1 /* Math module -- standard C math library functions, pi and e */ 2 3 /* Here are some comments from Tim Peters, extracted from the 4 discussion attached to http://bugs.python.org/issue1640. They 5 describe the general aims of the math module with respect to 6 special values, IEEE-754 floating-point exceptions, and Python 7 exceptions. 8 9 These are the "spirit of 754" rules: 10 11 1. If the mathematical result is a real number, but of magnitude too 12 large to approximate by a machine float, overflow is signaled and the 13 result is an infinity (with the appropriate sign). 14 15 2. If the mathematical result is a real number, but of magnitude too 16 small to approximate by a machine float, underflow is signaled and the 17 result is a zero (with the appropriate sign). 18 19 3. At a singularity (a value x such that the limit of f(y) as y 20 approaches x exists and is an infinity), "divide by zero" is signaled 21 and the result is an infinity (with the appropriate sign). This is 22 complicated a little by that the left-side and right-side limits may 23 not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 24 from the positive or negative directions. In that specific case, the 25 sign of the zero determines the result of 1/0. 26 27 4. At a point where a function has no defined result in the extended 28 reals (i.e., the reals plus an infinity or two), invalid operation is 29 signaled and a NaN is returned. 30 31 And these are what Python has historically /tried/ to do (but not 32 always successfully, as platform libm behavior varies a lot): 33 34 For #1, raise OverflowError. 35 36 For #2, return a zero (with the appropriate sign if that happens by 37 accident ;-)). 38 39 For #3 and #4, raise ValueError. It may have made sense to raise 40 Python's ZeroDivisionError in #3, but historically that's only been 41 raised for division by zero and mod by zero. 42 43 */ 44 45 /* 46 In general, on an IEEE-754 platform the aim is to follow the C99 47 standard, including Annex 'F', whenever possible. Where the 48 standard recommends raising the 'divide-by-zero' or 'invalid' 49 floating-point exceptions, Python should raise a ValueError. Where 50 the standard recommends raising 'overflow', Python should raise an 51 OverflowError. In all other circumstances a value should be 52 returned. 53 */ 54 55 #include "Python.h" 56 #include "_math.h" 57 58 /* 59 sin(pi*x), giving accurate results for all finite x (especially x 60 integral or close to an integer). This is here for use in the 61 reflection formula for the gamma function. It conforms to IEEE 62 754-2008 for finite arguments, but not for infinities or nans. 63 */ 64 65 static const double pi = 3.141592653589793238462643383279502884197; 66 static const double sqrtpi = 1.772453850905516027298167483341145182798; 67 static const double logpi = 1.144729885849400174143427351353058711647; 68 69 static double 70 sinpi(double x) 71 { 72 double y, r; 73 int n; 74 /* this function should only ever be called for finite arguments */ 75 assert(Py_IS_FINITE(x)); 76 y = fmod(fabs(x), 2.0); 77 n = (int)round(2.0*y); 78 assert(0 <= n && n <= 4); 79 switch (n) { 80 case 0: 81 r = sin(pi*y); 82 break; 83 case 1: 84 r = cos(pi*(y-0.5)); 85 break; 86 case 2: 87 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give 88 -0.0 instead of 0.0 when y == 1.0. */ 89 r = sin(pi*(1.0-y)); 90 break; 91 case 3: 92 r = -cos(pi*(y-1.5)); 93 break; 94 case 4: 95 r = sin(pi*(y-2.0)); 96 break; 97 default: 98 assert(0); /* should never get here */ 99 r = -1.23e200; /* silence gcc warning */ 100 } 101 return copysign(1.0, x)*r; 102 } 103 104 /* Implementation of the real gamma function. In extensive but non-exhaustive 105 random tests, this function proved accurate to within <= 10 ulps across the 106 entire float domain. Note that accuracy may depend on the quality of the 107 system math functions, the pow function in particular. Special cases 108 follow C99 annex F. The parameters and method are tailored to platforms 109 whose double format is the IEEE 754 binary64 format. 110 111 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 112 and g=6.024680040776729583740234375; these parameters are amongst those 113 used by the Boost library. Following Boost (again), we re-express the 114 Lanczos sum as a rational function, and compute it that way. The 115 coefficients below were computed independently using MPFR, and have been 116 double-checked against the coefficients in the Boost source code. 117 118 For x < 0.0 we use the reflection formula. 119 120 There's one minor tweak that deserves explanation: Lanczos' formula for 121 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x 122 values, x+g-0.5 can be represented exactly. However, in cases where it 123 can't be represented exactly the small error in x+g-0.5 can be magnified 124 significantly by the pow and exp calls, especially for large x. A cheap 125 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error 126 involved in the computation of x+g-0.5 (that is, e = computed value of 127 x+g-0.5 - exact value of x+g-0.5). Here's the proof: 128 129 Correction factor 130 ----------------- 131 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 132 double, and e is tiny. Then: 133 134 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) 135 = pow(y, x-0.5)/exp(y) * C, 136 137 where the correction_factor C is given by 138 139 C = pow(1-e/y, x-0.5) * exp(e) 140 141 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: 142 143 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y 144 145 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and 146 147 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), 148 149 Note that for accuracy, when computing r*C it's better to do 150 151 r + e*g/y*r; 152 153 than 154 155 r * (1 + e*g/y); 156 157 since the addition in the latter throws away most of the bits of 158 information in e*g/y. 159 */ 160 161 #define LANCZOS_N 13 162 static const double lanczos_g = 6.024680040776729583740234375; 163 static const double lanczos_g_minus_half = 5.524680040776729583740234375; 164 static const double lanczos_num_coeffs[LANCZOS_N] = { 165 23531376880.410759688572007674451636754734846804940, 166 42919803642.649098768957899047001988850926355848959, 167 35711959237.355668049440185451547166705960488635843, 168 17921034426.037209699919755754458931112671403265390, 169 6039542586.3520280050642916443072979210699388420708, 170 1439720407.3117216736632230727949123939715485786772, 171 248874557.86205415651146038641322942321632125127801, 172 31426415.585400194380614231628318205362874684987640, 173 2876370.6289353724412254090516208496135991145378768, 174 186056.26539522349504029498971604569928220784236328, 175 8071.6720023658162106380029022722506138218516325024, 176 210.82427775157934587250973392071336271166969580291, 177 2.5066282746310002701649081771338373386264310793408 178 }; 179 180 /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ 181 static const double lanczos_den_coeffs[LANCZOS_N] = { 182 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, 183 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; 184 185 /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ 186 #define NGAMMA_INTEGRAL 23 187 static const double gamma_integral[NGAMMA_INTEGRAL] = { 188 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, 189 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, 190 1307674368000.0, 20922789888000.0, 355687428096000.0, 191 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, 192 51090942171709440000.0, 1124000727777607680000.0, 193 }; 194 195 /* Lanczos' sum L_g(x), for positive x */ 196 197 static double 198 lanczos_sum(double x) 199 { 200 double num = 0.0, den = 0.0; 201 int i; 202 assert(x > 0.0); 203 /* evaluate the rational function lanczos_sum(x). For large 204 x, the obvious algorithm risks overflow, so we instead 205 rescale the denominator and numerator of the rational 206 function by x**(1-LANCZOS_N) and treat this as a 207 rational function in 1/x. This also reduces the error for 208 larger x values. The choice of cutoff point (5.0 below) is 209 somewhat arbitrary; in tests, smaller cutoff values than 210 this resulted in lower accuracy. */ 211 if (x < 5.0) { 212 for (i = LANCZOS_N; --i >= 0; ) { 213 num = num * x + lanczos_num_coeffs[i]; 214 den = den * x + lanczos_den_coeffs[i]; 215 } 216 } 217 else { 218 for (i = 0; i < LANCZOS_N; i++) { 219 num = num / x + lanczos_num_coeffs[i]; 220 den = den / x + lanczos_den_coeffs[i]; 221 } 222 } 223 return num/den; 224 } 225 226 /* Constant for +infinity, generated in the same way as float('inf'). */ 227 228 static double 229 m_inf(void) 230 { 231 #ifndef PY_NO_SHORT_FLOAT_REPR 232 return _Py_dg_infinity(0); 233 #else 234 return Py_HUGE_VAL; 235 #endif 236 } 237 238 /* Constant nan value, generated in the same way as float('nan'). */ 239 /* We don't currently assume that Py_NAN is defined everywhere. */ 240 241 #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) 242 243 static double 244 m_nan(void) 245 { 246 #ifndef PY_NO_SHORT_FLOAT_REPR 247 return _Py_dg_stdnan(0); 248 #else 249 return Py_NAN; 250 #endif 251 } 252 253 #endif 254 255 static double 256 m_tgamma(double x) 257 { 258 double absx, r, y, z, sqrtpow; 259 260 /* special cases */ 261 if (!Py_IS_FINITE(x)) { 262 if (Py_IS_NAN(x) || x > 0.0) 263 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */ 264 else { 265 errno = EDOM; 266 return Py_NAN; /* tgamma(-inf) = nan, invalid */ 267 } 268 } 269 if (x == 0.0) { 270 errno = EDOM; 271 /* tgamma(+-0.0) = +-inf, divide-by-zero */ 272 return copysign(Py_HUGE_VAL, x); 273 } 274 275 /* integer arguments */ 276 if (x == floor(x)) { 277 if (x < 0.0) { 278 errno = EDOM; /* tgamma(n) = nan, invalid for */ 279 return Py_NAN; /* negative integers n */ 280 } 281 if (x <= NGAMMA_INTEGRAL) 282 return gamma_integral[(int)x - 1]; 283 } 284 absx = fabs(x); 285 286 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */ 287 if (absx < 1e-20) { 288 r = 1.0/x; 289 if (Py_IS_INFINITY(r)) 290 errno = ERANGE; 291 return r; 292 } 293 294 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for 295 x > 200, and underflows to +-0.0 for x < -200, not a negative 296 integer. */ 297 if (absx > 200.0) { 298 if (x < 0.0) { 299 return 0.0/sinpi(x); 300 } 301 else { 302 errno = ERANGE; 303 return Py_HUGE_VAL; 304 } 305 } 306 307 y = absx + lanczos_g_minus_half; 308 /* compute error in sum */ 309 if (absx > lanczos_g_minus_half) { 310 /* note: the correction can be foiled by an optimizing 311 compiler that (incorrectly) thinks that an expression like 312 a + b - a - b can be optimized to 0.0. This shouldn't 313 happen in a standards-conforming compiler. */ 314 double q = y - absx; 315 z = q - lanczos_g_minus_half; 316 } 317 else { 318 double q = y - lanczos_g_minus_half; 319 z = q - absx; 320 } 321 z = z * lanczos_g / y; 322 if (x < 0.0) { 323 r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx); 324 r -= z * r; 325 if (absx < 140.0) { 326 r /= pow(y, absx - 0.5); 327 } 328 else { 329 sqrtpow = pow(y, absx / 2.0 - 0.25); 330 r /= sqrtpow; 331 r /= sqrtpow; 332 } 333 } 334 else { 335 r = lanczos_sum(absx) / exp(y); 336 r += z * r; 337 if (absx < 140.0) { 338 r *= pow(y, absx - 0.5); 339 } 340 else { 341 sqrtpow = pow(y, absx / 2.0 - 0.25); 342 r *= sqrtpow; 343 r *= sqrtpow; 344 } 345 } 346 if (Py_IS_INFINITY(r)) 347 errno = ERANGE; 348 return r; 349 } 350 351 /* 352 lgamma: natural log of the absolute value of the Gamma function. 353 For large arguments, Lanczos' formula works extremely well here. 354 */ 355 356 static double 357 m_lgamma(double x) 358 { 359 double r, absx; 360 361 /* special cases */ 362 if (!Py_IS_FINITE(x)) { 363 if (Py_IS_NAN(x)) 364 return x; /* lgamma(nan) = nan */ 365 else 366 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ 367 } 368 369 /* integer arguments */ 370 if (x == floor(x) && x <= 2.0) { 371 if (x <= 0.0) { 372 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */ 373 return Py_HUGE_VAL; /* integers n <= 0 */ 374 } 375 else { 376 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ 377 } 378 } 379 380 absx = fabs(x); 381 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ 382 if (absx < 1e-20) 383 return -log(absx); 384 385 /* Lanczos' formula. We could save a fraction of a ulp in accuracy by 386 having a second set of numerator coefficients for lanczos_sum that 387 absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g 388 subtraction below; it's probably not worth it. */ 389 r = log(lanczos_sum(absx)) - lanczos_g; 390 r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); 391 if (x < 0.0) 392 /* Use reflection formula to get value for negative x. */ 393 r = logpi - log(fabs(sinpi(absx))) - log(absx) - r; 394 if (Py_IS_INFINITY(r)) 395 errno = ERANGE; 396 return r; 397 } 398 399 /* 400 Implementations of the error function erf(x) and the complementary error 401 function erfc(x). 402 403 Method: we use a series approximation for erf for small x, and a continued 404 fraction approximation for erfc(x) for larger x; 405 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), 406 this gives us erf(x) and erfc(x) for all x. 407 408 The series expansion used is: 409 410 erf(x) = x*exp(-x*x)/sqrt(pi) * [ 411 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...] 412 413 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k). 414 This series converges well for smallish x, but slowly for larger x. 415 416 The continued fraction expansion used is: 417 418 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - ) 419 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...] 420 421 after the first term, the general term has the form: 422 423 k*(k-0.5)/(2*k+0.5 + x**2 - ...). 424 425 This expansion converges fast for larger x, but convergence becomes 426 infinitely slow as x approaches 0.0. The (somewhat naive) continued 427 fraction evaluation algorithm used below also risks overflow for large x; 428 but for large x, erfc(x) == 0.0 to within machine precision. (For 429 example, erfc(30.0) is approximately 2.56e-393). 430 431 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and 432 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) < 433 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the 434 numbers of terms to use for the relevant expansions. */ 435 436 #define ERF_SERIES_CUTOFF 1.5 437 #define ERF_SERIES_TERMS 25 438 #define ERFC_CONTFRAC_CUTOFF 30.0 439 #define ERFC_CONTFRAC_TERMS 50 440 441 /* 442 Error function, via power series. 443 444 Given a finite float x, return an approximation to erf(x). 445 Converges reasonably fast for small x. 446 */ 447 448 static double 449 m_erf_series(double x) 450 { 451 double x2, acc, fk, result; 452 int i, saved_errno; 453 454 x2 = x * x; 455 acc = 0.0; 456 fk = (double)ERF_SERIES_TERMS + 0.5; 457 for (i = 0; i < ERF_SERIES_TERMS; i++) { 458 acc = 2.0 + x2 * acc / fk; 459 fk -= 1.0; 460 } 461 /* Make sure the exp call doesn't affect errno; 462 see m_erfc_contfrac for more. */ 463 saved_errno = errno; 464 result = acc * x * exp(-x2) / sqrtpi; 465 errno = saved_errno; 466 return result; 467 } 468 469 /* 470 Complementary error function, via continued fraction expansion. 471 472 Given a positive float x, return an approximation to erfc(x). Converges 473 reasonably fast for x large (say, x > 2.0), and should be safe from 474 overflow if x and nterms are not too large. On an IEEE 754 machine, with x 475 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller 476 than the smallest representable nonzero float. */ 477 478 static double 479 m_erfc_contfrac(double x) 480 { 481 double x2, a, da, p, p_last, q, q_last, b, result; 482 int i, saved_errno; 483 484 if (x >= ERFC_CONTFRAC_CUTOFF) 485 return 0.0; 486 487 x2 = x*x; 488 a = 0.0; 489 da = 0.5; 490 p = 1.0; p_last = 0.0; 491 q = da + x2; q_last = 1.0; 492 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) { 493 double temp; 494 a += da; 495 da += 2.0; 496 b = da + x2; 497 temp = p; p = b*p - a*p_last; p_last = temp; 498 temp = q; q = b*q - a*q_last; q_last = temp; 499 } 500 /* Issue #8986: On some platforms, exp sets errno on underflow to zero; 501 save the current errno value so that we can restore it later. */ 502 saved_errno = errno; 503 result = p / q * x * exp(-x2) / sqrtpi; 504 errno = saved_errno; 505 return result; 506 } 507 508 /* Error function erf(x), for general x */ 509 510 static double 511 m_erf(double x) 512 { 513 double absx, cf; 514 515 if (Py_IS_NAN(x)) 516 return x; 517 absx = fabs(x); 518 if (absx < ERF_SERIES_CUTOFF) 519 return m_erf_series(x); 520 else { 521 cf = m_erfc_contfrac(absx); 522 return x > 0.0 ? 