Home | History | Annotate | Download | only in vad
      1 /*
      2  *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/modules/audio_processing/vad/voice_activity_detector.h"
     12 
     13 #include <algorithm>
     14 #include <vector>
     15 
     16 #include "testing/gtest/include/gtest/gtest.h"
     17 #include "webrtc/test/testsupport/fileutils.h"
     18 
     19 namespace webrtc {
     20 namespace {
     21 
     22 const int kStartTimeSec = 16;
     23 const float kMeanSpeechProbability = 0.3f;
     24 const float kMaxNoiseProbability = 0.1f;
     25 const size_t kNumChunks = 300u;
     26 const size_t kNumChunksPerIsacBlock = 3;
     27 
     28 void GenerateNoise(std::vector<int16_t>* data) {
     29   for (size_t i = 0; i < data->size(); ++i) {
     30     // std::rand returns between 0 and RAND_MAX, but this will work because it
     31     // wraps into some random place.
     32     (*data)[i] = std::rand();
     33   }
     34 }
     35 
     36 }  // namespace
     37 
     38 TEST(VoiceActivityDetectorTest, ConstructorSetsDefaultValues) {
     39   const float kDefaultVoiceValue = 1.f;
     40 
     41   VoiceActivityDetector vad;
     42 
     43   std::vector<double> p = vad.chunkwise_voice_probabilities();
     44   std::vector<double> rms = vad.chunkwise_rms();
     45 
     46   EXPECT_EQ(p.size(), 0u);
     47   EXPECT_EQ(rms.size(), 0u);
     48 
     49   EXPECT_FLOAT_EQ(vad.last_voice_probability(), kDefaultVoiceValue);
     50 }
     51 
     52 TEST(VoiceActivityDetectorTest, Speech16kHzHasHighVoiceProbabilities) {
     53   const int kSampleRateHz = 16000;
     54   const int kLength10Ms = kSampleRateHz / 100;
     55 
     56   VoiceActivityDetector vad;
     57 
     58   std::vector<int16_t> data(kLength10Ms);
     59   float mean_probability = 0.f;
     60 
     61   FILE* pcm_file =
     62       fopen(test::ResourcePath("audio_processing/transient/audio16kHz", "pcm")
     63                 .c_str(),
     64             "rb");
     65   ASSERT_TRUE(pcm_file != nullptr);
     66   // The silences in the file are skipped to get a more robust voice probability
     67   // for speech.
     68   ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]),
     69                   SEEK_SET),
     70             0);
     71 
     72   size_t num_chunks = 0;
     73   while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) ==
     74          data.size()) {
     75     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
     76 
     77     mean_probability += vad.last_voice_probability();
     78 
     79     ++num_chunks;
     80   }
     81 
     82   mean_probability /= num_chunks;
     83 
     84   EXPECT_GT(mean_probability, kMeanSpeechProbability);
     85 }
     86 
     87 TEST(VoiceActivityDetectorTest, Speech32kHzHasHighVoiceProbabilities) {
     88   const int kSampleRateHz = 32000;
     89   const int kLength10Ms = kSampleRateHz / 100;
     90 
     91   VoiceActivityDetector vad;
     92 
     93   std::vector<int16_t> data(kLength10Ms);
     94   float mean_probability = 0.f;
     95 
     96   FILE* pcm_file =
     97       fopen(test::ResourcePath("audio_processing/transient/audio32kHz", "pcm")
     98                 .c_str(),
     99             "rb");
    100   ASSERT_TRUE(pcm_file != nullptr);
    101   // The silences in the file are skipped to get a more robust voice probability
    102   // for speech.
    103   ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]),
    104                   SEEK_SET),
    105             0);
    106 
    107   size_t num_chunks = 0;
    108   while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) ==
    109          data.size()) {
    110     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
    111 
    112     mean_probability += vad.last_voice_probability();
    113 
    114     ++num_chunks;
    115   }
    116 
    117   mean_probability /= num_chunks;
    118 
    119   EXPECT_GT(mean_probability, kMeanSpeechProbability);
    120 }
    121 
    122 TEST(VoiceActivityDetectorTest, Noise16kHzHasLowVoiceProbabilities) {
    123   VoiceActivityDetector vad;
    124 
    125   std::vector<int16_t> data(kLength10Ms);
    126   float max_probability = 0.f;
    127 
    128   std::srand(42);
    129 
    130   for (size_t i = 0; i < kNumChunks; ++i) {
    131     GenerateNoise(&data);
    132 
    133     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
    134 
    135     // Before the |vad has enough data to process an ISAC block it will return
    136     // the default value, 1.f, which would ruin the |max_probability| value.
    137     if (i > kNumChunksPerIsacBlock) {
    138       max_probability = std::max(max_probability, vad.last_voice_probability());
    139     }
    140   }
    141 
    142   EXPECT_LT(max_probability, kMaxNoiseProbability);
    143 }
    144 
    145 TEST(VoiceActivityDetectorTest, Noise32kHzHasLowVoiceProbabilities) {
    146   VoiceActivityDetector vad;
    147 
    148   std::vector<int16_t> data(2 * kLength10Ms);
    149   float max_probability = 0.f;
    150 
    151   std::srand(42);
    152 
    153   for (size_t i = 0; i < kNumChunks; ++i) {
    154     GenerateNoise(&data);
    155 
    156     vad.ProcessChunk(&data[0], data.size(), 2 * kSampleRateHz);
    157 
    158     // Before the |vad has enough data to process an ISAC block it will return
    159     // the default value, 1.f, which would ruin the |max_probability| value.
    160     if (i > kNumChunksPerIsacBlock) {
    161       max_probability = std::max(max_probability, vad.last_voice_probability());
    162     }
    163   }
    164 
    165   EXPECT_LT(max_probability, kMaxNoiseProbability);
    166 }
    167 
    168 }  // namespace webrtc
    169