   1259          */
   1260         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
   1261             return findAccessor(refc, name, type, MethodHandle.IPUT);
   1262         }
   1263 
   1264         // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
   1265         /**
   1266          * Produces a VarHandle giving access to a non-static field {@code name}
   1267          * of type {@code type} declared in a class of type {@code recv}.
   1268          * The VarHandle's variable type is {@code type} and it has one
   1269          * coordinate type, {@code recv}.
   1270          * <p>
   1271          * Access checking is performed immediately on behalf of the lookup
   1272          * class.
   1273          * <p>
   1274          * Certain access modes of the returned VarHandle are unsupported under
   1275          * the following conditions:
   1276          * <ul>
   1277          * <li>if the field is declared {@code final}, then the write, atomic
   1278          *     update, numeric atomic update, and bitwise atomic update access
   1279          *     modes are unsupported.
   1280          * <li>if the field type is anything other than {@code byte},
   1281          *     {@code short}, {@code char}, {@code int}, {@code long},
   1282          *     {@code float}, or {@code double} then numeric atomic update
   1283          *     access modes are unsupported.
   1284          * <li>if the field type is anything other than {@code boolean},
   1285          *     {@code byte}, {@code short}, {@code char}, {@code int} or
   1286          *     {@code long} then bitwise atomic update access modes are
   1287          *     unsupported.
   1288          * </ul>
   1289          * <p>
   1290          * If the field is declared {@code volatile} then the returned VarHandle
   1291          * will override access to the field (effectively ignore the
   1292          * {@code volatile} declaration) in accordance to its specified
   1293          * access modes.
   1294          * <p>
   1295          * If the field type is {@code float} or {@code double} then numeric
   1296          * and atomic update access modes compare values using their bitwise
   1297          * representation (see {@link Float#floatToRawIntBits} and
   1298          * {@link Double#doubleToRawLongBits}, respectively).
   1299          * @apiNote
   1300          * Bitwise comparison of {@code float} values or {@code double} values,
   1301          * as performed by the numeric and atomic update access modes, differ
   1302          * from the primitive {@code ==} operator and the {@link Float#equals}
   1303          * and {@link Double#equals} methods, specifically with respect to
   1304          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
   1305          * Care should be taken when performing a compare and set or a compare
   1306          * and exchange operation with such values since the operation may
   1307          * unexpectedly fail.
   1308          * There are many possible NaN values that are considered to be
   1309          * {@code NaN} in Java, although no IEEE 754 floating-point operation
   1310          * provided by Java can distinguish between them.  Operation failure can
   1311          * occur if the expected or witness value is a NaN value and it is
   1312          * transformed (perhaps in a platform specific manner) into another NaN
   1313          * value, and thus has a different bitwise representation (see
   1314          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
   1315          * details).
   1316          * The values {@code -0.0} and {@code +0.0} have different bitwise
   1317          * representations but are considered equal when using the primitive
   1318          * {@code ==} operator.  Operation failure can occur if, for example, a
   1319          * numeric algorithm computes an expected value to be say {@code -0.0}
   1320          * and previously computed the witness value to be say {@code +0.0}.
   1321          * @param recv the receiver class, of type {@code R}, that declares the
   1322          * non-static field
   1323          * @param name the field's name
   1324          * @param type the field's type, of type {@code T}
   1325          * @return a VarHandle giving access to non-static fields.
   1326          * @throws NoSuchFieldException if the field does not exist
   1327          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
   1328          * @exception SecurityException if a security manager is present and it
   1329          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1330          * @throws NullPointerException if any argument is null
   1331          * @since 9
   1332          * @hide
   1333          */
   1334         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
   1335             final Field field = findFieldOfType(recv, name, type);
   1336             final boolean isStatic = false;
   1337             final boolean performAccessChecks = true;
   1338             commonFieldChecks(field, recv, type, isStatic, performAccessChecks);
   1339             return FieldVarHandle.create(field);
   1340         }
   1341         // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
   1342 
   1343         // BEGIN Android-added: Common field resolution and access check methods.
   1344         private Field findFieldOfType(final Class<?> refc, String name, Class<?> type)
   1345                 throws NoSuchFieldException {
   1346             Field field = null;
   1347 
   1348             // Search refc and super classes for the field.
   1349             for (Class<?> cls = refc; cls != null; cls = cls.getSuperclass()) {
   1350                 try {
   1351                     field = cls.getDeclaredField(name);
   1352                     break;
   1353                 } catch (NoSuchFieldException e) {
   1354                 }
   1355             }
   1356 
   1357             if (field == null) {
   1358                 // Force failure citing refc.
   1359                 field = refc.getDeclaredField(name);
   1360             }
   1361 
   1362             final Class<?> fieldType = field.getType();
   1363             if (fieldType != type) {
   1364                 throw new NoSuchFieldException(name);
   1365             }
   1366             return field;
   1367         }
   1368 
   1369         private void commonFieldChecks(Field field, Class<?> refc, Class<?> type,
   1370                                        boolean isStatic, boolean performAccessChecks)
   1371                 throws IllegalAccessException {
   1372             final int modifiers = field.getModifiers();
   1373             if (performAccessChecks) {
   1374                 checkAccess(refc, field.getDeclaringClass(), modifiers, field.getName());
   1375             }
   1376             if (Modifier.isStatic(modifiers) != isStatic) {
   1377                 String reason = "Field " + field + " is " +
   1378                         (isStatic ? "not " : "") + "static";
   1379                 throw new IllegalAccessException(reason);
   1380             }
   1381         }
   1382         // END Android-added: Common field resolution and access check methods.
   1383 
   1384         /**
   1385          * Produces a method handle giving read access to a static field.
   1386          * The type of the method handle will have a return type of the field's
   1387          * value type.
   1388          * The method handle will take no arguments.
   1389          * Access checking is performed immediately on behalf of the lookup class.
   1390          * <p>
   1391          * If the returned method handle is invoked, the field's class will
   1392          * be initialized, if it has not already been initialized.
   1393          * @param refc the class or interface from which the method is accessed
   1394          * @param name the field's name
   1395          * @param type the field's type
   1396          * @return a method handle which can load values from the field
   1397          * @throws NoSuchFieldException if the field does not exist
   1398          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
   1399          * @exception SecurityException if a security manager is present and it
   1400          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1401          * @throws NullPointerException if any argument is null
   1402          */
   1403         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
   1404             return findAccessor(refc, name, type, MethodHandle.SGET);
   1405         }
   1406 
   1407         /**
   1408          * Produces a method handle giving write access to a static field.
   1409          * The type of the method handle will have a void return type.
   1410          * The method handle will take a single
   1411          * argument, of the field's value type, the value to be stored.
   1412          * Access checking is performed immediately on behalf of the lookup class.
   1413          * <p>
   1414          * If the returned method handle is invoked, the field's class will
   1415          * be initialized, if it has not already been initialized.
   1416          * @param refc the class or interface from which the method is accessed
   1417          * @param name the field's name
   1418          * @param type the field's type
   1419          * @return a method handle which can store values into the field
   1420          * @throws NoSuchFieldException if the field does not exist
   1421          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
   1422          * @exception SecurityException if a security manager is present and it
   1423          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1424          * @throws NullPointerException if any argument is null
   1425          */
   1426         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
   1427             return findAccessor(refc, name, type, MethodHandle.SPUT);
   1428         }
   1429 
   1430         // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
   1431         /**
   1432          * Produces a VarHandle giving access to a static field {@code name} of
   1433          * type {@code type} declared in a class of type {@code decl}.
   1434          * The VarHandle's variable type is {@code type} and it has no
   1435          * coordinate types.
   1436          * <p>
   1437          * Access checking is performed immediately on behalf of the lookup
   1438          * class.
   1439          * <p>
   1440          * If the returned VarHandle is operated on, the declaring class will be
   1441          * initialized, if it has not already been initialized.
   1442          * <p>
   1443          * Certain access modes of the returned VarHandle are unsupported under
   1444          * the following conditions:
   1445          * <ul>
   1446          * <li>if the field is declared {@code final}, then the write, atomic
   1447          *     update, numeric atomic update, and bitwise atomic update access
   1448          *     modes are unsupported.
   1449          * <li>if the field type is anything other than {@code byte},
   1450          *     {@code short}, {@code char}, {@code int}, {@code long},
   1451          *     {@code float}, or {@code double}, then numeric atomic update
   1452          *     access modes are unsupported.
   1453          * <li>if the field type is anything other than {@code boolean},
   1454          *     {@code byte}, {@code short}, {@code char}, {@code int} or
   1455          *     {@code long} then bitwise atomic update access modes are
   1456          *     unsupported.
   1457          * </ul>
   1458          * <p>
   1459          * If the field is declared {@code volatile} then the returned VarHandle
   1460          * will override access to the field (effectively ignore the
   1461          * {@code volatile} declaration) in accordance to its specified
   1462          * access modes.
   1463          * <p>
   1464          * If the field type is {@code float} or {@code double} then numeric
   1465          * and atomic update access modes compare values using their bitwise
   1466          * representation (see {@link Float#floatToRawIntBits} and
   1467          * {@link Double#doubleToRawLongBits}, respectively).
   1468          * @apiNote
   1469          * Bitwise comparison of {@code float} values or {@code double} values,
   1470          * as performed by the numeric and atomic update access modes, differ
   1471          * from the primitive {@code ==} operator and the {@link Float#equals}
   1472          * and {@link Double#equals} methods, specifically with respect to
   1473          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
   1474          * Care should be taken when performing a compare and set or a compare
   1475          * and exchange operation with such values since the operation may
   1476          * unexpectedly fail.
   1477          * There are many possible NaN values that are considered to be
   1478          * {@code NaN} in Java, although no IEEE 754 floating-point operation
   1479          * provided by Java can distinguish between them.  Operation failure can
   1480          * occur if the expected or witness value is a NaN value and it is
   1481          * transformed (perhaps in a platform specific manner) into another NaN
   1482          * value, and thus has a different bitwise representation (see
   1483          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
   1484          * details).
   1485          * The values {@code -0.0} and {@code +0.0} have different bitwise
   1486          * representations but are considered equal when using the primitive
   1487          * {@code ==} operator.  Operation failure can occur if, for example, a
   1488          * numeric algorithm computes an expected value to be say {@code -0.0}
   1489          * and previously computed the witness value to be say {@code +0.0}.
   1490          * @param decl the class that declares the static field
   1491          * @param name the field's name
   1492          * @param type the field's type, of type {@code T}
   1493          * @return a VarHandle giving access to a static field
   1494          * @throws NoSuchFieldException if the field does not exist
   1495          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
   1496          * @exception SecurityException if a security manager is present and it
   1497          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1498          * @throws NullPointerException if any argument is null
   1499          * @since 9
   1500          * @hide
   1501          */
   1502         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
   1503             final Field field = findFieldOfType(decl, name, type);
   1504             final boolean isStatic = true;
   1505             final boolean performAccessChecks = true;
   1506             commonFieldChecks(field, decl, type, isStatic, performAccessChecks);
   1507             return FieldVarHandle.create(field);
   1508         }
   1509         // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
   1510 
   1511         /**
   1512          * Produces an early-bound method handle for a non-static method.
   1513          * The receiver must have a supertype {@code defc} in which a method
   1514          * of the given name and type is accessible to the lookup class.
   1515          * The method and all its argument types must be accessible to the lookup object.
   1516          * The type of the method handle will be that of the method,
   1517          * without any insertion of an additional receiver parameter.
   1518          * The given receiver will be bound into the method handle,
   1519          * so that every call to the method handle will invoke the
   1520          * requested method on the given receiver.
   1521          * <p>
   1522          * The returned method handle will have
   1523          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1524          * the method's variable arity modifier bit ({@code 0x0080}) is set
   1525          * <em>and</em> the trailing array argument is not the only argument.
   1526          * (If the trailing array argument is the only argument,
   1527          * the given receiver value will be bound to it.)
   1528          * <p>
   1529          * This is equivalent to the following code:
   1530          * <blockquote><pre>{@code
   1531 import static java.lang.invoke.MethodHandles.*;
   1532 import static java.lang.invoke.MethodType.*;
   1533 ...