1.0 - cf : cf - 1.0; 523 } 524 } 525 526 /* Complementary error function erfc(x), for general x. */ 527 528 static double 529 m_erfc(double x) 530 { 531 double absx, cf; 532 533 if (Py_IS_NAN(x)) 534 return x; 535 absx = fabs(x); 536 if (absx < ERF_SERIES_CUTOFF) 537 return 1.0 - m_erf_series(x); 538 else { 539 cf = m_erfc_contfrac(absx); 540 return x > 0.0 ? cf : 2.0 - cf; 541 } 542 } 543 544 /* 545 wrapper for atan2 that deals directly with special cases before 546 delegating to the platform libm for the remaining cases. This 547 is necessary to get consistent behaviour across platforms. 548 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't 549 always follow C99. 550 */ 551 552 static double 553 m_atan2(double y, double x) 554 { 555 if (Py_IS_NAN(x) || Py_IS_NAN(y)) 556 return Py_NAN; 557 if (Py_IS_INFINITY(y)) { 558 if (Py_IS_INFINITY(x)) { 559 if (copysign(1., x) == 1.) 560 /* atan2(+-inf, +inf) == +-pi/4 */ 561 return copysign(0.25*Py_MATH_PI, y); 562 else 563 /* atan2(+-inf, -inf) == +-pi*3/4 */ 564 return copysign(0.75*Py_MATH_PI, y); 565 } 566 /* atan2(+-inf, x) == +-pi/2 for finite x */ 567 return copysign(0.5*Py_MATH_PI, y); 568 } 569 if (Py_IS_INFINITY(x) || y == 0.) { 570 if (copysign(1., x) == 1.) 571 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ 572 return copysign(0., y); 573 else 574 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ 575 return copysign(Py_MATH_PI, y); 576 } 577 return atan2(y, x); 578 } 579 580 /* 581 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), 582 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with 583 special values directly, passing positive non-special values through to 584 the system log/log10. 585 */ 586 587 static double 588 m_log(double x) 589 { 590 if (Py_IS_FINITE(x)) { 591 if (x > 0.0) 592 return log(x); 593 errno = EDOM; 594 if (x == 0.0) 595 return -Py_HUGE_VAL; /* log(0) = -inf */ 596 else 597 return Py_NAN; /* log(-ve) = nan */ 598 } 599 else if (Py_IS_NAN(x)) 600 return x; /* log(nan) = nan */ 601 else if (x > 0.0) 602 return x; /* log(inf) = inf */ 603 else { 604 errno = EDOM; 605 return Py_NAN; /* log(-inf) = nan */ 606 } 607 } 608 609 /* 610 log2: log to base 2. 611 612 Uses an algorithm that should: 613 614 (a) produce exact results for powers of 2, and 615 (b) give a monotonic log2 (for positive finite floats), 616 assuming that the system log is monotonic. 617 */ 618 619 static double 620 m_log2(double x) 621 { 622 if (!Py_IS_FINITE(x)) { 623 if (Py_IS_NAN(x)) 624 return x; /* log2(nan) = nan */ 625 else if (x > 0.0) 626 return x; /* log2(+inf) = +inf */ 627 else { 628 errno = EDOM; 629 return Py_NAN; /* log2(-inf) = nan, invalid-operation */ 630 } 631 } 632 633 if (x > 0.0) { 634 #ifdef HAVE_LOG2 635 return log2(x); 636 #else 637 double m; 638 int e; 639 m = frexp(x, &e); 640 /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when 641 * x is just greater than 1.0: in that case e is 1, log(m) is negative, 642 * and we get significant cancellation error from the addition of 643 * log(m) / log(2) to e. The slight rewrite of the expression below 644 * avoids this problem. 645 */ 646 if (x >= 1.0) { 647 return log(2.0 * m) / log(2.0) + (e - 1); 648 } 649 else { 650 return log(m) / log(2.0) + e; 651 } 652 #endif 653 } 654 else if (x == 0.0) { 655 errno = EDOM; 656 return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */ 657 } 658 else { 659 errno = EDOM; 660 return Py_NAN; /* log2(-inf) = nan, invalid-operation */ 661 } 662 } 663 664 static double 665 m_log10(double x) 666 { 667 if (Py_IS_FINITE(x)) { 668 if (x > 0.0) 669 return log10(x); 670 errno = EDOM; 671 if (x == 0.0) 672 return -Py_HUGE_VAL; /* log10(0) = -inf */ 673 else 674 return Py_NAN; /* log10(-ve) = nan */ 675 } 676 else if (Py_IS_NAN(x)) 677 return x; /* log10(nan) = nan */ 678 else if (x > 0.0) 679 return x; /* log10(inf) = inf */ 680 else { 681 errno = EDOM; 682 return Py_NAN; /* log10(-inf) = nan */ 683 } 684 } 685 686 687 static PyObject * 688 math_gcd(PyObject *self, PyObject *args) 689 { 690 PyObject *a, *b, *g; 691 692 if (!PyArg_ParseTuple(args, "OO:gcd", &a, &b)) 693 return NULL; 694 695 a = PyNumber_Index(a); 696 if (a == NULL) 697 return NULL; 698 b = PyNumber_Index(b); 699 if (b == NULL) { 700 Py_DECREF(a); 701 return NULL; 702 } 703 g = _PyLong_GCD(a, b); 704 Py_DECREF(a); 705 Py_DECREF(b); 706 return g; 707 } 708 709 PyDoc_STRVAR(math_gcd_doc, 710 "gcd(x, y) -> int\n\ 711 greatest common divisor of x and y"); 712 713 714 /* Call is_error when errno != 0, and where x is the result libm 715 * returned. is_error will usually set up an exception and return 716 * true (1), but may return false (0) without setting up an exception. 717 */ 718 static int 719 is_error(double x) 720 { 721 int result = 1; /* presumption of guilt */ 722 assert(errno); /* non-zero errno is a precondition for calling */ 723 if (errno == EDOM) 724 PyErr_SetString(PyExc_ValueError, "math domain error"); 725 726 else if (errno == ERANGE) { 727 /* ANSI C generally requires libm functions to set ERANGE 728 * on overflow, but also generally *allows* them to set 729 * ERANGE on underflow too. There's no consistency about 730 * the latter across platforms. 731 * Alas, C99 never requires that errno be set. 732 * Here we suppress the underflow errors (libm functions 733 * should return a zero on underflow, and +- HUGE_VAL on 734 * overflow, so testing the result for zero suffices to 735 * distinguish the cases). 736 * 737 * On some platforms (Ubuntu/ia64) it seems that errno can be 738 * set to ERANGE for subnormal results that do *not* underflow 739 * to zero. So to be safe, we'll ignore ERANGE whenever the 740 * function result is less than one in absolute value. 741 */ 742 if (fabs(x) < 1.0) 743 result = 0; 744 else 745 PyErr_SetString(PyExc_OverflowError, 746 "math range error"); 747 } 748 else 749 /* Unexpected math error */ 750 PyErr_SetFromErrno(PyExc_ValueError); 751 return result; 752 } 753 754 /* 755 math_1 is used to wrap a libm function f that takes a double 756 arguments and returns a double. 757 758 The error reporting follows these rules, which are designed to do 759 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 760 platforms. 761 762 - a NaN result from non-NaN inputs causes ValueError to be raised 763 - an infinite result from finite inputs causes OverflowError to be 764 raised if can_overflow is 1, or raises ValueError if can_overflow 765 is 0. 766 - if the result is finite and errno == EDOM then ValueError is 767 raised 768 - if the result is finite and nonzero and errno == ERANGE then 769 OverflowError is raised 770 771 The last rule is used to catch overflow on platforms which follow 772 C89 but for which HUGE_VAL is not an infinity. 773 774 For the majority of one-argument functions these rules are enough 775 to ensure that Python's functions behave as specified in 'Annex F' 776 of the C99 standard, with the 'invalid' and 'divide-by-zero' 777 floating-point exceptions mapping to Python's ValueError and the 778 'overflow' floating-point exception mapping to OverflowError. 779 math_1 only works for functions that don't have singularities *and* 780 the possibility of overflow; fortunately, that covers everything we 781 care about right now. 782 */ 783 784 static PyObject * 785 math_1_to_whatever(PyObject *arg, double (*func) (double), 786 PyObject *(*from_double_func) (double), 787 int can_overflow) 788 { 789 double x, r; 790 x = PyFloat_AsDouble(arg); 791 if (x == -1.0 && PyErr_Occurred()) 792 return NULL; 793 errno = 0; 794 PyFPE_START_PROTECT("in math_1", return 0); 795 r = (*func)(x); 796 PyFPE_END_PROTECT(r); 797 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) { 798 PyErr_SetString(PyExc_ValueError, 799 "math domain error"); /* invalid arg */ 800 return NULL; 801 } 802 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) { 803 if (can_overflow) 804 PyErr_SetString(PyExc_OverflowError, 805 "math range error"); /* overflow */ 806 else 807 PyErr_SetString(PyExc_ValueError, 808 "math domain error"); /* singularity */ 809 return NULL; 810 } 811 if (Py_IS_FINITE(r) && errno && is_error(r)) 812 /* this branch unnecessary on most platforms */ 813 return NULL; 814 815 return (*from_double_func)(r); 816 } 817 818 /* variant of math_1, to be used when the function being wrapped is known to 819 set errno properly (that is, errno = EDOM for invalid or divide-by-zero, 820 errno = ERANGE for overflow). */ 821 822 static PyObject * 823 math_1a(PyObject *arg, double (*func) (double)) 824 { 825 double x, r; 826 x = PyFloat_AsDouble(arg); 827 if (x == -1.0 && PyErr_Occurred()) 828 return NULL; 829 errno = 0; 830 PyFPE_START_PROTECT("in math_1a", return 0); 831 r = (*func)(x); 832 PyFPE_END_PROTECT(r); 833 if (errno && is_error(r)) 834 return NULL; 835 return PyFloat_FromDouble(r); 836 } 837 838 /* 839 math_2 is used to wrap a libm function f that takes two double 840 arguments and returns a double. 