Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <limits.h>
     12 #include <math.h>
     13 #include <stdio.h>
     14 
     15 #include "./vp9_rtcd.h"
     16 #include "./vpx_dsp_rtcd.h"
     17 #include "./vpx_config.h"
     18 
     19 #include "vpx_dsp/vpx_dsp_common.h"
     20 #include "vpx_ports/mem.h"
     21 #include "vpx_ports/vpx_timer.h"
     22 #include "vpx_ports/system_state.h"
     23 
     24 #include "vp9/common/vp9_common.h"
     25 #include "vp9/common/vp9_entropy.h"
     26 #include "vp9/common/vp9_entropymode.h"
     27 #include "vp9/common/vp9_idct.h"
     28 #include "vp9/common/vp9_mvref_common.h"
     29 #include "vp9/common/vp9_pred_common.h"
     30 #include "vp9/common/vp9_quant_common.h"
     31 #include "vp9/common/vp9_reconintra.h"
     32 #include "vp9/common/vp9_reconinter.h"
     33 #include "vp9/common/vp9_seg_common.h"
     34 #include "vp9/common/vp9_tile_common.h"
     35 
     36 #include "vp9/encoder/vp9_aq_360.h"
     37 #include "vp9/encoder/vp9_aq_complexity.h"
     38 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
     39 #include "vp9/encoder/vp9_aq_variance.h"
     40 #include "vp9/encoder/vp9_encodeframe.h"
     41 #include "vp9/encoder/vp9_encodemb.h"
     42 #include "vp9/encoder/vp9_encodemv.h"
     43 #include "vp9/encoder/vp9_ethread.h"
     44 #include "vp9/encoder/vp9_extend.h"
     45 #include "vp9/encoder/vp9_pickmode.h"
     46 #include "vp9/encoder/vp9_rd.h"
     47 #include "vp9/encoder/vp9_rdopt.h"
     48 #include "vp9/encoder/vp9_segmentation.h"
     49 #include "vp9/encoder/vp9_tokenize.h"
     50 
     51 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
     52                               int output_enabled, int mi_row, int mi_col,
     53                               BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
     54 
     55 // Machine learning-based early termination parameters.
     56 static const double train_mean[24] = {
     57   303501.697372, 3042630.372158, 24.694696, 1.392182,
     58   689.413511,    162.027012,     1.478213,  0.0,
     59   135382.260230, 912738.513263,  28.845217, 1.515230,
     60   544.158492,    131.807995,     1.436863,  0.0,
     61   43682.377587,  208131.711766,  28.084737, 1.356677,
     62   138.254122,    119.522553,     1.252322,  0.0
     63 };
     64 
     65 static const double train_stdm[24] = {
     66   673689.212982, 5996652.516628, 0.024449, 1.989792,
     67   985.880847,    0.014638,       2.001898, 0.0,
     68   208798.775332, 1812548.443284, 0.018693, 1.838009,
     69   396.986910,    0.015657,       1.332541, 0.0,
     70   55888.847031,  448587.962714,  0.017900, 1.904776,
     71   98.652832,     0.016598,       1.320992, 0.0
     72 };
     73 
     74 // Error tolerance: 0.01%-0.0.05%-0.1%
     75 static const double classifiers[24] = {
     76   0.111736, 0.289977, 0.042219, 0.204765, 0.120410, -0.143863,
     77   0.282376, 0.847811, 0.637161, 0.131570, 0.018636, 0.202134,
     78   0.112797, 0.028162, 0.182450, 1.124367, 0.386133, 0.083700,
     79   0.050028, 0.150873, 0.061119, 0.109318, 0.127255, 0.625211
     80 };
     81 
     82 // This is used as a reference when computing the source variance for the
     83 //  purpose of activity masking.
     84 // Eventually this should be replaced by custom no-reference routines,
     85 //  which will be faster.
     86 static const uint8_t VP9_VAR_OFFS[64] = {
     87   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
     88   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
     89   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
     90   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
     91   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
     92 };
     93 
     94 #if CONFIG_VP9_HIGHBITDEPTH
     95 static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
     96   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
     97   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
     98   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
     99   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
    100   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
    101 };
    102 
    103 static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
    104   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
    105   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
    106   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
    107   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
    108   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
    109   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
    110   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
    111   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
    112 };
    113 
    114 static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
    115   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    116   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    117   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    118   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    119   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    120   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    121   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    122   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    123   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
    124   128 * 16
    125 };
    126 #endif  // CONFIG_VP9_HIGHBITDEPTH
    127 
    128 unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
    129                                   BLOCK_SIZE bs) {
    130   unsigned int sse;
    131   const unsigned int var =
    132       cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse);
    133   return var;
    134 }
    135 
    136 #if CONFIG_VP9_HIGHBITDEPTH
    137 unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
    138                                        BLOCK_SIZE bs, int bd) {
    139   unsigned int var, sse;
    140   switch (bd) {
    141     case 10:
    142       var =
    143           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
    144                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse);
    145       break;
    146     case 12:
    147       var =
    148           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
    149                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse);
    150       break;
    151     case 8:
    152     default:
    153       var =
    154           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
    155                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse);
    156       break;
    157   }
    158   return var;
    159 }
    160 #endif  // CONFIG_VP9_HIGHBITDEPTH
    161 
    162 unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
    163                                            const struct buf_2d *ref,
    164                                            BLOCK_SIZE bs) {
    165   return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs),
    166                             num_pels_log2_lookup[bs]);
    167 }
    168 
    169 #if CONFIG_VP9_HIGHBITDEPTH
    170 unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi,
    171                                                 const struct buf_2d *ref,
    172                                                 BLOCK_SIZE bs, int bd) {
    173   return (unsigned int)ROUND64_POWER_OF_TWO(
    174       (int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd),
    175       num_pels_log2_lookup[bs]);
    176 }
    177 #endif  // CONFIG_VP9_HIGHBITDEPTH
    178 
    179 static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
    180                                                    const struct buf_2d *ref,
    181                                                    int mi_row, int mi_col,
    182                                                    BLOCK_SIZE bs) {
    183   unsigned int sse, var;
    184   uint8_t *last_y;
    185   const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
    186 
    187   assert(last != NULL);
    188   last_y =
    189       &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
    190   var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
    191   return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
    192 }
    193 
    194 static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x,
    195                                                    int mi_row, int mi_col) {
    196   unsigned int var = get_sby_perpixel_diff_variance(
    197       cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
    198   if (var < 8)
    199     return BLOCK_64X64;
    200   else if (var < 128)
    201     return BLOCK_32X32;
    202   else if (var < 2048)
    203     return BLOCK_16X16;
    204   else
    205     return BLOCK_8X8;
    206 }
    207 
    208 // Lighter version of set_offsets that only sets the mode info
    209 // pointers.
    210 static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
    211                                          MACROBLOCK *const x,
    212                                          MACROBLOCKD *const xd, int mi_row,
    213                                          int mi_col) {
    214   const int idx_str = xd->mi_stride * mi_row + mi_col;
    215   xd->mi = cm->mi_grid_visible + idx_str;
    216   xd->mi[0] = cm->mi + idx_str;
    217   x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
    218 }
    219 
    220 static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
    221                         MACROBLOCK *const x, int mi_row, int mi_col,
    222                         BLOCK_SIZE bsize) {
    223   VP9_COMMON *const cm = &cpi->common;
    224   MACROBLOCKD *const xd = &x->e_mbd;
    225   MODE_INFO *mi;
    226   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
    227   const int mi_height = num_8x8_blocks_high_lookup[bsize];
    228   const struct segmentation *const seg = &cm->seg;
    229   MvLimits *const mv_limits = &x->mv_limits;
    230 
    231   set_skip_context(xd, mi_row, mi_col);
    232 
    233   set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
    234 
    235   mi = xd->mi[0];
    236 
    237   // Set up destination pointers.
    238   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
    239 
    240   // Set up limit values for MV components.
    241   // Mv beyond the range do not produce new/different prediction block.
    242   mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
    243   mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
    244   mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
    245   mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
    246 
    247   // Set up distance of MB to edge of frame in 1/8th pel units.
    248   assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
    249   set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
    250                  cm->mi_cols);
    251 
    252   // Set up source buffers.
    253   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
    254 
    255   // R/D setup.
    256   x->rddiv = cpi->rd.RDDIV;
    257   x->rdmult = cpi->rd.RDMULT;
    258 
    259   // Setup segment ID.
    260   if (seg->enabled) {
    261     if (cpi->oxcf.aq_mode != VARIANCE_AQ && cpi->oxcf.aq_mode != LOOKAHEAD_AQ &&
    262         cpi->oxcf.aq_mode != EQUATOR360_AQ) {
    263       const uint8_t *const map =
    264           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
    265       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
    266     }
    267     vp9_init_plane_quantizers(cpi, x);
    268 
    269     x->encode_breakout = cpi->segment_encode_breakout[mi->segment_id];
    270   } else {
    271     mi->segment_id = 0;
    272     x->encode_breakout = cpi->encode_breakout;
    273   }
    274 
    275   // required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs()
    276   xd->tile = *tile;
    277 }
    278 
    279 static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
    280                                       int mi_row, int mi_col,
    281                                       BLOCK_SIZE bsize) {
    282   const int block_width =
    283       VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
    284   const int block_height =
    285       VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
    286   const int mi_stride = xd->mi_stride;
    287   MODE_INFO *const src_mi = xd->mi[0];
    288   int i, j;
    289 
    290   for (j = 0; j < block_height; ++j)
    291     for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
    292 }
    293 
    294 static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x,
    295                            MACROBLOCKD *const xd, int mi_row, int mi_col,
    296                            BLOCK_SIZE bsize) {
    297   if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
    298     set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col);
    299     xd->mi[0]->sb_type = bsize;
    300   }
    301 }
    302 
    303 typedef struct {
    304   // This struct is used for computing variance in choose_partitioning(), where
    305   // the max number of samples within a superblock is 16x16 (with 4x4 avg). Even
    306   // in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16
    307   // * 16 = 2^32).
    308   uint32_t sum_square_error;
    309   int32_t sum_error;
    310   int log2_count;
    311   int variance;
    312 } var;
    313 
    314 typedef struct {
    315   var none;
    316   var horz[2];
    317   var vert[2];
    318 } partition_variance;
    319 
    320 typedef struct {
    321   partition_variance part_variances;
    322   var split[4];
    323 } v4x4;
    324 
    325 typedef struct {
    326   partition_variance part_variances;
    327   v4x4 split[4];
    328 } v8x8;
    329 
    330 typedef struct {
    331   partition_variance part_variances;
    332   v8x8 split[4];
    333 } v16x16;
    334 
    335 typedef struct {
    336   partition_variance part_variances;
    337   v16x16 split[4];
    338 } v32x32;
    339 
    340 typedef struct {
    341   partition_variance part_variances;
    342   v32x32 split[4];
    343 } v64x64;
    344 
    345 typedef struct {
    346   partition_variance *part_variances;
    347   var *split[4];
    348 } variance_node;
    349 
    350 typedef enum {
    351   V16X16,
    352   V32X32,
    353   V64X64,
    354 } TREE_LEVEL;
    355 
    356 static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
    357   int i;
    358   node->part_variances = NULL;
    359   switch (bsize) {
    360     case BLOCK_64X64: {
    361       v64x64 *vt = (v64x64 *)data;
    362       node->part_variances = &vt->part_variances;
    363       for (i = 0; i < 4; i++)
    364         node->split[i] = &vt->split[i].part_variances.none;
    365       break;
    366     }
    367     case BLOCK_32X32: {
    368       v32x32 *vt = (v32x32 *)data;
    369       node->part_variances = &vt->part_variances;
    370       for (i = 0; i < 4; i++)
    371         node->split[i] = &vt->split[i].part_variances.none;
    372       break;
    373     }
    374     case BLOCK_16X16: {
    375       v16x16 *vt = (v16x16 *)data;
    376       node->part_variances = &vt->part_variances;
    377       for (i = 0; i < 4; i++)
    378         node->split[i] = &vt->split[i].part_variances.none;
    379       break;
    380     }
    381     case BLOCK_8X8: {
    382       v8x8 *vt = (v8x8 *)data;
    383       node->part_variances = &vt->part_variances;
    384       for (i = 0; i < 4; i++)
    385         node->split[i] = &vt->split[i].part_variances.none;
    386       break;
    387     }
    388     case BLOCK_4X4: {
    389       v4x4 *vt = (v4x4 *)data;
    390       node->part_variances = &vt->part_variances;
    391       for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
    392       break;
    393     }
    394     default: {
    395       assert(0);
    396       break;
    397     }
    398   }
    399 }
    400 
    401 // Set variance values given sum square error, sum error, count.
    402 static void fill_variance(uint32_t s2, int32_t s, int c, var *v) {
    403   v->sum_square_error = s2;
    404   v->sum_error = s;
    405   v->log2_count = c;
    406 }
    407 
    408 static void get_variance(var *v) {
    409   v->variance =
    410       (int)(256 * (v->sum_square_error -
    411                    ((v->sum_error * v->sum_error) >> v->log2_count)) >>
    412             v->log2_count);
    413 }
    414 
    415 static void sum_2_variances(const var *a, const var *b, var *r) {
    416   assert(a->log2_count == b->log2_count);
    417   fill_variance(a->sum_square_error + b->sum_square_error,
    418                 a->sum_error + b->sum_error, a->log2_count + 1, r);
    419 }
    420 
    421 static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
    422   variance_node node;
    423   memset(&node, 0, sizeof(node));
    424   tree_to_node(data, bsize, &node);
    425   sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
    426   sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
    427   sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
    428   sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
    429   sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
    430                   &node.part_variances->none);
    431 }
    432 
    433 static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x,
    434                                MACROBLOCKD *const xd, void *data,
    435                                BLOCK_SIZE bsize, int mi_row, int mi_col,
    436                                int64_t threshold, BLOCK_SIZE bsize_min,
    437                                int force_split) {
    438   VP9_COMMON *const cm = &cpi->common;
    439   variance_node vt;
    440   const int block_width = num_8x8_blocks_wide_lookup[bsize];
    441   const int block_height = num_8x8_blocks_high_lookup[bsize];
    442 
    443   assert(block_height == block_width);
    444   tree_to_node(data, bsize, &vt);
    445 
    446   if (force_split == 1) return 0;
    447 
    448   // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
    449   // variance is below threshold, otherwise split will be selected.
    450   // No check for vert/horiz split as too few samples for variance.
    451   if (bsize == bsize_min) {
    452     // Variance already computed to set the force_split.
    453     if (cm->frame_type == KEY_FRAME) get_variance(&vt.part_variances->none);
    454     if (mi_col + block_width / 2 < cm->mi_cols &&
    455         mi_row + block_height / 2 < cm->mi_rows &&
    456         vt.part_variances->none.variance < threshold) {
    457       set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
    458       return 1;
    459     }
    460     return 0;
    461   } else if (bsize > bsize_min) {
    462     // Variance already computed to set the force_split.
    463     if (cm->frame_type == KEY_FRAME) get_variance(&vt.part_variances->none);
    464     // For key frame: take split for bsize above 32X32 or very high variance.
    465     if (cm->frame_type == KEY_FRAME &&
    466         (bsize > BLOCK_32X32 ||
    467          vt.part_variances->none.variance > (threshold << 4))) {
    468       return 0;
    469     }
    470     // If variance is low, take the bsize (no split).
    471     if (mi_col + block_width / 2 < cm->mi_cols &&
    472         mi_row + block_height / 2 < cm->mi_rows &&
    473         vt.part_variances->none.variance < threshold) {
    474       set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
    475       return 1;
    476     }
    477 
    478     // Check vertical split.
    479     if (mi_row + block_height / 2 < cm->mi_rows) {
    480       BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
    481       get_variance(&vt.part_variances->vert[0]);
    482       get_variance(&vt.part_variances->vert[1]);
    483       if (vt.part_variances->vert[0].variance < threshold &&
    484           vt.part_variances->vert[1].variance < threshold &&
    485           get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
    486         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
    487         set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
    488         return 1;
    489       }
    490     }
    491     // Check horizontal split.
    492     if (mi_col + block_width / 2 < cm->mi_cols) {
    493       BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
    494       get_variance(&vt.part_variances->horz[0]);
    495       get_variance(&vt.part_variances->horz[1]);
    496       if (vt.part_variances->horz[0].variance < threshold &&
    497           vt.part_variances->horz[1].variance < threshold &&
    498           get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
    499         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
    500         set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
    501         return 1;
    502       }
    503     }
    504 
    505     return 0;
    506   }
    507   return 0;
    508 }
    509 
    510 static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed,
    511                                          int width, int height,
    512                                          int content_state) {
    513   if (speed >= 8) {
    514     if (width <= 640 && height <= 480)
    515       return (5 * threshold_base) >> 2;
    516     else if ((content_state == kLowSadLowSumdiff) ||
    517              (content_state == kHighSadLowSumdiff) ||
    518              (content_state == kLowVarHighSumdiff))
    519       return (5 * threshold_base) >> 2;
    520   } else if (speed == 7) {
    521     if ((content_state == kLowSadLowSumdiff) ||
    522         (content_state == kHighSadLowSumdiff) ||
    523         (content_state == kLowVarHighSumdiff)) {
    524       return (5 * threshold_base) >> 2;
    525     }
    526   }
    527   return threshold_base;
    528 }
    529 
    530 // Set the variance split thresholds for following the block sizes:
    531 // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
    532 // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
    533 // currently only used on key frame.
    534 static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q,
    535                                int content_state) {
    536   VP9_COMMON *const cm = &cpi->common;
    537   const int is_key_frame = (cm->frame_type == KEY_FRAME);
    538   const int threshold_multiplier = is_key_frame ? 20 : 1;
    539   int64_t threshold_base =
    540       (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
    541 
    542   if (is_key_frame) {
    543     thresholds[0] = threshold_base;
    544     thresholds[1] = threshold_base >> 2;
    545     thresholds[2] = threshold_base >> 2;
    546     thresholds[3] = threshold_base << 2;
    547   } else {
    548     // Increase base variance threshold based on estimated noise level.
    549     if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) {
    550       NOISE_LEVEL noise_level =
    551           vp9_noise_estimate_extract_level(&cpi->noise_estimate);
    552       if (noise_level == kHigh)
    553         threshold_base = 3 * threshold_base;
    554       else if (noise_level == kMedium)
    555         threshold_base = threshold_base << 1;
    556       else if (noise_level < kLow)
    557         threshold_base = (7 * threshold_base) >> 3;
    558     }
    559 #if CONFIG_VP9_TEMPORAL_DENOISING
    560     if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
    561         cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
    562       threshold_base =
    563           vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
    564                                 content_state, cpi->svc.temporal_layer_id);
    565     else
    566       threshold_base =
    567           scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width,
    568                                     cm->height, content_state);
    569 #else
    570     // Increase base variance threshold based on content_state/sum_diff level.
