Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jquant1.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1996, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2009, 2015, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains 1-pass color quantization (color mapping) routines.
     12  * These routines provide mapping to a fixed color map using equally spaced
     13  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
     14  */
     15 
     16 #define JPEG_INTERNALS
     17 #include "jinclude.h"
     18 #include "jpeglib.h"
     19 
     20 #ifdef QUANT_1PASS_SUPPORTED
     21 
     22 
     23 /*
     24  * The main purpose of 1-pass quantization is to provide a fast, if not very
     25  * high quality, colormapped output capability.  A 2-pass quantizer usually
     26  * gives better visual quality; however, for quantized grayscale output this
     27  * quantizer is perfectly adequate.  Dithering is highly recommended with this
     28  * quantizer, though you can turn it off if you really want to.
     29  *
     30  * In 1-pass quantization the colormap must be chosen in advance of seeing the
     31  * image.  We use a map consisting of all combinations of Ncolors[i] color
     32  * values for the i'th component.  The Ncolors[] values are chosen so that
     33  * their product, the total number of colors, is no more than that requested.
     34  * (In most cases, the product will be somewhat less.)
     35  *
     36  * Since the colormap is orthogonal, the representative value for each color
     37  * component can be determined without considering the other components;
     38  * then these indexes can be combined into a colormap index by a standard
     39  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
     40  * can be precalculated and stored in the lookup table colorindex[].
     41  * colorindex[i][j] maps pixel value j in component i to the nearest
     42  * representative value (grid plane) for that component; this index is
     43  * multiplied by the array stride for component i, so that the
     44  * index of the colormap entry closest to a given pixel value is just
     45  *    sum( colorindex[component-number][pixel-component-value] )
     46  * Aside from being fast, this scheme allows for variable spacing between
     47  * representative values with no additional lookup cost.
     48  *
     49  * If gamma correction has been applied in color conversion, it might be wise
     50  * to adjust the color grid spacing so that the representative colors are
     51  * equidistant in linear space.  At this writing, gamma correction is not
     52  * implemented by jdcolor, so nothing is done here.
     53  */
     54 
     55 
     56 /* Declarations for ordered dithering.
     57  *
     58  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
     59  * dithering is described in many references, for instance Dale Schumacher's
     60  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
     61  * In place of Schumacher's comparisons against a "threshold" value, we add a
     62  * "dither" value to the input pixel and then round the result to the nearest
     63  * output value.  The dither value is equivalent to (0.5 - threshold) times
     64  * the distance between output values.  For ordered dithering, we assume that
     65  * the output colors are equally spaced; if not, results will probably be
     66  * worse, since the dither may be too much or too little at a given point.
     67  *
     68  * The normal calculation would be to form pixel value + dither, range-limit
     69  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
     70  * We can skip the separate range-limiting step by extending the colorindex
     71  * table in both directions.
     72  */
     73 
     74 #define ODITHER_SIZE  16        /* dimension of dither matrix */
     75 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
     76 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
     77 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
     78 
     79 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
     80 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
     81 
     82 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
     83   /* Bayer's order-4 dither array.  Generated by the code given in
     84    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
     85    * The values in this array must range from 0 to ODITHER_CELLS-1.
     86    */
     87   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
     88   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
     89   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
     90   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
     91   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
     92   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
     93   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
     94   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
     95   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
     96   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
     97   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
     98   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
     99   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
    100   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
    101   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
    102   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
    103 };
    104 
    105 
    106 /* Declarations for Floyd-Steinberg dithering.
    107  *
    108  * Errors are accumulated into the array fserrors[], at a resolution of
    109  * 1/16th of a pixel count.  The error at a given pixel is propagated
    110  * to its not-yet-processed neighbors using the standard F-S fractions,
    111  *              ...     (here)  7/16
    112  *              3/16    5/16    1/16
    113  * We work left-to-right on even rows, right-to-left on odd rows.