841 842 The error reporting follows these rules, which are designed to do 843 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 844 platforms. 845 846 - a NaN result from non-NaN inputs causes ValueError to be raised 847 - an infinite result from finite inputs causes OverflowError to be 848 raised. 849 - if the result is finite and errno == EDOM then ValueError is 850 raised 851 - if the result is finite and nonzero and errno == ERANGE then 852 OverflowError is raised 853 854 The last rule is used to catch overflow on platforms which follow 855 C89 but for which HUGE_VAL is not an infinity. 856 857 For most two-argument functions (copysign, fmod, hypot, atan2) 858 these rules are enough to ensure that Python's functions behave as 859 specified in 'Annex F' of the C99 standard, with the 'invalid' and 860 'divide-by-zero' floating-point exceptions mapping to Python's 861 ValueError and the 'overflow' floating-point exception mapping to 862 OverflowError. 863 */ 864 865 static PyObject * 866 math_1(PyObject *arg, double (*func) (double), int can_overflow) 867 { 868 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow); 869 } 870 871 static PyObject * 872 math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow) 873 { 874 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow); 875 } 876 877 static PyObject * 878 math_2(PyObject *args, double (*func) (double, double), const char *funcname) 879 { 880 PyObject *ox, *oy; 881 double x, y, r; 882 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) 883 return NULL; 884 x = PyFloat_AsDouble(ox); 885 y = PyFloat_AsDouble(oy); 886 if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) 887 return NULL; 888 errno = 0; 889 PyFPE_START_PROTECT("in math_2", return 0); 890 r = (*func)(x, y); 891 PyFPE_END_PROTECT(r); 892 if (Py_IS_NAN(r)) { 893 if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) 894 errno = EDOM; 895 else 896 errno = 0; 897 } 898 else if (Py_IS_INFINITY(r)) { 899 if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) 900 errno = ERANGE; 901 else 902 errno = 0; 903 } 904 if (errno && is_error(r)) 905 return NULL; 906 else 907 return PyFloat_FromDouble(r); 908 } 909 910 #define FUNC1(funcname, func, can_overflow, docstring) \ 911 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ 912 return math_1(args, func, can_overflow); \ 913 }\ 914 PyDoc_STRVAR(math_##funcname##_doc, docstring); 915 916 #define FUNC1A(funcname, func, docstring) \ 917 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ 918 return math_1a(args, func); \ 919 }\ 920 PyDoc_STRVAR(math_##funcname##_doc, docstring); 921 922 #define FUNC2(funcname, func, docstring) \ 923 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ 924 return math_2(args, func, #funcname); \ 925 }\ 926 PyDoc_STRVAR(math_##funcname##_doc, docstring); 927 928 FUNC1(acos, acos, 0, 929 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") 930 FUNC1(acosh, m_acosh, 0, 931 "acosh(x)\n\nReturn the inverse hyperbolic cosine of x.") 932 FUNC1(asin, asin, 0, 933 "asin(x)\n\nReturn the arc sine (measured in radians) of x.") 934 FUNC1(asinh, m_asinh, 0, 935 "asinh(x)\n\nReturn the inverse hyperbolic sine of x.") 936 FUNC1(atan, atan, 0, 937 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") 938 FUNC2(atan2, m_atan2, 939 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" 940 "Unlike atan(y/x), the signs of both x and y are considered.") 941 FUNC1(atanh, m_atanh, 0, 942 "atanh(x)\n\nReturn the inverse hyperbolic tangent of x.") 943 944 static PyObject * math_ceil(PyObject *self, PyObject *number) { 945 _Py_IDENTIFIER(__ceil__); 946 PyObject *method, *result; 947 948 method = _PyObject_LookupSpecial(number, &PyId___ceil__); 949 if (method == NULL) { 950 if (PyErr_Occurred()) 951 return NULL; 952 return math_1_to_int(number, ceil, 0); 953 } 954 result = PyObject_CallFunctionObjArgs(method, NULL); 955 Py_DECREF(method); 956 return result; 957 } 958 959 PyDoc_STRVAR(math_ceil_doc, 960 "ceil(x)\n\nReturn the ceiling of x as an Integral.\n" 961 "This is the smallest integer >= x."); 962 963 FUNC2(copysign, copysign, 964 "copysign(x, y)\n\nReturn a float with the magnitude (absolute value) " 965 "of x but the sign \nof y. On platforms that support signed zeros, " 966 "copysign(1.0, -0.0) \nreturns -1.0.\n") 967 FUNC1(cos, cos, 0, 968 "cos(x)\n\nReturn the cosine of x (measured in radians).") 969 FUNC1(cosh, cosh, 1, 970 "cosh(x)\n\nReturn the hyperbolic cosine of x.") 971 FUNC1A(erf, m_erf, 972 "erf(x)\n\nError function at x.") 973 FUNC1A(erfc, m_erfc, 974 "erfc(x)\n\nComplementary error function at x.") 975 FUNC1(exp, exp, 1, 976 "exp(x)\n\nReturn e raised to the power of x.") 977 FUNC1(expm1, m_expm1, 1, 978 "expm1(x)\n\nReturn exp(x)-1.\n" 979 "This function avoids the loss of precision involved in the direct " 980 "evaluation of exp(x)-1 for small x.") 981 FUNC1(fabs, fabs, 0, 982 "fabs(x)\n\nReturn the absolute value of the float x.") 983 984 static PyObject * math_floor(PyObject *self, PyObject *number) { 985 _Py_IDENTIFIER(__floor__); 986 PyObject *method, *result; 987 988 method = _PyObject_LookupSpecial(number, &PyId___floor__); 989 if (method == NULL) { 990 if (PyErr_Occurred()) 991 return NULL; 992 return math_1_to_int(number, floor, 0); 993 } 994 result = PyObject_CallFunctionObjArgs(method, NULL); 995 Py_DECREF(method); 996 return result; 997 } 998 999 PyDoc_STRVAR(math_floor_doc, 1000 "floor(x)\n\nReturn the floor of x as an Integral.\n" 1001 "This is the largest integer <= x."); 1002 1003 FUNC1A(gamma, m_tgamma, 1004 "gamma(x)\n\nGamma function at x.") 1005 FUNC1A(lgamma, m_lgamma, 1006 "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.") 1007 FUNC1(log1p, m_log1p, 0, 1008 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n" 1009 "The result is computed in a way which is accurate for x near zero.") 1010 FUNC1(sin, sin, 0, 1011 "sin(x)\n\nReturn the sine of x (measured in radians).") 1012 FUNC1(sinh, sinh, 1, 1013 "sinh(x)\n\nReturn the hyperbolic sine of x.") 1014 FUNC1(sqrt, sqrt, 0, 1015 "sqrt(x)\n\nReturn the square root of x.") 1016 FUNC1(tan, tan, 0, 1017 "tan(x)\n\nReturn the tangent of x (measured in radians).") 1018 FUNC1(tanh, tanh, 0, 1019 "tanh(x)\n\nReturn the hyperbolic tangent of x.") 1020 1021 /* Precision summation function as msum() by Raymond Hettinger in 1022 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>, 1023 enhanced with the exact partials sum and roundoff from Mark 1024 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>. 1025 See those links for more details, proofs and other references. 1026 1027 Note 1: IEEE 754R floating point semantics are assumed, 1028 but the current implementation does not re-establish special 1029 value semantics across iterations (i.e. handling -Inf + Inf). 1030 1031 Note 2: No provision is made for intermediate overflow handling; 1032 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while 1033 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the 1034 overflow of the first partial sum. 1035 1036 Note 3: The intermediate values lo, yr, and hi are declared volatile so 1037 aggressive compilers won't algebraically reduce lo to always be exactly 0.0. 1038 Also, the volatile declaration forces the values to be stored in memory as 1039 regular doubles instead of extended long precision (80-bit) values. This 1040 prevents double rounding because any addition or subtraction of two doubles 1041 can be resolved exactly into double-sized hi and lo values. As long as the 1042 hi value gets forced into a double before yr and lo are computed, the extra 1043 bits in downstream extended precision operations (x87 for example) will be 1044 exactly zero and therefore can be losslessly stored back into a double, 1045 thereby preventing double rounding. 1046 1047 Note 4: A similar implementation is in Modules/cmathmodule.c. 1048 Be sure to update both when making changes. 1049 1050 Note 5: The signature of math.fsum() differs from builtins.sum() 1051 because the start argument doesn't make sense in the context of 1052 accurate summation. Since the partials table is collapsed before 1053 returning a result, sum(seq2, start=sum(seq1)) may not equal the 1054 accurate result returned by sum(itertools.chain(seq1, seq2)). 