   1534 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
   1535 MethodHandle mh1 = mh0.bindTo(receiver);
   1536 MethodType mt1 = mh1.type();
   1537 if (mh0.isVarargsCollector())
   1538   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
   1539 return mh1;
   1540          * }</pre></blockquote>
   1541          * where {@code defc} is either {@code receiver.getClass()} or a super
   1542          * type of that class, in which the requested method is accessible
   1543          * to the lookup class.
   1544          * (Note that {@code bindTo} does not preserve variable arity.)
   1545          * @param receiver the object from which the method is accessed
   1546          * @param name the name of the method
   1547          * @param type the type of the method, with the receiver argument omitted
   1548          * @return the desired method handle
   1549          * @throws NoSuchMethodException if the method does not exist
   1550          * @throws IllegalAccessException if access checking fails
   1551          *                                or if the method's variable arity modifier bit
   1552          *                                is set and {@code asVarargsCollector} fails
   1553          * @exception SecurityException if a security manager is present and it
   1554          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1555          * @throws NullPointerException if any argument is null
   1556          * @see MethodHandle#bindTo
   1557          * @see #findVirtual
   1558          */
   1559         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
   1560             MethodHandle handle = findVirtual(receiver.getClass(), name, type);
   1561             MethodHandle adapter = handle.bindTo(receiver);
   1562             MethodType adapterType = adapter.type();
   1563             if (handle.isVarargsCollector()) {
   1564                 adapter = adapter.asVarargsCollector(
   1565                         adapterType.parameterType(adapterType.parameterCount() - 1));
   1566             }
   1567 
   1568             return adapter;
   1569         }
   1570 
   1571         /**
   1572          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
   1573          * to <i>m</i>, if the lookup class has permission.
   1574          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
   1575          * If <i>m</i> is virtual, overriding is respected on every call.
   1576          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
   1577          * The type of the method handle will be that of the method,
   1578          * with the receiver type prepended (but only if it is non-static).
   1579          * If the method's {@code accessible} flag is not set,
   1580          * access checking is performed immediately on behalf of the lookup class.
   1581          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
   1582          * <p>
   1583          * The returned method handle will have
   1584          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1585          * the method's variable arity modifier bit ({@code 0x0080}) is set.
   1586          * <p>
   1587          * If <i>m</i> is static, and
   1588          * if the returned method handle is invoked, the method's class will
   1589          * be initialized, if it has not already been initialized.
   1590          * @param m the reflected method
   1591          * @return a method handle which can invoke the reflected method
   1592          * @throws IllegalAccessException if access checking fails
   1593          *                                or if the method's variable arity modifier bit
   1594          *                                is set and {@code asVarargsCollector} fails
   1595          * @throws NullPointerException if the argument is null
   1596          */
   1597         public MethodHandle unreflect(Method m) throws IllegalAccessException {
   1598             if (m == null) {
   1599                 throw new NullPointerException("m == null");
   1600             }
   1601 
   1602             MethodType methodType = MethodType.methodType(m.getReturnType(),
   1603                     m.getParameterTypes());
   1604 
   1605             // We should only perform access checks if setAccessible hasn't been called yet.
   1606             if (!m.isAccessible()) {
   1607                 checkAccess(m.getDeclaringClass(), m.getDeclaringClass(), m.getModifiers(),
   1608                         m.getName());
   1609             }
   1610 
   1611             if (Modifier.isStatic(m.getModifiers())) {
   1612                 return createMethodHandle(m, MethodHandle.INVOKE_STATIC, methodType);
   1613             } else {
   1614                 methodType = methodType.insertParameterTypes(0, m.getDeclaringClass());
   1615                 return createMethodHandle(m, MethodHandle.INVOKE_VIRTUAL, methodType);
   1616             }
   1617         }
   1618 
   1619         /**
   1620          * Produces a method handle for a reflected method.
   1621          * It will bypass checks for overriding methods on the receiver,
   1622          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
   1623          * instruction from within the explicitly specified {@code specialCaller}.
   1624          * The type of the method handle will be that of the method,
   1625          * with a suitably restricted receiver type prepended.
   1626          * (The receiver type will be {@code specialCaller} or a subtype.)
   1627          * If the method's {@code accessible} flag is not set,
   1628          * access checking is performed immediately on behalf of the lookup class,
   1629          * as if {@code invokespecial} instruction were being linked.
   1630          * <p>
   1631          * Before method resolution,
   1632          * if the explicitly specified caller class is not identical with the
   1633          * lookup class, or if this lookup object does not have
   1634          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
   1635          * privileges, the access fails.
   1636          * <p>
   1637          * The returned method handle will have
   1638          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1639          * the method's variable arity modifier bit ({@code 0x0080}) is set.
   1640          * @param m the reflected method
   1641          * @param specialCaller the class nominally calling the method
   1642          * @return a method handle which can invoke the reflected method
   1643          * @throws IllegalAccessException if access checking fails
   1644          *                                or if the method's variable arity modifier bit
   1645          *                                is set and {@code asVarargsCollector} fails
   1646          * @throws NullPointerException if any argument is null
   1647          */
   1648         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
   1649             if (m == null) {
   1650                 throw new NullPointerException("m == null");
   1651             }
   1652 
   1653             if (specialCaller == null) {
   1654                 throw new NullPointerException("specialCaller == null");
   1655             }
   1656 
   1657             if (!m.isAccessible()) {
   1658                 checkSpecialCaller(specialCaller);
   1659             }
   1660 
   1661             final MethodType methodType = MethodType.methodType(m.getReturnType(),
   1662                     m.getParameterTypes());
   1663             return findSpecial(m, methodType, m.getDeclaringClass() /* refc */, specialCaller);
   1664         }
   1665 
   1666         /**
   1667          * Produces a method handle for a reflected constructor.
   1668          * The type of the method handle will be that of the constructor,
   1669          * with the return type changed to the declaring class.
   1670          * The method handle will perform a {@code newInstance} operation,
   1671          * creating a new instance of the constructor's class on the
   1672          * arguments passed to the method handle.
   1673          * <p>
   1674          * If the constructor's {@code accessible} flag is not set,
   1675          * access checking is performed immediately on behalf of the lookup class.
   1676          * <p>
   1677          * The returned method handle will have
   1678          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
   1679          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
   1680          * <p>
   1681          * If the returned method handle is invoked, the constructor's class will
   1682          * be initialized, if it has not already been initialized.
   1683          * @param c the reflected constructor
   1684          * @return a method handle which can invoke the reflected constructor
   1685          * @throws IllegalAccessException if access checking fails
   1686          *                                or if the method's variable arity modifier bit
   1687          *                                is set and {@code asVarargsCollector} fails
   1688          * @throws NullPointerException if the argument is null
   1689          */
   1690         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
   1691             if (c == null) {
   1692                 throw new NullPointerException("c == null");
   1693             }
   1694 
   1695             if (!c.isAccessible()) {
   1696                 checkAccess(c.getDeclaringClass(), c.getDeclaringClass(), c.getModifiers(),
   1697                         c.getName());
   1698             }
   1699 
   1700             return createMethodHandleForConstructor(c);
   1701         }
   1702 
   1703         /**
   1704          * Produces a method handle giving read access to a reflected field.
   1705          * The type of the method handle will have a return type of the field's
   1706          * value type.
   1707          * If the field is static, the method handle will take no arguments.
   1708          * Otherwise, its single argument will be the instance containing
   1709          * the field.
   1710          * If the field's {@code accessible} flag is not set,
   1711          * access checking is performed immediately on behalf of the lookup class.
   1712          * <p>
   1713          * If the field is static, and
   1714          * if the returned method handle is invoked, the field's class will
   1715          * be initialized, if it has not already been initialized.
   1716          * @param f the reflected field
   1717          * @return a method handle which can load values from the reflected field
   1718          * @throws IllegalAccessException if access checking fails
   1719          * @throws NullPointerException if the argument is null
   1720          */
   1721         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
   1722             return findAccessor(f, f.getDeclaringClass(), f.getType(),
   1723                     Modifier.isStatic(f.getModifiers()) ? MethodHandle.SGET : MethodHandle.IGET,
   1724                     !f.isAccessible() /* performAccessChecks */);
   1725         }
   1726 
   1727         /**
   1728          * Produces a method handle giving write access to a reflected field.
   1729          * The type of the method handle will have a void return type.
   1730          * If the field is static, the method handle will take a single
   1731          * argument, of the field's value type, the value to be stored.
   1732          * Otherwise, the two arguments will be the instance containing
   1733          * the field, and the value to be stored.
   1734          * If the field's {@code accessible} flag is not set,
   1735          * access checking is performed immediately on behalf of the lookup class.
   1736          * <p>
   1737          * If the field is static, and
   1738          * if the returned method handle is invoked, the field's class will
   1739          * be initialized, if it has not already been initialized.
   1740          * @param f the reflected field
   1741          * @return a method handle which can store values into the reflected field
   1742          * @throws IllegalAccessException if access checking fails
   1743          * @throws NullPointerException if the argument is null
   1744          */
   1745         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
   1746             return findAccessor(f, f.getDeclaringClass(), f.getType(),
   1747                     Modifier.isStatic(f.getModifiers()) ? MethodHandle.SPUT : MethodHandle.IPUT,
   1748                     !f.isAccessible() /* performAccessChecks */);
   1749         }
   1750 
   1751         // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
   1752         /**
   1753          * Produces a VarHandle giving access to a reflected field {@code f}
   1754          * of type {@code T} declared in a class of type {@code R}.
   1755          * The VarHandle's variable type is {@code T}.
   1756          * If the field is non-static the VarHandle has one coordinate type,
   1757          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
   1758          * coordinate types.
   1759          * <p>
   1760          * Access checking is performed immediately on behalf of the lookup
   1761          * class, regardless of the value of the field's {@code accessible}
   1762          * flag.
   1763          * <p>
   1764          * If the field is static, and if the returned VarHandle is operated
   1765          * on, the field's declaring class will be initialized, if it has not
   1766          * already been initialized.
   1767          * <p>
   1768          * Certain access modes of the returned VarHandle are unsupported under
   1769          * the following conditions:
   1770          * <ul>
   1771          * <li>if the field is declared {@code final}, then the write, atomic
   1772          *     update, numeric atomic update, and bitwise atomic update access
   1773          *     modes are unsupported.
   1774          * <li>if the field type is anything other than {@code byte},
   1775          *     {@code short}, {@code char}, {@code int}, {@code long},
   1776          *     {@code float}, or {@code double} then numeric atomic update
   1777          *     access modes are unsupported.
   1778          * <li>if the field type is anything other than {@code boolean},
   1779          *     {@code byte}, {@code short}, {@code char}, {@code int} or
   1780          *     {@code long} then bitwise atomic update access modes are
   1781          *     unsupported.
   1782          * </ul>
   1783          * <p>
   1784          * If the field is declared {@code volatile} then the returned VarHandle
   1785          * will override access to the field (effectively ignore the
   1786          * {@code volatile} declaration) in accordance to its specified
   1787          * access modes.
   1788          * <p>
   1789          * If the field type is {@code float} or {@code double} then numeric
   1790          * and atomic update access modes compare values using their bitwise
   1791          * representation (see {@link Float#floatToRawIntBits} and
   1792          * {@link Double#doubleToRawLongBits}, respectively).
   1793          * @apiNote
   1794          * Bitwise comparison of {@code float} values or {@code double} values,
   1795          * as performed by the numeric and atomic update access modes, differ
   1796          * from the primitive {@code ==} operator and the {@link Float#equals}
   1797          * and {@link Double#equals} methods, specifically with respect to
   1798          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
   1799          * Care should be taken when performing a compare and set or a compare
   1800          * and exchange operation with such values since the operation may
   1801          * unexpectedly fail.
   1802          * There are many possible NaN values that are considered to be
   1803          * {@code NaN} in Java, although no IEEE 754 floating-point operation
   1804          * provided by Java can distinguish between them.  Operation failure can
   1805          * occur if the expected or witness value is a NaN value and it is
   1806          * transformed (perhaps in a platform specific manner) into another NaN
   1807          * value, and thus has a different bitwise representation (see
   1808          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
   1809          * details).
   1810          * The values {@code -0.0} and {@code +0.0} have different bitwise
   1811          * representations but are considered equal when using the primitive
   1812          * {@code ==} operator.  Operation failure can occur if, for example, a
   1813          * numeric algorithm computes an expected value to be say {@code -0.0}
   1814          * and previously computed the witness value to be say {@code +0.0}.