    114  *
    115  * We can get away with a single array (holding one row's worth of errors)
    116  * by using it to store the current row's errors at pixel columns not yet
    117  * processed, but the next row's errors at columns already processed.  We
    118  * need only a few extra variables to hold the errors immediately around the
    119  * current column.  (If we are lucky, those variables are in registers, but
    120  * even if not, they're probably cheaper to access than array elements are.)
    121  *
    122  * The fserrors[] array is indexed [component#][position].
    123  * We provide (#columns + 2) entries per component; the extra entry at each
    124  * end saves us from special-casing the first and last pixels.
    125  */
    126 
    127 #if BITS_IN_JSAMPLE == 8
    128 typedef INT16 FSERROR;          /* 16 bits should be enough */
    129 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
    130 #else
    131 typedef JLONG FSERROR;          /* may need more than 16 bits */
    132 typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
    133 #endif
    134 
    135 typedef FSERROR *FSERRPTR;  /* pointer to error array */
    136 
    137 
    138 /* Private subobject */
    139 
    140 #define MAX_Q_COMPS 4           /* max components I can handle */
    141 
    142 typedef struct {
    143   struct jpeg_color_quantizer pub; /* public fields */
    144 
    145   /* Initially allocated colormap is saved here */
    146   JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
    147   int sv_actual;                /* number of entries in use */
    148 
    149   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
    150   /* colorindex[i][j] = index of color closest to pixel value j in component i,
    151    * premultiplied as described above.  Since colormap indexes must fit into
    152    * JSAMPLEs, the entries of this array will too.
    153    */
    154   boolean is_padded;            /* is the colorindex padded for odither? */
    155 
    156   int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
    157 
    158   /* Variables for ordered dithering */
    159   int row_index;                /* cur row's vertical index in dither matrix */
    160   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
    161 
    162   /* Variables for Floyd-Steinberg dithering */
    163   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
    164   boolean on_odd_row;           /* flag to remember which row we are on */
    165 } my_cquantizer;
    166 
    167 typedef my_cquantizer *my_cquantize_ptr;
    168 
    169 
    170 /*
    171  * Policy-making subroutines for create_colormap and create_colorindex.
    172  * These routines determine the colormap to be used.  The rest of the module
    173  * only assumes that the colormap is orthogonal.
    174  *
    175  *  * select_ncolors decides how to divvy up the available colors
    176  *    among the components.
    177  *  * output_value defines the set of representative values for a component.
    178  *  * largest_input_value defines the mapping from input values to
    179  *    representative values for a component.
    180  * Note that the latter two routines may impose different policies for
    181  * different components, though this is not currently done.
    182  */
    183 
    184 
    185 LOCAL(int)
    186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
    187 /* Determine allocation of desired colors to components, */
    188 /* and fill in Ncolors[] array to indicate choice. */
    189 /* Return value is total number of colors (product of Ncolors[] values). */
    190 {
    191   int nc = cinfo->out_color_components; /* number of color components */
    192   int max_colors = cinfo->desired_number_of_colors;
    193   int total_colors, iroot, i, j;
    194   boolean changed;
    195   long temp;
    196   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
    197   RGB_order[0] = rgb_green[cinfo->out_color_space];
    198   RGB_order[1] = rgb_red[cinfo->out_color_space];
    199   RGB_order[2] = rgb_blue[cinfo->out_color_space];
    200 
    201   /* We can allocate at least the nc'th root of max_colors per component. */
    202   /* Compute floor(nc'th root of max_colors). */
    203   iroot = 1;
    204   do {
    205     iroot++;
    206     temp = iroot;               /* set temp = iroot ** nc */
    207     for (i = 1; i < nc; i++)
    208       temp *= iroot;
    209   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
    210   iroot--;                      /* now iroot = floor(root) */
    211 
    212   /* Must have at least 2 color values per component */
    213   if (iroot < 2)
    214     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
    215 
    216   /* Initialize to iroot color values for each component */
    217   total_colors = 1;
    218   for (i = 0; i < nc; i++) {
    219     Ncolors[i] = iroot;
    220     total_colors *= iroot;
    221   }
    222   /* We may be able to increment the count for one or more components without
    223    * exceeding max_colors, though we know not all can be incremented.