1055 */ 1056 1057 #define NUM_PARTIALS 32 /* initial partials array size, on stack */ 1058 1059 /* Extend the partials array p[] by doubling its size. */ 1060 static int /* non-zero on error */ 1061 _fsum_realloc(double **p_ptr, Py_ssize_t n, 1062 double *ps, Py_ssize_t *m_ptr) 1063 { 1064 void *v = NULL; 1065 Py_ssize_t m = *m_ptr; 1066 1067 m += m; /* double */ 1068 if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) { 1069 double *p = *p_ptr; 1070 if (p == ps) { 1071 v = PyMem_Malloc(sizeof(double) * m); 1072 if (v != NULL) 1073 memcpy(v, ps, sizeof(double) * n); 1074 } 1075 else 1076 v = PyMem_Realloc(p, sizeof(double) * m); 1077 } 1078 if (v == NULL) { /* size overflow or no memory */ 1079 PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); 1080 return 1; 1081 } 1082 *p_ptr = (double*) v; 1083 *m_ptr = m; 1084 return 0; 1085 } 1086 1087 /* Full precision summation of a sequence of floats. 1088 1089 def msum(iterable): 1090 partials = [] # sorted, non-overlapping partial sums 1091 for x in iterable: 1092 i = 0 1093 for y in partials: 1094 if abs(x) < abs(y): 1095 x, y = y, x 1096 hi = x + y 1097 lo = y - (hi - x) 1098 if lo: 1099 partials[i] = lo 1100 i += 1 1101 x = hi 1102 partials[i:] = [x] 1103 return sum_exact(partials) 1104 1105 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo 1106 are exactly equal to x+y. The inner loop applies hi/lo summation to each 1107 partial so that the list of partial sums remains exact. 1108 1109 Sum_exact() adds the partial sums exactly and correctly rounds the final 1110 result (using the round-half-to-even rule). The items in partials remain 1111 non-zero, non-special, non-overlapping and strictly increasing in 1112 magnitude, but possibly not all having the same sign. 1113 1114 Depends on IEEE 754 arithmetic guarantees and half-even rounding. 1115 */ 1116 1117 static PyObject* 1118 math_fsum(PyObject *self, PyObject *seq) 1119 { 1120 PyObject *item, *iter, *sum = NULL; 1121 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; 1122 double x, y, t, ps[NUM_PARTIALS], *p = ps; 1123 double xsave, special_sum = 0.0, inf_sum = 0.0; 1124 volatile double hi, yr, lo; 1125 1126 iter = PyObject_GetIter(seq); 1127 if (iter == NULL) 1128 return NULL; 1129 1130 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL) 1131 1132 for(;;) { /* for x in iterable */ 1133 assert(0 <= n && n <= m); 1134 assert((m == NUM_PARTIALS && p == ps) || 1135 (m > NUM_PARTIALS && p != NULL)); 1136 1137 item = PyIter_Next(iter); 1138 if (item == NULL) { 1139 if (PyErr_Occurred()) 1140 goto _fsum_error; 1141 break; 1142 } 1143 x = PyFloat_AsDouble(item); 1144 Py_DECREF(item); 1145 if (PyErr_Occurred()) 1146 goto _fsum_error; 1147 1148 xsave = x; 1149 for (i = j = 0; j < n; j++) { /* for y in partials */ 1150 y = p[j]; 1151 if (fabs(x) < fabs(y)) { 1152 t = x; x = y; y = t; 1153 } 1154 hi = x + y; 1155 yr = hi - x; 1156 lo = y - yr; 1157 if (lo != 0.0) 1158 p[i++] = lo; 1159 x = hi; 1160 } 1161 1162 n = i; /* ps[i:] = [x] */ 1163 if (x != 0.0) { 1164 if (! Py_IS_FINITE(x)) { 1165 /* a nonfinite x could arise either as 1166 a result of intermediate overflow, or 1167 as a result of a nan or inf in the 1168 summands */ 1169 if (Py_IS_FINITE(xsave)) { 1170 PyErr_SetString(PyExc_OverflowError, 1171 "intermediate overflow in fsum"); 1172 goto _fsum_error; 1173 } 1174 if (Py_IS_INFINITY(xsave)) 1175 inf_sum += xsave; 1176 special_sum += xsave; 1177 /* reset partials */ 1178 n = 0; 1179 } 1180 else if (n >= m && _fsum_realloc(&p, n, ps, &m)) 1181 goto _fsum_error; 1182 else 1183 p[n++] = x; 1184 } 1185 } 1186 1187 if (special_sum != 0.0) { 1188 if (Py_IS_NAN(inf_sum)) 1189 PyErr_SetString(PyExc_ValueError, 1190 "-inf + inf in fsum"); 1191 else 1192 sum = PyFloat_FromDouble(special_sum); 1193 goto _fsum_error; 1194 } 1195 1196 hi = 0.0; 1197 if (n > 0) { 1198 hi = p[--n]; 1199 /* sum_exact(ps, hi) from the top, stop when the sum becomes 1200 inexact. */ 1201 while (n > 0) { 1202 x = hi; 1203 y = p[--n]; 1204 assert(fabs(y) < fabs(x)); 1205 hi = x + y; 1206 yr = hi - x; 1207 lo = y - yr; 1208 if (lo != 0.0) 1209 break; 1210 } 1211 /* Make half-even rounding work across multiple partials. 1212 Needed so that sum([1e-16, 1, 1e16]) will round-up the last 1213 digit to two instead of down to zero (the 1e-16 makes the 1 1214 slightly closer to two). With a potential 1 ULP rounding 1215 error fixed-up, math.fsum() can guarantee commutativity. */ 1216 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || 1217 (lo > 0.0 && p[n-1] > 0.0))) { 1218 y = lo * 2.0; 1219 x = hi + y; 1220 yr = x - hi; 1221 if (y == yr) 1222 hi = x; 1223 } 1224 } 1225 sum = PyFloat_FromDouble(hi); 1226 1227 _fsum_error: 1228 PyFPE_END_PROTECT(hi) 1229 Py_DECREF(iter); 1230 if (p != ps) 1231 PyMem_Free(p); 1232 return sum; 1233 } 1234 1235 #undef NUM_PARTIALS 1236 1237 PyDoc_STRVAR(math_fsum_doc, 1238 "fsum(iterable)\n\n\ 1239 Return an accurate floating point sum of values in the iterable.\n\ 1240 Assumes IEEE-754 floating point arithmetic."); 1241 1242 /* Return the smallest integer k such that n < 2**k, or 0 if n == 0. 1243 * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type - 1244 * count_leading_zero_bits(x) 1245 */ 1246 1247 /* XXX: This routine does more or less the same thing as 1248 * bits_in_digit() in Objects/longobject.c. Someday it would be nice to 1249 * consolidate them. On BSD, there's a library function called fls() 1250 * that we could use, and GCC provides __builtin_clz(). 1251 */ 1252 1253 static unsigned long 1254 bit_length(unsigned long n) 1255 { 1256 unsigned long len = 0; 1257 while (n != 0) { 1258 ++len; 1259 n >>= 1; 1260 } 1261 return len; 1262 } 1263 1264 static unsigned long 1265 count_set_bits(unsigned long n) 1266 { 1267 unsigned long count = 0; 1268 while (n != 0) { 1269 ++count; 1270 n &= n - 1; /* clear least significant bit */ 1271 } 1272 return count; 1273 } 1274 1275 /* Divide-and-conquer factorial algorithm 1276 * 1277 * Based on the formula and pseudo-code provided at: 1278 * http://www.luschny.de/math/factorial/binarysplitfact.html 1279 * 1280 * Faster algorithms exist, but they're more complicated and depend on 1281 * a fast prime factorization algorithm. 1282 * 1283 * Notes on the algorithm 1284 * ---------------------- 1285 * 1286 * factorial(n) is written in the form 2**k * m, with m odd. k and m are 1287 * computed separately, and then combined using a left shift. 1288 * 1289 * The function factorial_odd_part computes the odd part m (i.e., the greatest 1290 * odd divisor) of factorial(n), using the formula: 1291 * 1292 * factorial_odd_part(n) = 1293 * 1294 * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j 1295 * 1296 * Example: factorial_odd_part(20) = 1297 * 1298 * (1) * 1299 * (1) * 1300 * (1 * 3 * 5) * 1301 * (1 * 3 * 5 * 7 * 9) 1302 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) 1303 * 1304 * Here i goes from large to small: the first term corresponds to i=4 (any 1305 * larger i gives an empty product), and the last term corresponds to i=0. 1306 * Each term can be computed from the last by multiplying by the extra odd 1307 * numbers required: e.g., to get from the penultimate term to the last one, 1308 * we multiply by (11 * 13 * 15 * 17 * 19). 1309 * 1310 * To see a hint of why this formula works, here are the same numbers as above 1311 * but with the even parts (i.e., the appropriate powers of 2) included. For 1312 * each subterm in the product for i, we multiply that subterm by 2**i: 1313 * 1314 * factorial(20) = 1315 * 1316 * (16) * 1317 * (8) * 1318 * (4 * 12 * 20) * 1319 * (2 * 6 * 10 * 14 * 18) * 1320 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) 1321 * 1322 * The factorial_partial_product function computes the product of all odd j in 1323 * range(start, stop) for given start and stop. It's used to compute the 1324 * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It 1325 * operates recursively, repeatedly splitting the range into two roughly equal 1326 * pieces until the subranges are small enough to be computed using only C 1327 * integer arithmetic. 1328 * 1329 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing 1330 * the factorial) is computed independently in the main math_factorial 1331 * function. By standard results, its value is: 1332 * 1333 * two_valuation = n//2 + n//4 + n//8 + .... 