    571     threshold_base = scale_part_thresh_sumdiff(
    572         threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state);
    573 #endif
    574     thresholds[0] = threshold_base;
    575     thresholds[2] = threshold_base << cpi->oxcf.speed;
    576     if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7)
    577       thresholds[2] = thresholds[2] << 1;
    578     if (cm->width <= 352 && cm->height <= 288) {
    579       thresholds[0] = threshold_base >> 3;
    580       thresholds[1] = threshold_base >> 1;
    581       thresholds[2] = threshold_base << 3;
    582     } else if (cm->width < 1280 && cm->height < 720) {
    583       thresholds[1] = (5 * threshold_base) >> 2;
    584     } else if (cm->width < 1920 && cm->height < 1080) {
    585       thresholds[1] = threshold_base << 1;
    586     } else {
    587       thresholds[1] = (5 * threshold_base) >> 1;
    588     }
    589   }
    590 }
    591 
    592 void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q,
    593                                            int content_state) {
    594   VP9_COMMON *const cm = &cpi->common;
    595   SPEED_FEATURES *const sf = &cpi->sf;
    596   const int is_key_frame = (cm->frame_type == KEY_FRAME);
    597   if (sf->partition_search_type != VAR_BASED_PARTITION &&
    598       sf->partition_search_type != REFERENCE_PARTITION) {
    599     return;
    600   } else {
    601     set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state);
    602     // The thresholds below are not changed locally.
    603     if (is_key_frame) {
    604       cpi->vbp_threshold_sad = 0;
    605       cpi->vbp_threshold_copy = 0;
    606       cpi->vbp_bsize_min = BLOCK_8X8;
    607     } else {
    608       if (cm->width <= 352 && cm->height <= 288)
    609         cpi->vbp_threshold_sad = 10;
    610       else
    611         cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
    612                                      ? (cpi->y_dequant[q][1] << 1)
    613                                      : 1000;
    614       cpi->vbp_bsize_min = BLOCK_16X16;
    615       if (cm->width <= 352 && cm->height <= 288)
    616         cpi->vbp_threshold_copy = 4000;
    617       else if (cm->width <= 640 && cm->height <= 360)
    618         cpi->vbp_threshold_copy = 8000;
    619       else
    620         cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000
    621                                       ? (cpi->y_dequant[q][1] << 3)
    622                                       : 8000;
    623     }
    624     cpi->vbp_threshold_minmax = 15 + (q >> 3);
    625   }
    626 }
    627 
    628 // Compute the minmax over the 8x8 subblocks.
    629 static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
    630                               int dp, int x16_idx, int y16_idx,
    631 #if CONFIG_VP9_HIGHBITDEPTH
    632                               int highbd_flag,
    633 #endif
    634                               int pixels_wide, int pixels_high) {
    635   int k;
    636   int minmax_max = 0;
    637   int minmax_min = 255;
    638   // Loop over the 4 8x8 subblocks.
    639   for (k = 0; k < 4; k++) {
    640     int x8_idx = x16_idx + ((k & 1) << 3);
    641     int y8_idx = y16_idx + ((k >> 1) << 3);
    642     int min = 0;
    643     int max = 0;
    644     if (x8_idx < pixels_wide && y8_idx < pixels_high) {
    645 #if CONFIG_VP9_HIGHBITDEPTH
    646       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
    647         vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
    648                               d + y8_idx * dp + x8_idx, dp, &min, &max);
    649       } else {
    650         vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
    651                        dp, &min, &max);
    652       }
    653 #else
    654       vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
    655                      &min, &max);
    656 #endif
    657       if ((max - min) > minmax_max) minmax_max = (max - min);
    658       if ((max - min) < minmax_min) minmax_min = (max - min);
    659     }
    660   }
    661   return (minmax_max - minmax_min);
    662 }
    663 
    664 static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
    665                                  int dp, int x8_idx, int y8_idx, v8x8 *vst,
    666 #if CONFIG_VP9_HIGHBITDEPTH
    667                                  int highbd_flag,
    668 #endif
    669                                  int pixels_wide, int pixels_high,
    670                                  int is_key_frame) {
    671   int k;
    672   for (k = 0; k < 4; k++) {
    673     int x4_idx = x8_idx + ((k & 1) << 2);
    674     int y4_idx = y8_idx + ((k >> 1) << 2);
    675     unsigned int sse = 0;
    676     int sum = 0;
    677     if (x4_idx < pixels_wide && y4_idx < pixels_high) {
    678       int s_avg;
    679       int d_avg = 128;
    680 #if CONFIG_VP9_HIGHBITDEPTH
    681       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
    682         s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
    683         if (!is_key_frame)
    684           d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
    685       } else {
    686         s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
    687         if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
    688       }
    689 #else
    690       s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
    691       if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
    692 #endif
    693       sum = s_avg - d_avg;
    694       sse = sum * sum;
    695     }
    696     fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
    697   }
    698 }
    699 
    700 static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
    701                                  int dp, int x16_idx, int y16_idx, v16x16 *vst,
    702 #if CONFIG_VP9_HIGHBITDEPTH
    703                                  int highbd_flag,
    704 #endif
    705                                  int pixels_wide, int pixels_high,
    706                                  int is_key_frame) {
    707   int k;
    708   for (k = 0; k < 4; k++) {
    709     int x8_idx = x16_idx + ((k & 1) << 3);
    710     int y8_idx = y16_idx + ((k >> 1) << 3);
    711     unsigned int sse = 0;
    712     int sum = 0;
    713     if (x8_idx < pixels_wide && y8_idx < pixels_high) {
    714       int s_avg;
    715       int d_avg = 128;
    716 #if CONFIG_VP9_HIGHBITDEPTH
    717       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
    718         s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
    719         if (!is_key_frame)
    720           d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
    721       } else {
    722         s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
    723         if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
    724       }
    725 #else
    726       s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
    727       if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
    728 #endif
    729       sum = s_avg - d_avg;
    730       sse = sum * sum;
    731     }
    732     fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
    733   }
    734 }
    735 
    736 // Check if most of the superblock is skin content, and if so, force split to
    737 // 32x32, and set x->sb_is_skin for use in mode selection.
    738 static int skin_sb_split(VP9_COMP *cpi, MACROBLOCK *x, const int low_res,
    739                          int mi_row, int mi_col, int *force_split) {
    740   VP9_COMMON *const cm = &cpi->common;
    741 #if CONFIG_VP9_HIGHBITDEPTH
    742   if (cm->use_highbitdepth) return 0;
    743 #endif
    744   // Avoid checking superblocks on/near boundary and avoid low resolutions.
    745   // Note superblock may still pick 64X64 if y_sad is very small
    746   // (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is.
    747   if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 &&
    748                    mi_row + 8 < cm->mi_rows)) {
    749     int num_16x16_skin = 0;
    750     int num_16x16_nonskin = 0;
    751     uint8_t *ysignal = x->plane[0].src.buf;
    752     uint8_t *usignal = x->plane[1].src.buf;
    753     uint8_t *vsignal = x->plane[2].src.buf;
    754     int sp = x->plane[0].src.stride;
    755     int spuv = x->plane[1].src.stride;
    756     const int block_index = mi_row * cm->mi_cols + mi_col;
    757     const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
    758     const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
    759     const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
    760     const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
    761     // Loop through the 16x16 sub-blocks.
    762     int i, j;
    763     for (i = 0; i < ymis; i += 2) {
    764       for (j = 0; j < xmis; j += 2) {
    765         int bl_index = block_index + i * cm->mi_cols + j;
    766         int is_skin = cpi->skin_map[bl_index];
    767         num_16x16_skin += is_skin;
    768         num_16x16_nonskin += (1 - is_skin);
    769         if (num_16x16_nonskin > 3) {
    770           // Exit loop if at least 4 of the 16x16 blocks are not skin.
    771           i = ymis;
    772           break;
    773         }
    774         ysignal += 16;
    775         usignal += 8;
    776         vsignal += 8;
    777       }
    778       ysignal += (sp << 4) - 64;
    779       usignal += (spuv << 3) - 32;
    780       vsignal += (spuv << 3) - 32;
    781     }
    782     if (num_16x16_skin > 12) {
    783       *force_split = 1;
    784       return 1;
    785     }
    786   }
    787   return 0;
    788 }
    789 
    790 static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
    791                                   v64x64 *vt, int64_t thresholds[],
    792                                   MV_REFERENCE_FRAME ref_frame_partition,
    793                                   int mi_col, int mi_row) {
    794   int i, j;
    795   VP9_COMMON *const cm = &cpi->common;
    796   const int mv_thr = cm->width > 640 ? 8 : 4;
    797   // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
    798   // int_pro mv is small. If the temporal variance is small set the flag
    799   // variance_low for the block. The variance threshold can be adjusted, the
    800   // higher the more aggressive.
    801   if (ref_frame_partition == LAST_FRAME &&
    802       (cpi->sf.short_circuit_low_temp_var == 1 ||
    803        (xd->mi[0]->mv[0].as_mv.col < mv_thr &&
    804         xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
    805         xd->mi[0]->mv[0].as_mv.row < mv_thr &&
    806         xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
    807     if (xd->mi[0]->sb_type == BLOCK_64X64) {
    808       if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
    809         x->variance_low[0] = 1;
    810     } else if (xd->mi[0]->sb_type == BLOCK_64X32) {
    811       for (i = 0; i < 2; i++) {
    812         if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
    813           x->variance_low[i + 1] = 1;
    814       }
    815     } else if (xd->mi[0]->sb_type == BLOCK_32X64) {
    816       for (i = 0; i < 2; i++) {
    817         if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
    818           x->variance_low[i + 3] = 1;
    819       }
    820     } else {
    821       for (i = 0; i < 4; i++) {
    822         const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } };
    823         const int idx_str =
    824             cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
    825         MODE_INFO **this_mi = cm->mi_grid_visible + idx_str;
    826 
    827         if (cm->mi_cols <= mi_col + idx[i][1] ||
    828             cm->mi_rows <= mi_row + idx[i][0])
    829           continue;
    830 
    831         if ((*this_mi)->sb_type == BLOCK_32X32) {
    832           int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 ||
    833                                      cpi->sf.short_circuit_low_temp_var == 3)
    834                                         ? ((5 * thresholds[1]) >> 3)
    835                                         : (thresholds[1] >> 1);
    836           if (vt->split[i].part_variances.none.variance < threshold_32x32)
    837             x->variance_low[i + 5] = 1;
    838         } else if (cpi->sf.short_circuit_low_temp_var >= 2) {
    839           // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
    840           // inside.
    841           if ((*this_mi)->sb_type == BLOCK_16X16 ||
    842               (*this_mi)->sb_type == BLOCK_32X16 ||
    843               (*this_mi)->sb_type == BLOCK_16X32) {
    844             for (j = 0; j < 4; j++) {
    845               if (vt->split[i].split[j].part_variances.none.variance <
    846                   (thresholds[2] >> 8))
    847                 x->variance_low[(i << 2) + j + 9] = 1;
    848             }
    849           }
    850         }
    851       }
    852     }
    853   }
    854 }
    855 
    856 static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x,
    857                                      MACROBLOCKD *xd, BLOCK_SIZE bsize,
    858                                      int mi_row, int mi_col) {
    859   VP9_COMMON *const cm = &cpi->common;
    860   BLOCK_SIZE *prev_part = cpi->prev_partition;
    861   int start_pos = mi_row * cm->mi_stride + mi_col;
    862 
    863   const int bsl = b_width_log2_lookup[bsize];
    864   const int bs = (1 << bsl) >> 2;
    865   BLOCK_SIZE subsize;
    866   PARTITION_TYPE partition;
    867 
    868   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
    869 
    870   partition = partition_lookup[bsl][prev_part[start_pos]];
    871   subsize = get_subsize(bsize, partition);
    872 
    873   if (subsize < BLOCK_8X8) {
    874     set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
    875   } else {
    876     switch (partition) {
    877       case PARTITION_NONE:
    878         set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
    879         break;
    880       case PARTITION_HORZ:
    881         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
    882         set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize);
    883         break;
    884       case PARTITION_VERT:
    885         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
    886         set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize);
    887         break;
    888       case PARTITION_SPLIT:
    889         copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col);
    890         copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col);
    891         copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs);
    892         copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs);
    893         break;
    894       default: assert(0);
    895     }
    896   }
    897 }
    898 
    899 static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
    900                              int mi_row, int mi_col, int segment_id,
    901                              int sb_offset) {
    902   int svc_copy_allowed = 1;
    903   int frames_since_key_thresh = 1;
    904   if (cpi->use_svc) {
    905     // For SVC, don't allow copy if base spatial layer is key frame, or if
    906     // frame is not a temporal enhancement layer frame.
    907     int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
    908                                  cpi->svc.number_temporal_layers);
    909     const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
    910     if (lc->is_key_frame || !cpi->svc.non_reference_frame) svc_copy_allowed = 0;
    911     frames_since_key_thresh = cpi->svc.number_spatial_layers << 1;
    912   }
    913   if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed &&
    914       !cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE &&
    915       cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE &&
    916       cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) {
    917     if (cpi->prev_partition != NULL) {
    918       copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col);
    919       cpi->copied_frame_cnt[sb_offset] += 1;
    920       memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]),
    921              sizeof(x->variance_low));
    922       return 1;
    923     }
    924   }
    925 
    926   return 0;
    927 }
    928 
    929 static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
    930                                   BLOCK_SIZE bsize, int mi_row, int mi_col,
    931                                   int mi_row_high, int mi_col_high) {
    932   VP9_COMMON *const cm = &cpi->common;
    933   SVC *const svc = &cpi->svc;
    934   BLOCK_SIZE *prev_part = svc->prev_partition_svc;
    935   // Variables with _high are for higher resolution.
    936   int bsize_high = 0;
    937   int subsize_high = 0;
    938   const int bsl_high = b_width_log2_lookup[bsize];
    939   const int bs_high = (1 << bsl_high) >> 2;
    940   const int has_rows = (mi_row_high + bs_high) < cm->mi_rows;
    941   const int has_cols = (mi_col_high + bs_high) < cm->mi_cols;
    942 
    943   const int row_boundary_block_scale_factor[BLOCK_SIZES] = {
    944     13, 13, 13, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
    945   };
    946   const int col_boundary_block_scale_factor[BLOCK_SIZES] = {
    947     13, 13, 13, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0
    948   };
    949   int start_pos;
    950   BLOCK_SIZE bsize_low;
    951   PARTITION_TYPE partition_high;
    952 
    953   if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0;
    954   if (mi_row >= (cm->mi_rows >> 1) || mi_col >= (cm->mi_cols >> 1)) return 0;
    955 
    956   // Find corresponding (mi_col/mi_row) block down-scaled by 2x2.
    957   start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col;
    958   bsize_low = prev_part[start_pos];
    959   // The block size is too big for boundaries. Do variance based partitioning.
    960   if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1;
    961 
    962   // For reference frames: return 1 (do variance-based partitioning) if the
    963   // superblock is not low source sad and lower-resoln bsize is below 32x32.
    964   if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad &&
    965       bsize_low < BLOCK_32X32)
    966     return 1;
    967 
    968   // Scale up block size by 2x2. Force 64x64 for size larger than 32x32.
    969   if (bsize_low < BLOCK_32X32) {
    970     bsize_high = bsize_low + 3;
    971   } else if (bsize_low >= BLOCK_32X32) {
    972     bsize_high = BLOCK_64X64;
    973   }
    974   // Scale up blocks on boundary.