    224    * Sometimes, the first component can be incremented more than once!
    225    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
    226    * In RGB colorspace, try to increment G first, then R, then B.
    227    */
    228   do {
    229     changed = FALSE;
    230     for (i = 0; i < nc; i++) {
    231       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
    232       /* calculate new total_colors if Ncolors[j] is incremented */
    233       temp = total_colors / Ncolors[j];
    234       temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
    235       if (temp > (long) max_colors)
    236         break;                  /* won't fit, done with this pass */
    237       Ncolors[j]++;             /* OK, apply the increment */
    238       total_colors = (int) temp;
    239       changed = TRUE;
    240     }
    241   } while (changed);
    242 
    243   return total_colors;
    244 }
    245 
    246 
    247 LOCAL(int)
    248 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
    249 /* Return j'th output value, where j will range from 0 to maxj */
    250 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
    251 {
    252   /* We always provide values 0 and MAXJSAMPLE for each component;
    253    * any additional values are equally spaced between these limits.
    254    * (Forcing the upper and lower values to the limits ensures that
    255    * dithering can't produce a color outside the selected gamut.)
    256    */
    257   return (int) (((JLONG) j * MAXJSAMPLE + maxj/2) / maxj);
    258 }
    259 
    260 
    261 LOCAL(int)
    262 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
    263 /* Return largest input value that should map to j'th output value */
    264 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
    265 {
    266   /* Breakpoints are halfway between values returned by output_value */
    267   return (int) (((JLONG) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
    268 }
    269 
    270 
    271 /*
    272  * Create the colormap.
    273  */
    274 
    275 LOCAL(void)
    276 create_colormap (j_decompress_ptr cinfo)
    277 {
    278   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    279   JSAMPARRAY colormap;          /* Created colormap */
    280   int total_colors;             /* Number of distinct output colors */
    281   int i,j,k, nci, blksize, blkdist, ptr, val;
    282 
    283   /* Select number of colors for each component */
    284   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
    285 
    286   /* Report selected color counts */
    287   if (cinfo->out_color_components == 3)
    288     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
    289              total_colors, cquantize->Ncolors[0],
    290              cquantize->Ncolors[1], cquantize->Ncolors[2]);
    291   else
    292     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
    293 
    294   /* Allocate and fill in the colormap. */
    295   /* The colors are ordered in the map in standard row-major order, */
    296   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
    297 
    298   colormap = (*cinfo->mem->alloc_sarray)
    299     ((j_common_ptr) cinfo, JPOOL_IMAGE,
    300      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
    301 
    302   /* blksize is number of adjacent repeated entries for a component */
    303   /* blkdist is distance between groups of identical entries for a component */
    304   blkdist = total_colors;
    305 
    306   for (i = 0; i < cinfo->out_color_components; i++) {
    307     /* fill in colormap entries for i'th color component */
    308     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    309     blksize = blkdist / nci;
    310     for (j = 0; j < nci; j++) {
    311       /* Compute j'th output value (out of nci) for component */
    312       val = output_value(cinfo, i, j, nci-1);
    313       /* Fill in all colormap entries that have this value of this component */
    314       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
    315         /* fill in blksize entries beginning at ptr */
    316         for (k = 0; k < blksize; k++)
    317           colormap[i][ptr+k] = (JSAMPLE) val;
    318       }
    319     }
    320     blkdist = blksize;          /* blksize of this color is blkdist of next */
    321   }
    322 
    323   /* Save the colormap in private storage,
    324    * where it will survive color quantization mode changes.