1334 * 1335 * It can be shown (e.g., by complete induction on n) that two_valuation is 1336 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of 1337 * '1'-bits in the binary expansion of n. 1338 */ 1339 1340 /* factorial_partial_product: Compute product(range(start, stop, 2)) using 1341 * divide and conquer. Assumes start and stop are odd and stop > start. 1342 * max_bits must be >= bit_length(stop - 2). */ 1343 1344 static PyObject * 1345 factorial_partial_product(unsigned long start, unsigned long stop, 1346 unsigned long max_bits) 1347 { 1348 unsigned long midpoint, num_operands; 1349 PyObject *left = NULL, *right = NULL, *result = NULL; 1350 1351 /* If the return value will fit an unsigned long, then we can 1352 * multiply in a tight, fast loop where each multiply is O(1). 1353 * Compute an upper bound on the number of bits required to store 1354 * the answer. 1355 * 1356 * Storing some integer z requires floor(lg(z))+1 bits, which is 1357 * conveniently the value returned by bit_length(z). The 1358 * product x*y will require at most 1359 * bit_length(x) + bit_length(y) bits to store, based 1360 * on the idea that lg product = lg x + lg y. 1361 * 1362 * We know that stop - 2 is the largest number to be multiplied. From 1363 * there, we have: bit_length(answer) <= num_operands * 1364 * bit_length(stop - 2) 1365 */ 1366 1367 num_operands = (stop - start) / 2; 1368 /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the 1369 * unlikely case of an overflow in num_operands * max_bits. */ 1370 if (num_operands <= 8 * SIZEOF_LONG && 1371 num_operands * max_bits <= 8 * SIZEOF_LONG) { 1372 unsigned long j, total; 1373 for (total = start, j = start + 2; j < stop; j += 2) 1374 total *= j; 1375 return PyLong_FromUnsignedLong(total); 1376 } 1377 1378 /* find midpoint of range(start, stop), rounded up to next odd number. */ 1379 midpoint = (start + num_operands) | 1; 1380 left = factorial_partial_product(start, midpoint, 1381 bit_length(midpoint - 2)); 1382 if (left == NULL) 1383 goto error; 1384 right = factorial_partial_product(midpoint, stop, max_bits); 1385 if (right == NULL) 1386 goto error; 1387 result = PyNumber_Multiply(left, right); 1388 1389 error: 1390 Py_XDECREF(left); 1391 Py_XDECREF(right); 1392 return result; 1393 } 1394 1395 /* factorial_odd_part: compute the odd part of factorial(n). */ 1396 1397 static PyObject * 1398 factorial_odd_part(unsigned long n) 1399 { 1400 long i; 1401 unsigned long v, lower, upper; 1402 PyObject *partial, *tmp, *inner, *outer; 1403 1404 inner = PyLong_FromLong(1); 1405 if (inner == NULL) 1406 return NULL; 1407 outer = inner; 1408 Py_INCREF(outer); 1409 1410 upper = 3; 1411 for (i = bit_length(n) - 2; i >= 0; i--) { 1412 v = n >> i; 1413 if (v <= 2) 1414 continue; 1415 lower = upper; 1416 /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ 1417 upper = (v + 1) | 1; 1418 /* Here inner is the product of all odd integers j in the range (0, 1419 n/2**(i+1)]. The factorial_partial_product call below gives the 1420 product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ 1421 partial = factorial_partial_product(lower, upper, bit_length(upper-2)); 1422 /* inner *= partial */ 1423 if (partial == NULL) 1424 goto error; 1425 tmp = PyNumber_Multiply(inner, partial); 1426 Py_DECREF(partial); 1427 if (tmp == NULL) 1428 goto error; 1429 Py_DECREF(inner); 1430 inner = tmp; 1431 /* Now inner is the product of all odd integers j in the range (0, 1432 n/2**i], giving the inner product in the formula above. */ 1433 1434 /* outer *= inner; */ 1435 tmp = PyNumber_Multiply(outer, inner); 1436 if (tmp == NULL) 1437 goto error; 1438 Py_DECREF(outer); 1439 outer = tmp; 1440 } 1441 Py_DECREF(inner); 1442 return outer; 1443 1444 error: 1445 Py_DECREF(outer); 1446 Py_DECREF(inner); 1447 return NULL; 1448 } 1449 1450 /* Lookup table for small factorial values */ 1451 1452 static const unsigned long SmallFactorials[] = { 1453 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 1454 362880, 3628800, 39916800, 479001600, 1455 #if SIZEOF_LONG >= 8 1456 6227020800, 87178291200, 1307674368000, 1457 20922789888000, 355687428096000, 6402373705728000, 1458 121645100408832000, 2432902008176640000 1459 #endif 1460 }; 1461 1462 static PyObject * 1463 math_factorial(PyObject *self, PyObject *arg) 1464 { 1465 long x; 1466 int overflow; 1467 PyObject *result, *odd_part, *two_valuation; 1468 1469 if (PyFloat_Check(arg)) { 1470 PyObject *lx; 1471 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg); 1472 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) { 1473 PyErr_SetString(PyExc_ValueError, 1474 "factorial() only accepts integral values"); 1475 return NULL; 1476 } 1477 lx = PyLong_FromDouble(dx); 1478 if (lx == NULL) 1479 return NULL; 1480 x = PyLong_AsLongAndOverflow(lx, &overflow); 1481 Py_DECREF(lx); 1482 } 1483 else 1484 x = PyLong_AsLongAndOverflow(arg, &overflow); 1485 1486 if (x == -1 && PyErr_Occurred()) { 1487 return NULL; 1488 } 1489 else if (overflow == 1) { 1490 PyErr_Format(PyExc_OverflowError, 1491 "factorial() argument should not exceed %ld", 1492 LONG_MAX); 1493 return NULL; 1494 } 1495 else if (overflow == -1 || x < 0) { 1496 PyErr_SetString(PyExc_ValueError, 1497 "factorial() not defined for negative values"); 1498 return NULL; 1499 } 1500 1501 /* use lookup table if x is small */ 1502 if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) 1503 return PyLong_FromUnsignedLong(SmallFactorials[x]); 1504 1505 /* else express in the form odd_part * 2**two_valuation, and compute as 1506 odd_part << two_valuation. */ 1507 odd_part = factorial_odd_part(x); 1508 if (odd_part == NULL) 1509 return NULL; 1510 two_valuation = PyLong_FromLong(x - count_set_bits(x)); 1511 if (two_valuation == NULL) { 1512 Py_DECREF(odd_part); 1513 return NULL; 1514 } 1515 result = PyNumber_Lshift(odd_part, two_valuation); 1516 Py_DECREF(two_valuation); 1517 Py_DECREF(odd_part); 1518 return result; 1519 } 1520 1521 PyDoc_STRVAR(math_factorial_doc, 1522 "factorial(x) -> Integral\n" 1523 "\n" 1524 "Find x!. Raise a ValueError if x is negative or non-integral."); 1525 1526 static PyObject * 1527 math_trunc(PyObject *self, PyObject *number) 1528 { 1529 _Py_IDENTIFIER(__trunc__); 1530 PyObject *trunc, *result; 1531 1532 if (Py_TYPE(number)->tp_dict == NULL) { 1533 if (PyType_Ready(Py_TYPE(number)) < 0) 1534 return NULL; 1535 } 1536 1537 trunc = _PyObject_LookupSpecial(number, &PyId___trunc__); 1538 if (trunc == NULL) { 1539 if (!PyErr_Occurred()) 1540 PyErr_Format(PyExc_TypeError, 1541 "type %.100s doesn't define __trunc__ method", 1542 Py_TYPE(number)->tp_name); 1543 return NULL; 1544 } 1545 result = PyObject_CallFunctionObjArgs(trunc, NULL); 1546 Py_DECREF(trunc); 1547 return result; 1548 } 1549 1550 PyDoc_STRVAR(math_trunc_doc, 1551 "trunc(x:Real) -> Integral\n" 1552 "\n" 1553 "Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method."); 1554 1555 static PyObject * 1556 math_frexp(PyObject *self, PyObject *arg) 1557 { 1558 int i; 1559 double x = PyFloat_AsDouble(arg); 1560 if (x == -1.0 && PyErr_Occurred()) 1561 return NULL; 1562 /* deal with special cases directly, to sidestep platform 1563 differences */ 1564 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { 1565 i = 0; 1566 } 1567 else { 1568 PyFPE_START_PROTECT("in math_frexp", return 0); 1569 x = frexp(x, &i); 1570 PyFPE_END_PROTECT(x); 1571 } 1572 return Py_BuildValue("(di)", x, i); 1573 } 1574 1575 PyDoc_STRVAR(math_frexp_doc, 1576 "frexp(x)\n" 1577 "\n" 1578 "Return the mantissa and exponent of x, as pair (m, e).\n" 1579 "m is a float and e is an int, such that x = m * 2.**e.