    975   if (!has_cols && has_rows) {
    976     bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low];
    977   } else if (has_cols && !has_rows) {
    978     bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low];
    979   } else if (!has_cols && !has_rows) {
    980     bsize_high = bsize_low;
    981   }
    982 
    983   partition_high = partition_lookup[bsl_high][bsize_high];
    984   subsize_high = get_subsize(bsize, partition_high);
    985 
    986   if (subsize_high < BLOCK_8X8) {
    987     set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
    988   } else {
    989     const int bsl = b_width_log2_lookup[bsize];
    990     const int bs = (1 << bsl) >> 2;
    991     switch (partition_high) {
    992       case PARTITION_NONE:
    993         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
    994         break;
    995       case PARTITION_HORZ:
    996         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
    997         if (subsize_high < BLOCK_64X64)
    998           set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high,
    999                          subsize_high);
   1000         break;
   1001       case PARTITION_VERT:
   1002         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
   1003         if (subsize_high < BLOCK_64X64)
   1004           set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high,
   1005                          subsize_high);
   1006         break;
   1007       case PARTITION_SPLIT:
   1008         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col,
   1009                                    mi_row_high, mi_col_high))
   1010           return 1;
   1011         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
   1012                                    mi_col, mi_row_high + bs_high, mi_col_high))
   1013           return 1;
   1014         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row,
   1015                                    mi_col + (bs >> 1), mi_row_high,
   1016                                    mi_col_high + bs_high))
   1017           return 1;
   1018         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
   1019                                    mi_col + (bs >> 1), mi_row_high + bs_high,
   1020                                    mi_col_high + bs_high))
   1021           return 1;
   1022         break;
   1023       default: assert(0);
   1024     }
   1025   }
   1026 
   1027   return 0;
   1028 }
   1029 
   1030 static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
   1031                                  int mi_col) {
   1032   VP9_COMMON *const cm = &cpi->common;
   1033   BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc;
   1034   int start_pos = mi_row * cm->mi_stride + mi_col;
   1035   const int bsl = b_width_log2_lookup[bsize];
   1036   const int bs = (1 << bsl) >> 2;
   1037   BLOCK_SIZE subsize;
   1038   PARTITION_TYPE partition;
   1039   const MODE_INFO *mi = NULL;
   1040   int xx, yy;
   1041 
   1042   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
   1043 
   1044   mi = cm->mi_grid_visible[start_pos];
   1045   partition = partition_lookup[bsl][mi->sb_type];
   1046   subsize = get_subsize(bsize, partition);
   1047   if (subsize < BLOCK_8X8) {
   1048     prev_part[start_pos] = bsize;
   1049   } else {
   1050     switch (partition) {
   1051       case PARTITION_NONE:
   1052         prev_part[start_pos] = bsize;
   1053         if (bsize == BLOCK_64X64) {
   1054           for (xx = 0; xx < 8; xx += 4)
   1055             for (yy = 0; yy < 8; yy += 4) {
   1056               if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols))
   1057                 prev_part[start_pos + xx * cm->mi_stride + yy] = bsize;
   1058             }
   1059         }
   1060         break;
   1061       case PARTITION_HORZ:
   1062         prev_part[start_pos] = subsize;
   1063         if (mi_row + bs < cm->mi_rows)
   1064           prev_part[start_pos + bs * cm->mi_stride] = subsize;
   1065         break;
   1066       case PARTITION_VERT:
   1067         prev_part[start_pos] = subsize;
   1068         if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
   1069         break;
   1070       case PARTITION_SPLIT:
   1071         update_partition_svc(cpi, subsize, mi_row, mi_col);
   1072         update_partition_svc(cpi, subsize, mi_row + bs, mi_col);
   1073         update_partition_svc(cpi, subsize, mi_row, mi_col + bs);
   1074         update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs);
   1075         break;
   1076       default: assert(0);
   1077     }
   1078   }
   1079 }
   1080 
   1081 static void update_prev_partition_helper(VP9_COMP *cpi, BLOCK_SIZE bsize,
   1082                                          int mi_row, int mi_col) {
   1083   VP9_COMMON *const cm = &cpi->common;
   1084   BLOCK_SIZE *prev_part = cpi->prev_partition;
   1085   int start_pos = mi_row * cm->mi_stride + mi_col;
   1086   const int bsl = b_width_log2_lookup[bsize];
   1087   const int bs = (1 << bsl) >> 2;
   1088   BLOCK_SIZE subsize;
   1089   PARTITION_TYPE partition;
   1090   const MODE_INFO *mi = NULL;
   1091 
   1092   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
   1093 
   1094   mi = cm->mi_grid_visible[start_pos];
   1095   partition = partition_lookup[bsl][mi->sb_type];
   1096   subsize = get_subsize(bsize, partition);
   1097   if (subsize < BLOCK_8X8) {
   1098     prev_part[start_pos] = bsize;
   1099   } else {
   1100     switch (partition) {
   1101       case PARTITION_NONE: prev_part[start_pos] = bsize; break;
   1102       case PARTITION_HORZ:
   1103         prev_part[start_pos] = subsize;
   1104         if (mi_row + bs < cm->mi_rows)
   1105           prev_part[start_pos + bs * cm->mi_stride] = subsize;
   1106         break;
   1107       case PARTITION_VERT:
   1108         prev_part[start_pos] = subsize;
   1109         if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
   1110         break;
   1111       case PARTITION_SPLIT:
   1112         update_prev_partition_helper(cpi, subsize, mi_row, mi_col);
   1113         update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col);
   1114         update_prev_partition_helper(cpi, subsize, mi_row, mi_col + bs);
   1115         update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col + bs);
   1116         break;
   1117       default: assert(0);
   1118     }
   1119   }
   1120 }
   1121 
   1122 static void update_prev_partition(VP9_COMP *cpi, MACROBLOCK *x, int segment_id,
   1123                                   int mi_row, int mi_col, int sb_offset) {
   1124   update_prev_partition_helper(cpi, BLOCK_64X64, mi_row, mi_col);
   1125   cpi->prev_segment_id[sb_offset] = segment_id;
   1126   memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low,
   1127          sizeof(x->variance_low));
   1128   // Reset the counter for copy partitioning
   1129   cpi->copied_frame_cnt[sb_offset] = 0;
   1130 }
   1131 
   1132 static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize,
   1133                          unsigned int y_sad, int is_key_frame) {
   1134   int i;
   1135   MACROBLOCKD *xd = &x->e_mbd;
   1136 
   1137   if (is_key_frame) return;
   1138 
   1139   // For speed >= 8, avoid the chroma check if y_sad is above threshold.
   1140   if (cpi->oxcf.speed >= 8) {
   1141     if (y_sad > cpi->vbp_thresholds[1] &&
   1142         (!cpi->noise_estimate.enabled ||
   1143          vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium))
   1144       return;
   1145   }
   1146 
   1147   for (i = 1; i <= 2; ++i) {
   1148     unsigned int uv_sad = UINT_MAX;
   1149     struct macroblock_plane *p = &x->plane[i];
   1150     struct macroblockd_plane *pd = &xd->plane[i];
   1151     const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
   1152 
   1153     if (bs != BLOCK_INVALID)
   1154       uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
   1155                                    pd->dst.stride);
   1156 
   1157     // TODO(marpan): Investigate if we should lower this threshold if
   1158     // superblock is detected as skin.
   1159     x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
   1160   }
   1161 }
   1162 
   1163 static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift,
   1164                                int sb_offset) {
   1165   unsigned int tmp_sse;
   1166   uint64_t tmp_sad;
   1167   unsigned int tmp_variance;
   1168   const BLOCK_SIZE bsize = BLOCK_64X64;
   1169   uint8_t *src_y = cpi->Source->y_buffer;
   1170   int src_ystride = cpi->Source->y_stride;
   1171   uint8_t *last_src_y = cpi->Last_Source->y_buffer;
   1172   int last_src_ystride = cpi->Last_Source->y_stride;
   1173   uint64_t avg_source_sad_threshold = 10000;
   1174   uint64_t avg_source_sad_threshold2 = 12000;
   1175 #if CONFIG_VP9_HIGHBITDEPTH
   1176   if (cpi->common.use_highbitdepth) return 0;
   1177 #endif
   1178   src_y += shift;
   1179   last_src_y += shift;
   1180   tmp_sad =
   1181       cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride);
   1182   tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y,
   1183                                    last_src_ystride, &tmp_sse);
   1184   // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
   1185   if (tmp_sad < avg_source_sad_threshold)
   1186     x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff
   1187                                                           : kLowSadHighSumdiff;
   1188   else
   1189     x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff
   1190                                                           : kHighSadHighSumdiff;
   1191 
   1192   // Detect large lighting change.
   1193   if (cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
   1194       cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) &&
   1195       (tmp_sse - tmp_variance) > 10000)
   1196     x->content_state_sb = kLowVarHighSumdiff;
   1197   else if (tmp_sad > (avg_source_sad_threshold << 1))
   1198     x->content_state_sb = kVeryHighSad;
   1199 
   1200   if (cpi->content_state_sb_fd != NULL) {
   1201     if (tmp_sad < avg_source_sad_threshold2) {
   1202       // Cap the increment to 255.
   1203       if (cpi->content_state_sb_fd[sb_offset] < 255)
   1204         cpi->content_state_sb_fd[sb_offset]++;
   1205     } else {
   1206       cpi->content_state_sb_fd[sb_offset] = 0;
   1207     }
   1208   }
   1209   return tmp_sad;
   1210 }
   1211 
   1212 // This function chooses partitioning based on the variance between source and
   1213 // reconstructed last, where variance is computed for down-sampled inputs.
   1214 static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
   1215                                MACROBLOCK *x, int mi_row, int mi_col) {
   1216   VP9_COMMON *const cm = &cpi->common;
   1217   MACROBLOCKD *xd = &x->e_mbd;
   1218   int i, j, k, m;
   1219   v64x64 vt;
   1220   v16x16 *vt2 = NULL;
   1221   int force_split[21];
   1222   int avg_32x32;
   1223   int max_var_32x32 = 0;
   1224   int min_var_32x32 = INT_MAX;
   1225   int var_32x32;
   1226   int avg_16x16[4];
   1227   int maxvar_16x16[4];
   1228   int minvar_16x16[4];
   1229   int64_t threshold_4x4avg;
   1230   NOISE_LEVEL noise_level = kLow;
   1231   int content_state = 0;
   1232   uint8_t *s;
   1233   const uint8_t *d;
   1234   int sp;
   1235   int dp;
   1236   int compute_minmax_variance = 1;
   1237   unsigned int y_sad = UINT_MAX;
   1238   BLOCK_SIZE bsize = BLOCK_64X64;
   1239   // Ref frame used in partitioning.
   1240   MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
   1241   int pixels_wide = 64, pixels_high = 64;
   1242   int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
   1243                             cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] };
   1244 
   1245   // For the variance computation under SVC mode, we treat the frame as key if
   1246   // the reference (base layer frame) is key frame (i.e., is_key_frame == 1).
   1247   const int is_key_frame =
   1248       (cm->frame_type == KEY_FRAME ||
   1249        (is_one_pass_cbr_svc(cpi) &&
   1250         cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
   1251   // Always use 4x4 partition for key frame.
   1252   const int use_4x4_partition = cm->frame_type == KEY_FRAME;
   1253   const int low_res = (cm->width <= 352 && cm->height <= 288);
   1254   int variance4x4downsample[16];
   1255   int segment_id;
   1256   int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3);
   1257 
   1258   set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
   1259   segment_id = xd->mi[0]->segment_id;
   1260 
   1261   if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame))
   1262     compute_minmax_variance = 0;
   1263 
   1264   memset(x->variance_low, 0, sizeof(x->variance_low));
   1265 
   1266   if (cpi->sf.use_source_sad && !is_key_frame) {
   1267     int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
   1268     content_state = x->content_state_sb;
   1269     x->skip_low_source_sad = (content_state == kLowSadLowSumdiff ||
   1270                               content_state == kLowSadHighSumdiff)
   1271                                  ? 1
   1272                                  : 0;
   1273     x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0;
   1274     if (cpi->content_state_sb_fd != NULL)
   1275       x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2];
   1276 
   1277     // For SVC on top spatial layer: use/scale the partition from
   1278     // the lower spatial resolution if svc_use_lowres_part is enabled.
   1279     if (cpi->sf.svc_use_lowres_part &&
   1280         cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
   1281         cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) {
   1282       if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1,
   1283                                   mi_col >> 1, mi_row, mi_col)) {
   1284         if (cpi->sf.copy_partition_flag) {
   1285           update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
   1286         }
   1287         return 0;
   1288       }
   1289     }
   1290     // If source_sad is low copy the partition without computing the y_sad.
   1291     if (x->skip_low_source_sad && cpi->sf.copy_partition_flag &&
   1292         copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
   1293       x->sb_use_mv_part = 1;
   1294       if (cpi->sf.svc_use_lowres_part &&
   1295           cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
   1296         update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
   1297       return 0;
   1298     }
   1299   }
   1300 
   1301   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
   1302       cyclic_refresh_segment_id_boosted(segment_id)) {
   1303     int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
   1304     set_vbp_thresholds(cpi, thresholds, q, content_state);
   1305   } else {
   1306     set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state);
   1307   }
   1308 
   1309   // For non keyframes, disable 4x4 average for low resolution when speed = 8
   1310   threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX;
   1311 
   1312   if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
   1313   if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
   1314 
   1315   s = x->plane[0].src.buf;
   1316   sp = x->plane[0].src.stride;
   1317 
   1318   // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
   1319   // 5-20 for the 16x16 blocks.
   1320   force_split[0] = 0;
   1321 
   1322   if (!is_key_frame) {
   1323     // In the case of spatial/temporal scalable coding, the assumption here is
   1324     // that the temporal reference frame will always be of type LAST_FRAME.
   1325     // TODO(marpan): If that assumption is broken, we need to revisit this code.
   1326     MODE_INFO *mi = xd->mi[0];
   1327     YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
   1328 
   1329     const YV12_BUFFER_CONFIG *yv12_g = NULL;
   1330     unsigned int y_sad_g, y_sad_thr, y_sad_last;
   1331     bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
   1332             (mi_row + 4 < cm->mi_rows);
   1333 
   1334     assert(yv12 != NULL);
   1335 
   1336     if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id)) {
   1337       // For now, GOLDEN will not be used for non-zero spatial layers, since
   1338       // it may not be a temporal reference.
   1339       yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
   1340     }
   1341 
   1342     // Only compute y_sad_g (sad for golden reference) for speed < 8.
   1343     if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
   1344         (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
   1345       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
   1346                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
   1347       y_sad_g = cpi->fn_ptr[bsize].sdf(
   1348           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
   1349           xd->plane[0].pre[0].stride);
   1350     } else {
   1351       y_sad_g = UINT_MAX;
   1352     }
   1353 
   1354     if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
   1355         cpi->rc.is_src_frame_alt_ref) {
   1356       yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
   1357       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
   1358                            &cm->frame_refs[ALTREF_FRAME - 1].sf);
   1359       mi->ref_frame[0] = ALTREF_FRAME;
   1360       y_sad_g = UINT_MAX;
   1361     } else {
   1362       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
   1363                            &cm->frame_refs[LAST_FRAME - 1].sf);
   1364       mi->ref_frame[0] = LAST_FRAME;
   1365     }
   1366     mi->ref_frame[1] = NONE;
   1367     mi->sb_type = BLOCK_64X64;
   1368     mi->mv[0].as_int = 0;
   1369     mi->interp_filter = BILINEAR;
   1370 
   1371     if (cpi->oxcf.speed >= 8 && !low_res &&
   1372         x->content_state_sb != kVeryHighSad) {
   1373       y_sad = cpi->fn_ptr[bsize].sdf(
   1374           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
   1375           xd->plane[0].pre[0].stride);
   1376     } else {
   1377       y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
   1378       x->sb_use_mv_part = 1;
   1379       x->sb_mvcol_part = mi->mv[0].as_mv.col;
   1380       x->sb_mvrow_part = mi->mv[0].as_mv.row;
   1381     }
   1382 
   1383     y_sad_last = y_sad;
   1384     // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
   1385     // are close if short_circuit_low_temp_var is on.
   1386     y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
   1387     if (y_sad_g < y_sad_thr) {
   1388       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
   1389                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
   1390       mi->ref_frame[0] = GOLDEN_FRAME;
   1391       mi->mv[0].as_int = 0;
   1392       y_sad = y_sad_g;
   1393       ref_frame_partition = GOLDEN_FRAME;
   1394     } else {
   1395       x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
   1396       ref_frame_partition = LAST_FRAME;
   1397     }
   1398 
   1399     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
   1400     vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
   1401 
   1402     if (cpi->use_skin_detection)
   1403       x->sb_is_skin =
   1404           skin_sb_split(cpi, x, low_res, mi_row, mi_col, force_split);
   1405 
   1406     d = xd->plane[0].dst.buf;
   1407     dp = xd->plane[0].dst.stride;
   1408 
   1409     // If the y_sad is very small, take 64x64 as partition and exit.
   1410     // Don't check on boosted segment for now, as 64x64 is suppressed there.
   1411     if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
   1412       const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
   1413       const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
   1414       if (mi_col + block_width / 2 < cm->mi_cols &&
   1415           mi_row + block_height / 2 < cm->mi_rows) {
   1416         set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
   1417         x->variance_low[0] = 1;
   1418         chroma_check(cpi, x, bsize, y_sad, is_key_frame);
   1419         if (cpi->sf.svc_use_lowres_part &&
   1420             cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
   1421           update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
   1422         if (cpi->sf.copy_partition_flag) {
   1423           update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
   1424         }
   1425         return 0;
   1426       }
   1427     }
   1428 
   1429     // If the y_sad is small enough, copy the partition of the superblock in the
   1430     // last frame to current frame only if the last frame is not a keyframe.
   1431     // Stop the copy every cpi->max_copied_frame to refresh the partition.
   1432     // TODO(jianj) : tune the threshold.
   1433     if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy &&
   1434         copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
   1435       chroma_check(cpi, x, bsize, y_sad, is_key_frame);
   1436       if (cpi->sf.svc_use_lowres_part &&
   1437           cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
   1438         update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
   1439       return 0;
   1440     }
   1441   } else {
   1442     d = VP9_VAR_OFFS;
   1443     dp = 0;
   1444 #if CONFIG_VP9_HIGHBITDEPTH
   1445     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
   1446       switch (xd->bd) {
   1447         case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break;
   1448         case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break;
   1449         case 8:
   1450         default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break;
   1451       }
   1452     }
   1453 #endif  // CONFIG_VP9_HIGHBITDEPTH
   1454   }
   1455 
   1456   if (low_res && threshold_4x4avg < INT64_MAX)
   1457     CHECK_MEM_ERROR(cm, vt2, vpx_calloc(16, sizeof(*vt2)));
   1458   // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
   1459   // for splits.
   1460   for (i = 0; i < 4; i++) {
   1461     const int x32_idx = ((i & 1) << 5);
   1462     const int y32_idx = ((i >> 1) << 5);
   1463     const int i2 = i << 2;
   1464     force_split[i + 1] = 0;
   1465     avg_16x16[i] = 0;
   1466     maxvar_16x16[i] = 0;
   1467     minvar_16x16[i] = INT_MAX;
   1468     for (j = 0; j < 4; j++) {
   1469       const int x16_idx = x32_idx + ((j & 1) << 4);
   1470       const int y16_idx = y32_idx + ((j >> 1) << 4);
   1471       const int split_index = 5 + i2 + j;
   1472       v16x16 *vst = &vt.split[i].split[j];
   1473       force_split[split_index] = 0;
   1474       variance4x4downsample[i2 + j] = 0;
   1475       if (!is_key_frame) {
   1476         fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
   1477 #if CONFIG_VP9_HIGHBITDEPTH
   1478                              xd->cur_buf->flags,
   1479 #endif
   1480                              pixels_wide, pixels_high, is_key_frame);
   1481         fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
   1482         get_variance(&vt.split[i].split[j].part_variances.none);
   1483         avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance;
   1484         if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i])
   1485           minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
   1486         if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i])
   1487           maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
   1488         if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) {
   1489           // 16X16 variance is above threshold for split, so force split to 8x8
   1490           // for this 16x16 block (this also forces splits for upper levels).
   1491           force_split[split_index] = 1;
   1492           force_split[i + 1] = 1;
   1493           force_split[0] = 1;
   1494         } else if (compute_minmax_variance &&
   1495                    vt.split[i].split[j].part_variances.none.variance >
   1496                        thresholds[1] &&
   1497                    !cyclic_refresh_segment_id_boosted(segment_id)) {
   1498           // We have some nominal amount of 16x16 variance (based on average),
   1499           // compute the minmax over the 8x8 sub-blocks, and if above threshold,
   1500           // force split to 8x8 block for this 16x16 block.