   1815          * @param f the reflected field, with a field of type {@code T}, and
   1816          * a declaring class of type {@code R}
   1817          * @return a VarHandle giving access to non-static fields or a static
   1818          * field
   1819          * @throws IllegalAccessException if access checking fails
   1820          * @throws NullPointerException if the argument is null
   1821          * @since 9
   1822          * @hide
   1823          */
   1824         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
   1825             final boolean isStatic = Modifier.isStatic(f.getModifiers());
   1826             final boolean performAccessChecks = true;
   1827             commonFieldChecks(f, f.getDeclaringClass(), f.getType(), isStatic, performAccessChecks);
   1828             return FieldVarHandle.create(f);
   1829         }
   1830         // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
   1831 
   1832         /**
   1833          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
   1834          * created by this lookup object or a similar one.
   1835          * Security and access checks are performed to ensure that this lookup object
   1836          * is capable of reproducing the target method handle.
   1837          * This means that the cracking may fail if target is a direct method handle
   1838          * but was created by an unrelated lookup object.
   1839          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
   1840          * and was created by a lookup object for a different class.
   1841          * @param target a direct method handle to crack into symbolic reference components
   1842          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
   1843          * @exception SecurityException if a security manager is present and it
   1844          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
   1845          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
   1846          * @exception NullPointerException if the target is {@code null}
   1847          * @see MethodHandleInfo
   1848          * @since 1.8
   1849          */
   1850         public MethodHandleInfo revealDirect(MethodHandle target) {
   1851             MethodHandleImpl directTarget = getMethodHandleImpl(target);
   1852             MethodHandleInfo info = directTarget.reveal();
   1853 
   1854             try {
   1855                 checkAccess(lookupClass(), info.getDeclaringClass(), info.getModifiers(),
   1856                         info.getName());
   1857             } catch (IllegalAccessException exception) {
   1858                 throw new IllegalArgumentException("Unable to access memeber.", exception);
   1859             }
   1860 
   1861             return info;
   1862         }
   1863 
   1864         private boolean hasPrivateAccess() {
   1865             return (allowedModes & PRIVATE) != 0;
   1866         }
   1867 
   1868         /** Check public/protected/private bits on the symbolic reference class and its member. */
   1869         void checkAccess(Class<?> refc, Class<?> defc, int mods, String methName)
   1870                 throws IllegalAccessException {
   1871             int allowedModes = this.allowedModes;
   1872 
   1873             if (Modifier.isProtected(mods) &&
   1874                     defc == Object.class &&
   1875                     "clone".equals(methName) &&
   1876                     refc.isArray()) {
   1877                 // The JVM does this hack also.
   1878                 // (See ClassVerifier::verify_invoke_instructions
   1879                 // and LinkResolver::check_method_accessability.)
   1880                 // Because the JVM does not allow separate methods on array types,
   1881                 // there is no separate method for int[].clone.
   1882                 // All arrays simply inherit Object.clone.
   1883                 // But for access checking logic, we make Object.clone
   1884                 // (normally protected) appear to be public.
   1885                 // Later on, when the DirectMethodHandle is created,
   1886                 // its leading argument will be restricted to the
   1887                 // requested array type.
   1888                 // N.B. The return type is not adjusted, because
   1889                 // that is *not* the bytecode behavior.
   1890                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
   1891             }
   1892 
   1893             if (Modifier.isProtected(mods) && Modifier.isConstructor(mods)) {
   1894                 // cannot "new" a protected ctor in a different package
   1895                 mods ^= Modifier.PROTECTED;
   1896             }
   1897 
   1898             if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
   1899                 return;  // common case
   1900             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
   1901             if ((requestedModes & allowedModes) != 0) {
   1902                 if (VerifyAccess.isMemberAccessible(refc, defc, mods, lookupClass(), allowedModes))
   1903                     return;
   1904             } else {
   1905                 // Protected members can also be checked as if they were package-private.
   1906                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
   1907                         && VerifyAccess.isSamePackage(defc, lookupClass()))
   1908                     return;
   1909             }
   1910 
   1911             throwMakeAccessException(accessFailedMessage(refc, defc, mods), this);
   1912         }
   1913 
   1914         String accessFailedMessage(Class<?> refc, Class<?> defc, int mods) {
   1915             // check the class first:
   1916             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
   1917                     (defc == refc ||
   1918                             Modifier.isPublic(refc.getModifiers())));
   1919             if (!classOK && (allowedModes & PACKAGE) != 0) {
   1920                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
   1921                         (defc == refc ||
   1922                                 VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
   1923             }
   1924             if (!classOK)
   1925                 return "class is not public";
   1926             if (Modifier.isPublic(mods))
   1927                 return "access to public member failed";  // (how?)
   1928             if (Modifier.isPrivate(mods))
   1929                 return "member is private";
   1930             if (Modifier.isProtected(mods))
   1931                 return "member is protected";
   1932             return "member is private to package";
   1933         }
   1934 
   1935         // Android-changed: checkSpecialCaller assumes that ALLOW_NESTMATE_ACCESS = false,
   1936         // as in upstream OpenJDK.
   1937         //
   1938         // private static final boolean ALLOW_NESTMATE_ACCESS = false;
   1939 
   1940         private void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
   1941             // Android-changed: No support for TRUSTED lookups. Also construct the
   1942             // IllegalAccessException by hand because the upstream code implicitly assumes
   1943             // that the lookupClass == specialCaller.
   1944             //
   1945             // if (allowedModes == TRUSTED)  return;
   1946             if (!hasPrivateAccess() || (specialCaller != lookupClass())) {
   1947                 throw new IllegalAccessException("no private access for invokespecial : "
   1948                         + specialCaller + ", from" + this);
   1949             }
   1950         }
   1951 
   1952         private void throwMakeAccessException(String message, Object from) throws
   1953                 IllegalAccessException{
   1954             message = message + ": "+ toString();
   1955             if (from != null)  message += ", from " + from;
   1956             throw new IllegalAccessException(message);
   1957         }
   1958 
   1959         private void checkReturnType(Method method, MethodType methodType)
   1960                 throws NoSuchMethodException {
   1961             if (method.getReturnType() != methodType.rtype()) {
   1962                 throw new NoSuchMethodException(method.getName() + methodType);
   1963             }
   1964         }
   1965     }
   1966 
   1967     /**
   1968      * "Cracks" {@code target} to reveal the underlying {@code MethodHandleImpl}.
   1969      */
   1970     private static MethodHandleImpl getMethodHandleImpl(MethodHandle target) {
   1971         // Special case : We implement handles to constructors as transformers,
   1972         // so we must extract the underlying handle from the transformer.
   1973         if (target instanceof Transformers.Construct) {
   1974             target = ((Transformers.Construct) target).getConstructorHandle();
   1975         }
   1976 
   1977         // Special case: Var-args methods are also implemented as Transformers,
   1978         // so we should get the underlying handle in that case as well.
   1979         if (target instanceof Transformers.VarargsCollector) {
   1980             target = target.asFixedArity();
   1981         }
   1982 
   1983         if (target instanceof MethodHandleImpl) {
   1984             return (MethodHandleImpl) target;
   1985         }
   1986 
   1987         throw new IllegalArgumentException(target + " is not a direct handle");
   1988     }
   1989 
   1990     // BEGIN Android-added: method to check if a class is an array.
   1991     private static void checkClassIsArray(Class<?> c) {
   1992         if (!c.isArray()) {
   1993             throw new IllegalArgumentException("Not an array type: " + c);
   1994         }
   1995     }
   1996 
   1997     private static void checkTypeIsViewable(Class<?> componentType) {
   1998         if (componentType == short.class ||
   1999             componentType == char.class ||
   2000             componentType == int.class ||
   2001             componentType == long.class ||
   2002             componentType == float.class ||
   2003             componentType == double.class) {
   2004             return;
   2005         }
   2006         throw new UnsupportedOperationException("Component type not supported: " + componentType);
   2007     }
   2008     // END Android-added: method to check if a class is an array.
   2009 
   2010     /**
   2011      * Produces a method handle giving read access to elements of an array.
   2012      * The type of the method handle will have a return type of the array's
   2013      * element type.  Its first argument will be the array type,
   2014      * and the second will be {@code int}.
   2015      * @param arrayClass an array type
   2016      * @return a method handle which can load values from the given array type
   2017      * @throws NullPointerException if the argument is null
   2018      * @throws  IllegalArgumentException if arrayClass is not an array type
   2019      */
   2020     public static
   2021     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
   2022         checkClassIsArray(arrayClass);
   2023         final Class<?> componentType = arrayClass.getComponentType();
   2024         if (componentType.isPrimitive()) {
   2025             try {
   2026                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class,
   2027                         "arrayElementGetter",
   2028                         MethodType.methodType(componentType, arrayClass, int.class));
   2029             } catch (NoSuchMethodException | IllegalAccessException exception) {
   2030                 throw new AssertionError(exception);
   2031             }
   2032         }
   2033 
   2034         return new Transformers.ReferenceArrayElementGetter(arrayClass);
   2035     }
   2036 
   2037     /** @hide */ public static byte arrayElementGetter(byte[] array, int i) { return array[i]; }
   2038     /** @hide */ public static boolean arrayElementGetter(boolean[] array, int i) { return array[i]; }
   2039     /** @hide */ public static char arrayElementGetter(char[] array, int i) { return array[i]; }
   2040     /** @hide */ public static short arrayElementGetter(short[] array, int i) { return array[i]; }
   2041     /** @hide */ public static int arrayElementGetter(int[] array, int i) { return array[i]; }
   2042     /** @hide */ public static long arrayElementGetter(long[] array, int i) { return array[i]; }
   2043     /** @hide */ public static float arrayElementGetter(float[] array, int i) { return array[i]; }
   2044     /** @hide */ public static double arrayElementGetter(double[] array, int i) { return array[i]; }
   2045 
   2046     /**
   2047      * Produces a method handle giving write access to elements of an array.
   2048      * The type of the method handle will have a void return type.
   2049      * Its last argument will be the array's element type.
   2050      * The first and second arguments will be the array type and int.
   2051      * @param arrayClass the class of an array
   2052      * @return a method handle which can store values into the array type
   2053      * @throws NullPointerException if the argument is null
   2054      * @throws IllegalArgumentException if arrayClass is not an array type
   2055      */
   2056     public static
   2057     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
   2058         checkClassIsArray(arrayClass);
   2059         final Class<?> componentType = arrayClass.getComponentType();
   2060         if (componentType.isPrimitive()) {
   2061             try {
   2062                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class,
   2063                         "arrayElementSetter",
   2064                         MethodType.methodType(void.class, arrayClass, int.class, componentType));
   2065             } catch (NoSuchMethodException | IllegalAccessException exception) {
   2066                 throw new AssertionError(exception);
   2067             }
   2068         }
   2069 
   2070         return new Transformers.ReferenceArrayElementSetter(arrayClass);
   2071     }
   2072 
   2073     /** @hide */
   2074     public static void arrayElementSetter(byte[] array, int i, byte val) { array[i] = val; }
   2075     /** @hide */
   2076     public static void arrayElementSetter(boolean[] array, int i, boolean val) { array[i] = val; }
   2077     /** @hide */
   2078     public static void arrayElementSetter(char[] array, int i, char val) { array[i] = val; }
   2079     /** @hide */
   2080     public static void arrayElementSetter(short[] array, int i, short val) { array[i] = val; }
   2081     /** @hide */
   2082     public static void arrayElementSetter(int[] array, int i, int val) { array[i] = val; }
   2083     /** @hide */
   2084     public static void arrayElementSetter(long[] array, int i, long val) { array[i] = val; }
   2085     /** @hide */
   2086     public static void arrayElementSetter(float[] array, int i, float val) { array[i] = val; }
   2087     /** @hide */
   2088     public static void arrayElementSetter(double[] array, int i, double val) { array[i] = val; }
   2089 
   2090     // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory methods.
   2091     /**
   2092      * Produces a VarHandle giving access to elements of an array of type
   2093      * {@code arrayClass}.  The VarHandle's variable type is the component type
   2094      * of {@code arrayClass} and the list of coordinate types is
   2095      * {@code (arrayClass, int)}, where the {@code int} coordinate type
   2096      * corresponds to an argument that is an index into an array.