    325    */
    326   cquantize->sv_colormap = colormap;
    327   cquantize->sv_actual = total_colors;
    328 }
    329 
    330 
    331 /*
    332  * Create the color index table.
    333  */
    334 
    335 LOCAL(void)
    336 create_colorindex (j_decompress_ptr cinfo)
    337 {
    338   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    339   JSAMPROW indexptr;
    340   int i,j,k, nci, blksize, val, pad;
    341 
    342   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
    343    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
    344    * This is not necessary in the other dithering modes.  However, we
    345    * flag whether it was done in case user changes dithering mode.
    346    */
    347   if (cinfo->dither_mode == JDITHER_ORDERED) {
    348     pad = MAXJSAMPLE*2;
    349     cquantize->is_padded = TRUE;
    350   } else {
    351     pad = 0;
    352     cquantize->is_padded = FALSE;
    353   }
    354 
    355   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
    356     ((j_common_ptr) cinfo, JPOOL_IMAGE,
    357      (JDIMENSION) (MAXJSAMPLE+1 + pad),
    358      (JDIMENSION) cinfo->out_color_components);
    359 
    360   /* blksize is number of adjacent repeated entries for a component */
    361   blksize = cquantize->sv_actual;
    362 
    363   for (i = 0; i < cinfo->out_color_components; i++) {
    364     /* fill in colorindex entries for i'th color component */
    365     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    366     blksize = blksize / nci;
    367 
    368     /* adjust colorindex pointers to provide padding at negative indexes. */
    369     if (pad)
    370       cquantize->colorindex[i] += MAXJSAMPLE;
    371 
    372     /* in loop, val = index of current output value, */
    373     /* and k = largest j that maps to current val */
    374     indexptr = cquantize->colorindex[i];
    375     val = 0;
    376     k = largest_input_value(cinfo, i, 0, nci-1);
    377     for (j = 0; j <= MAXJSAMPLE; j++) {
    378       while (j > k)             /* advance val if past boundary */
    379         k = largest_input_value(cinfo, i, ++val, nci-1);
    380       /* premultiply so that no multiplication needed in main processing */
    381       indexptr[j] = (JSAMPLE) (val * blksize);
    382     }
    383     /* Pad at both ends if necessary */
    384     if (pad)
    385       for (j = 1; j <= MAXJSAMPLE; j++) {
    386         indexptr[-j] = indexptr[0];
    387         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
    388       }
    389   }
    390 }
    391 
    392 
    393 /*
    394  * Create an ordered-dither array for a component having ncolors
    395  * distinct output values.
    396  */
    397 
    398 LOCAL(ODITHER_MATRIX_PTR)
    399 make_odither_array (j_decompress_ptr cinfo, int ncolors)
    400 {
    401   ODITHER_MATRIX_PTR odither;
    402   int j,k;
    403   JLONG num,den;
    404 
    405   odither = (ODITHER_MATRIX_PTR)
    406     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    407                                 sizeof(ODITHER_MATRIX));
    408   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
    409    * Hence the dither value for the matrix cell with fill order f
    410    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
    411    * On 16-bit-int machine, be careful to avoid overflow.
    412    */
    413   den = 2 * ODITHER_CELLS * ((JLONG) (ncolors - 1));
    414   for (j = 0; j < ODITHER_SIZE; j++) {
    415     for (k = 0; k < ODITHER_SIZE; k++) {
    416       num = ((JLONG) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
    417             * MAXJSAMPLE;
    418       /* Ensure round towards zero despite C's lack of consistency
    419        * about rounding negative values in integer division...
    420        */
    421       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
    422     }
    423   }
    424   return odither;
    425 }
    426 
    427 
    428 /*
    429  * Create the ordered-dither tables.
    430  * Components having the same number of representative colors may
    431  * share a dither table.