   1501           int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
   1502 #if CONFIG_VP9_HIGHBITDEPTH
   1503                                           xd->cur_buf->flags,
   1504 #endif
   1505                                           pixels_wide, pixels_high);
   1506           int thresh_minmax = (int)cpi->vbp_threshold_minmax;
   1507           if (x->content_state_sb == kVeryHighSad)
   1508             thresh_minmax = thresh_minmax << 1;
   1509           if (minmax > thresh_minmax) {
   1510             force_split[split_index] = 1;
   1511             force_split[i + 1] = 1;
   1512             force_split[0] = 1;
   1513           }
   1514         }
   1515       }
   1516       if (is_key_frame || (low_res &&
   1517                            vt.split[i].split[j].part_variances.none.variance >
   1518                                threshold_4x4avg)) {
   1519         force_split[split_index] = 0;
   1520         // Go down to 4x4 down-sampling for variance.
   1521         variance4x4downsample[i2 + j] = 1;
   1522         for (k = 0; k < 4; k++) {
   1523           int x8_idx = x16_idx + ((k & 1) << 3);
   1524           int y8_idx = y16_idx + ((k >> 1) << 3);
   1525           v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
   1526           fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
   1527 #if CONFIG_VP9_HIGHBITDEPTH
   1528                                xd->cur_buf->flags,
   1529 #endif
   1530                                pixels_wide, pixels_high, is_key_frame);
   1531         }
   1532       }
   1533     }
   1534   }
   1535   if (cpi->noise_estimate.enabled)
   1536     noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate);
   1537   // Fill the rest of the variance tree by summing split partition values.
   1538   avg_32x32 = 0;
   1539   for (i = 0; i < 4; i++) {
   1540     const int i2 = i << 2;
   1541     for (j = 0; j < 4; j++) {
   1542       if (variance4x4downsample[i2 + j] == 1) {
   1543         v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j];
   1544         for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
   1545         fill_variance_tree(vtemp, BLOCK_16X16);
   1546         // If variance of this 16x16 block is above the threshold, force block
   1547         // to split. This also forces a split on the upper levels.
   1548         get_variance(&vtemp->part_variances.none);
   1549         if (vtemp->part_variances.none.variance > thresholds[2]) {
   1550           force_split[5 + i2 + j] = 1;
   1551           force_split[i + 1] = 1;
   1552           force_split[0] = 1;
   1553         }
   1554       }
   1555     }
   1556     fill_variance_tree(&vt.split[i], BLOCK_32X32);
   1557     // If variance of this 32x32 block is above the threshold, or if its above
   1558     // (some threshold of) the average variance over the sub-16x16 blocks, then
   1559     // force this block to split. This also forces a split on the upper
   1560     // (64x64) level.
   1561     if (!force_split[i + 1]) {
   1562       get_variance(&vt.split[i].part_variances.none);
   1563       var_32x32 = vt.split[i].part_variances.none.variance;
   1564       max_var_32x32 = VPXMAX(var_32x32, max_var_32x32);
   1565       min_var_32x32 = VPXMIN(var_32x32, min_var_32x32);
   1566       if (vt.split[i].part_variances.none.variance > thresholds[1] ||
   1567           (!is_key_frame &&
   1568            vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) &&
   1569            vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) {
   1570         force_split[i + 1] = 1;
   1571         force_split[0] = 1;
   1572       } else if (!is_key_frame && noise_level < kLow && cm->height <= 360 &&
   1573                  (maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) &&
   1574                  maxvar_16x16[i] > thresholds[1]) {
   1575         force_split[i + 1] = 1;
   1576         force_split[0] = 1;
   1577       }
   1578       avg_32x32 += var_32x32;
   1579     }
   1580   }
   1581   if (!force_split[0]) {
   1582     fill_variance_tree(&vt, BLOCK_64X64);
   1583     get_variance(&vt.part_variances.none);
   1584     // If variance of this 64x64 block is above (some threshold of) the average
   1585     // variance over the sub-32x32 blocks, then force this block to split.
   1586     // Only checking this for noise level >= medium for now.
   1587     if (!is_key_frame && noise_level >= kMedium &&
   1588         vt.part_variances.none.variance > (9 * avg_32x32) >> 5)
   1589       force_split[0] = 1;
   1590     // Else if the maximum 32x32 variance minus the miniumum 32x32 variance in
   1591     // a 64x64 block is greater than threshold and the maximum 32x32 variance is
   1592     // above a miniumum threshold, then force the split of a 64x64 block
   1593     // Only check this for low noise.
   1594     else if (!is_key_frame && noise_level < kMedium &&
   1595              (max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) &&
   1596              max_var_32x32 > thresholds[0] >> 1)
   1597       force_split[0] = 1;
   1598   }
   1599 
   1600   // Now go through the entire structure, splitting every block size until
   1601   // we get to one that's got a variance lower than our threshold.
   1602   if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
   1603       !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
   1604                            thresholds[0], BLOCK_16X16, force_split[0])) {
   1605     for (i = 0; i < 4; ++i) {
   1606       const int x32_idx = ((i & 1) << 2);
   1607       const int y32_idx = ((i >> 1) << 2);
   1608       const int i2 = i << 2;
   1609       if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
   1610                                (mi_row + y32_idx), (mi_col + x32_idx),
   1611                                thresholds[1], BLOCK_16X16,
   1612                                force_split[i + 1])) {
   1613         for (j = 0; j < 4; ++j) {
   1614           const int x16_idx = ((j & 1) << 1);
   1615           const int y16_idx = ((j >> 1) << 1);
   1616           // For inter frames: if variance4x4downsample[] == 1 for this 16x16
   1617           // block, then the variance is based on 4x4 down-sampling, so use vt2
   1618           // in set_vt_partioning(), otherwise use vt.
   1619           v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1)
   1620                               ? &vt2[i2 + j]
   1621                               : &vt.split[i].split[j];
   1622           if (!set_vt_partitioning(
   1623                   cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx,
   1624                   mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min,
   1625                   force_split[5 + i2 + j])) {
   1626             for (k = 0; k < 4; ++k) {
   1627               const int x8_idx = (k & 1);
   1628               const int y8_idx = (k >> 1);
   1629               if (use_4x4_partition) {
   1630                 if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
   1631                                          BLOCK_8X8,
   1632                                          mi_row + y32_idx + y16_idx + y8_idx,
   1633                                          mi_col + x32_idx + x16_idx + x8_idx,
   1634                                          thresholds[3], BLOCK_8X8, 0)) {
   1635                   set_block_size(
   1636                       cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
   1637                       (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4);
   1638                 }
   1639               } else {
   1640                 set_block_size(
   1641                     cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
   1642                     (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8);
   1643               }
   1644             }
   1645           }
   1646         }
   1647       }
   1648     }
   1649   }
   1650 
   1651   if (cm->frame_type != KEY_FRAME && cpi->sf.copy_partition_flag) {
   1652     update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
   1653   }
   1654 
   1655   if (cm->frame_type != KEY_FRAME && cpi->sf.svc_use_lowres_part &&
   1656       cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
   1657     update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
   1658 
   1659   if (cpi->sf.short_circuit_low_temp_var) {
   1660     set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition,
   1661                           mi_col, mi_row);
   1662   }
   1663 
   1664   chroma_check(cpi, x, bsize, y_sad, is_key_frame);
   1665   if (vt2) vpx_free(vt2);
   1666   return 0;
   1667 }
   1668 
   1669 static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
   1670                          int mi_row, int mi_col, BLOCK_SIZE bsize,
   1671                          int output_enabled) {
   1672   int i, x_idx, y;
   1673   VP9_COMMON *const cm = &cpi->common;
   1674   RD_COUNTS *const rdc = &td->rd_counts;
   1675   MACROBLOCK *const x = &td->mb;
   1676   MACROBLOCKD *const xd = &x->e_mbd;
   1677   struct macroblock_plane *const p = x->plane;
   1678   struct macroblockd_plane *const pd = xd->plane;
   1679   MODE_INFO *mi = &ctx->mic;
   1680   MODE_INFO *const xdmi = xd->mi[0];
   1681   MODE_INFO *mi_addr = xd->mi[0];
   1682   const struct segmentation *const seg = &cm->seg;
   1683   const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
   1684   const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
   1685   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
   1686   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
   1687   MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
   1688   int w, h;
   1689 
   1690   const int mis = cm->mi_stride;
   1691   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
   1692   const int mi_height = num_8x8_blocks_high_lookup[bsize];
   1693   int max_plane;
   1694 
   1695   assert(mi->sb_type == bsize);
   1696 
   1697   *mi_addr = *mi;
   1698   *x->mbmi_ext = ctx->mbmi_ext;
   1699 
   1700   // If segmentation in use
   1701   if (seg->enabled) {
   1702     // For in frame complexity AQ copy the segment id from the segment map.
   1703     if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
   1704       const uint8_t *const map =
   1705           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
   1706       mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
   1707     }
   1708     // Else for cyclic refresh mode update the segment map, set the segment id
   1709     // and then update the quantizer.
   1710     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
   1711       vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize,
   1712                                         ctx->rate, ctx->dist, x->skip, p);
   1713     }
   1714   }
   1715 
   1716   max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1;
   1717   for (i = 0; i < max_plane; ++i) {
   1718     p[i].coeff = ctx->coeff_pbuf[i][1];
   1719     p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
   1720     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
   1721     p[i].eobs = ctx->eobs_pbuf[i][1];
   1722   }
   1723 
   1724   for (i = max_plane; i < MAX_MB_PLANE; ++i) {
   1725     p[i].coeff = ctx->coeff_pbuf[i][2];
   1726     p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
   1727     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
   1728     p[i].eobs = ctx->eobs_pbuf[i][2];
   1729   }
   1730 
   1731   // Restore the coding context of the MB to that that was in place
   1732   // when the mode was picked for it
   1733   for (y = 0; y < mi_height; y++)
   1734     for (x_idx = 0; x_idx < mi_width; x_idx++)
   1735       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
   1736           (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
   1737         xd->mi[x_idx + y * mis] = mi_addr;
   1738       }
   1739 
   1740   if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x);
   1741 
   1742   if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) {
   1743     xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
   1744     xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
   1745   }
   1746 
   1747   x->skip = ctx->skip;
   1748   memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk,
   1749          sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
   1750 
   1751   if (!output_enabled) return;
   1752 
   1753 #if CONFIG_INTERNAL_STATS
   1754   if (frame_is_intra_only(cm)) {
   1755     static const int kf_mode_index[] = {
   1756       THR_DC /*DC_PRED*/,          THR_V_PRED /*V_PRED*/,
   1757       THR_H_PRED /*H_PRED*/,       THR_D45_PRED /*D45_PRED*/,
   1758       THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
   1759       THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
   1760       THR_D63_PRED /*D63_PRED*/,   THR_TM /*TM_PRED*/,
   1761     };
   1762     ++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]];
   1763   } else {
   1764     // Note how often each mode chosen as best
   1765     ++cpi->mode_chosen_counts[ctx->best_mode_index];
   1766   }
   1767 #endif
   1768   if (!frame_is_intra_only(cm)) {
   1769     if (is_inter_block(xdmi)) {
   1770       vp9_update_mv_count(td);
   1771 
   1772       if (cm->interp_filter == SWITCHABLE) {
   1773         const int ctx = get_pred_context_switchable_interp(xd);
   1774         ++td->counts->switchable_interp[ctx][xdmi->interp_filter];
   1775       }
   1776     }
   1777 
   1778     rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
   1779     rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
   1780     rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
   1781 
   1782     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
   1783       rdc->filter_diff[i] += ctx->best_filter_diff[i];
   1784   }
   1785 
   1786   for (h = 0; h < y_mis; ++h) {
   1787     MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
   1788     for (w = 0; w < x_mis; ++w) {
   1789       MV_REF *const mv = frame_mv + w;
   1790       mv->ref_frame[0] = mi->ref_frame[0];
   1791       mv->ref_frame[1] = mi->ref_frame[1];
   1792       mv->mv[0].as_int = mi->mv[0].as_int;
   1793       mv->mv[1].as_int = mi->mv[1].as_int;
   1794     }
   1795   }
   1796 }
   1797 
   1798 void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
   1799                           int mi_row, int mi_col) {
   1800   uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
   1801   const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
   1802   int i;
   1803 
   1804   // Set current frame pointer.
   1805   x->e_mbd.cur_buf = src;
   1806 
   1807   for (i = 0; i < MAX_MB_PLANE; i++)
   1808     setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
   1809                      NULL, x->e_mbd.plane[i].subsampling_x,
   1810                      x->e_mbd.plane[i].subsampling_y);
   1811 }
   1812 
   1813 static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
   1814                                    RD_COST *rd_cost, BLOCK_SIZE bsize) {
   1815   MACROBLOCKD *const xd = &x->e_mbd;
   1816   MODE_INFO *const mi = xd->mi[0];
   1817   INTERP_FILTER filter_ref;
   1818 
   1819   filter_ref = get_pred_context_switchable_interp(xd);
   1820   if (filter_ref == SWITCHABLE_FILTERS) filter_ref = EIGHTTAP;
   1821 
   1822   mi->sb_type = bsize;
   1823   mi->mode = ZEROMV;
   1824   mi->tx_size =
   1825       VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
   1826   mi->skip = 1;
   1827   mi->uv_mode = DC_PRED;
   1828   mi->ref_frame[0] = LAST_FRAME;
   1829   mi->ref_frame[1] = NONE;
   1830   mi->mv[0].as_int = 0;
   1831   mi->interp_filter = filter_ref;
   1832 
   1833   xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
   1834   x->skip = 1;
   1835 
   1836   vp9_rd_cost_init(rd_cost);
   1837 }
   1838 
   1839 static int set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
   1840                               int8_t segment_id) {
   1841   int segment_qindex;
   1842   VP9_COMMON *const cm = &cpi->common;
   1843   vp9_init_plane_quantizers(cpi, x);
   1844   vpx_clear_system_state();
   1845   segment_qindex = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
   1846   return vp9_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
   1847 }
   1848 
   1849 static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
   1850                              MACROBLOCK *const x, int mi_row, int mi_col,
   1851                              RD_COST *rd_cost, BLOCK_SIZE bsize,
   1852                              PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
   1853   VP9_COMMON *const cm = &cpi->common;
   1854   TileInfo *const tile_info = &tile_data->tile_info;
   1855   MACROBLOCKD *const xd = &x->e_mbd;
   1856   MODE_INFO *mi;
   1857   struct macroblock_plane *const p = x->plane;
   1858   struct macroblockd_plane *const pd = xd->plane;
   1859   const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
   1860   int i, orig_rdmult;
   1861 
   1862   vpx_clear_system_state();
   1863 
   1864   // Use the lower precision, but faster, 32x32 fdct for mode selection.
   1865   x->use_lp32x32fdct = 1;
   1866 
   1867   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
   1868   mi = xd->mi[0];
   1869   mi->sb_type = bsize;
   1870 
   1871   for (i = 0; i < MAX_MB_PLANE; ++i) {
   1872     p[i].coeff = ctx->coeff_pbuf[i][0];
   1873     p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
   1874     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
   1875     p[i].eobs = ctx->eobs_pbuf[i][0];
   1876   }
   1877   ctx->is_coded = 0;
   1878   ctx->skippable = 0;
   1879   ctx->pred_pixel_ready = 0;
   1880   x->skip_recode = 0;
   1881 
   1882   // Set to zero to make sure we do not use the previous encoded frame stats
   1883   mi->skip = 0;
   1884 
   1885 #if CONFIG_VP9_HIGHBITDEPTH
   1886   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
   1887     x->source_variance = vp9_high_get_sby_perpixel_variance(
   1888         cpi, &x->plane[0].src, bsize, xd->bd);
   1889   } else {
   1890     x->source_variance =
   1891         vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
   1892   }
   1893 #else
   1894   x->source_variance =
   1895       vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
   1896 #endif  // CONFIG_VP9_HIGHBITDEPTH
   1897 
   1898   // Save rdmult before it might be changed, so it can be restored later.
   1899   orig_rdmult = x->rdmult;
   1900 
   1901   if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) {
   1902     double logvar = vp9_log_block_var(cpi, x, bsize);
   1903     // Check block complexity as part of descision on using pixel or transform
   1904     // domain distortion in rd tests.
   1905     x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion &&
   1906                          (logvar >= cpi->sf.tx_domain_thresh);
   1907 
   1908     // Check block complexity as part of descision on using quantized
   1909     // coefficient optimisation inside the rd loop.
   1910     x->block_qcoeff_opt =
   1911         cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh);
   1912   } else {
   1913     x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion;
   1914     x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt;
   1915   }
   1916 
   1917   if (aq_mode == VARIANCE_AQ) {
   1918     const int energy =
   1919         bsize <= BLOCK_16X16 ? x->mb_energy : vp9_block_energy(cpi, x, bsize);
   1920 
   1921     if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
   1922         cpi->force_update_segmentation ||
   1923         (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
   1924       mi->segment_id = vp9_vaq_segment_id(energy);
   1925     } else {
   1926       const uint8_t *const map =
   1927           cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
   1928       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
   1929     }
   1930     x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
   1931   } else if (aq_mode == LOOKAHEAD_AQ) {
   1932     const uint8_t *const map = cpi->segmentation_map;
   1933 
   1934     // I do not change rdmult here consciously.
   1935     mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
   1936   } else if (aq_mode == EQUATOR360_AQ) {
   1937     if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation) {
   1938       mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows);
   1939     } else {
   1940       const uint8_t *const map =
   1941           cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
   1942       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
   1943     }
   1944     x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
   1945   } else if (aq_mode == COMPLEXITY_AQ) {
   1946     x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id);
   1947   } else if (aq_mode == CYCLIC_REFRESH_AQ) {
   1948     const uint8_t *const map =
   1949         cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
   1950     // If segment is boosted, use rdmult for that segment.
   1951     if (cyclic_refresh_segment_id_boosted(
   1952             get_segment_id(cm, map, bsize, mi_row, mi_col)))
   1953       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
   1954   }
   1955 
   1956   // Find best coding mode & reconstruct the MB so it is available
   1957   // as a predictor for MBs that follow in the SB
   1958   if (frame_is_intra_only(cm)) {
   1959     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
   1960   } else {
   1961     if (bsize >= BLOCK_8X8) {
   1962       if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
   1963         vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
   1964                                            ctx, best_rd);
   1965       else
   1966         vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
   1967                                   bsize, ctx, best_rd);
   1968     } else {
   1969       vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost,
   1970                                     bsize, ctx, best_rd);
   1971     }
   1972   }
   1973 
   1974   // Examine the resulting rate and for AQ mode 2 make a segment choice.