   2097      * <p>
   2098      * Certain access modes of the returned VarHandle are unsupported under
   2099      * the following conditions:
   2100      * <ul>
   2101      * <li>if the component type is anything other than {@code byte},
   2102      *     {@code short}, {@code char}, {@code int}, {@code long},
   2103      *     {@code float}, or {@code double} then numeric atomic update access
   2104      *     modes are unsupported.
   2105      * <li>if the field type is anything other than {@code boolean},
   2106      *     {@code byte}, {@code short}, {@code char}, {@code int} or
   2107      *     {@code long} then bitwise atomic update access modes are
   2108      *     unsupported.
   2109      * </ul>
   2110      * <p>
   2111      * If the component type is {@code float} or {@code double} then numeric
   2112      * and atomic update access modes compare values using their bitwise
   2113      * representation (see {@link Float#floatToRawIntBits} and
   2114      * {@link Double#doubleToRawLongBits}, respectively).
   2115      * @apiNote
   2116      * Bitwise comparison of {@code float} values or {@code double} values,
   2117      * as performed by the numeric and atomic update access modes, differ
   2118      * from the primitive {@code ==} operator and the {@link Float#equals}
   2119      * and {@link Double#equals} methods, specifically with respect to
   2120      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
   2121      * Care should be taken when performing a compare and set or a compare
   2122      * and exchange operation with such values since the operation may
   2123      * unexpectedly fail.
   2124      * There are many possible NaN values that are considered to be
   2125      * {@code NaN} in Java, although no IEEE 754 floating-point operation
   2126      * provided by Java can distinguish between them.  Operation failure can
   2127      * occur if the expected or witness value is a NaN value and it is
   2128      * transformed (perhaps in a platform specific manner) into another NaN
   2129      * value, and thus has a different bitwise representation (see
   2130      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
   2131      * details).
   2132      * The values {@code -0.0} and {@code +0.0} have different bitwise
   2133      * representations but are considered equal when using the primitive
   2134      * {@code ==} operator.  Operation failure can occur if, for example, a
   2135      * numeric algorithm computes an expected value to be say {@code -0.0}
   2136      * and previously computed the witness value to be say {@code +0.0}.
   2137      * @param arrayClass the class of an array, of type {@code T[]}
   2138      * @return a VarHandle giving access to elements of an array
   2139      * @throws NullPointerException if the arrayClass is null
   2140      * @throws IllegalArgumentException if arrayClass is not an array type
   2141      * @since 9
   2142      * @hide
   2143      */
   2144     public static
   2145     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
   2146         checkClassIsArray(arrayClass);
   2147         return ArrayElementVarHandle.create(arrayClass);
   2148     }
   2149 
   2150     /**
   2151      * Produces a VarHandle giving access to elements of a {@code byte[]} array
   2152      * viewed as if it were a different primitive array type, such as
   2153      * {@code int[]} or {@code long[]}.
   2154      * The VarHandle's variable type is the component type of
   2155      * {@code viewArrayClass} and the list of coordinate types is
   2156      * {@code (byte[], int)}, where the {@code int} coordinate type
   2157      * corresponds to an argument that is an index into a {@code byte[]} array.
   2158      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
   2159      * array, composing bytes to or from a value of the component type of
   2160      * {@code viewArrayClass} according to the given endianness.
   2161      * <p>
   2162      * The supported component types (variables types) are {@code short},
   2163      * {@code char}, {@code int}, {@code long}, {@code float} and
   2164      * {@code double}.
   2165      * <p>
   2166      * Access of bytes at a given index will result in an
   2167      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
   2168      * or greater than the {@code byte[]} array length minus the size (in bytes)
   2169      * of {@code T}.
   2170      * <p>
   2171      * Access of bytes at an index may be aligned or misaligned for {@code T},
   2172      * with respect to the underlying memory address, {@code A} say, associated
   2173      * with the array and index.
   2174      * If access is misaligned then access for anything other than the
   2175      * {@code get} and {@code set} access modes will result in an
   2176      * {@code IllegalStateException}.  In such cases atomic access is only
   2177      * guaranteed with respect to the largest power of two that divides the GCD
   2178      * of {@code A} and the size (in bytes) of {@code T}.
   2179      * If access is aligned then following access modes are supported and are
   2180      * guaranteed to support atomic access:
   2181      * <ul>
   2182      * <li>read write access modes for all {@code T}, with the exception of
   2183      *     access modes {@code get} and {@code set} for {@code long} and
   2184      *     {@code double} on 32-bit platforms.
   2185      * <li>atomic update access modes for {@code int}, {@code long},
   2186      *     {@code float} or {@code double}.
   2187      *     (Future major platform releases of the JDK may support additional
   2188      *     types for certain currently unsupported access modes.)
   2189      * <li>numeric atomic update access modes for {@code int} and {@code long}.
   2190      *     (Future major platform releases of the JDK may support additional
   2191      *     numeric types for certain currently unsupported access modes.)
   2192      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
   2193      *     (Future major platform releases of the JDK may support additional
   2194      *     numeric types for certain currently unsupported access modes.)
   2195      * </ul>
   2196      * <p>
   2197      * Misaligned access, and therefore atomicity guarantees, may be determined
   2198      * for {@code byte[]} arrays without operating on a specific array.  Given
   2199      * an {@code index}, {@code T} and it's corresponding boxed type,
   2200      * {@code T_BOX}, misalignment may be determined as follows:
   2201      * <pre>{@code
   2202      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
   2203      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
   2204      *     alignmentOffset(0, sizeOfT);
   2205      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
   2206      * boolean isMisaligned = misalignedAtIndex != 0;
   2207      * }</pre>
   2208      * <p>
   2209      * If the variable type is {@code float} or {@code double} then atomic
   2210      * update access modes compare values using their bitwise representation
   2211      * (see {@link Float#floatToRawIntBits} and
   2212      * {@link Double#doubleToRawLongBits}, respectively).
   2213      * @param viewArrayClass the view array class, with a component type of
   2214      * type {@code T}
   2215      * @param byteOrder the endianness of the view array elements, as
   2216      * stored in the underlying {@code byte} array
   2217      * @return a VarHandle giving access to elements of a {@code byte[]} array
   2218      * viewed as if elements corresponding to the components type of the view
   2219      * array class
   2220      * @throws NullPointerException if viewArrayClass or byteOrder is null
   2221      * @throws IllegalArgumentException if viewArrayClass is not an array type
   2222      * @throws UnsupportedOperationException if the component type of
   2223      * viewArrayClass is not supported as a variable type
   2224      * @since 9
   2225      * @hide
   2226      */
   2227     public static
   2228     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
   2229                                      ByteOrder byteOrder) throws IllegalArgumentException {
   2230         checkClassIsArray(viewArrayClass);
   2231         checkTypeIsViewable(viewArrayClass.getComponentType());
   2232         return ByteArrayViewVarHandle.create(viewArrayClass, byteOrder);
   2233     }
   2234 
   2235     /**
   2236      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
   2237      * viewed as if it were an array of elements of a different primitive
   2238      * component type to that of {@code byte}, such as {@code int[]} or
   2239      * {@code long[]}.
   2240      * The VarHandle's variable type is the component type of
   2241      * {@code viewArrayClass} and the list of coordinate types is
   2242      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
   2243      * corresponds to an argument that is an index into a {@code byte[]} array.
   2244      * The returned VarHandle accesses bytes at an index in a
   2245      * {@code ByteBuffer}, composing bytes to or from a value of the component
   2246      * type of {@code viewArrayClass} according to the given endianness.
   2247      * <p>
   2248      * The supported component types (variables types) are {@code short},
   2249      * {@code char}, {@code int}, {@code long}, {@code float} and
   2250      * {@code double}.
   2251      * <p>
   2252      * Access will result in a {@code ReadOnlyBufferException} for anything
   2253      * other than the read access modes if the {@code ByteBuffer} is read-only.
   2254      * <p>
   2255      * Access of bytes at a given index will result in an
   2256      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
   2257      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
   2258      * {@code T}.
   2259      * <p>
   2260      * Access of bytes at an index may be aligned or misaligned for {@code T},
   2261      * with respect to the underlying memory address, {@code A} say, associated
   2262      * with the {@code ByteBuffer} and index.
   2263      * If access is misaligned then access for anything other than the
   2264      * {@code get} and {@code set} access modes will result in an
   2265      * {@code IllegalStateException}.  In such cases atomic access is only
   2266      * guaranteed with respect to the largest power of two that divides the GCD
   2267      * of {@code A} and the size (in bytes) of {@code T}.
   2268      * If access is aligned then following access modes are supported and are
   2269      * guaranteed to support atomic access:
   2270      * <ul>
   2271      * <li>read write access modes for all {@code T}, with the exception of
   2272      *     access modes {@code get} and {@code set} for {@code long} and
   2273      *     {@code double} on 32-bit platforms.
   2274      * <li>atomic update access modes for {@code int}, {@code long},
   2275      *     {@code float} or {@code double}.
   2276      *     (Future major platform releases of the JDK may support additional
   2277      *     types for certain currently unsupported access modes.)
   2278      * <li>numeric atomic update access modes for {@code int} and {@code long}.
   2279      *     (Future major platform releases of the JDK may support additional
   2280      *     numeric types for certain currently unsupported access modes.)
   2281      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
   2282      *     (Future major platform releases of the JDK may support additional
   2283      *     numeric types for certain currently unsupported access modes.)
   2284      * </ul>
   2285      * <p>
   2286      * Misaligned access, and therefore atomicity guarantees, may be determined
   2287      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
   2288      * {@code index}, {@code T} and it's corresponding boxed type,
   2289      * {@code T_BOX}, as follows:
   2290      * <pre>{@code
   2291      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
   2292      * ByteBuffer bb = ...
   2293      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
   2294      * boolean isMisaligned = misalignedAtIndex != 0;
   2295      * }</pre>
   2296      * <p>
   2297      * If the variable type is {@code float} or {@code double} then atomic
   2298      * update access modes compare values using their bitwise representation
   2299      * (see {@link Float#floatToRawIntBits} and
   2300      * {@link Double#doubleToRawLongBits}, respectively).
   2301      * @param viewArrayClass the view array class, with a component type of
   2302      * type {@code T}
   2303      * @param byteOrder the endianness of the view array elements, as
   2304      * stored in the underlying {@code ByteBuffer} (Note this overrides the
   2305      * endianness of a {@code ByteBuffer})
   2306      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
   2307      * viewed as if elements corresponding to the components type of the view
   2308      * array class
   2309      * @throws NullPointerException if viewArrayClass or byteOrder is null
   2310      * @throws IllegalArgumentException if viewArrayClass is not an array type
   2311      * @throws UnsupportedOperationException if the component type of
   2312      * viewArrayClass is not supported as a variable type
   2313      * @since 9
   2314      * @hide
   2315      */
   2316     public static
   2317     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
   2318                                       ByteOrder byteOrder) throws IllegalArgumentException {
   2319         checkClassIsArray(viewArrayClass);
   2320         checkTypeIsViewable(viewArrayClass.getComponentType());
   2321         return ByteBufferViewVarHandle.create(viewArrayClass, byteOrder);
   2322     }
   2323     // END Android-changed: OpenJDK 9+181 VarHandle API factory methods.
   2324 
   2325     /// method handle invocation (reflective style)
   2326 
   2327     /**
   2328      * Produces a method handle which will invoke any method handle of the
   2329      * given {@code type}, with a given number of trailing arguments replaced by
   2330      * a single trailing {@code Object[]} array.
   2331      * The resulting invoker will be a method handle with the following
   2332      * arguments:
   2333      * <ul>
   2334      * <li>a single {@code MethodHandle} target
   2335      * <li>zero or more leading values (counted by {@code leadingArgCount})
   2336      * <li>an {@code Object[]} array containing trailing arguments
   2337      * </ul>
   2338      * <p>
   2339      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
   2340      * the indicated {@code type}.
   2341      * That is, if the target is exactly of the given {@code type}, it will behave
   2342      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
   2343      * is used to convert the target to the required {@code type}.
   2344      * <p>
   2345      * The type of the returned invoker will not be the given {@code type}, but rather
   2346      * will have all parameters except the first {@code leadingArgCount}
   2347      * replaced by a single array of type {@code Object[]}, which will be
   2348      * the final parameter.