    432  */
    433 
    434 LOCAL(void)
    435 create_odither_tables (j_decompress_ptr cinfo)
    436 {
    437   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    438   ODITHER_MATRIX_PTR odither;
    439   int i, j, nci;
    440 
    441   for (i = 0; i < cinfo->out_color_components; i++) {
    442     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    443     odither = NULL;             /* search for matching prior component */
    444     for (j = 0; j < i; j++) {
    445       if (nci == cquantize->Ncolors[j]) {
    446         odither = cquantize->odither[j];
    447         break;
    448       }
    449     }
    450     if (odither == NULL)        /* need a new table? */
    451       odither = make_odither_array(cinfo, nci);
    452     cquantize->odither[i] = odither;
    453   }
    454 }
    455 
    456 
    457 /*
    458  * Map some rows of pixels to the output colormapped representation.
    459  */
    460 
    461 METHODDEF(void)
    462 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    463                 JSAMPARRAY output_buf, int num_rows)
    464 /* General case, no dithering */
    465 {
    466   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    467   JSAMPARRAY colorindex = cquantize->colorindex;
    468   register int pixcode, ci;
    469   register JSAMPROW ptrin, ptrout;
    470   int row;
    471   JDIMENSION col;
    472   JDIMENSION width = cinfo->output_width;
    473   register int nc = cinfo->out_color_components;
    474 
    475   for (row = 0; row < num_rows; row++) {
    476     ptrin = input_buf[row];
    477     ptrout = output_buf[row];
    478     for (col = width; col > 0; col--) {
    479       pixcode = 0;
    480       for (ci = 0; ci < nc; ci++) {
    481         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
    482       }
    483       *ptrout++ = (JSAMPLE) pixcode;
    484     }
    485   }
    486 }
    487 
    488 
    489 METHODDEF(void)
    490 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    491                  JSAMPARRAY output_buf, int num_rows)
    492 /* Fast path for out_color_components==3, no dithering */
    493 {
    494   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    495   register int pixcode;
    496   register JSAMPROW ptrin, ptrout;
    497   JSAMPROW colorindex0 = cquantize->colorindex[0];
    498   JSAMPROW colorindex1 = cquantize->colorindex[1];
    499   JSAMPROW colorindex2 = cquantize->colorindex[2];
    500   int row;
    501   JDIMENSION col;
    502   JDIMENSION width = cinfo->output_width;
    503 
    504   for (row = 0; row < num_rows; row++) {
    505     ptrin = input_buf[row];
    506     ptrout = output_buf[row];
    507     for (col = width; col > 0; col--) {
    508       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
    509       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
    510       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
    511       *ptrout++ = (JSAMPLE) pixcode;
    512     }
    513   }
    514 }
    515 
    516 
    517 METHODDEF(void)
    518 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    519                      JSAMPARRAY output_buf, int num_rows)
    520 /* General case, with ordered dithering */
    521 {
    522   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    523   register JSAMPROW input_ptr;
    524   register JSAMPROW output_ptr;
    525   JSAMPROW colorindex_ci;
    526   int *dither;                  /* points to active row of dither matrix */
    527   int row_index, col_index;     /* current indexes into dither matrix */
    528   int nc = cinfo->out_color_components;
    529   int ci;
    530   int row;
    531   JDIMENSION col;
    532   JDIMENSION width = cinfo->output_width;
    533 
    534   for (row = 0; row < num_rows; row++) {
    535     /* Initialize output values to 0 so can process components separately */
    536     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
    537     row_index = cquantize->row_index;
    538     for (ci = 0; ci < nc; ci++) {
    539       input_ptr = input_buf[row] + ci;
    540       output_ptr = output_buf[row];
    541       colorindex_ci = cquantize->colorindex[ci];
    542       dither = cquantize->odither[ci][row_index];
    543       col_index = 0;
    544 
    545       for (col = width; col > 0; col--) {
    546         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
    547          * select output value, accumulate into output code for this pixel.
    548          * Range-limiting need not be done explicitly, as we have extended
    549          * the colorindex table to produce the right answers for out-of-range
    550          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
    551          * required amount of padding.