   1975   if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
   1976       (bsize >= BLOCK_16X16) &&
   1977       (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
   1978        (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
   1979     vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
   1980   }
   1981 
   1982   x->rdmult = orig_rdmult;
   1983 
   1984   // TODO(jingning) The rate-distortion optimization flow needs to be
   1985   // refactored to provide proper exit/return handle.
   1986   if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
   1987 
   1988   ctx->rate = rd_cost->rate;
   1989   ctx->dist = rd_cost->dist;
   1990 }
   1991 
   1992 static void update_stats(VP9_COMMON *cm, ThreadData *td) {
   1993   const MACROBLOCK *x = &td->mb;
   1994   const MACROBLOCKD *const xd = &x->e_mbd;
   1995   const MODE_INFO *const mi = xd->mi[0];
   1996   const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
   1997   const BLOCK_SIZE bsize = mi->sb_type;
   1998 
   1999   if (!frame_is_intra_only(cm)) {
   2000     FRAME_COUNTS *const counts = td->counts;
   2001     const int inter_block = is_inter_block(mi);
   2002     const int seg_ref_active =
   2003         segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME);
   2004     if (!seg_ref_active) {
   2005       counts->intra_inter[get_intra_inter_context(xd)][inter_block]++;
   2006       // If the segment reference feature is enabled we have only a single
   2007       // reference frame allowed for the segment so exclude it from
   2008       // the reference frame counts used to work out probabilities.
   2009       if (inter_block) {
   2010         const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0];
   2011         if (cm->reference_mode == REFERENCE_MODE_SELECT)
   2012           counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
   2013                             [has_second_ref(mi)]++;
   2014 
   2015         if (has_second_ref(mi)) {
   2016           counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
   2017                           [ref0 == GOLDEN_FRAME]++;
   2018         } else {
   2019           counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
   2020                             [ref0 != LAST_FRAME]++;
   2021           if (ref0 != LAST_FRAME)
   2022             counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
   2023                               [ref0 != GOLDEN_FRAME]++;
   2024         }
   2025       }
   2026     }
   2027     if (inter_block &&
   2028         !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
   2029       const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
   2030       if (bsize >= BLOCK_8X8) {
   2031         const PREDICTION_MODE mode = mi->mode;
   2032         ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
   2033       } else {
   2034         const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
   2035         const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
   2036         int idx, idy;
   2037         for (idy = 0; idy < 2; idy += num_4x4_h) {
   2038           for (idx = 0; idx < 2; idx += num_4x4_w) {
   2039             const int j = idy * 2 + idx;
   2040             const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
   2041             ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
   2042           }
   2043         }
   2044       }
   2045     }
   2046   }
   2047 }
   2048 
   2049 static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
   2050                             ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
   2051                             ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
   2052                             PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
   2053                             BLOCK_SIZE bsize) {
   2054   MACROBLOCKD *const xd = &x->e_mbd;
   2055   int p;
   2056   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
   2057   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
   2058   int mi_width = num_8x8_blocks_wide_lookup[bsize];
   2059   int mi_height = num_8x8_blocks_high_lookup[bsize];
   2060   for (p = 0; p < MAX_MB_PLANE; p++) {
   2061     memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
   2062            a + num_4x4_blocks_wide * p,
   2063            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
   2064                xd->plane[p].subsampling_x);
   2065     memcpy(xd->left_context[p] +
   2066                ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
   2067            l + num_4x4_blocks_high * p,
   2068            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
   2069                xd->plane[p].subsampling_y);
   2070   }
   2071   memcpy(xd->above_seg_context + mi_col, sa,
   2072          sizeof(*xd->above_seg_context) * mi_width);
   2073   memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
   2074          sizeof(xd->left_seg_context[0]) * mi_height);
   2075 }
   2076 
   2077 static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
   2078                          ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
   2079                          ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
   2080                          PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
   2081                          BLOCK_SIZE bsize) {
   2082   const MACROBLOCKD *const xd = &x->e_mbd;
   2083   int p;
   2084   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
   2085   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
   2086   int mi_width = num_8x8_blocks_wide_lookup[bsize];
   2087   int mi_height = num_8x8_blocks_high_lookup[bsize];
   2088 
   2089   // buffer the above/left context information of the block in search.
   2090   for (p = 0; p < MAX_MB_PLANE; ++p) {
   2091     memcpy(a + num_4x4_blocks_wide * p,
   2092            xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
   2093            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
   2094                xd->plane[p].subsampling_x);
   2095     memcpy(l + num_4x4_blocks_high * p,
   2096            xd->left_context[p] +
   2097                ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
   2098            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
   2099                xd->plane[p].subsampling_y);
   2100   }
   2101   memcpy(sa, xd->above_seg_context + mi_col,
   2102          sizeof(*xd->above_seg_context) * mi_width);
   2103   memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
   2104          sizeof(xd->left_seg_context[0]) * mi_height);
   2105 }
   2106 
   2107 static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td,
   2108                      TOKENEXTRA **tp, int mi_row, int mi_col,
   2109                      int output_enabled, BLOCK_SIZE bsize,
   2110                      PICK_MODE_CONTEXT *ctx) {
   2111   MACROBLOCK *const x = &td->mb;
   2112   set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
   2113   update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
   2114   encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
   2115 
   2116   if (output_enabled) {
   2117     update_stats(&cpi->common, td);
   2118 
   2119     (*tp)->token = EOSB_TOKEN;
   2120     (*tp)++;
   2121   }
   2122 }
   2123 
   2124 static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile,
   2125                       TOKENEXTRA **tp, int mi_row, int mi_col,
   2126                       int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
   2127   VP9_COMMON *const cm = &cpi->common;
   2128   MACROBLOCK *const x = &td->mb;
   2129   MACROBLOCKD *const xd = &x->e_mbd;
   2130 
   2131   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
   2132   int ctx;
   2133   PARTITION_TYPE partition;
   2134   BLOCK_SIZE subsize = bsize;
   2135 
   2136   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
   2137 
   2138   if (bsize >= BLOCK_8X8) {
   2139     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
   2140     subsize = get_subsize(bsize, pc_tree->partitioning);
   2141   } else {
   2142     ctx = 0;
   2143     subsize = BLOCK_4X4;
   2144   }
   2145 
   2146   partition = partition_lookup[bsl][subsize];
   2147   if (output_enabled && bsize != BLOCK_4X4)
   2148     td->counts->partition[ctx][partition]++;
   2149 
   2150   switch (partition) {
   2151     case PARTITION_NONE:
   2152       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
   2153                &pc_tree->none);
   2154       break;
   2155     case PARTITION_VERT:
   2156       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
   2157                &pc_tree->vertical[0]);
   2158       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
   2159         encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
   2160                  subsize, &pc_tree->vertical[1]);
   2161       }
   2162       break;
   2163     case PARTITION_HORZ:
   2164       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
   2165                &pc_tree->horizontal[0]);
   2166       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
   2167         encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
   2168                  subsize, &pc_tree->horizontal[1]);
   2169       }
   2170       break;
   2171     case PARTITION_SPLIT:
   2172       if (bsize == BLOCK_8X8) {
   2173         encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
   2174                  pc_tree->leaf_split[0]);
   2175       } else {
   2176         encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
   2177                   pc_tree->split[0]);
   2178         encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
   2179                   subsize, pc_tree->split[1]);
   2180         encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
   2181                   subsize, pc_tree->split[2]);
   2182         encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
   2183                   subsize, pc_tree->split[3]);
   2184       }
   2185       break;
   2186     default: assert(0 && "Invalid partition type."); break;
   2187   }
   2188 
   2189   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
   2190     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
   2191 }
   2192 
   2193 // Check to see if the given partition size is allowed for a specified number
   2194 // of 8x8 block rows and columns remaining in the image.
   2195 // If not then return the largest allowed partition size
   2196 static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
   2197                                       int cols_left, int *bh, int *bw) {
   2198   if (rows_left <= 0 || cols_left <= 0) {
   2199     return VPXMIN(bsize, BLOCK_8X8);
   2200   } else {
   2201     for (; bsize > 0; bsize -= 3) {
   2202       *bh = num_8x8_blocks_high_lookup[bsize];
   2203       *bw = num_8x8_blocks_wide_lookup[bsize];
   2204       if ((*bh <= rows_left) && (*bw <= cols_left)) {
   2205         break;
   2206       }
   2207     }
   2208   }
   2209   return bsize;
   2210 }
   2211 
   2212 static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in,
   2213                                          int bw_in, int row8x8_remaining,
   2214                                          int col8x8_remaining, BLOCK_SIZE bsize,
   2215                                          MODE_INFO **mi_8x8) {
   2216   int bh = bh_in;
   2217   int r, c;
   2218   for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
   2219     int bw = bw_in;
   2220     for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
   2221       const int index = r * mis + c;
   2222       mi_8x8[index] = mi + index;
   2223       mi_8x8[index]->sb_type = find_partition_size(
   2224           bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
   2225     }
   2226   }
   2227 }
   2228 
   2229 // This function attempts to set all mode info entries in a given SB64
   2230 // to the same block partition size.
   2231 // However, at the bottom and right borders of the image the requested size
   2232 // may not be allowed in which case this code attempts to choose the largest
   2233 // allowable partition.
   2234 static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
   2235                                    MODE_INFO **mi_8x8, int mi_row, int mi_col,
   2236                                    BLOCK_SIZE bsize) {
   2237   VP9_COMMON *const cm = &cpi->common;
   2238   const int mis = cm->mi_stride;
   2239   const int row8x8_remaining = tile->mi_row_end - mi_row;
   2240   const int col8x8_remaining = tile->mi_col_end - mi_col;
   2241   int block_row, block_col;
   2242   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
   2243   int bh = num_8x8_blocks_high_lookup[bsize];
   2244   int bw = num_8x8_blocks_wide_lookup[bsize];
   2245 
   2246   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
   2247 
   2248   // Apply the requested partition size to the SB64 if it is all "in image"
   2249   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
   2250       (row8x8_remaining >= MI_BLOCK_SIZE)) {
   2251     for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
   2252       for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
   2253         int index = block_row * mis + block_col;
   2254         mi_8x8[index] = mi_upper_left + index;
   2255         mi_8x8[index]->sb_type = bsize;
   2256       }
   2257     }
   2258   } else {
   2259     // Else this is a partial SB64.
   2260     set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
   2261                                  col8x8_remaining, bsize, mi_8x8);
   2262   }
   2263 }
   2264 
   2265 static const struct {
   2266   int row;
   2267   int col;
   2268 } coord_lookup[16] = {
   2269   // 32x32 index = 0
   2270   { 0, 0 },
   2271   { 0, 2 },
   2272   { 2, 0 },
   2273   { 2, 2 },
   2274   // 32x32 index = 1
   2275   { 0, 4 },
   2276   { 0, 6 },
   2277   { 2, 4 },
   2278   { 2, 6 },
   2279   // 32x32 index = 2
   2280   { 4, 0 },
   2281   { 4, 2 },
   2282   { 6, 0 },
   2283   { 6, 2 },
   2284   // 32x32 index = 3
   2285   { 4, 4 },
   2286   { 4, 6 },
   2287   { 6, 4 },
   2288   { 6, 6 },
   2289 };
   2290 
   2291 static void set_source_var_based_partition(VP9_COMP *cpi,
   2292                                            const TileInfo *const tile,
   2293                                            MACROBLOCK *const x,
   2294                                            MODE_INFO **mi_8x8, int mi_row,
   2295                                            int mi_col) {
   2296   VP9_COMMON *const cm = &cpi->common;
   2297   const int mis = cm->mi_stride;
   2298   const int row8x8_remaining = tile->mi_row_end - mi_row;
   2299   const int col8x8_remaining = tile->mi_col_end - mi_col;
   2300   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
   2301 
   2302   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
   2303 
   2304   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
   2305 
   2306   // In-image SB64
   2307   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
   2308       (row8x8_remaining >= MI_BLOCK_SIZE)) {
   2309     int i, j;
   2310     int index;
   2311     diff d32[4];
   2312     const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
   2313     int is_larger_better = 0;
   2314     int use32x32 = 0;
   2315     unsigned int thr = cpi->source_var_thresh;
   2316 
   2317     memset(d32, 0, 4 * sizeof(diff));
   2318 
   2319     for (i = 0; i < 4; i++) {
   2320       diff *d16[4];
   2321 
   2322       for (j = 0; j < 4; j++) {
   2323         int b_mi_row = coord_lookup[i * 4 + j].row;
   2324         int b_mi_col = coord_lookup[i * 4 + j].col;
   2325         int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2;
   2326 
   2327         d16[j] = cpi->source_diff_var + offset + boffset;
   2328 
   2329         index = b_mi_row * mis + b_mi_col;
   2330         mi_8x8[index] = mi_upper_left + index;
   2331         mi_8x8[index]->sb_type = BLOCK_16X16;
   2332 
   2333         // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
   2334         // size to further improve quality.
   2335       }
   2336 
   2337       is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
   2338                          (d16[2]->var < thr) && (d16[3]->var < thr);
   2339 
   2340       // Use 32x32 partition
   2341       if (is_larger_better) {
   2342         use32x32 += 1;
   2343 
   2344         for (j = 0; j < 4; j++) {
   2345           d32[i].sse += d16[j]->sse;
   2346           d32[i].sum += d16[j]->sum;
   2347         }
   2348 
   2349         d32[i].var =
   2350             (unsigned int)(d32[i].sse -
   2351                            (unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >>
   2352                                           10));
   2353 
   2354         index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col;
   2355         mi_8x8[index] = mi_upper_left + index;
   2356         mi_8x8[index]->sb_type = BLOCK_32X32;
   2357       }
   2358     }
   2359 
   2360     if (use32x32 == 4) {
   2361       thr <<= 1;
   2362       is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
   2363                          (d32[2].var < thr) && (d32[3].var < thr);
   2364 
   2365       // Use 64x64 partition
   2366       if (is_larger_better) {
   2367         mi_8x8[0] = mi_upper_left;
   2368         mi_8x8[0]->sb_type = BLOCK_64X64;
   2369       }
   2370     }
   2371   } else {  // partial in-image SB64
   2372     int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
   2373     int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
   2374     set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
   2375                                  col8x8_remaining, BLOCK_16X16, mi_8x8);
   2376   }
   2377 }
   2378 
   2379 static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
   2380                             PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
   2381                             int bsize) {
   2382   VP9_COMMON *const cm = &cpi->common;
   2383   MACROBLOCK *const x = &td->mb;
   2384   MACROBLOCKD *const xd = &x->e_mbd;
   2385   MODE_INFO *const mi = xd->mi[0];
   2386   struct macroblock_plane *const p = x->plane;
   2387   const struct segmentation *const seg = &cm->seg;
   2388   const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
   2389   const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
   2390   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
   2391   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
   2392 
   2393   *(xd->mi[0]) = ctx->mic;
   2394   *(x->mbmi_ext) = ctx->mbmi_ext;
   2395 
   2396   if (seg->enabled && cpi->oxcf.aq_mode != NO_AQ) {
   2397     // For in frame complexity AQ or variance AQ, copy segment_id from
   2398     // segmentation_map.
   2399     if (cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ) {
   2400       const uint8_t *const map =
   2401           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
   2402       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
   2403     } else {
   2404       // Setting segmentation map for cyclic_refresh.