   2349      * <p>
   2350      * Before invoking its target, the invoker will spread the final array, apply
   2351      * reference casts as necessary, and unbox and widen primitive arguments.
   2352      * If, when the invoker is called, the supplied array argument does
   2353      * not have the correct number of elements, the invoker will throw
   2354      * an {@link IllegalArgumentException} instead of invoking the target.
   2355      * <p>
   2356      * This method is equivalent to the following code (though it may be more efficient):
   2357      * <blockquote><pre>{@code
   2358 MethodHandle invoker = MethodHandles.invoker(type);
   2359 int spreadArgCount = type.parameterCount() - leadingArgCount;
   2360 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
   2361 return invoker;
   2362      * }</pre></blockquote>
   2363      * This method throws no reflective or security exceptions.
   2364      * @param type the desired target type
   2365      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
   2366      * @return a method handle suitable for invoking any method handle of the given type
   2367      * @throws NullPointerException if {@code type} is null
   2368      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
   2369      *                  the range from 0 to {@code type.parameterCount()} inclusive,
   2370      *                  or if the resulting method handle's type would have
   2371      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
   2372      */
   2373     static public
   2374     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
   2375         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
   2376             throw newIllegalArgumentException("bad argument count", leadingArgCount);
   2377 
   2378         MethodHandle invoker = MethodHandles.invoker(type);
   2379         int spreadArgCount = type.parameterCount() - leadingArgCount;
   2380         invoker = invoker.asSpreader(Object[].class, spreadArgCount);
   2381         return invoker;
   2382     }
   2383 
   2384     /**
   2385      * Produces a special <em>invoker method handle</em> which can be used to
   2386      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
   2387      * The resulting invoker will have a type which is
   2388      * exactly equal to the desired type, except that it will accept
   2389      * an additional leading argument of type {@code MethodHandle}.
   2390      * <p>
   2391      * This method is equivalent to the following code (though it may be more efficient):
   2392      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
   2393      *
   2394      * <p style="font-size:smaller;">
   2395      * <em>Discussion:</em>
   2396      * Invoker method handles can be useful when working with variable method handles
   2397      * of unknown types.
   2398      * For example, to emulate an {@code invokeExact} call to a variable method
   2399      * handle {@code M}, extract its type {@code T},
   2400      * look up the invoker method {@code X} for {@code T},
   2401      * and call the invoker method, as {@code X.invoke(T, A...)}.
   2402      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
   2403      * is unknown.)
   2404      * If spreading, collecting, or other argument transformations are required,
   2405      * they can be applied once to the invoker {@code X} and reused on many {@code M}
   2406      * method handle values, as long as they are compatible with the type of {@code X}.
   2407      * <p style="font-size:smaller;">
   2408      * <em>(Note:  The invoker method is not available via the Core Reflection API.
   2409      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
   2410      * on the declared {@code invokeExact} or {@code invoke} method will raise an
   2411      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
   2412      * <p>
   2413      * This method throws no reflective or security exceptions.
   2414      * @param type the desired target type
   2415      * @return a method handle suitable for invoking any method handle of the given type
   2416      * @throws IllegalArgumentException if the resulting method handle's type would have
   2417      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
   2418      */
   2419     static public
   2420     MethodHandle exactInvoker(MethodType type) {
   2421         return new Transformers.Invoker(type, true /* isExactInvoker */);
   2422     }
   2423 
   2424     /**
   2425      * Produces a special <em>invoker method handle</em> which can be used to
   2426      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
   2427      * The resulting invoker will have a type which is
   2428      * exactly equal to the desired type, except that it will accept
   2429      * an additional leading argument of type {@code MethodHandle}.
   2430      * <p>
   2431      * Before invoking its target, if the target differs from the expected type,
   2432      * the invoker will apply reference casts as
   2433      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
   2434      * Similarly, the return value will be converted as necessary.
   2435      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
   2436      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
   2437      * <p>
   2438      * This method is equivalent to the following code (though it may be more efficient):
   2439      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
   2440      * <p style="font-size:smaller;">
   2441      * <em>Discussion:</em>
   2442      * A {@linkplain MethodType#genericMethodType general method type} is one which
   2443      * mentions only {@code Object} arguments and return values.
   2444      * An invoker for such a type is capable of calling any method handle
   2445      * of the same arity as the general type.
   2446      * <p style="font-size:smaller;">
   2447      * <em>(Note:  The invoker method is not available via the Core Reflection API.
   2448      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
   2449      * on the declared {@code invokeExact} or {@code invoke} method will raise an
   2450      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
   2451      * <p>
   2452      * This method throws no reflective or security exceptions.
   2453      * @param type the desired target type
   2454      * @return a method handle suitable for invoking any method handle convertible to the given type
   2455      * @throws IllegalArgumentException if the resulting method handle's type would have
   2456      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
   2457      */
   2458     static public
   2459     MethodHandle invoker(MethodType type) {
   2460         return new Transformers.Invoker(type, false /* isExactInvoker */);
   2461     }
   2462 
   2463     // BEGIN Android-added: resolver for VarHandle accessor methods.
   2464     static private MethodHandle methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode,
   2465                                                                  MethodType type,
   2466                                                                  boolean isExactInvoker) {
   2467         Class<?> refc = VarHandle.class;
   2468         Method method;
   2469         try {
   2470             method = refc.getDeclaredMethod(accessMode.methodName(), Object[].class);
   2471         } catch (NoSuchMethodException e) {
   2472             throw new InternalError("No method for AccessMode " + accessMode, e);
   2473         }
   2474         MethodType methodType = type.insertParameterTypes(0, VarHandle.class);
   2475         int kind = isExactInvoker ? MethodHandle.INVOKE_VAR_HANDLE_EXACT
   2476                                   : MethodHandle.INVOKE_VAR_HANDLE;
   2477         return new MethodHandleImpl(method.getArtMethod(), kind, methodType);
   2478     }
   2479     // END Android-added: resolver for VarHandle accessor methods.
   2480 
   2481     /**
   2482      * Produces a special <em>invoker method handle</em> which can be used to
   2483      * invoke a signature-polymorphic access mode method on any VarHandle whose
   2484      * associated access mode type is compatible with the given type.
   2485      * The resulting invoker will have a type which is exactly equal to the
   2486      * desired given type, except that it will accept an additional leading
   2487      * argument of type {@code VarHandle}.
   2488      *
   2489      * @param accessMode the VarHandle access mode
   2490      * @param type the desired target type
   2491      * @return a method handle suitable for invoking an access mode method of
   2492      *         any VarHandle whose access mode type is of the given type.
   2493      * @since 9
   2494      * @hide
   2495      */
   2496     static public
   2497     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
   2498         return methodHandleForVarHandleAccessor(accessMode, type, true /* isExactInvoker */);
   2499     }
   2500 
   2501     /**
   2502      * Produces a special <em>invoker method handle</em> which can be used to
   2503      * invoke a signature-polymorphic access mode method on any VarHandle whose
   2504      * associated access mode type is compatible with the given type.
   2505      * The resulting invoker will have a type which is exactly equal to the
   2506      * desired given type, except that it will accept an additional leading
   2507      * argument of type {@code VarHandle}.
   2508      * <p>
   2509      * Before invoking its target, if the access mode type differs from the
   2510      * desired given type, the invoker will apply reference casts as necessary
   2511      * and box, unbox, or widen primitive values, as if by
   2512      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
   2513      * converted as necessary.
   2514      * <p>
   2515      * This method is equivalent to the following code (though it may be more
   2516      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
   2517      *
   2518      * @param accessMode the VarHandle access mode
   2519      * @param type the desired target type
   2520      * @return a method handle suitable for invoking an access mode method of
   2521      *         any VarHandle whose access mode type is convertible to the given
   2522      *         type.
   2523      * @since 9
   2524      * @hide
   2525      */
   2526     static public
   2527     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
   2528         return methodHandleForVarHandleAccessor(accessMode, type, false /* isExactInvoker */);
   2529     }
   2530 
   2531     // Android-changed: Basic invokers are not supported.
   2532     //
   2533     // static /*non-public*/
   2534     // MethodHandle basicInvoker(MethodType type) {
   2535     //     return type.invokers().basicInvoker();
   2536     // }
   2537 
   2538      /// method handle modification (creation from other method handles)
   2539 
   2540     /**
   2541      * Produces a method handle which adapts the type of the
   2542      * given method handle to a new type by pairwise argument and return type conversion.
   2543      * The original type and new type must have the same number of arguments.
   2544      * The resulting method handle is guaranteed to report a type
   2545      * which is equal to the desired new type.
   2546      * <p>
   2547      * If the original type and new type are equal, returns target.
   2548      * <p>
   2549      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
   2550      * and some additional conversions are also applied if those conversions fail.
   2551      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
   2552      * if possible, before or instead of any conversions done by {@code asType}:
   2553      * <ul>
   2554      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
   2555      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
   2556      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
   2557      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
   2558      *     the boolean is converted to a byte value, 1 for true, 0 for false.
   2559      *     (This treatment follows the usage of the bytecode verifier.)
   2560      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
   2561      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
   2562      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
   2563      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
   2564      *     then a Java casting conversion (JLS 5.5) is applied.
   2565      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
   2566      *     widening and/or narrowing.)
   2567      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
   2568      *     conversion will be applied at runtime, possibly followed
   2569      *     by a Java casting conversion (JLS 5.5) on the primitive value,
   2570      *     possibly followed by a conversion from byte to boolean by testing
   2571      *     the low-order bit.
   2572      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
   2573      *     and if the reference is null at runtime, a zero value is introduced.
   2574      * </ul>
   2575      * @param target the method handle to invoke after arguments are retyped
   2576      * @param newType the expected type of the new method handle
   2577      * @return a method handle which delegates to the target after performing
   2578      *           any necessary argument conversions, and arranges for any
   2579      *           necessary return value conversions
   2580      * @throws NullPointerException if either argument is null
   2581      * @throws WrongMethodTypeException if the conversion cannot be made
   2582      * @see MethodHandle#asType
   2583      */
   2584     public static
   2585     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
   2586         explicitCastArgumentsChecks(target, newType);
   2587         // use the asTypeCache when possible:
   2588         MethodType oldType = target.type();
   2589         if (oldType == newType) return target;
   2590         if (oldType.explicitCastEquivalentToAsType(newType)) {
   2591             return target.asFixedArity().asType(newType);
   2592         }
   2593 
   2594         return new Transformers.ExplicitCastArguments(target, newType);
   2595     }
   2596 
   2597     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
   2598         if (target.type().parameterCount() != newType.parameterCount()) {
   2599             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
   2600         }
   2601     }
   2602 
   2603     /**
   2604      * Produces a method handle which adapts the calling sequence of the
   2605      * given method handle to a new type, by reordering the arguments.
   2606      * The resulting method handle is guaranteed to report a type
   2607      * which is equal to the desired new type.
   2608      * <p>
   2609      * The given array controls the reordering.
   2610      * Call {@code #I} the number of incoming parameters (the value
   2611      * {@code newType.parameterCount()}, and call {@code #O} the number
   2612      * of outgoing parameters (the value {@code target.type().parameterCount()}).
   2613      * Then the length of the reordering array must be {@code #O},
   2614      * and each element must be a non-negative number less than {@code #I}.
   2615      * For every {@code N} less than {@code #O}, the {@code N}-th
   2616      * outgoing argument will be taken from the {@code I}-th incoming
   2617      * argument, where {@code I} is {@code reorder[N]}.
   2618      * <p>
   2619      * No argument or return value conversions are applied.
   2620      * The type of each incoming argument, as determined by {@code newType},
   2621      * must be identical to the type of the corresponding outgoing parameter
   2622      * or parameters in the target method handle.
   2623      * The return type of {@code newType} must be identical to the return
   2624      * type of the original target.
   2625      * <p>
   2626      * The reordering array need not specify an actual permutation.
   2627      * An incoming argument will be duplicated if its index appears
   2628      * more than once in the array, and an incoming argument will be dropped
   2629      * if its index does not appear in the array.
   2630      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
   2631      * incoming arguments which are not mentioned in the reordering array
   2632      * are may be any type, as determined only by {@code newType}.
   2633      * <blockquote><pre>{@code
   2634 import static java.lang.invoke.MethodHandles.*;
   2635 import static java.lang.invoke.MethodType.*;
   2636 ...