    552          */
    553         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
    554         input_ptr += nc;
    555         output_ptr++;
    556         col_index = (col_index + 1) & ODITHER_MASK;
    557       }
    558     }
    559     /* Advance row index for next row */
    560     row_index = (row_index + 1) & ODITHER_MASK;
    561     cquantize->row_index = row_index;
    562   }
    563 }
    564 
    565 
    566 METHODDEF(void)
    567 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    568                       JSAMPARRAY output_buf, int num_rows)
    569 /* Fast path for out_color_components==3, with ordered dithering */
    570 {
    571   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    572   register int pixcode;
    573   register JSAMPROW input_ptr;
    574   register JSAMPROW output_ptr;
    575   JSAMPROW colorindex0 = cquantize->colorindex[0];
    576   JSAMPROW colorindex1 = cquantize->colorindex[1];
    577   JSAMPROW colorindex2 = cquantize->colorindex[2];
    578   int *dither0;                 /* points to active row of dither matrix */
    579   int *dither1;
    580   int *dither2;
    581   int row_index, col_index;     /* current indexes into dither matrix */
    582   int row;
    583   JDIMENSION col;
    584   JDIMENSION width = cinfo->output_width;
    585 
    586   for (row = 0; row < num_rows; row++) {
    587     row_index = cquantize->row_index;
    588     input_ptr = input_buf[row];
    589     output_ptr = output_buf[row];
    590     dither0 = cquantize->odither[0][row_index];
    591     dither1 = cquantize->odither[1][row_index];
    592     dither2 = cquantize->odither[2][row_index];
    593     col_index = 0;
    594 
    595     for (col = width; col > 0; col--) {
    596       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
    597                                         dither0[col_index]]);
    598       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
    599                                         dither1[col_index]]);
    600       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
    601                                         dither2[col_index]]);
    602       *output_ptr++ = (JSAMPLE) pixcode;
    603       col_index = (col_index + 1) & ODITHER_MASK;
    604     }
    605     row_index = (row_index + 1) & ODITHER_MASK;
    606     cquantize->row_index = row_index;
    607   }
    608 }
    609 
    610 
    611 METHODDEF(void)
    612 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    613                     JSAMPARRAY output_buf, int num_rows)
    614 /* General case, with Floyd-Steinberg dithering */
    615 {
    616   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    617   register LOCFSERROR cur;      /* current error or pixel value */
    618   LOCFSERROR belowerr;          /* error for pixel below cur */
    619   LOCFSERROR bpreverr;          /* error for below/prev col */
    620   LOCFSERROR bnexterr;          /* error for below/next col */
    621   LOCFSERROR delta;
    622   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
    623   register JSAMPROW input_ptr;
    624   register JSAMPROW output_ptr;
    625   JSAMPROW colorindex_ci;
    626   JSAMPROW colormap_ci;
    627   int pixcode;
    628   int nc = cinfo->out_color_components;
    629   int dir;                      /* 1 for left-to-right, -1 for right-to-left */
    630   int dirnc;                    /* dir * nc */
    631   int ci;
    632   int row;
    633   JDIMENSION col;
    634   JDIMENSION width = cinfo->output_width;
    635   JSAMPLE *range_limit = cinfo->sample_range_limit;
    636   SHIFT_TEMPS
    637 
    638   for (row = 0; row < num_rows; row++) {
    639     /* Initialize output values to 0 so can process components separately */
    640     jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE)));
    641     for (ci = 0; ci < nc; ci++) {
    642       input_ptr = input_buf[row] + ci;
    643       output_ptr = output_buf[row];
    644       if (cquantize->on_odd_row) {
    645         /* work right to left in this row */
    646         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
    647         output_ptr += width-1;
    648         dir = -1;
    649         dirnc = -nc;
    650         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
    651       } else {
    652         /* work left to right in this row */
    653         dir = 1;
    654         dirnc = nc;
    655         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
    656       }
    657       colorindex_ci = cquantize->colorindex[ci];
    658       colormap_ci = cquantize->sv_colormap[ci];
    659       /* Preset error values: no error propagated to first pixel from left */
    660       cur = 0;
    661       /* and no error propagated to row below yet */
    662       belowerr = bpreverr = 0;
    663 
    664       for (col = width; col > 0; col--) {
    665         /* cur holds the error propagated from the previous pixel on the
    666          * current line.  Add the error propagated from the previous line
    667          * to form the complete error correction term for this pixel, and
    668          * round the error term (which is expressed * 16) to an integer.