   2405       vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize,
   2406                                         ctx->rate, ctx->dist, x->skip, p);
   2407     }
   2408     vp9_init_plane_quantizers(cpi, x);
   2409   }
   2410 
   2411   if (is_inter_block(mi)) {
   2412     vp9_update_mv_count(td);
   2413     if (cm->interp_filter == SWITCHABLE) {
   2414       const int pred_ctx = get_pred_context_switchable_interp(xd);
   2415       ++td->counts->switchable_interp[pred_ctx][mi->interp_filter];
   2416     }
   2417 
   2418     if (mi->sb_type < BLOCK_8X8) {
   2419       mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
   2420       mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
   2421     }
   2422   }
   2423 
   2424   if (cm->use_prev_frame_mvs || !cm->error_resilient_mode ||
   2425       (cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 &&
   2426        cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) {
   2427     MV_REF *const frame_mvs =
   2428         cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
   2429     int w, h;
   2430 
   2431     for (h = 0; h < y_mis; ++h) {
   2432       MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
   2433       for (w = 0; w < x_mis; ++w) {
   2434         MV_REF *const mv = frame_mv + w;
   2435         mv->ref_frame[0] = mi->ref_frame[0];
   2436         mv->ref_frame[1] = mi->ref_frame[1];
   2437         mv->mv[0].as_int = mi->mv[0].as_int;
   2438         mv->mv[1].as_int = mi->mv[1].as_int;
   2439       }
   2440     }
   2441   }
   2442 
   2443   x->skip = ctx->skip;
   2444   x->skip_txfm[0] = mi->segment_id ? 0 : ctx->skip_txfm[0];
   2445 }
   2446 
   2447 static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
   2448                         const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
   2449                         int mi_col, int output_enabled, BLOCK_SIZE bsize,
   2450                         PICK_MODE_CONTEXT *ctx) {
   2451   MACROBLOCK *const x = &td->mb;
   2452   set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
   2453   update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
   2454 
   2455   encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
   2456   update_stats(&cpi->common, td);
   2457 
   2458   (*tp)->token = EOSB_TOKEN;
   2459   (*tp)++;
   2460 }
   2461 
   2462 static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
   2463                          const TileInfo *const tile, TOKENEXTRA **tp,
   2464                          int mi_row, int mi_col, int output_enabled,
   2465                          BLOCK_SIZE bsize, PC_TREE *pc_tree) {
   2466   VP9_COMMON *const cm = &cpi->common;
   2467   MACROBLOCK *const x = &td->mb;
   2468   MACROBLOCKD *const xd = &x->e_mbd;
   2469 
   2470   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
   2471   int ctx;
   2472   PARTITION_TYPE partition;
   2473   BLOCK_SIZE subsize;
   2474 
   2475   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
   2476 
   2477   if (bsize >= BLOCK_8X8) {
   2478     const int idx_str = xd->mi_stride * mi_row + mi_col;
   2479     MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
   2480     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
   2481     subsize = mi_8x8[0]->sb_type;
   2482   } else {
   2483     ctx = 0;
   2484     subsize = BLOCK_4X4;
   2485   }
   2486 
   2487   partition = partition_lookup[bsl][subsize];
   2488   if (output_enabled && bsize != BLOCK_4X4)
   2489     td->counts->partition[ctx][partition]++;
   2490 
   2491   switch (partition) {
   2492     case PARTITION_NONE:
   2493       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
   2494                   &pc_tree->none);
   2495       break;
   2496     case PARTITION_VERT:
   2497       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
   2498                   &pc_tree->vertical[0]);
   2499       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
   2500         encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
   2501                     subsize, &pc_tree->vertical[1]);
   2502       }
   2503       break;
   2504     case PARTITION_HORZ:
   2505       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
   2506                   &pc_tree->horizontal[0]);
   2507       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
   2508         encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
   2509                     subsize, &pc_tree->horizontal[1]);
   2510       }
   2511       break;
   2512     case PARTITION_SPLIT:
   2513       subsize = get_subsize(bsize, PARTITION_SPLIT);
   2514       encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
   2515                    pc_tree->split[0]);
   2516       encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
   2517                    subsize, pc_tree->split[1]);
   2518       encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
   2519                    subsize, pc_tree->split[2]);
   2520       encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
   2521                    output_enabled, subsize, pc_tree->split[3]);
   2522       break;
   2523     default: assert(0 && "Invalid partition type."); break;
   2524   }
   2525 
   2526   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
   2527     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
   2528 }
   2529 
   2530 static void rd_use_partition(VP9_COMP *cpi, ThreadData *td,
   2531                              TileDataEnc *tile_data, MODE_INFO **mi_8x8,
   2532                              TOKENEXTRA **tp, int mi_row, int mi_col,
   2533                              BLOCK_SIZE bsize, int *rate, int64_t *dist,
   2534                              int do_recon, PC_TREE *pc_tree) {
   2535   VP9_COMMON *const cm = &cpi->common;
   2536   TileInfo *const tile_info = &tile_data->tile_info;
   2537   MACROBLOCK *const x = &td->mb;
   2538   MACROBLOCKD *const xd = &x->e_mbd;
   2539   const int mis = cm->mi_stride;
   2540   const int bsl = b_width_log2_lookup[bsize];
   2541   const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
   2542   const int bss = (1 << bsl) / 4;
   2543   int i, pl;
   2544   PARTITION_TYPE partition = PARTITION_NONE;
   2545   BLOCK_SIZE subsize;
   2546   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
   2547   PARTITION_CONTEXT sl[8], sa[8];
   2548   RD_COST last_part_rdc, none_rdc, chosen_rdc;
   2549   BLOCK_SIZE sub_subsize = BLOCK_4X4;
   2550   int splits_below = 0;
   2551   BLOCK_SIZE bs_type = mi_8x8[0]->sb_type;
   2552   int do_partition_search = 1;
   2553   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
   2554 
   2555   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
   2556 
   2557   assert(num_4x4_blocks_wide_lookup[bsize] ==
   2558          num_4x4_blocks_high_lookup[bsize]);
   2559 
   2560   vp9_rd_cost_reset(&last_part_rdc);
   2561   vp9_rd_cost_reset(&none_rdc);
   2562   vp9_rd_cost_reset(&chosen_rdc);
   2563 
   2564   partition = partition_lookup[bsl][bs_type];
   2565   subsize = get_subsize(bsize, partition);
   2566 
   2567   pc_tree->partitioning = partition;
   2568   save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   2569 
   2570   if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) {
   2571     set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
   2572     x->mb_energy = vp9_block_energy(cpi, x, bsize);
   2573   }
   2574 
   2575   if (do_partition_search &&
   2576       cpi->sf.partition_search_type == SEARCH_PARTITION &&
   2577       cpi->sf.adjust_partitioning_from_last_frame) {
   2578     // Check if any of the sub blocks are further split.
   2579     if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
   2580       sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
   2581       splits_below = 1;
   2582       for (i = 0; i < 4; i++) {
   2583         int jj = i >> 1, ii = i & 0x01;
   2584         MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
   2585         if (this_mi && this_mi->sb_type >= sub_subsize) {
   2586           splits_below = 0;
   2587         }
   2588       }
   2589     }
   2590 
   2591     // If partition is not none try none unless each of the 4 splits are split
   2592     // even further..
   2593     if (partition != PARTITION_NONE && !splits_below &&
   2594         mi_row + (mi_step >> 1) < cm->mi_rows &&
   2595         mi_col + (mi_step >> 1) < cm->mi_cols) {
   2596       pc_tree->partitioning = PARTITION_NONE;
   2597       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx,
   2598                        INT64_MAX);
   2599 
   2600       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
   2601 
   2602       if (none_rdc.rate < INT_MAX) {
   2603         none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
   2604         none_rdc.rdcost =
   2605             RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
   2606       }
   2607 
   2608       restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   2609       mi_8x8[0]->sb_type = bs_type;
   2610       pc_tree->partitioning = partition;
   2611     }
   2612   }
   2613 
   2614   switch (partition) {
   2615     case PARTITION_NONE:
   2616       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize,
   2617                        ctx, INT64_MAX);
   2618       break;
   2619     case PARTITION_HORZ:
   2620       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
   2621                        subsize, &pc_tree->horizontal[0], INT64_MAX);
   2622       if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
   2623           mi_row + (mi_step >> 1) < cm->mi_rows) {
   2624         RD_COST tmp_rdc;
   2625         PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
   2626         vp9_rd_cost_init(&tmp_rdc);
   2627         update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
   2628         encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
   2629         rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col,
   2630                          &tmp_rdc, subsize, &pc_tree->horizontal[1], INT64_MAX);
   2631         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
   2632           vp9_rd_cost_reset(&last_part_rdc);
   2633           break;
   2634         }
   2635         last_part_rdc.rate += tmp_rdc.rate;
   2636         last_part_rdc.dist += tmp_rdc.dist;
   2637         last_part_rdc.rdcost += tmp_rdc.rdcost;
   2638       }
   2639       break;
   2640     case PARTITION_VERT:
   2641       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
   2642                        subsize, &pc_tree->vertical[0], INT64_MAX);
   2643       if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
   2644           mi_col + (mi_step >> 1) < cm->mi_cols) {
   2645         RD_COST tmp_rdc;
   2646         PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
   2647         vp9_rd_cost_init(&tmp_rdc);
   2648         update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
   2649         encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
   2650         rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1),
   2651                          &tmp_rdc, subsize,
   2652                          &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX);
   2653         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
   2654           vp9_rd_cost_reset(&last_part_rdc);
   2655           break;
   2656         }
   2657         last_part_rdc.rate += tmp_rdc.rate;
   2658         last_part_rdc.dist += tmp_rdc.dist;
   2659         last_part_rdc.rdcost += tmp_rdc.rdcost;
   2660       }
   2661       break;
   2662     case PARTITION_SPLIT:
   2663       if (bsize == BLOCK_8X8) {
   2664         rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
   2665                          subsize, pc_tree->leaf_split[0], INT64_MAX);
   2666         break;
   2667       }
   2668       last_part_rdc.rate = 0;
   2669       last_part_rdc.dist = 0;
   2670       last_part_rdc.rdcost = 0;
   2671       for (i = 0; i < 4; i++) {
   2672         int x_idx = (i & 1) * (mi_step >> 1);
   2673         int y_idx = (i >> 1) * (mi_step >> 1);
   2674         int jj = i >> 1, ii = i & 0x01;
   2675         RD_COST tmp_rdc;
   2676         if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
   2677           continue;
   2678 
   2679         vp9_rd_cost_init(&tmp_rdc);
   2680         rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss,
   2681                          tp, mi_row + y_idx, mi_col + x_idx, subsize,
   2682                          &tmp_rdc.rate, &tmp_rdc.dist, i != 3,
   2683                          pc_tree->split[i]);
   2684         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
   2685           vp9_rd_cost_reset(&last_part_rdc);
   2686           break;
   2687         }
   2688         last_part_rdc.rate += tmp_rdc.rate;
   2689         last_part_rdc.dist += tmp_rdc.dist;
   2690       }
   2691       break;
   2692     default: assert(0); break;
   2693   }
   2694 
   2695   pl = partition_plane_context(xd, mi_row, mi_col, bsize);
   2696   if (last_part_rdc.rate < INT_MAX) {
   2697     last_part_rdc.rate += cpi->partition_cost[pl][partition];
   2698     last_part_rdc.rdcost =
   2699         RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
   2700   }
   2701 
   2702   if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
   2703       cpi->sf.partition_search_type == SEARCH_PARTITION &&
   2704       partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
   2705       (mi_row + mi_step < cm->mi_rows ||
   2706        mi_row + (mi_step >> 1) == cm->mi_rows) &&
   2707       (mi_col + mi_step < cm->mi_cols ||
   2708        mi_col + (mi_step >> 1) == cm->mi_cols)) {
   2709     BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
   2710     chosen_rdc.rate = 0;
   2711     chosen_rdc.dist = 0;
   2712     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   2713     pc_tree->partitioning = PARTITION_SPLIT;
   2714 
   2715     // Split partition.
   2716     for (i = 0; i < 4; i++) {
   2717       int x_idx = (i & 1) * (mi_step >> 1);
   2718       int y_idx = (i >> 1) * (mi_step >> 1);
   2719       RD_COST tmp_rdc;
   2720       ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
   2721       PARTITION_CONTEXT sl[8], sa[8];
   2722 
   2723       if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
   2724         continue;
   2725 
   2726       save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   2727       pc_tree->split[i]->partitioning = PARTITION_NONE;
   2728       rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
   2729                        &tmp_rdc, split_subsize, &pc_tree->split[i]->none,
   2730                        INT64_MAX);
   2731 
   2732       restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   2733 
   2734       if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
   2735         vp9_rd_cost_reset(&chosen_rdc);
   2736         break;
   2737       }
   2738 
   2739       chosen_rdc.rate += tmp_rdc.rate;
   2740       chosen_rdc.dist += tmp_rdc.dist;
   2741 
   2742       if (i != 3)
   2743         encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
   2744                   split_subsize, pc_tree->split[i]);
   2745 
   2746       pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
   2747                                    split_subsize);
   2748       chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
   2749     }
   2750     pl = partition_plane_context(xd, mi_row, mi_col, bsize);
   2751     if (chosen_rdc.rate < INT_MAX) {
   2752       chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
   2753       chosen_rdc.rdcost =
   2754           RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
   2755     }
   2756   }
   2757 
   2758   // If last_part is better set the partitioning to that.
   2759   if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
   2760     mi_8x8[0]->sb_type = bsize;
   2761     if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
   2762     chosen_rdc = last_part_rdc;
   2763   }
   2764   // If none was better set the partitioning to that.
   2765   if (none_rdc.rdcost < chosen_rdc.rdcost) {
   2766     if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
   2767     chosen_rdc = none_rdc;
   2768   }
   2769 
   2770   restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   2771 
   2772   // We must have chosen a partitioning and encoding or we'll fail later on.
   2773   // No other opportunities for success.
   2774   if (bsize == BLOCK_64X64)
   2775     assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
   2776 
   2777   if (do_recon) {
   2778     int output_enabled = (bsize == BLOCK_64X64);
   2779     encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
   2780               pc_tree);
   2781   }
   2782 
   2783   *rate = chosen_rdc.rate;
   2784   *dist = chosen_rdc.dist;
   2785 }
   2786 
   2787 static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
   2788   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,  BLOCK_4X4, BLOCK_4X4,
   2789   BLOCK_4X4,   BLOCK_8X8,   BLOCK_8X8,  BLOCK_8X8, BLOCK_16X16,
   2790   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
   2791 };
   2792 
   2793 static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
   2794   BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
   2795   BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
   2796   BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
   2797 };
   2798 
   2799 // Look at all the mode_info entries for blocks that are part of this
   2800 // partition and find the min and max values for sb_type.
   2801 // At the moment this is designed to work on a 64x64 SB but could be
   2802 // adjusted to use a size parameter.
   2803 //
   2804 // The min and max are assumed to have been initialized prior to calling this
   2805 // function so repeat calls can accumulate a min and max of more than one sb64.
   2806 static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
   2807                                         BLOCK_SIZE *min_block_size,
   2808                                         BLOCK_SIZE *max_block_size,
   2809                                         int bs_hist[BLOCK_SIZES]) {
   2810   int sb_width_in_blocks = MI_BLOCK_SIZE;
   2811   int sb_height_in_blocks = MI_BLOCK_SIZE;
   2812   int i, j;
   2813   int index = 0;
   2814 
   2815   // Check the sb_type for each block that belongs to this region.
   2816   for (i = 0; i < sb_height_in_blocks; ++i) {
   2817     for (j = 0; j < sb_width_in_blocks; ++j) {
   2818       MODE_INFO *mi = mi_8x8[index + j];
   2819       BLOCK_SIZE sb_type = mi ? mi->sb_type : 0;
   2820       bs_hist[sb_type]++;
   2821       *min_block_size = VPXMIN(*min_block_size, sb_type);
   2822       *max_block_size = VPXMAX(*max_block_size, sb_type);
   2823     }
   2824     index += xd->mi_stride;
   2825   }
   2826 }
   2827 
   2828 // Next square block size less or equal than current block size.
   2829 static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
   2830   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,   BLOCK_8X8,   BLOCK_8X8,
   2831   BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
   2832   BLOCK_32X32, BLOCK_32X32, BLOCK_64X64
   2833 };
   2834 
   2835 // Look at neighboring blocks and set a min and max partition size based on
   2836 // what they chose.
   2837 static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
   2838                                     MACROBLOCKD *const xd, int mi_row,
   2839                                     int mi_col, BLOCK_SIZE *min_block_size,
   2840                                     BLOCK_SIZE *max_block_size) {
   2841   VP9_COMMON *const cm = &cpi->common;
   2842   MODE_INFO **mi = xd->mi;
   2843   const int left_in_image = !!xd->left_mi;
   2844   const int above_in_image = !!xd->above_mi;
   2845   const int row8x8_remaining = tile->mi_row_end - mi_row;
   2846   const int col8x8_remaining = tile->mi_col_end - mi_col;
   2847   int bh, bw;
   2848   BLOCK_SIZE min_size = BLOCK_4X4;
   2849   BLOCK_SIZE max_size = BLOCK_64X64;
   2850   int bs_hist[BLOCK_SIZES] = { 0 };
   2851 
   2852   // Trap case where we do not have a prediction.
   2853   if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
   2854     // Default "min to max" and "max to min"
   2855     min_size = BLOCK_64X64;
   2856     max_size = BLOCK_4X4;
   2857 
   2858     // NOTE: each call to get_sb_partition_size_range() uses the previous
   2859     // passed in values for min and max as a starting point.
   2860     // Find the min and max partition used in previous frame at this location
   2861     if (cm->frame_type != KEY_FRAME) {
   2862       MODE_INFO **prev_mi =
   2863           &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
   2864       get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
   2865     }
   2866     // Find the min and max partition sizes used in the left SB64
   2867     if (left_in_image) {
   2868       MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
   2869       get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
   2870                                   bs_hist);
   2871     }
   2872     // Find the min and max partition sizes used in the above SB64.
   2873     if (above_in_image) {
   2874       MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
   2875       get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
   2876                                   bs_hist);
   2877     }
   2878 
   2879     // Adjust observed min and max for "relaxed" auto partition case.
   2880     if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
   2881       min_size = min_partition_size[min_size];
   2882       max_size = max_partition_size[max_size];
   2883     }
   2884   }
   2885 
   2886   // Check border cases where max and min from neighbors may not be legal.
   2887   max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
   2888                                  &bh, &bw);
   2889   // Test for blocks at the edge of the active image.
   2890   // This may be the actual edge of the image or where there are formatting
   2891   // bars.
   2892   if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
   2893     min_size = BLOCK_4X4;
   2894   } else {
   2895     min_size =
   2896         VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
   2897   }
   2898 
   2899   // When use_square_partition_only is true, make sure at least one square
   2900   // partition is allowed by selecting the next smaller square size as
   2901   // *min_block_size.
   2902   if (cpi->sf.use_square_partition_only &&
   2903       next_square_size[max_size] < min_size) {
   2904     min_size = next_square_size[max_size];
   2905   }
   2906 
   2907   *min_block_size = min_size;
   2908   *max_block_size = max_size;
   2909 }
   2910 
   2911 // TODO(jingning) refactor functions setting partition search range
   2912 static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row,
   2913                                 int mi_col, BLOCK_SIZE bsize,
   2914                                 BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
   2915   int mi_width = num_8x8_blocks_wide_lookup[bsize];
   2916   int mi_height = num_8x8_blocks_high_lookup[bsize];
   2917   int idx, idy;
   2918 
   2919   MODE_INFO *mi;
   2920   const int idx_str = cm->mi_stride * mi_row + mi_col;
   2921   MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
   2922   BLOCK_SIZE bs, min_size, max_size;
   2923 
   2924   min_size = BLOCK_64X64;
   2925   max_size = BLOCK_4X4;
   2926 
   2927   if (prev_mi) {
   2928     for (idy = 0; idy < mi_height; ++idy) {
   2929       for (idx = 0; idx < mi_width; ++idx) {
   2930         mi = prev_mi[idy * cm->mi_stride + idx];
   2931         bs = mi ? mi->sb_type : bsize;
   2932         min_size = VPXMIN(min_size, bs);
   2933         max_size = VPXMAX(max_size, bs);
   2934       }
   2935     }
   2936   }
   2937 
   2938   if (xd->left_mi) {
   2939     for (idy = 0; idy < mi_height; ++idy) {
   2940       mi = xd->mi[idy * cm->mi_stride - 1];
   2941       bs = mi ? mi->sb_type : bsize;
   2942       min_size = VPXMIN(min_size, bs);
   2943       max_size = VPXMAX(max_size, bs);
   2944     }
   2945   }
   2946 
   2947   if (xd->above_mi) {
   2948     for (idx = 0; idx < mi_width; ++idx) {
   2949       mi = xd->mi[idx - cm->mi_stride];
   2950       bs = mi ? mi->sb_type : bsize;
   2951       min_size = VPXMIN(min_size, bs);
   2952       max_size = VPXMAX(max_size, bs);
   2953     }
   2954   }
   2955 
   2956   if (min_size == max_size) {
   2957     min_size = min_partition_size[min_size];
   2958     max_size = max_partition_size[max_size];
   2959   }
   2960 
   2961   *min_bs = min_size;
   2962   *max_bs = max_size;
   2963 }
   2964 
   2965 static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
   2966   memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
   2967 }
   2968 
   2969 static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
   2970   memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
   2971 }
   2972 
   2973 #if CONFIG_FP_MB_STATS
   2974 const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
   2975                                                         1, 2, 2, 2, 4, 4 };
   2976 const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
   2977                                                         2, 1, 2, 4, 2, 4 };
   2978 const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
   2979   0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120
   2980 };
   2981 const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
   2982   0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120
   2983 };
   2984 const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
   2985   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6
   2986 };
   2987 
   2988 typedef enum {
   2989   MV_ZERO = 0,
   2990   MV_LEFT = 1,
   2991   MV_UP = 2,
   2992   MV_RIGHT = 3,
   2993   MV_DOWN = 4,
   2994   MV_INVALID
   2995 } MOTION_DIRECTION;
   2996 
   2997 static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
   2998   if (fp_byte & FPMB_MOTION_ZERO_MASK) {
   2999     return MV_ZERO;
   3000   } else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
   3001     return MV_LEFT;
   3002   } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
   3003     return MV_RIGHT;
   3004   } else if (fp_byte & FPMB_MOTION_UP_MASK) {
   3005     return MV_UP;
   3006   } else {
   3007     return MV_DOWN;
   3008   }
   3009 }
   3010 
   3011 static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
   3012                                            MOTION_DIRECTION that_mv) {
   3013   if (this_mv == that_mv) {
   3014     return 0;
   3015   } else {
   3016     return abs(this_mv - that_mv) == 2 ? 2 : 1;
   3017   }
   3018 }
   3019 #endif
   3020 
   3021 // Calculate the score used in machine-learning based partition search early
   3022 // termination.