   2637 MethodType intfn1 = methodType(int.class, int.class);
   2638 MethodType intfn2 = methodType(int.class, int.class, int.class);
   2639 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
   2640 assert(sub.type().equals(intfn2));
   2641 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
   2642 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
   2643 assert((int)rsub.invokeExact(1, 100) == 99);
   2644 MethodHandle add = ... (int x, int y) -> (x+y) ...;
   2645 assert(add.type().equals(intfn2));
   2646 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
   2647 assert(twice.type().equals(intfn1));
   2648 assert((int)twice.invokeExact(21) == 42);
   2649      * }</pre></blockquote>
   2650      * @param target the method handle to invoke after arguments are reordered
   2651      * @param newType the expected type of the new method handle
   2652      * @param reorder an index array which controls the reordering
   2653      * @return a method handle which delegates to the target after it
   2654      *           drops unused arguments and moves and/or duplicates the other arguments
   2655      * @throws NullPointerException if any argument is null
   2656      * @throws IllegalArgumentException if the index array length is not equal to
   2657      *                  the arity of the target, or if any index array element
   2658      *                  not a valid index for a parameter of {@code newType},
   2659      *                  or if two corresponding parameter types in
   2660      *                  {@code target.type()} and {@code newType} are not identical,
   2661      */
   2662     public static
   2663     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
   2664         reorder = reorder.clone();  // get a private copy
   2665         MethodType oldType = target.type();
   2666         permuteArgumentChecks(reorder, newType, oldType);
   2667 
   2668         return new Transformers.PermuteArguments(newType, target, reorder);
   2669     }
   2670 
   2671     // Android-changed: findFirstDupOrDrop is unused and removed.
   2672     // private static int findFirstDupOrDrop(int[] reorder, int newArity);
   2673 
   2674     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
   2675         if (newType.returnType() != oldType.returnType())
   2676             throw newIllegalArgumentException("return types do not match",
   2677                     oldType, newType);
   2678         if (reorder.length == oldType.parameterCount()) {
   2679             int limit = newType.parameterCount();
   2680             boolean bad = false;
   2681             for (int j = 0; j < reorder.length; j++) {
   2682                 int i = reorder[j];
   2683                 if (i < 0 || i >= limit) {
   2684                     bad = true; break;
   2685                 }
   2686                 Class<?> src = newType.parameterType(i);
   2687                 Class<?> dst = oldType.parameterType(j);
   2688                 if (src != dst)
   2689                     throw newIllegalArgumentException("parameter types do not match after reorder",
   2690                             oldType, newType);
   2691             }
   2692             if (!bad)  return true;
   2693         }
   2694         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
   2695     }
   2696 
   2697     /**
   2698      * Produces a method handle of the requested return type which returns the given
   2699      * constant value every time it is invoked.
   2700      * <p>
   2701      * Before the method handle is returned, the passed-in value is converted to the requested type.
   2702      * If the requested type is primitive, widening primitive conversions are attempted,
   2703      * else reference conversions are attempted.
   2704      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
   2705      * @param type the return type of the desired method handle
   2706      * @param value the value to return
   2707      * @return a method handle of the given return type and no arguments, which always returns the given value
   2708      * @throws NullPointerException if the {@code type} argument is null
   2709      * @throws ClassCastException if the value cannot be converted to the required return type
   2710      * @throws IllegalArgumentException if the given type is {@code void.class}
   2711      */
   2712     public static
   2713     MethodHandle constant(Class<?> type, Object value) {
   2714         if (type.isPrimitive()) {
   2715             if (type == void.class)
   2716                 throw newIllegalArgumentException("void type");
   2717             Wrapper w = Wrapper.forPrimitiveType(type);
   2718             value = w.convert(value, type);
   2719         }
   2720 
   2721         return new Transformers.Constant(type, value);
   2722     }
   2723 
   2724     /**
   2725      * Produces a method handle which returns its sole argument when invoked.
   2726      * @param type the type of the sole parameter and return value of the desired method handle
   2727      * @return a unary method handle which accepts and returns the given type
   2728      * @throws NullPointerException if the argument is null
   2729      * @throws IllegalArgumentException if the given type is {@code void.class}
   2730      */
   2731     public static
   2732     MethodHandle identity(Class<?> type) {
   2733         if (type == null) {
   2734             throw new NullPointerException("type == null");
   2735         }
   2736 
   2737         if (type.isPrimitive()) {
   2738             try {
   2739                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "identity",
   2740                         MethodType.methodType(type, type));
   2741             } catch (NoSuchMethodException | IllegalAccessException e) {
   2742                 throw new AssertionError(e);
   2743             }
   2744         }
   2745 
   2746         return new Transformers.ReferenceIdentity(type);
   2747     }
   2748 
   2749     /** @hide */ public static byte identity(byte val) { return val; }
   2750     /** @hide */ public static boolean identity(boolean val) { return val; }
   2751     /** @hide */ public static char identity(char val) { return val; }
   2752     /** @hide */ public static short identity(short val) { return val; }
   2753     /** @hide */ public static int identity(int val) { return val; }
   2754     /** @hide */ public static long identity(long val) { return val; }
   2755     /** @hide */ public static float identity(float val) { return val; }
   2756     /** @hide */ public static double identity(double val) { return val; }
   2757 
   2758     /**
   2759      * Provides a target method handle with one or more <em>bound arguments</em>
   2760      * in advance of the method handle's invocation.
   2761      * The formal parameters to the target corresponding to the bound
   2762      * arguments are called <em>bound parameters</em>.
   2763      * Returns a new method handle which saves away the bound arguments.
   2764      * When it is invoked, it receives arguments for any non-bound parameters,
   2765      * binds the saved arguments to their corresponding parameters,
   2766      * and calls the original target.
   2767      * <p>
   2768      * The type of the new method handle will drop the types for the bound
   2769      * parameters from the original target type, since the new method handle
   2770      * will no longer require those arguments to be supplied by its callers.
   2771      * <p>
   2772      * Each given argument object must match the corresponding bound parameter type.
   2773      * If a bound parameter type is a primitive, the argument object
   2774      * must be a wrapper, and will be unboxed to produce the primitive value.
   2775      * <p>
   2776      * The {@code pos} argument selects which parameters are to be bound.
   2777      * It may range between zero and <i>N-L</i> (inclusively),
   2778      * where <i>N</i> is the arity of the target method handle
   2779      * and <i>L</i> is the length of the values array.
   2780      * @param target the method handle to invoke after the argument is inserted
   2781      * @param pos where to insert the argument (zero for the first)
   2782      * @param values the series of arguments to insert
   2783      * @return a method handle which inserts an additional argument,
   2784      *         before calling the original method handle
   2785      * @throws NullPointerException if the target or the {@code values} array is null
   2786      * @see MethodHandle#bindTo
   2787      */
   2788     public static
   2789     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
   2790         int insCount = values.length;
   2791         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
   2792         if (insCount == 0)  {
   2793             return target;
   2794         }
   2795 
   2796         // Throw ClassCastExceptions early if we can't cast any of the provided values
   2797         // to the required type.
   2798         for (int i = 0; i < insCount; i++) {
   2799             final Class<?> ptype = ptypes[pos + i];
   2800             if (!ptype.isPrimitive()) {
   2801                 ptypes[pos + i].cast(values[i]);
   2802             } else {
   2803                 // Will throw a ClassCastException if something terrible happens.
   2804                 values[i] = Wrapper.forPrimitiveType(ptype).convert(values[i], ptype);
   2805             }
   2806         }
   2807 
   2808         return new Transformers.InsertArguments(target, pos, values);
   2809     }
   2810 
   2811     // Android-changed: insertArgumentPrimitive is unused.
   2812     //
   2813     // private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
   2814     //                                                          Class<?> ptype, Object value) {
   2815     //     Wrapper w = Wrapper.forPrimitiveType(ptype);
   2816     //     // perform unboxing and/or primitive conversion
   2817     //     value = w.convert(value, ptype);
   2818     //     switch (w) {
   2819     //     case INT:     return result.bindArgumentI(pos, (int)value);
   2820     //     case LONG:    return result.bindArgumentJ(pos, (long)value);
   2821     //     case FLOAT:   return result.bindArgumentF(pos, (float)value);
   2822     //     case DOUBLE:  return result.bindArgumentD(pos, (double)value);
   2823     //     default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
   2824     //     }
   2825     // }
   2826 
   2827     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
   2828         MethodType oldType = target.type();
   2829         int outargs = oldType.parameterCount();
   2830         int inargs  = outargs - insCount;
   2831         if (inargs < 0)
   2832             throw newIllegalArgumentException("too many values to insert");
   2833         if (pos < 0 || pos > inargs)
   2834             throw newIllegalArgumentException("no argument type to append");
   2835         return oldType.ptypes();
   2836     }
   2837 
   2838     /**
   2839      * Produces a method handle which will discard some dummy arguments
   2840      * before calling some other specified <i>target</i> method handle.
   2841      * The type of the new method handle will be the same as the target's type,
   2842      * except it will also include the dummy argument types,
   2843      * at some given position.
   2844      * <p>
   2845      * The {@code pos} argument may range between zero and <i>N</i>,
   2846      * where <i>N</i> is the arity of the target.
   2847      * If {@code pos} is zero, the dummy arguments will precede
   2848      * the target's real arguments; if {@code pos} is <i>N</i>
   2849      * they will come after.
   2850      * <p>
   2851      * <b>Example:</b>
   2852      * <blockquote><pre>{@code
   2853 import static java.lang.invoke.MethodHandles.*;
   2854 import static java.lang.invoke.MethodType.*;
   2855 ...
   2856 MethodHandle cat = lookup().findVirtual(String.class,
   2857   "concat", methodType(String.class, String.class));
   2858 assertEquals("xy", (String) cat.invokeExact("x", "y"));
   2859 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
   2860 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
   2861 assertEquals(bigType, d0.type());
   2862 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
   2863      * }</pre></blockquote>
   2864      * <p>
   2865      * This method is also equivalent to the following code:
   2866      * <blockquote><pre>
   2867      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
   2868      * </pre></blockquote>
   2869      * @param target the method handle to invoke after the arguments are dropped
   2870      * @param valueTypes the type(s) of the argument(s) to drop
   2871      * @param pos position of first argument to drop (zero for the leftmost)
   2872      * @return a method handle which drops arguments of the given types,
   2873      *         before calling the original method handle
   2874      * @throws NullPointerException if the target is null,
   2875      *                              or if the {@code valueTypes} list or any of its elements is null
   2876      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
   2877      *                  or if {@code pos} is negative or greater than the arity of the target,
   2878      *                  or if the new method handle's type would have too many parameters
   2879      */
   2880     public static
   2881     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
   2882         valueTypes = copyTypes(valueTypes);
   2883         MethodType oldType = target.type();  // get NPE
   2884         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
   2885 
   2886         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
   2887         if (dropped == 0) {
   2888             return target;
   2889         }
   2890 
   2891         return new Transformers.DropArguments(newType, target, pos, valueTypes.size());
   2892     }
   2893 
   2894     private static List<Class<?>> copyTypes(List<Class<?>> types) {
   2895         Object[] a = types.toArray();
   2896         return Arrays.asList(Arrays.copyOf(a, a.length, Class[].class));
   2897     }
   2898 
   2899     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
   2900         int dropped = valueTypes.size();
   2901         MethodType.checkSlotCount(dropped);
   2902         int outargs = oldType.parameterCount();
   2903         int inargs  = outargs + dropped;
   2904         if (pos < 0 || pos > outargs)
   2905             throw newIllegalArgumentException("no argument type to remove"
   2906                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
   2907                     );
   2908         return dropped;
   2909     }
   2910 
   2911     /**
   2912      * Produces a method handle which will discard some dummy arguments
   2913      * before calling some other specified <i>target</i> method handle.
   2914      * The type of the new method handle will be the same as the target's type,
   2915      * except it will also include the dummy argument types,
   2916      * at some given position.
   2917      * <p>
   2918      * The {@code pos} argument may range between zero and <i>N</i>,
   2919      * where <i>N</i> is the arity of the target.
   2920      * If {@code pos} is zero, the dummy arguments will precede
   2921      * the target's real arguments; if {@code pos} is <i>N</i>
   2922      * they will come after.