\n" 1580 "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0."); 1581 1582 static PyObject * 1583 math_ldexp(PyObject *self, PyObject *args) 1584 { 1585 double x, r; 1586 PyObject *oexp; 1587 long exp; 1588 int overflow; 1589 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp)) 1590 return NULL; 1591 1592 if (PyLong_Check(oexp)) { 1593 /* on overflow, replace exponent with either LONG_MAX 1594 or LONG_MIN, depending on the sign. */ 1595 exp = PyLong_AsLongAndOverflow(oexp, &overflow); 1596 if (exp == -1 && PyErr_Occurred()) 1597 return NULL; 1598 if (overflow) 1599 exp = overflow < 0 ? LONG_MIN : LONG_MAX; 1600 } 1601 else { 1602 PyErr_SetString(PyExc_TypeError, 1603 "Expected an int as second argument to ldexp."); 1604 return NULL; 1605 } 1606 1607 if (x == 0. || !Py_IS_FINITE(x)) { 1608 /* NaNs, zeros and infinities are returned unchanged */ 1609 r = x; 1610 errno = 0; 1611 } else if (exp > INT_MAX) { 1612 /* overflow */ 1613 r = copysign(Py_HUGE_VAL, x); 1614 errno = ERANGE; 1615 } else if (exp < INT_MIN) { 1616 /* underflow to +-0 */ 1617 r = copysign(0., x); 1618 errno = 0; 1619 } else { 1620 errno = 0; 1621 PyFPE_START_PROTECT("in math_ldexp", return 0); 1622 r = ldexp(x, (int)exp); 1623 PyFPE_END_PROTECT(r); 1624 if (Py_IS_INFINITY(r)) 1625 errno = ERANGE; 1626 } 1627 1628 if (errno && is_error(r)) 1629 return NULL; 1630 return PyFloat_FromDouble(r); 1631 } 1632 1633 PyDoc_STRVAR(math_ldexp_doc, 1634 "ldexp(x, i)\n\n\ 1635 Return x * (2**i)."); 1636 1637 static PyObject * 1638 math_modf(PyObject *self, PyObject *arg) 1639 { 1640 double y, x = PyFloat_AsDouble(arg); 1641 if (x == -1.0 && PyErr_Occurred()) 1642 return NULL; 1643 /* some platforms don't do the right thing for NaNs and 1644 infinities, so we take care of special cases directly. */ 1645 if (!Py_IS_FINITE(x)) { 1646 if (Py_IS_INFINITY(x)) 1647 return Py_BuildValue("(dd)", copysign(0., x), x); 1648 else if (Py_IS_NAN(x)) 1649 return Py_BuildValue("(dd)", x, x); 1650 } 1651 1652 errno = 0; 1653 PyFPE_START_PROTECT("in math_modf", return 0); 1654 x = modf(x, &y); 1655 PyFPE_END_PROTECT(x); 1656 return Py_BuildValue("(dd)", x, y); 1657 } 1658 1659 PyDoc_STRVAR(math_modf_doc, 1660 "modf(x)\n" 1661 "\n" 1662 "Return the fractional and integer parts of x. Both results carry the sign\n" 1663 "of x and are floats."); 1664 1665 /* A decent logarithm is easy to compute even for huge ints, but libm can't 1666 do that by itself -- loghelper can. func is log or log10, and name is 1667 "log" or "log10". Note that overflow of the result isn't possible: an int 1668 can contain no more than INT_MAX * SHIFT bits, so has value certainly less 1669 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is 1670 small enough to fit in an IEEE single. log and log10 are even smaller. 1671 However, intermediate overflow is possible for an int if the number of bits 1672 in that int is larger than PY_SSIZE_T_MAX. */ 1673 1674 static PyObject* 1675 loghelper(PyObject* arg, double (*func)(double), const char *funcname) 1676 { 1677 /* If it is int, do it ourselves. */ 1678 if (PyLong_Check(arg)) { 1679 double x, result; 1680 Py_ssize_t e; 1681 1682 /* Negative or zero inputs give a ValueError. */ 1683 if (Py_SIZE(arg) <= 0) { 1684 PyErr_SetString(PyExc_ValueError, 1685 "math domain error"); 1686 return NULL; 1687 } 1688 1689 x = PyLong_AsDouble(arg); 1690 if (x == -1.0 && PyErr_Occurred()) { 1691 if (!PyErr_ExceptionMatches(PyExc_OverflowError)) 1692 return NULL; 1693 /* Here the conversion to double overflowed, but it's possible 1694 to compute the log anyway. Clear the exception and continue. */ 1695 PyErr_Clear(); 1696 x = _PyLong_Frexp((PyLongObject *)arg, &e); 1697 if (x == -1.0 && PyErr_Occurred()) 1698 return NULL; 1699 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ 1700 result = func(x) + func(2.0) * e; 1701 } 1702 else 1703 /* Successfully converted x to a double. */ 1704 result = func(x); 1705 return PyFloat_FromDouble(result); 1706 } 1707 1708 /* Else let libm handle it by itself. */ 1709 return math_1(arg, func, 0); 1710 } 1711 1712 static PyObject * 1713 math_log(PyObject *self, PyObject *args) 1714 { 1715 PyObject *arg; 1716 PyObject *base = NULL; 1717 PyObject *num, *den; 1718 PyObject *ans; 1719 1720 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base)) 1721 return NULL; 1722 1723 num = loghelper(arg, m_log, "log"); 1724 if (num == NULL || base == NULL) 1725 return num; 1726 1727 den = loghelper(base, m_log, "log"); 1728 if (den == NULL) { 1729 Py_DECREF(num); 1730 return NULL; 1731 } 1732 1733 ans = PyNumber_TrueDivide(num, den); 1734 Py_DECREF(num); 1735 Py_DECREF(den); 1736 return ans; 1737 } 1738 1739 PyDoc_STRVAR(math_log_doc, 1740 "log(x[, base])\n\n\ 1741 Return the logarithm of x to the given base.\n\ 1742 If the base not specified, returns the natural logarithm (base e) of x."); 1743 1744 static PyObject * 1745 math_log2(PyObject *self, PyObject *arg) 1746 { 1747 return loghelper(arg, m_log2, "log2"); 1748 } 1749 1750 PyDoc_STRVAR(math_log2_doc, 1751 "log2(x)\n\nReturn the base 2 logarithm of x."); 1752 1753 static PyObject * 1754 math_log10(PyObject *self, PyObject *arg) 1755 { 1756 return loghelper(arg, m_log10, "log10"); 1757 } 1758 1759 PyDoc_STRVAR(math_log10_doc, 1760 "log10(x)\n\nReturn the base 10 logarithm of x."); 1761 1762 static PyObject * 1763 math_fmod(PyObject *self, PyObject *args) 1764 { 1765 PyObject *ox, *oy; 1766 double r, x, y; 1767 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) 1768 return NULL; 1769 x = PyFloat_AsDouble(ox); 1770 y = PyFloat_AsDouble(oy); 1771 if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) 1772 return NULL; 1773 /* fmod(x, +/-Inf) returns x for finite x. */ 1774 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) 1775 return PyFloat_FromDouble(x); 1776 errno = 0; 1777 PyFPE_START_PROTECT("in math_fmod", return 0); 1778 r = fmod(x, y); 1779 PyFPE_END_PROTECT(r); 1780 if (Py_IS_NAN(r)) { 1781 if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) 1782 errno = EDOM; 1783 else 1784 errno = 0; 1785 } 1786 if (errno && is_error(r)) 1787 return NULL; 1788 else 1789 return PyFloat_FromDouble(r); 1790 } 1791 1792 PyDoc_STRVAR(math_fmod_doc, 1793 "fmod(x, y)\n\nReturn fmod(x, y), according to platform C." 1794 " x % y may differ."); 1795 1796 static PyObject * 1797 math_hypot(PyObject *self, PyObject *args) 1798 { 1799 PyObject *ox, *oy; 1800 double r, x, y; 1801 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) 1802 return NULL; 1803 x = PyFloat_AsDouble(ox); 1804 y = PyFloat_AsDouble(oy); 1805 if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) 1806 return NULL; 1807 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ 1808 if (Py_IS_INFINITY(x)) 1809 return PyFloat_FromDouble(fabs(x)); 1810 if (Py_IS_INFINITY(y)) 1811 return PyFloat_FromDouble(fabs(y)); 1812 errno = 0; 1813 PyFPE_START_PROTECT("in math_hypot", return 0); 1814 r = hypot(x, y); 1815 PyFPE_END_PROTECT(r); 1816 if (Py_IS_NAN(r)) { 1817 if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) 1818 errno = EDOM; 1819 else 1820 errno = 0; 1821 } 1822 else if (Py_IS_INFINITY(r)) { 1823 if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) 1824 errno = ERANGE; 1825 else 1826 errno = 0; 1827 } 1828 if (errno && is_error(r)) 1829 return NULL; 1830 else 1831 return PyFloat_FromDouble(r); 1832 } 1833 1834 PyDoc_STRVAR(math_hypot_doc, 1835 "hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); 1836 1837 /* pow can't use math_2, but needs its own wrapper: the problem is 1838 that an infinite result can arise either as a result of overflow 1839 (in which case OverflowError should be raised) or as a result of 1840 e.g. 0.**-5. (for which ValueError needs to be raised.) 1841 */ 1842 1843 static PyObject * 1844 math_pow(PyObject *self, PyObject *args) 1845 { 1846 PyObject *ox, *oy; 1847 double r, x, y; 1848 int odd_y; 1849 1850 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) 1851 return NULL; 1852 x = PyFloat_AsDouble(ox); 1853 y = PyFloat_AsDouble(oy); 1854 if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) 1855 return NULL; 1856 1857 /* deal directly with IEEE specials, to cope with problems on various 1858 platforms whose semantics don't exactly match C99 */ 1859 r = 0.; /* silence compiler warning */ 1860 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { 1861 errno = 0; 1862 if (Py_IS_NAN(x)) 1863 r = y == 0. ? 1. : x; /* NaN**0 = 1 */ 1864 else if (Py_IS_NAN(y)) 1865 r = x == 1. ? 1. : y; /* 1**NaN = 1 */ 1866 else if (Py_IS_INFINITY(x)) { 1867 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; 1868 if (y > 0.) 1869 r = odd_y ? x : fabs(x); 1870 else if (y == 0.) 1871 r = 1.; 1872 else /* y < 0. */ 1873 r = odd_y ? copysign(0., x) : 0.; 1874 } 1875 else if (Py_IS_INFINITY(y)) { 1876 if (fabs(x) == 1.0) 1877 r = 1.; 1878 else if (y > 0. && fabs(x) > 1.0) 1879 r = y; 1880 else if (y < 0. && fabs(x) < 1.0) { 1881 r = -y; /* result is +inf */ 1882 if (x == 0.) /* 0**-inf: divide-by-zero */ 1883 errno = EDOM; 1884 } 1885 else 1886 r = 0.; 1887 } 1888 } 1889 else { 1890 /* let libm handle finite**finite */ 1891 errno = 0; 1892 PyFPE_START_PROTECT("in math_pow", return 0); 1893 r = pow(x, y); 1894 PyFPE_END_PROTECT(r); 1895 /* a NaN result should arise only from (-ve)**(finite 1896 non-integer); in this case we want to raise ValueError. */ 1897 if (!Py_IS_FINITE(r)) { 1898 if (Py_IS_NAN(r)) { 1899 errno = EDOM; 1900 } 1901 /* 1902 an infinite result here arises either from: 1903 (A) (+/-0.)