   3023 static double compute_score(VP9_COMMON *const cm, MACROBLOCKD *const xd,
   3024                             PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
   3025                             BLOCK_SIZE bsize) {
   3026   const double *clf;
   3027   const double *mean;
   3028   const double *sd;
   3029   const int mag_mv =
   3030       abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row);
   3031   const int left_in_image = !!xd->left_mi;
   3032   const int above_in_image = !!xd->above_mi;
   3033   MODE_INFO **prev_mi =
   3034       &cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row];
   3035   int above_par = 0;  // above_partitioning
   3036   int left_par = 0;   // left_partitioning
   3037   int last_par = 0;   // last_partitioning
   3038   BLOCK_SIZE context_size;
   3039   double score;
   3040   int offset = 0;
   3041 
   3042   assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
   3043 
   3044   if (above_in_image) {
   3045     context_size = xd->above_mi->sb_type;
   3046     if (context_size < bsize)
   3047       above_par = 2;
   3048     else if (context_size == bsize)
   3049       above_par = 1;
   3050   }
   3051 
   3052   if (left_in_image) {
   3053     context_size = xd->left_mi->sb_type;
   3054     if (context_size < bsize)
   3055       left_par = 2;
   3056     else if (context_size == bsize)
   3057       left_par = 1;
   3058   }
   3059 
   3060   if (prev_mi) {
   3061     context_size = prev_mi[0]->sb_type;
   3062     if (context_size < bsize)
   3063       last_par = 2;
   3064     else if (context_size == bsize)
   3065       last_par = 1;
   3066   }
   3067 
   3068   if (bsize == BLOCK_64X64)
   3069     offset = 0;
   3070   else if (bsize == BLOCK_32X32)
   3071     offset = 8;
   3072   else if (bsize == BLOCK_16X16)
   3073     offset = 16;
   3074 
   3075   // early termination score calculation
   3076   clf = &classifiers[offset];
   3077   mean = &train_mean[offset];
   3078   sd = &train_stdm[offset];
   3079   score = clf[0] * (((double)ctx->rate - mean[0]) / sd[0]) +
   3080           clf[1] * (((double)ctx->dist - mean[1]) / sd[1]) +
   3081           clf[2] * (((double)mag_mv / 2 - mean[2]) * sd[2]) +
   3082           clf[3] * (((double)(left_par + above_par) / 2 - mean[3]) * sd[3]) +
   3083           clf[4] * (((double)ctx->sum_y_eobs - mean[4]) / sd[4]) +
   3084           clf[5] * (((double)cm->base_qindex - mean[5]) * sd[5]) +
   3085           clf[6] * (((double)last_par - mean[6]) * sd[6]) + clf[7];
   3086   return score;
   3087 }
   3088 
   3089 // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
   3090 // unlikely to be selected depending on previous rate-distortion optimization
   3091 // results, for encoding speed-up.
   3092 static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
   3093                               TileDataEnc *tile_data, TOKENEXTRA **tp,
   3094                               int mi_row, int mi_col, BLOCK_SIZE bsize,
   3095                               RD_COST *rd_cost, int64_t best_rd,
   3096                               PC_TREE *pc_tree) {
   3097   VP9_COMMON *const cm = &cpi->common;
   3098   TileInfo *const tile_info = &tile_data->tile_info;
   3099   MACROBLOCK *const x = &td->mb;
   3100   MACROBLOCKD *const xd = &x->e_mbd;
   3101   const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
   3102   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
   3103   PARTITION_CONTEXT sl[8], sa[8];
   3104   TOKENEXTRA *tp_orig = *tp;
   3105   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
   3106   int i;
   3107   const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
   3108   BLOCK_SIZE subsize;
   3109   RD_COST this_rdc, sum_rdc, best_rdc;
   3110   int do_split = bsize >= BLOCK_8X8;
   3111   int do_rect = 1;
   3112   INTERP_FILTER pred_interp_filter;
   3113 
   3114   // Override skipping rectangular partition operations for edge blocks
   3115   const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
   3116   const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
   3117   const int xss = x->e_mbd.plane[1].subsampling_x;
   3118   const int yss = x->e_mbd.plane[1].subsampling_y;
   3119 
   3120   BLOCK_SIZE min_size = x->min_partition_size;
   3121   BLOCK_SIZE max_size = x->max_partition_size;
   3122 
   3123 #if CONFIG_FP_MB_STATS
   3124   unsigned int src_diff_var = UINT_MAX;
   3125   int none_complexity = 0;
   3126 #endif
   3127 
   3128   int partition_none_allowed = !force_horz_split && !force_vert_split;
   3129   int partition_horz_allowed =
   3130       !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
   3131   int partition_vert_allowed =
   3132       !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
   3133 
   3134   int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist;
   3135   int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate;
   3136 
   3137   (void)*tp_orig;
   3138 
   3139   assert(num_8x8_blocks_wide_lookup[bsize] ==
   3140          num_8x8_blocks_high_lookup[bsize]);
   3141 
   3142   // Adjust dist breakout threshold according to the partition size.
   3143   dist_breakout_thr >>=
   3144       8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
   3145   rate_breakout_thr *= num_pels_log2_lookup[bsize];
   3146 
   3147   vp9_rd_cost_init(&this_rdc);
   3148   vp9_rd_cost_init(&sum_rdc);
   3149   vp9_rd_cost_reset(&best_rdc);
   3150   best_rdc.rdcost = best_rd;
   3151 
   3152   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
   3153 
   3154   if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ &&
   3155       cpi->oxcf.aq_mode != LOOKAHEAD_AQ)
   3156     x->mb_energy = vp9_block_energy(cpi, x, bsize);
   3157 
   3158   if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
   3159     int cb_partition_search_ctrl =
   3160         ((pc_tree->index == 0 || pc_tree->index == 3) +
   3161          get_chessboard_index(cm->current_video_frame)) &
   3162         0x1;
   3163 
   3164     if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
   3165       set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
   3166   }
   3167 
   3168   // Determine partition types in search according to the speed features.
   3169   // The threshold set here has to be of square block size.
   3170   if (cpi->sf.auto_min_max_partition_size) {
   3171     partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
   3172     partition_horz_allowed &=
   3173         ((bsize <= max_size && bsize > min_size) || force_horz_split);
   3174     partition_vert_allowed &=
   3175         ((bsize <= max_size && bsize > min_size) || force_vert_split);
   3176     do_split &= bsize > min_size;
   3177   }
   3178 
   3179   if (cpi->sf.use_square_partition_only &&
   3180       bsize > cpi->sf.use_square_only_threshold) {
   3181     if (cpi->use_svc) {
   3182       if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
   3183         partition_horz_allowed &= force_horz_split;
   3184       if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
   3185         partition_vert_allowed &= force_vert_split;
   3186     } else {
   3187       partition_horz_allowed &= force_horz_split;
   3188       partition_vert_allowed &= force_vert_split;
   3189     }
   3190   }
   3191 
   3192   save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   3193 
   3194 #if CONFIG_FP_MB_STATS
   3195   if (cpi->use_fp_mb_stats) {
   3196     set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
   3197     src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
   3198                                                   mi_col, bsize);
   3199   }
   3200 #endif
   3201 
   3202 #if CONFIG_FP_MB_STATS
   3203   // Decide whether we shall split directly and skip searching NONE by using
   3204   // the first pass block statistics
   3205   if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
   3206       partition_none_allowed && src_diff_var > 4 &&
   3207       cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
   3208     int mb_row = mi_row >> 1;
   3209     int mb_col = mi_col >> 1;
   3210     int mb_row_end =
   3211         VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
   3212     int mb_col_end =
   3213         VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
   3214     int r, c;
   3215 
   3216     // compute a complexity measure, basically measure inconsistency of motion
   3217     // vectors obtained from the first pass in the current block
   3218     for (r = mb_row; r < mb_row_end; r++) {
   3219       for (c = mb_col; c < mb_col_end; c++) {
   3220         const int mb_index = r * cm->mb_cols + c;
   3221 
   3222         MOTION_DIRECTION this_mv;
   3223         MOTION_DIRECTION right_mv;
   3224         MOTION_DIRECTION bottom_mv;
   3225 
   3226         this_mv =
   3227             get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
   3228 
   3229         // to its right
   3230         if (c != mb_col_end - 1) {
   3231           right_mv = get_motion_direction_fp(
   3232               cpi->twopass.this_frame_mb_stats[mb_index + 1]);
   3233           none_complexity += get_motion_inconsistency(this_mv, right_mv);
   3234         }
   3235 
   3236         // to its bottom
   3237         if (r != mb_row_end - 1) {
   3238           bottom_mv = get_motion_direction_fp(
   3239               cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
   3240           none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
   3241         }
   3242 
   3243         // do not count its left and top neighbors to avoid double counting
   3244       }
   3245     }
   3246 
   3247     if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
   3248       partition_none_allowed = 0;
   3249     }
   3250   }
   3251 #endif
   3252 
   3253   // PARTITION_NONE
   3254   if (partition_none_allowed) {
   3255     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx,
   3256                      best_rdc.rdcost);
   3257     if (this_rdc.rate != INT_MAX) {
   3258       if (bsize >= BLOCK_8X8) {
   3259         this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
   3260         this_rdc.rdcost =
   3261             RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
   3262       }
   3263 
   3264       if (this_rdc.rdcost < best_rdc.rdcost) {
   3265         MODE_INFO *mi = xd->mi[0];
   3266 
   3267         best_rdc = this_rdc;
   3268         if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
   3269 
   3270         if (!cpi->sf.ml_partition_search_early_termination) {
   3271           // If all y, u, v transform blocks in this partition are skippable,
   3272           // and the dist & rate are within the thresholds, the partition search
   3273           // is terminated for current branch of the partition search tree.
   3274           if (!x->e_mbd.lossless && ctx->skippable &&
   3275               ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
   3276                (best_rdc.dist < dist_breakout_thr &&
   3277                 best_rdc.rate < rate_breakout_thr))) {
   3278             do_split = 0;
   3279             do_rect = 0;
   3280           }
   3281         } else {
   3282           // Currently, the machine-learning based partition search early
   3283           // termination is only used while bsize is 16x16, 32x32 or 64x64,
   3284           // VPXMIN(cm->width, cm->height) >= 480, and speed = 0.
   3285           if (!x->e_mbd.lossless &&
   3286               !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) &&
   3287               ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) {
   3288             if (compute_score(cm, xd, ctx, mi_row, mi_col, bsize) < 0.0) {
   3289               do_split = 0;
   3290               do_rect = 0;
   3291             }
   3292           }
   3293         }
   3294 
   3295 #if CONFIG_FP_MB_STATS
   3296         // Check if every 16x16 first pass block statistics has zero
   3297         // motion and the corresponding first pass residue is small enough.
   3298         // If that is the case, check the difference variance between the
   3299         // current frame and the last frame. If the variance is small enough,
   3300         // stop further splitting in RD optimization
   3301         if (cpi->use_fp_mb_stats && do_split != 0 &&
   3302             cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
   3303           int mb_row = mi_row >> 1;
   3304           int mb_col = mi_col >> 1;
   3305           int mb_row_end =
   3306               VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
   3307           int mb_col_end =
   3308               VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
   3309           int r, c;
   3310 
   3311           int skip = 1;
   3312           for (r = mb_row; r < mb_row_end; r++) {
   3313             for (c = mb_col; c < mb_col_end; c++) {
   3314               const int mb_index = r * cm->mb_cols + c;
   3315               if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
   3316                     FPMB_MOTION_ZERO_MASK) ||
   3317                   !(cpi->twopass.this_frame_mb_stats[mb_index] &
   3318                     FPMB_ERROR_SMALL_MASK)) {
   3319                 skip = 0;
   3320                 break;
   3321               }
   3322             }
   3323             if (skip == 0) {
   3324               break;
   3325             }
   3326           }
   3327 
   3328           if (skip) {
   3329             if (src_diff_var == UINT_MAX) {
   3330               set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
   3331               src_diff_var = get_sby_perpixel_diff_variance(
   3332                   cpi, &x->plane[0].src, mi_row, mi_col, bsize);
   3333             }
   3334             if (src_diff_var < 8) {
   3335               do_split = 0;
   3336               do_rect = 0;
   3337             }
   3338           }
   3339         }
   3340 #endif
   3341       }
   3342     }
   3343     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   3344   }
   3345 
   3346   // store estimated motion vector
   3347   if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx);
   3348 
   3349   // If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an
   3350   // intra block and used for context purposes.
   3351   if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) {
   3352     pred_interp_filter = EIGHTTAP;
   3353   } else {
   3354     pred_interp_filter = ctx->mic.interp_filter;
   3355   }
   3356 
   3357   // PARTITION_SPLIT
   3358   // TODO(jingning): use the motion vectors given by the above search as
   3359   // the starting point of motion search in the following partition type check.
   3360   if (do_split) {
   3361     subsize = get_subsize(bsize, PARTITION_SPLIT);
   3362     if (bsize == BLOCK_8X8) {
   3363       i = 4;
   3364       if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
   3365         pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter;
   3366       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
   3367                        pc_tree->leaf_split[0], best_rdc.rdcost);
   3368 
   3369       if (sum_rdc.rate == INT_MAX) sum_rdc.rdcost = INT64_MAX;
   3370     } else {
   3371       for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
   3372         const int x_idx = (i & 1) * mi_step;
   3373         const int y_idx = (i >> 1) * mi_step;
   3374 
   3375         if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
   3376           continue;
   3377 
   3378         if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
   3379 
   3380         pc_tree->split[i]->index = i;
   3381         rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
   3382                           mi_col + x_idx, subsize, &this_rdc,
   3383                           best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
   3384 
   3385         if (this_rdc.rate == INT_MAX) {
   3386           sum_rdc.rdcost = INT64_MAX;
   3387           break;
   3388         } else {
   3389           sum_rdc.rate += this_rdc.rate;
   3390           sum_rdc.dist += this_rdc.dist;
   3391           sum_rdc.rdcost += this_rdc.rdcost;
   3392         }
   3393       }
   3394     }
   3395 
   3396     if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) {
   3397       sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
   3398       sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
   3399 
   3400       if (sum_rdc.rdcost < best_rdc.rdcost) {
   3401         best_rdc = sum_rdc;
   3402         pc_tree->partitioning = PARTITION_SPLIT;
   3403 
   3404         // Rate and distortion based partition search termination clause.
   3405         if (!cpi->sf.ml_partition_search_early_termination &&
   3406             !x->e_mbd.lossless && ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
   3407                                    (best_rdc.dist < dist_breakout_thr &&
   3408                                     best_rdc.rate < rate_breakout_thr))) {
   3409           do_rect = 0;
   3410         }
   3411       }
   3412     } else {
   3413       // skip rectangular partition test when larger block size
   3414       // gives better rd cost
   3415       if ((cpi->sf.less_rectangular_check) &&
   3416           ((bsize > cpi->sf.use_square_only_threshold) ||
   3417            (best_rdc.dist < dist_breakout_thr)))
   3418         do_rect &= !partition_none_allowed;
   3419     }
   3420     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   3421   }
   3422 
   3423   // PARTITION_HORZ
   3424   if (partition_horz_allowed &&
   3425       (do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) {
   3426     subsize = get_subsize(bsize, PARTITION_HORZ);
   3427     if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
   3428     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
   3429         partition_none_allowed)
   3430       pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter;
   3431     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
   3432                      &pc_tree->horizontal[0], best_rdc.rdcost);
   3433 
   3434     if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
   3435         bsize > BLOCK_8X8) {
   3436       PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
   3437       update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
   3438       encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
   3439 
   3440       if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
   3441       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
   3442           partition_none_allowed)
   3443         pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter;
   3444       rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
   3445                        subsize, &pc_tree->horizontal[1],
   3446                        best_rdc.rdcost - sum_rdc.rdcost);
   3447       if (this_rdc.rate == INT_MAX) {
   3448         sum_rdc.rdcost = INT64_MAX;
   3449       } else {
   3450         sum_rdc.rate += this_rdc.rate;
   3451         sum_rdc.dist += this_rdc.dist;
   3452         sum_rdc.rdcost += this_rdc.rdcost;
   3453       }
   3454     }
   3455 
   3456     if (sum_rdc.rdcost < best_rdc.rdcost) {
   3457       sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
   3458       sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
   3459       if (sum_rdc.rdcost < best_rdc.rdcost) {
   3460         best_rdc = sum_rdc;
   3461         pc_tree->partitioning = PARTITION_HORZ;
   3462 
   3463         if ((cpi->sf.less_rectangular_check) &&
   3464             (bsize > cpi->sf.use_square_only_threshold))
   3465           do_rect = 0;
   3466       }
   3467     }
   3468     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   3469   }
   3470 
   3471   // PARTITION_VERT
   3472   if (partition_vert_allowed &&
   3473       (do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) {
   3474     subsize = get_subsize(bsize, PARTITION_VERT);
   3475 
   3476     if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
   3477     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
   3478         partition_none_allowed)
   3479       pc_tree->vertical[0].pred_interp_filter = pred_interp_filter;
   3480     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
   3481                      &pc_tree->vertical[0], best_rdc.rdcost);
   3482     if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
   3483         bsize > BLOCK_8X8) {
   3484       update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
   3485       encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
   3486                         &pc_tree->vertical[0]);
   3487 
   3488       if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
   3489       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
   3490           partition_none_allowed)
   3491         pc_tree->vertical[1].pred_interp_filter = pred_interp_filter;
   3492       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
   3493                        subsize, &pc_tree->vertical[1],
   3494                        best_rdc.rdcost - sum_rdc.rdcost);
   3495       if (this_rdc.rate == INT_MAX) {
   3496         sum_rdc.rdcost = INT64_MAX;
   3497       } else {
   3498         sum_rdc.rate += this_rdc.rate;
   3499         sum_rdc.dist += this_rdc.dist;
   3500         sum_rdc.rdcost += this_rdc.rdcost;
   3501       }
   3502     }
   3503 
   3504     if (sum_rdc.rdcost < best_rdc.rdcost) {
   3505       sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
   3506       sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
   3507       if (sum_rdc.rdcost < best_rdc.rdcost) {
   3508         best_rdc = sum_rdc;
   3509         pc_tree->partitioning = PARTITION_VERT;
   3510       }
   3511     }
   3512     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
   3513   }
   3514 
   3515   // TODO(jbb): This code added so that we avoid static analysis
   3516   // warning related to the fact that best_rd isn't used after this
   3517   // point.  This code should be refactored so that the duplicate
   3518   // checks occur in some sub function and thus are used...