   2923      * <p>
   2924      * <b>Example:</b>
   2925      * <blockquote><pre>{@code
   2926 import static java.lang.invoke.MethodHandles.*;
   2927 import static java.lang.invoke.MethodType.*;
   2928 ...
   2929 MethodHandle cat = lookup().findVirtual(String.class,
   2930   "concat", methodType(String.class, String.class));
   2931 assertEquals("xy", (String) cat.invokeExact("x", "y"));
   2932 MethodHandle d0 = dropArguments(cat, 0, String.class);
   2933 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
   2934 MethodHandle d1 = dropArguments(cat, 1, String.class);
   2935 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
   2936 MethodHandle d2 = dropArguments(cat, 2, String.class);
   2937 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
   2938 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
   2939 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
   2940      * }</pre></blockquote>
   2941      * <p>
   2942      * This method is also equivalent to the following code:
   2943      * <blockquote><pre>
   2944      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
   2945      * </pre></blockquote>
   2946      * @param target the method handle to invoke after the arguments are dropped
   2947      * @param valueTypes the type(s) of the argument(s) to drop
   2948      * @param pos position of first argument to drop (zero for the leftmost)
   2949      * @return a method handle which drops arguments of the given types,
   2950      *         before calling the original method handle
   2951      * @throws NullPointerException if the target is null,
   2952      *                              or if the {@code valueTypes} array or any of its elements is null
   2953      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
   2954      *                  or if {@code pos} is negative or greater than the arity of the target,
   2955      *                  or if the new method handle's type would have
   2956      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
   2957      */
   2958     public static
   2959     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
   2960         return dropArguments(target, pos, Arrays.asList(valueTypes));
   2961     }
   2962 
   2963     /**
   2964      * Adapts a target method handle by pre-processing
   2965      * one or more of its arguments, each with its own unary filter function,
   2966      * and then calling the target with each pre-processed argument
   2967      * replaced by the result of its corresponding filter function.
   2968      * <p>
   2969      * The pre-processing is performed by one or more method handles,
   2970      * specified in the elements of the {@code filters} array.
   2971      * The first element of the filter array corresponds to the {@code pos}
   2972      * argument of the target, and so on in sequence.
   2973      * <p>
   2974      * Null arguments in the array are treated as identity functions,
   2975      * and the corresponding arguments left unchanged.
   2976      * (If there are no non-null elements in the array, the original target is returned.)
   2977      * Each filter is applied to the corresponding argument of the adapter.
   2978      * <p>
   2979      * If a filter {@code F} applies to the {@code N}th argument of
   2980      * the target, then {@code F} must be a method handle which
   2981      * takes exactly one argument.  The type of {@code F}'s sole argument
   2982      * replaces the corresponding argument type of the target
   2983      * in the resulting adapted method handle.
   2984      * The return type of {@code F} must be identical to the corresponding
   2985      * parameter type of the target.
   2986      * <p>
   2987      * It is an error if there are elements of {@code filters}
   2988      * (null or not)
   2989      * which do not correspond to argument positions in the target.
   2990      * <p><b>Example:</b>
   2991      * <blockquote><pre>{@code
   2992 import static java.lang.invoke.MethodHandles.*;
   2993 import static java.lang.invoke.MethodType.*;
   2994 ...
   2995 MethodHandle cat = lookup().findVirtual(String.class,
   2996   "concat", methodType(String.class, String.class));
   2997 MethodHandle upcase = lookup().findVirtual(String.class,
   2998   "toUpperCase", methodType(String.class));
   2999 assertEquals("xy", (String) cat.invokeExact("x", "y"));
   3000 MethodHandle f0 = filterArguments(cat, 0, upcase);
   3001 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
   3002 MethodHandle f1 = filterArguments(cat, 1, upcase);
   3003 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
   3004 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
   3005 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
   3006      * }</pre></blockquote>
   3007      * <p> Here is pseudocode for the resulting adapter:
   3008      * <blockquote><pre>{@code
   3009      * V target(P... p, A[i]... a[i], B... b);
   3010      * A[i] filter[i](V[i]);
   3011      * T adapter(P... p, V[i]... v[i], B... b) {
   3012      *   return target(p..., f[i](v[i])..., b...);
   3013      * }
   3014      * }</pre></blockquote>
   3015      *
   3016      * @param target the method handle to invoke after arguments are filtered
   3017      * @param pos the position of the first argument to filter
   3018      * @param filters method handles to call initially on filtered arguments
   3019      * @return method handle which incorporates the specified argument filtering logic
   3020      * @throws NullPointerException if the target is null
   3021      *                              or if the {@code filters} array is null
   3022      * @throws IllegalArgumentException if a non-null element of {@code filters}
   3023      *          does not match a corresponding argument type of target as described above,
   3024      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
   3025      *          or if the resulting method handle's type would have
   3026      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
   3027      */
   3028     public static
   3029     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
   3030         filterArgumentsCheckArity(target, pos, filters);
   3031 
   3032         for (int i = 0; i < filters.length; ++i) {
   3033             filterArgumentChecks(target, i + pos, filters[i]);
   3034         }
   3035 
   3036         return new Transformers.FilterArguments(target, pos, filters);
   3037     }
   3038 
   3039     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
   3040         MethodType targetType = target.type();
   3041         int maxPos = targetType.parameterCount();
   3042         if (pos + filters.length > maxPos)
   3043             throw newIllegalArgumentException("too many filters");
   3044     }
   3045 
   3046     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
   3047         MethodType targetType = target.type();
   3048         MethodType filterType = filter.type();
   3049         if (filterType.parameterCount() != 1
   3050             || filterType.returnType() != targetType.parameterType(pos))
   3051             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
   3052     }
   3053 
   3054     /**
   3055      * Adapts a target method handle by pre-processing
   3056      * a sub-sequence of its arguments with a filter (another method handle).
   3057      * The pre-processed arguments are replaced by the result (if any) of the
   3058      * filter function.
   3059      * The target is then called on the modified (usually shortened) argument list.
   3060      * <p>
   3061      * If the filter returns a value, the target must accept that value as
   3062      * its argument in position {@code pos}, preceded and/or followed by
   3063      * any arguments not passed to the filter.
   3064      * If the filter returns void, the target must accept all arguments
   3065      * not passed to the filter.
   3066      * No arguments are reordered, and a result returned from the filter
   3067      * replaces (in order) the whole subsequence of arguments originally
   3068      * passed to the adapter.
   3069      * <p>
   3070      * The argument types (if any) of the filter
   3071      * replace zero or one argument types of the target, at position {@code pos},
   3072      * in the resulting adapted method handle.
   3073      * The return type of the filter (if any) must be identical to the
   3074      * argument type of the target at position {@code pos}, and that target argument
   3075      * is supplied by the return value of the filter.
   3076      * <p>
   3077      * In all cases, {@code pos} must be greater than or equal to zero, and
   3078      * {@code pos} must also be less than or equal to the target's arity.
   3079      * <p><b>Example:</b>
   3080      * <blockquote><pre>{@code
   3081 import static java.lang.invoke.MethodHandles.*;
   3082 import static java.lang.invoke.MethodType.*;
   3083 ...
   3084 MethodHandle deepToString = publicLookup()
   3085   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
   3086 
   3087 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
   3088 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
   3089 
   3090 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
   3091 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
   3092 
   3093 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
   3094 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
   3095 assertEquals("[top, [up, down], strange]",
   3096              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
   3097 
   3098 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
   3099 assertEquals("[top, [up, down], [strange]]",
   3100              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
   3101 
   3102 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
   3103 assertEquals("[top, [[up, down, strange], charm], bottom]",
   3104              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
   3105      * }</pre></blockquote>
   3106      * <p> Here is pseudocode for the resulting adapter:
   3107      * <blockquote><pre>{@code
   3108      * T target(A...,V,C...);
   3109      * V filter(B...);
   3110      * T adapter(A... a,B... b,C... c) {
   3111      *   V v = filter(b...);
   3112      *   return target(a...,v,c...);
   3113      * }
   3114      * // and if the filter has no arguments:
   3115      * T target2(A...,V,C...);
   3116      * V filter2();
   3117      * T adapter2(A... a,C... c) {
   3118      *   V v = filter2();
   3119      *   return target2(a...,v,c...);
   3120      * }
   3121      * // and if the filter has a void return:
   3122      * T target3(A...,C...);
   3123      * void filter3(B...);
   3124      * void adapter3(A... a,B... b,C... c) {
   3125      *   filter3(b...);
   3126      *   return target3(a...,c...);
   3127      * }
   3128      * }</pre></blockquote>
   3129      * <p>
   3130      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
   3131      * one which first "folds" the affected arguments, and then drops them, in separate
   3132      * steps as follows:
   3133      * <blockquote><pre>{@code
   3134      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
   3135      * mh = MethodHandles.foldArguments(mh, coll); //step 1
   3136      * }</pre></blockquote>
   3137      * If the target method handle consumes no arguments besides than the result
   3138      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
   3139      * is equivalent to {@code filterReturnValue(coll, mh)}.
   3140      * If the filter method handle {@code coll} consumes one argument and produces
   3141      * a non-void result, then {@code collectArguments(mh, N, coll)}
   3142      * is equivalent to {@code filterArguments(mh, N, coll)}.
   3143      * Other equivalences are possible but would require argument permutation.
   3144      *
   3145      * @param target the method handle to invoke after filtering the subsequence of arguments
   3146      * @param pos the position of the first adapter argument to pass to the filter,
   3147      *            and/or the target argument which receives the result of the filter
   3148      * @param filter method handle to call on the subsequence of arguments
   3149      * @return method handle which incorporates the specified argument subsequence filtering logic
   3150      * @throws NullPointerException if either argument is null
   3151      * @throws IllegalArgumentException if the return type of {@code filter}
   3152      *          is non-void and is not the same as the {@code pos} argument of the target,
   3153      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
   3154      *          or if the resulting method handle's type would have
   3155      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
   3156      * @see MethodHandles#foldArguments
   3157      * @see MethodHandles#filterArguments
   3158      * @see MethodHandles#filterReturnValue
   3159      */
   3160     public static
   3161     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
   3162         MethodType newType = collectArgumentsChecks(target, pos, filter);
   3163         return new Transformers.CollectArguments(target, filter, pos, newType);
   3164     }
   3165 
   3166     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
   3167         MethodType targetType = target.type();
   3168         MethodType filterType = filter.type();
   3169         Class<?> rtype = filterType.returnType();
   3170         List<Class<?>> filterArgs = filterType.parameterList();
   3171         if (rtype == void.class) {
   3172             return targetType.insertParameterTypes(pos, filterArgs);
   3173         }
   3174         if (rtype != targetType.parameterType(pos)) {
   3175             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
   3176         }
   3177         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
   3178     }
   3179 
   3180     /**
   3181      * Adapts a target method handle by post-processing
   3182      * its return value (if any) with a filter (another method handle).
   3183      * The result of the filter is returned from the adapter.
   3184      * <p>
   3185      * If the target returns a value, the filter must accept that value as
   3186      * its only argument.
   3187      * If the target returns void, the filter must accept no arguments.
   3188      * <p>
   3189      * The return type of the filter
   3190      * replaces the return type of the target
   3191      * in the resulting adapted method handle.
   3192      * The argument type of the filter (if any) must be identical to the
   3193      * return type of the target.
   3194      * <p><b>Example:</b>
   3195      * <blockquote><pre>{@code
   3196 import static java.lang.invoke.MethodHandles.*;
   3197 import static java.lang.invoke.MethodType.*;
   3198 ...