**negative (-> divide-by-zero) 1904 (B) overflow of x**y with x and y finite 1905 */ 1906 else if (Py_IS_INFINITY(r)) { 1907 if (x == 0.) 1908 errno = EDOM; 1909 else 1910 errno = ERANGE; 1911 } 1912 } 1913 } 1914 1915 if (errno && is_error(r)) 1916 return NULL; 1917 else 1918 return PyFloat_FromDouble(r); 1919 } 1920 1921 PyDoc_STRVAR(math_pow_doc, 1922 "pow(x, y)\n\nReturn x**y (x to the power of y)."); 1923 1924 static const double degToRad = Py_MATH_PI / 180.0; 1925 static const double radToDeg = 180.0 / Py_MATH_PI; 1926 1927 static PyObject * 1928 math_degrees(PyObject *self, PyObject *arg) 1929 { 1930 double x = PyFloat_AsDouble(arg); 1931 if (x == -1.0 && PyErr_Occurred()) 1932 return NULL; 1933 return PyFloat_FromDouble(x * radToDeg); 1934 } 1935 1936 PyDoc_STRVAR(math_degrees_doc, 1937 "degrees(x)\n\n\ 1938 Convert angle x from radians to degrees."); 1939 1940 static PyObject * 1941 math_radians(PyObject *self, PyObject *arg) 1942 { 1943 double x = PyFloat_AsDouble(arg); 1944 if (x == -1.0 && PyErr_Occurred()) 1945 return NULL; 1946 return PyFloat_FromDouble(x * degToRad); 1947 } 1948 1949 PyDoc_STRVAR(math_radians_doc, 1950 "radians(x)\n\n\ 1951 Convert angle x from degrees to radians."); 1952 1953 static PyObject * 1954 math_isfinite(PyObject *self, PyObject *arg) 1955 { 1956 double x = PyFloat_AsDouble(arg); 1957 if (x == -1.0 && PyErr_Occurred()) 1958 return NULL; 1959 return PyBool_FromLong((long)Py_IS_FINITE(x)); 1960 } 1961 1962 PyDoc_STRVAR(math_isfinite_doc, 1963 "isfinite(x) -> bool\n\n\ 1964 Return True if x is neither an infinity nor a NaN, and False otherwise."); 1965 1966 static PyObject * 1967 math_isnan(PyObject *self, PyObject *arg) 1968 { 1969 double x = PyFloat_AsDouble(arg); 1970 if (x == -1.0 && PyErr_Occurred()) 1971 return NULL; 1972 return PyBool_FromLong((long)Py_IS_NAN(x)); 1973 } 1974 1975 PyDoc_STRVAR(math_isnan_doc, 1976 "isnan(x) -> bool\n\n\ 1977 Return True if x is a NaN (not a number), and False otherwise."); 1978 1979 static PyObject * 1980 math_isinf(PyObject *self, PyObject *arg) 1981 { 1982 double x = PyFloat_AsDouble(arg); 1983 if (x == -1.0 && PyErr_Occurred()) 1984 return NULL; 1985 return PyBool_FromLong((long)Py_IS_INFINITY(x)); 1986 } 1987 1988 PyDoc_STRVAR(math_isinf_doc, 1989 "isinf(x) -> bool\n\n\ 1990 Return True if x is a positive or negative infinity, and False otherwise."); 1991 1992 static PyObject * 1993 math_isclose(PyObject *self, PyObject *args, PyObject *kwargs) 1994 { 1995 double a, b; 1996 double rel_tol = 1e-9; 1997 double abs_tol = 0.0; 1998 double diff = 0.0; 1999 long result = 0; 2000 2001 static char *keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL}; 2002 2003 2004 if (!PyArg_ParseTupleAndKeywords(args, kwargs, "dd|$dd:isclose", 2005 keywords, 2006 &a, &b, &rel_tol, &abs_tol 2007 )) 2008 return NULL; 2009 2010 /* sanity check on the inputs */ 2011 if (rel_tol < 0.0 || abs_tol < 0.0 ) { 2012 PyErr_SetString(PyExc_ValueError, 2013 "tolerances must be non-negative"); 2014 return NULL; 2015 } 2016 2017 if ( a == b ) { 2018 /* short circuit exact equality -- needed to catch two infinities of 2019 the same sign. And perhaps speeds things up a bit sometimes. 2020 */ 2021 Py_RETURN_TRUE; 2022 } 2023 2024 /* This catches the case of two infinities of opposite sign, or 2025 one infinity and one finite number. Two infinities of opposite 2026 sign would otherwise have an infinite relative tolerance. 2027 Two infinities of the same sign are caught by the equality check 2028 above. 2029 */ 2030 2031 if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) { 2032 Py_RETURN_FALSE; 2033 } 2034 2035 /* now do the regular computation 2036 this is essentially the "weak" test from the Boost library 2037 */ 2038 2039 diff = fabs(b - a); 2040 2041 result = (((diff <= fabs(rel_tol * b)) || 2042 (diff <= fabs(rel_tol * a))) || 2043 (diff <= abs_tol)); 2044 2045 return PyBool_FromLong(result); 2046 } 2047 2048 PyDoc_STRVAR(math_isclose_doc, 2049 "isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool\n" 2050 "\n" 2051 "Determine whether two floating point numbers are close in value.\n" 2052 "\n" 2053 " rel_tol\n" 2054 " maximum difference for being considered \"close\", relative to the\n" 2055 " magnitude of the input values\n" 2056 " abs_tol\n" 2057 " maximum difference for being considered \"close\", regardless of the\n" 2058 " magnitude of the input values\n" 2059 "\n" 2060 "Return True if a is close in value to b, and False otherwise.\n" 2061 "\n" 2062 "For the values to be considered close, the difference between them\n" 2063 "must be smaller than at least one of the tolerances.\n" 2064 "\n" 2065 "-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n" 2066 "is, NaN is not close to anything, even itself. inf and -inf are\n" 2067 "only close to themselves."); 2068 2069 static PyMethodDef math_methods[] = { 2070 {"acos", math_acos, METH_O, math_acos_doc}, 2071 {"acosh", math_acosh, METH_O, math_acosh_doc}, 2072 {"asin", math_asin, METH_O, math_asin_doc}, 2073 {"asinh", math_asinh, METH_O, math_asinh_doc}, 2074 {"atan", math_atan, METH_O, math_atan_doc}, 2075 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, 2076 {"atanh", math_atanh, METH_O, math_atanh_doc}, 2077 {"ceil", math_ceil, METH_O, math_ceil_doc}, 2078 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, 2079 {"cos", math_cos, METH_O, math_cos_doc}, 2080 {"cosh", math_cosh, METH_O, math_cosh_doc}, 2081 {"degrees", math_degrees, METH_O, math_degrees_doc}, 2082 {"erf", math_erf, METH_O, math_erf_doc}, 2083 {"erfc", math_erfc, METH_O, math_erfc_doc}, 2084 {"exp", math_exp, METH_O, math_exp_doc}, 2085 {"expm1", math_expm1, METH_O, math_expm1_doc}, 2086 {"fabs", math_fabs, METH_O, math_fabs_doc}, 2087 {"factorial", math_factorial, METH_O, math_factorial_doc}, 2088 {"floor", math_floor, METH_O, math_floor_doc}, 2089 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc}, 2090 {"frexp", math_frexp, METH_O, math_frexp_doc}, 2091 {"fsum", math_fsum, METH_O, math_fsum_doc}, 2092 {"gamma", math_gamma, METH_O, math_gamma_doc}, 2093 {"gcd", math_gcd, METH_VARARGS, math_gcd_doc}, 2094 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc}, 2095 {"isclose", (PyCFunction) math_isclose, METH_VARARGS | METH_KEYWORDS, 2096 math_isclose_doc}, 2097 {"isfinite", math_isfinite, METH_O, math_isfinite_doc}, 2098 {"isinf", math_isinf, METH_O, math_isinf_doc}, 2099 {"isnan", math_isnan, METH_O, math_isnan_doc}, 2100 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc}, 2101 {"lgamma", math_lgamma, METH_O, math_lgamma_doc}, 2102 {"log", math_log, METH_VARARGS, math_log_doc}, 2103 {"log1p", math_log1p, METH_O, math_log1p_doc}, 2104 {"log10", math_log10, METH_O, math_log10_doc}, 2105 {"log2", math_log2, METH_O, math_log2_doc}, 2106 {"modf", math_modf, METH_O, math_modf_doc}, 2107 {"pow", math_pow, METH_VARARGS, math_pow_doc}, 2108 {"radians", math_radians, METH_O, math_radians_doc}, 2109 {"sin", math_sin, METH_O, math_sin_doc}, 2110 {"sinh", math_sinh, METH_O, math_sinh_doc}, 2111 {"sqrt", math_sqrt, METH_O, math_sqrt_doc}, 2112 {"tan", math_tan, METH_O, math_tan_doc}, 2113 {"tanh", math_tanh, METH_O, math_tanh_doc}, 2114 {"trunc", math_trunc, METH_O, math_trunc_doc}, 2115 {NULL, NULL} /* sentinel */ 2116 }; 2117 2118 2119 PyDoc_STRVAR(module_doc, 2120 "This module is always available. It provides access to the\n" 2121 "mathematical functions defined by the C standard."); 2122 2123 2124 static struct PyModuleDef mathmodule = { 2125 PyModuleDef_HEAD_INIT, 2126 "math", 2127 module_doc, 2128 -1, 2129 math_methods, 2130 NULL, 2131 NULL, 2132 NULL, 2133 NULL 2134 }; 2135 2136 PyMODINIT_FUNC 2137 PyInit_math(void) 2138 { 2139 PyObject *m; 2140 2141 m = PyModule_Create(&mathmodule); 2142 if (m == NULL) 2143 goto finally; 2144 2145 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); 2146 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); 2147 PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */ 2148 PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf())); 2149 #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN) 2150 PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan())); 2151 #endif 2152 2153 finally: 2154 return m; 2155 } 2156