   3519   (void)best_rd;
   3520   *rd_cost = best_rdc;
   3521 
   3522   if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
   3523       pc_tree->index != 3) {
   3524     int output_enabled = (bsize == BLOCK_64X64);
   3525     encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
   3526               pc_tree);
   3527   }
   3528 
   3529   if (bsize == BLOCK_64X64) {
   3530     assert(tp_orig < *tp);
   3531     assert(best_rdc.rate < INT_MAX);
   3532     assert(best_rdc.dist < INT64_MAX);
   3533   } else {
   3534     assert(tp_orig == *tp);
   3535   }
   3536 }
   3537 
   3538 static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td,
   3539                              TileDataEnc *tile_data, int mi_row,
   3540                              TOKENEXTRA **tp) {
   3541   VP9_COMMON *const cm = &cpi->common;
   3542   TileInfo *const tile_info = &tile_data->tile_info;
   3543   MACROBLOCK *const x = &td->mb;
   3544   MACROBLOCKD *const xd = &x->e_mbd;
   3545   SPEED_FEATURES *const sf = &cpi->sf;
   3546   const int mi_col_start = tile_info->mi_col_start;
   3547   const int mi_col_end = tile_info->mi_col_end;
   3548   int mi_col;
   3549   const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
   3550   const int num_sb_cols =
   3551       get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
   3552   int sb_col_in_tile;
   3553 
   3554   // Initialize the left context for the new SB row
   3555   memset(&xd->left_context, 0, sizeof(xd->left_context));
   3556   memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
   3557 
   3558   // Code each SB in the row
   3559   for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
   3560        mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) {
   3561     const struct segmentation *const seg = &cm->seg;
   3562     int dummy_rate;
   3563     int64_t dummy_dist;
   3564     RD_COST dummy_rdc;
   3565     int i;
   3566     int seg_skip = 0;
   3567 
   3568     const int idx_str = cm->mi_stride * mi_row + mi_col;
   3569     MODE_INFO **mi = cm->mi_grid_visible + idx_str;
   3570 
   3571     (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
   3572                                    sb_col_in_tile);
   3573 
   3574     if (sf->adaptive_pred_interp_filter) {
   3575       for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
   3576 
   3577       for (i = 0; i < 64; ++i) {
   3578         td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
   3579         td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
   3580         td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
   3581         td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
   3582       }
   3583     }
   3584 
   3585     vp9_zero(x->pred_mv);
   3586     td->pc_root->index = 0;
   3587 
   3588     if (seg->enabled) {
   3589       const uint8_t *const map =
   3590           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
   3591       int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
   3592       seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
   3593     }
   3594 
   3595     x->source_variance = UINT_MAX;
   3596     if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
   3597       const BLOCK_SIZE bsize =
   3598           seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
   3599       set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
   3600       set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
   3601       rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
   3602                        &dummy_rate, &dummy_dist, 1, td->pc_root);
   3603     } else if (cpi->partition_search_skippable_frame) {
   3604       BLOCK_SIZE bsize;
   3605       set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
   3606       bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
   3607       set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
   3608       rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
   3609                        &dummy_rate, &dummy_dist, 1, td->pc_root);
   3610     } else if (sf->partition_search_type == VAR_BASED_PARTITION &&
   3611                cm->frame_type != KEY_FRAME) {
   3612       choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
   3613       rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
   3614                        &dummy_rate, &dummy_dist, 1, td->pc_root);
   3615     } else {
   3616       // If required set upper and lower partition size limits
   3617       if (sf->auto_min_max_partition_size) {
   3618         set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
   3619         rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
   3620                                 &x->min_partition_size, &x->max_partition_size);
   3621       }
   3622       rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
   3623                         &dummy_rdc, INT64_MAX, td->pc_root);
   3624     }
   3625     (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
   3626                                     sb_col_in_tile, num_sb_cols);
   3627   }
   3628 }
   3629 
   3630 static void init_encode_frame_mb_context(VP9_COMP *cpi) {
   3631   MACROBLOCK *const x = &cpi->td.mb;
   3632   VP9_COMMON *const cm = &cpi->common;
   3633   MACROBLOCKD *const xd = &x->e_mbd;
   3634   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
   3635 
   3636   // Copy data over into macro block data structures.
   3637   vp9_setup_src_planes(x, cpi->Source, 0, 0);
   3638 
   3639   vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
   3640 
   3641   // Note: this memset assumes above_context[0], [1] and [2]
   3642   // are allocated as part of the same buffer.
   3643   memset(xd->above_context[0], 0,
   3644          sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE);
   3645   memset(xd->above_seg_context, 0,
   3646          sizeof(*xd->above_seg_context) * aligned_mi_cols);
   3647 }
   3648 
   3649 static int check_dual_ref_flags(VP9_COMP *cpi) {
   3650   const int ref_flags = cpi->ref_frame_flags;
   3651 
   3652   if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
   3653     return 0;
   3654   } else {
   3655     return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) +
   3656             !!(ref_flags & VP9_ALT_FLAG)) >= 2;
   3657   }
   3658 }
   3659 
   3660 static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
   3661   int mi_row, mi_col;
   3662   const int mis = cm->mi_stride;
   3663   MODE_INFO **mi_ptr = cm->mi_grid_visible;
   3664 
   3665   for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
   3666     for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
   3667       if (mi_ptr[mi_col]->tx_size > max_tx_size)
   3668         mi_ptr[mi_col]->tx_size = max_tx_size;
   3669     }
   3670   }
   3671 }
   3672 
   3673 static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
   3674   if (frame_is_intra_only(&cpi->common))
   3675     return INTRA_FRAME;
   3676   else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
   3677     return ALTREF_FRAME;
   3678   else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
   3679     return GOLDEN_FRAME;
   3680   else
   3681     return LAST_FRAME;
   3682 }
   3683 
   3684 static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
   3685   if (xd->lossless) return ONLY_4X4;
   3686   if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode)
   3687     return ALLOW_16X16;
   3688   if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
   3689     return ALLOW_32X32;
   3690   else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
   3691            cpi->sf.tx_size_search_method == USE_TX_8X8)
   3692     return TX_MODE_SELECT;
   3693   else
   3694     return cpi->common.tx_mode;
   3695 }
   3696 
   3697 static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
   3698                                      RD_COST *rd_cost, BLOCK_SIZE bsize,
   3699                                      PICK_MODE_CONTEXT *ctx) {
   3700   if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16)
   3701     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
   3702   else
   3703     vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
   3704 }
   3705 
   3706 static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
   3707                                 MACROBLOCK *const x, int mi_row, int mi_col,
   3708                                 RD_COST *rd_cost, BLOCK_SIZE bsize,
   3709                                 PICK_MODE_CONTEXT *ctx) {
   3710   VP9_COMMON *const cm = &cpi->common;
   3711   TileInfo *const tile_info = &tile_data->tile_info;
   3712   MACROBLOCKD *const xd = &x->e_mbd;
   3713   MODE_INFO *mi;
   3714   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
   3715   BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8);  // processing unit block size
   3716   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs];
   3717   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs];
   3718   int plane;
   3719 
   3720   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
   3721   mi = xd->mi[0];
   3722   mi->sb_type = bsize;
   3723 
   3724   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
   3725     struct macroblockd_plane *pd = &xd->plane[plane];
   3726     memcpy(a + num_4x4_blocks_wide * plane, pd->above_context,
   3727            (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
   3728     memcpy(l + num_4x4_blocks_high * plane, pd->left_context,
   3729            (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
   3730   }
   3731 
   3732   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
   3733     if (cyclic_refresh_segment_id_boosted(mi->segment_id))
   3734       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
   3735 
   3736   if (cm->frame_type == KEY_FRAME)
   3737     hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
   3738   else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
   3739     set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize);
   3740   else if (bsize >= BLOCK_8X8)
   3741     vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx);
   3742   else
   3743     vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
   3744 
   3745   duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
   3746 
   3747   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
   3748     struct macroblockd_plane *pd = &xd->plane[plane];
   3749     memcpy(pd->above_context, a + num_4x4_blocks_wide * plane,
   3750            (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
   3751     memcpy(pd->left_context, l + num_4x4_blocks_high * plane,
   3752            (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
   3753   }
   3754 
   3755   if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost);
   3756 
   3757   ctx->rate = rd_cost->rate;
   3758   ctx->dist = rd_cost->dist;
   3759 }
   3760 
   3761 static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row,
   3762                               int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
   3763   MACROBLOCKD *xd = &x->e_mbd;
   3764   int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
   3765   PARTITION_TYPE partition = pc_tree->partitioning;
   3766   BLOCK_SIZE subsize = get_subsize(bsize, partition);
   3767 
   3768   assert(bsize >= BLOCK_8X8);
   3769 
   3770   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
   3771 
   3772   switch (partition) {
   3773     case PARTITION_NONE:
   3774       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
   3775       *(xd->mi[0]) = pc_tree->none.mic;
   3776       *(x->mbmi_ext) = pc_tree->none.mbmi_ext;
   3777       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
   3778       break;
   3779     case PARTITION_VERT:
   3780       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
   3781       *(xd->mi[0]) = pc_tree->vertical[0].mic;
   3782       *(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext;
   3783       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
   3784 
   3785       if (mi_col + hbs < cm->mi_cols) {
   3786         set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs);
   3787         *(xd->mi[0]) = pc_tree->vertical[1].mic;
   3788         *(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext;
   3789         duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
   3790       }
   3791       break;
   3792     case PARTITION_HORZ:
   3793       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
   3794       *(xd->mi[0]) = pc_tree->horizontal[0].mic;
   3795       *(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext;
   3796       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
   3797       if (mi_row + hbs < cm->mi_rows) {
   3798         set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col);
   3799         *(xd->mi[0]) = pc_tree->horizontal[1].mic;
   3800         *(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext;
   3801         duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
   3802       }
   3803       break;
   3804     case PARTITION_SPLIT: {
   3805       fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]);
   3806       fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
   3807                         pc_tree->split[1]);
   3808       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
   3809                         pc_tree->split[2]);
   3810       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
   3811                         pc_tree->split[3]);
   3812       break;
   3813     }
   3814     default: break;
   3815   }
   3816 }
   3817 
   3818 // Reset the prediction pixel ready flag recursively.
   3819 static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
   3820   pc_tree->none.pred_pixel_ready = 0;
   3821   pc_tree->horizontal[0].pred_pixel_ready = 0;
   3822   pc_tree->horizontal[1].pred_pixel_ready = 0;
   3823   pc_tree->vertical[0].pred_pixel_ready = 0;
   3824   pc_tree->vertical[1].pred_pixel_ready = 0;
   3825 
   3826   if (bsize > BLOCK_8X8) {
   3827     BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
   3828     int i;
   3829     for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize);
   3830   }
   3831 }
   3832 
   3833 static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
   3834                                  TileDataEnc *tile_data, TOKENEXTRA **tp,
   3835                                  int mi_row, int mi_col, BLOCK_SIZE bsize,
   3836                                  RD_COST *rd_cost, int do_recon,
   3837                                  int64_t best_rd, PC_TREE *pc_tree) {
   3838   const SPEED_FEATURES *const sf = &cpi->sf;
   3839   VP9_COMMON *const cm = &cpi->common;
   3840   TileInfo *const tile_info = &tile_data->tile_info;
   3841   MACROBLOCK *const x = &td->mb;
   3842   MACROBLOCKD *const xd = &x->e_mbd;
   3843   const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
   3844   TOKENEXTRA *tp_orig = *tp;
   3845   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
   3846   int i;
   3847   BLOCK_SIZE subsize = bsize;
   3848   RD_COST this_rdc, sum_rdc, best_rdc;
   3849   int do_split = bsize >= BLOCK_8X8;
   3850   int do_rect = 1;
   3851   // Override skipping rectangular partition operations for edge blocks
   3852   const int force_horz_split = (mi_row + ms >= cm->mi_rows);
   3853   const int force_vert_split = (mi_col + ms >= cm->mi_cols);
   3854   const int xss = x->e_mbd.plane[1].subsampling_x;
   3855   const int yss = x->e_mbd.plane[1].subsampling_y;
   3856 
   3857   int partition_none_allowed = !force_horz_split && !force_vert_split;
   3858   int partition_horz_allowed =
   3859       !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
   3860   int partition_vert_allowed =
   3861       !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
   3862   (void)*tp_orig;
   3863 
   3864   // Avoid checking for rectangular partitions for speed >= 6.
   3865   if (cpi->oxcf.speed >= 6) do_rect = 0;
   3866 
   3867   assert(num_8x8_blocks_wide_lookup[bsize] ==
   3868          num_8x8_blocks_high_lookup[bsize]);
   3869 
   3870   vp9_rd_cost_init(&sum_rdc);
   3871   vp9_rd_cost_reset(&best_rdc);
   3872   best_rdc.rdcost = best_rd;
   3873 
   3874   // Determine partition types in search according to the speed features.
   3875   // The threshold set here has to be of square block size.
   3876   if (sf->auto_min_max_partition_size) {
   3877     partition_none_allowed &=
   3878         (bsize <= x->max_partition_size && bsize >= x->min_partition_size);
   3879     partition_horz_allowed &=
   3880         ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
   3881          force_horz_split);
   3882     partition_vert_allowed &=
   3883         ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
   3884          force_vert_split);
   3885     do_split &= bsize > x->min_partition_size;
   3886   }
   3887   if (sf->use_square_partition_only) {
   3888     partition_horz_allowed &= force_horz_split;
   3889     partition_vert_allowed &= force_vert_split;
   3890   }
   3891 
   3892   ctx->pred_pixel_ready =
   3893       !(partition_vert_allowed || partition_horz_allowed || do_split);
   3894 
   3895   // PARTITION_NONE
   3896   if (partition_none_allowed) {
   3897     nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
   3898                         ctx);
   3899     ctx->mic = *xd->mi[0];
   3900     ctx->mbmi_ext = *x->mbmi_ext;
   3901     ctx->skip_txfm[0] = x->skip_txfm[0];
   3902     ctx->skip = x->skip;
   3903 
   3904     if (this_rdc.rate != INT_MAX) {
   3905       int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
   3906       this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
   3907       this_rdc.rdcost =
   3908           RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
   3909       if (this_rdc.rdcost < best_rdc.rdcost) {
   3910         int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist;
   3911         int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate;
   3912 
   3913         dist_breakout_thr >>=
   3914             8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
   3915 
   3916         rate_breakout_thr *= num_pels_log2_lookup[bsize];
   3917 
   3918         best_rdc = this_rdc;
   3919         if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
   3920 
   3921         if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr &&
   3922             this_rdc.dist < dist_breakout_thr) {
   3923           do_split = 0;
   3924           do_rect = 0;
   3925         }
   3926       }
   3927     }
   3928   }
   3929 
   3930   // store estimated motion vector
   3931   store_pred_mv(x, ctx);
   3932 
   3933   // PARTITION_SPLIT
   3934   if (do_split) {
   3935     int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
   3936     sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
   3937     sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
   3938     subsize = get_subsize(bsize, PARTITION_SPLIT);
   3939     for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
   3940       const int x_idx = (i & 1) * ms;
   3941       const int y_idx = (i >> 1) * ms;
   3942 
   3943       if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
   3944         continue;
   3945       load_pred_mv(x, ctx);
   3946       nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
   3947                            mi_col + x_idx, subsize, &this_rdc, 0,
   3948                            best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
   3949 
   3950       if (this_rdc.rate == INT_MAX) {
   3951         vp9_rd_cost_reset(&sum_rdc);
   3952       } else {
   3953         sum_rdc.rate += this_rdc.rate;
   3954         sum_rdc.dist += this_rdc.dist;
   3955         sum_rdc.rdcost += this_rdc.rdcost;
   3956       }
   3957     }
   3958 
   3959     if (sum_rdc.rdcost < best_rdc.rdcost) {
   3960       best_rdc = sum_rdc;
   3961       pc_tree->partitioning = PARTITION_SPLIT;
   3962     } else {
   3963       // skip rectangular partition test when larger block size
   3964       // gives better rd cost
   3965       if (sf->less_rectangular_check) do_rect &= !partition_none_allowed;
   3966     }
   3967   }
   3968 
   3969   // PARTITION_HORZ
   3970   if (partition_horz_allowed && do_rect) {
   3971     subsize = get_subsize(bsize, PARTITION_HORZ);
   3972     if (sf->adaptive_motion_search) load_pred_mv(x, ctx);
   3973     pc_tree->horizontal[0].pred_pixel_ready = 1;
   3974     nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
   3975                         &pc_tree->horizontal[0]);
   3976 
   3977     pc_tree->horizontal[0].mic = *xd->mi[0];
   3978     pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
   3979     pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
   3980     pc_tree->horizontal[0].skip = x->skip;
   3981 
   3982     if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
   3983       load_pred_mv(x, ctx);
   3984       pc_tree->horizontal[1].pred_pixel_ready = 1;
   3985       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc,
   3986                           subsize, &pc_tree->horizontal[1]);
   3987 
   3988       pc_tree->horizontal[1].mic = *xd->mi[0];
   3989       pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
   3990       pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
   3991       pc_tree->horizontal[1].skip = x->skip;
   3992 
   3993       if (