   3199 MethodHandle cat = lookup().findVirtual(String.class,
   3200   "concat", methodType(String.class, String.class));
   3201 MethodHandle length = lookup().findVirtual(String.class,
   3202   "length", methodType(int.class));
   3203 System.out.println((String) cat.invokeExact("x", "y")); // xy
   3204 MethodHandle f0 = filterReturnValue(cat, length);
   3205 System.out.println((int) f0.invokeExact("x", "y")); // 2
   3206      * }</pre></blockquote>
   3207      * <p> Here is pseudocode for the resulting adapter:
   3208      * <blockquote><pre>{@code
   3209      * V target(A...);
   3210      * T filter(V);
   3211      * T adapter(A... a) {
   3212      *   V v = target(a...);
   3213      *   return filter(v);
   3214      * }
   3215      * // and if the target has a void return:
   3216      * void target2(A...);
   3217      * T filter2();
   3218      * T adapter2(A... a) {
   3219      *   target2(a...);
   3220      *   return filter2();
   3221      * }
   3222      * // and if the filter has a void return:
   3223      * V target3(A...);
   3224      * void filter3(V);
   3225      * void adapter3(A... a) {
   3226      *   V v = target3(a...);
   3227      *   filter3(v);
   3228      * }
   3229      * }</pre></blockquote>
   3230      * @param target the method handle to invoke before filtering the return value
   3231      * @param filter method handle to call on the return value
   3232      * @return method handle which incorporates the specified return value filtering logic
   3233      * @throws NullPointerException if either argument is null
   3234      * @throws IllegalArgumentException if the argument list of {@code filter}
   3235      *          does not match the return type of target as described above
   3236      */
   3237     public static
   3238     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
   3239         MethodType targetType = target.type();
   3240         MethodType filterType = filter.type();
   3241         filterReturnValueChecks(targetType, filterType);
   3242 
   3243         return new Transformers.FilterReturnValue(target, filter);
   3244     }
   3245 
   3246     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
   3247         Class<?> rtype = targetType.returnType();
   3248         int filterValues = filterType.parameterCount();
   3249         if (filterValues == 0
   3250                 ? (rtype != void.class)
   3251                 : (rtype != filterType.parameterType(0) || filterValues != 1))
   3252             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
   3253     }
   3254 
   3255     /**
   3256      * Adapts a target method handle by pre-processing
   3257      * some of its arguments, and then calling the target with
   3258      * the result of the pre-processing, inserted into the original
   3259      * sequence of arguments.
   3260      * <p>
   3261      * The pre-processing is performed by {@code combiner}, a second method handle.
   3262      * Of the arguments passed to the adapter, the first {@code N} arguments
   3263      * are copied to the combiner, which is then called.
   3264      * (Here, {@code N} is defined as the parameter count of the combiner.)
   3265      * After this, control passes to the target, with any result
   3266      * from the combiner inserted before the original {@code N} incoming
   3267      * arguments.
   3268      * <p>
   3269      * If the combiner returns a value, the first parameter type of the target
   3270      * must be identical with the return type of the combiner, and the next
   3271      * {@code N} parameter types of the target must exactly match the parameters
   3272      * of the combiner.
   3273      * <p>
   3274      * If the combiner has a void return, no result will be inserted,
   3275      * and the first {@code N} parameter types of the target
   3276      * must exactly match the parameters of the combiner.
   3277      * <p>
   3278      * The resulting adapter is the same type as the target, except that the
   3279      * first parameter type is dropped,
   3280      * if it corresponds to the result of the combiner.
   3281      * <p>
   3282      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
   3283      * that either the combiner or the target does not wish to receive.
   3284      * If some of the incoming arguments are destined only for the combiner,
   3285      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
   3286      * arguments will not need to be live on the stack on entry to the
   3287      * target.)
   3288      * <p><b>Example:</b>
   3289      * <blockquote><pre>{@code
   3290 import static java.lang.invoke.MethodHandles.*;
   3291 import static java.lang.invoke.MethodType.*;
   3292 ...
   3293 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
   3294   "println", methodType(void.class, String.class))
   3295     .bindTo(System.out);
   3296 MethodHandle cat = lookup().findVirtual(String.class,
   3297   "concat", methodType(String.class, String.class));
   3298 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
   3299 MethodHandle catTrace = foldArguments(cat, trace);
   3300 // also prints "boo":
   3301 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
   3302      * }</pre></blockquote>
   3303      * <p> Here is pseudocode for the resulting adapter:
   3304      * <blockquote><pre>{@code
   3305      * // there are N arguments in A...
   3306      * T target(V, A[N]..., B...);
   3307      * V combiner(A...);
   3308      * T adapter(A... a, B... b) {
   3309      *   V v = combiner(a...);
   3310      *   return target(v, a..., b...);
   3311      * }
   3312      * // and if the combiner has a void return:
   3313      * T target2(A[N]..., B...);
   3314      * void combiner2(A...);
   3315      * T adapter2(A... a, B... b) {
   3316      *   combiner2(a...);
   3317      *   return target2(a..., b...);
   3318      * }
   3319      * }</pre></blockquote>
   3320      * @param target the method handle to invoke after arguments are combined
   3321      * @param combiner method handle to call initially on the incoming arguments
   3322      * @return method handle which incorporates the specified argument folding logic
   3323      * @throws NullPointerException if either argument is null
   3324      * @throws IllegalArgumentException if {@code combiner}'s return type
   3325      *          is non-void and not the same as the first argument type of
   3326      *          the target, or if the initial {@code N} argument types
   3327      *          of the target
   3328      *          (skipping one matching the {@code combiner}'s return type)
   3329      *          are not identical with the argument types of {@code combiner}
   3330      */
   3331     public static
   3332     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
   3333         int foldPos = 0;
   3334         MethodType targetType = target.type();
   3335         MethodType combinerType = combiner.type();
   3336         Class<?> rtype = foldArgumentChecks(foldPos, targetType, combinerType);
   3337 
   3338         return new Transformers.FoldArguments(target, combiner);
   3339     }
   3340 
   3341     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
   3342         int foldArgs   = combinerType.parameterCount();
   3343         Class<?> rtype = combinerType.returnType();
   3344         int foldVals = rtype == void.class ? 0 : 1;
   3345         int afterInsertPos = foldPos + foldVals;
   3346         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
   3347         if (ok && !(combinerType.parameterList()
   3348                     .equals(targetType.parameterList().subList(afterInsertPos,
   3349                                                                afterInsertPos + foldArgs))))
   3350             ok = false;
   3351         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(0))
   3352             ok = false;
   3353         if (!ok)
   3354             throw misMatchedTypes("target and combiner types", targetType, combinerType);
   3355         return rtype;
   3356     }
   3357 
   3358     /**
   3359      * Makes a method handle which adapts a target method handle,
   3360      * by guarding it with a test, a boolean-valued method handle.
   3361      * If the guard fails, a fallback handle is called instead.
   3362      * All three method handles must have the same corresponding
   3363      * argument and return types, except that the return type
   3364      * of the test must be boolean, and the test is allowed
   3365      * to have fewer arguments than the other two method handles.
   3366      * <p> Here is pseudocode for the resulting adapter:
   3367      * <blockquote><pre>{@code
   3368      * boolean test(A...);
   3369      * T target(A...,B...);
   3370      * T fallback(A...,B...);
   3371      * T adapter(A... a,B... b) {
   3372      *   if (test(a...))
   3373      *     return target(a..., b...);
   3374      *   else
   3375      *     return fallback(a..., b...);
   3376      * }
   3377      * }</pre></blockquote>
   3378      * Note that the test arguments ({@code a...} in the pseudocode) cannot
   3379      * be modified by execution of the test, and so are passed unchanged
   3380      * from the caller to the target or fallback as appropriate.
   3381      * @param test method handle used for test, must return boolean
   3382      * @param target method handle to call if test passes
   3383      * @param fallback method handle to call if test fails
   3384      * @return method handle which incorporates the specified if/then/else logic
   3385      * @throws NullPointerException if any argument is null
   3386      * @throws IllegalArgumentException if {@code test} does not return boolean,
   3387      *          or if all three method types do not match (with the return
   3388      *          type of {@code test} changed to match that of the target).
   3389      */
   3390     public static
   3391     MethodHandle guardWithTest(MethodHandle test,
   3392                                MethodHandle target,
   3393                                MethodHandle fallback) {
   3394         MethodType gtype = test.type();
   3395         MethodType ttype = target.type();
   3396         MethodType ftype = fallback.type();
   3397         if (!ttype.equals(ftype))
   3398             throw misMatchedTypes("target and fallback types", ttype, ftype);
   3399         if (gtype.returnType() != boolean.class)
   3400             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
   3401         List<Class<?>> targs = ttype.parameterList();
   3402         List<Class<?>> gargs = gtype.parameterList();
   3403         if (!targs.equals(gargs)) {
   3404             int gpc = gargs.size(), tpc = targs.size();
   3405             if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
   3406                 throw misMatchedTypes("target and test types", ttype, gtype);
   3407             test = dropArguments(test, gpc, targs.subList(gpc, tpc));
   3408             gtype = test.type();
   3409         }
   3410 
   3411         return new Transformers.GuardWithTest(test, target, fallback);
   3412     }
   3413 
   3414     static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
   3415         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
   3416     }
   3417 
   3418     /**
   3419      * Makes a method handle which adapts a target method handle,
   3420      * by running it inside an exception handler.
   3421      * If the target returns normally, the adapter returns that value.
   3422      * If an exception matching the specified type is thrown, the fallback
   3423      * handle is called instead on the exception, plus the original arguments.
   3424      * <p>
   3425      * The target and handler must have the same corresponding
   3426      * argument and return types, except that handler may omit trailing arguments
   3427      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
   3428      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
   3429      * <p> Here is pseudocode for the resulting adapter:
   3430      * <blockquote><pre>{@code
   3431      * T target(A..., B...);
   3432      * T handler(ExType, A...);
   3433      * T adapter(A... a, B... b) {
   3434      *   try {
   3435      *     return target(a..., b...);
   3436      *   } catch (ExType ex) {
   3437      *     return handler(ex, a...);
   3438      *   }
   3439      * }
   3440      * }</pre></blockquote>
   3441      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
   3442      * be modified by execution of the target, and so are passed unchanged
   3443      * from the caller to the handler, if the handler is invoked.
   3444      * <p>
   3445      * The target and handler must return the same type, even if the handler
   3446      * always throws.  (This might happen, for instance, because the handler
   3447      * is simulating a {@code finally} clause).
   3448      * To create such a throwing handler, compose the handler creation logic
   3449      * with {@link #throwException throwException},
   3450      * in order to create a method handle of the correct return type.
   3451      * @param target method handle to call
   3452      * @param exType the type of exception which the handler will catch
   3453      * @param handler method handle to call if a matching exception is thrown
   3454      * @return method handle which incorporates the specified try/catch logic
   3455      * @throws NullPointerException if any argument is null
   3456      * @throws IllegalArgumentException if {@code handler} does not accept
   3457      *          the given exception type, or if the method handle types do
   3458      *          not match in their return types and their
   3459      *          corresponding parameters
   3460      */
   3461     public static
   3462     MethodHandle catchException(MethodHandle target,
   3463                                 Class<? extends Throwable> exType,
   3464                                 MethodHandle handler) {
   3465         MethodType ttype = target.type();
   3466         MethodType htype = handler.type();
   3467         if (htype.parameterCount() < 1 ||
   3468             !htype.parameterType(0).isAssignableFrom(exType))
   3469             throw newIllegalArgumentException("handler does not accept exception type "+exType);
   3470         if (htype.returnType() != ttype.returnType())
   3471             throw misMatchedTypes("target and handler return types", ttype, htype);
   3472         List<Class<?>> targs = ttype.parameterList();
   3473         List<Class<?>> hargs = htype.parameterList();
   3474         hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
   3475         if (!targs.equals(hargs)) {
   3476             int hpc = hargs.size(), tpc = targs.size();
   3477             if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
   3478                 throw misMatchedTypes("target and handler types", ttype, htype);
   3479         }
   3480 
   3481         return new Transformers.CatchException(target, handler, exType);
   3482     }
   3483 
   3484     /**
   3485      * Produces a method handle which will throw exceptions of the given {@code exType}.
   3486      * The method handle will accept a single argument of {@code exType},
   3487      * and immediately throw it as an exception.
   3488      * The method type will nominally specify a return of {@code returnType}.
   3489      * The return type may be anything convenient:  It doesn't matter to the
   3490      * method handle's behavior, since it will never return normally.
   3491      * @param returnType the return type of the desired method handle
   3492      * @param exType the parameter type of the desired method handle
   3493      * @return method handle which can throw the given exceptions
   3494      * @throws NullPointerException if either argument is null
   3495      */
   3496     public static
   3497     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
   3498         if (!Throwable.class.isAssignableFrom(exType))
   3499             throw new ClassCastException(exType.getName());
   3500 
   3501         return new Transformers.AlwaysThrow(returnType, exType);
   3502     }
   3503 }
   3504