    669          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
    670          * for either sign of the error value.
    671          * Note: errorptr points to *previous* column's array entry.
    672          */
    673         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
    674         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
    675          * The maximum error is +- MAXJSAMPLE; this sets the required size
    676          * of the range_limit array.
    677          */
    678         cur += GETJSAMPLE(*input_ptr);
    679         cur = GETJSAMPLE(range_limit[cur]);
    680         /* Select output value, accumulate into output code for this pixel */
    681         pixcode = GETJSAMPLE(colorindex_ci[cur]);
    682         *output_ptr += (JSAMPLE) pixcode;
    683         /* Compute actual representation error at this pixel */
    684         /* Note: we can do this even though we don't have the final */
    685         /* pixel code, because the colormap is orthogonal. */
    686         cur -= GETJSAMPLE(colormap_ci[pixcode]);
    687         /* Compute error fractions to be propagated to adjacent pixels.
    688          * Add these into the running sums, and simultaneously shift the
    689          * next-line error sums left by 1 column.
    690          */
    691         bnexterr = cur;
    692         delta = cur * 2;
    693         cur += delta;           /* form error * 3 */
    694         errorptr[0] = (FSERROR) (bpreverr + cur);
    695         cur += delta;           /* form error * 5 */
    696         bpreverr = belowerr + cur;
    697         belowerr = bnexterr;
    698         cur += delta;           /* form error * 7 */
    699         /* At this point cur contains the 7/16 error value to be propagated
    700          * to the next pixel on the current line, and all the errors for the
    701          * next line have been shifted over. We are therefore ready to move on.
    702          */
    703         input_ptr += dirnc;     /* advance input ptr to next column */
    704         output_ptr += dir;      /* advance output ptr to next column */
    705         errorptr += dir;        /* advance errorptr to current column */
    706       }
    707       /* Post-loop cleanup: we must unload the final error value into the
    708        * final fserrors[] entry.  Note we need not unload belowerr because
    709        * it is for the dummy column before or after the actual array.
    710        */
    711       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
    712     }
    713     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
    714   }
    715 }
    716 
    717 
    718 /*
    719  * Allocate workspace for Floyd-Steinberg errors.
    720  */
    721 
    722 LOCAL(void)
    723 alloc_fs_workspace (j_decompress_ptr cinfo)
    724 {
    725   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    726   size_t arraysize;
    727   int i;
    728 
    729   arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
    730   for (i = 0; i < cinfo->out_color_components; i++) {
    731     cquantize->fserrors[i] = (FSERRPTR)
    732       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
    733   }
    734 }
    735 
    736 
    737 /*
    738  * Initialize for one-pass color quantization.
    739  */
    740 
    741 METHODDEF(void)
    742 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
    743 {
    744   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    745   size_t arraysize;
    746   int i;
    747 
    748   /* Install my colormap. */
    749   cinfo->colormap = cquantize->sv_colormap;
    750   cinfo->actual_number_of_colors = cquantize->sv_actual;
    751 
    752   /* Initialize for desired dithering mode. */
    753   switch (cinfo->dither_mode) {
    754   case JDITHER_NONE:
    755     if (cinfo->out_color_components == 3)
    756       cquantize->pub.color_quantize = color_quantize3;
    757     else
    758       cquantize->pub.color_quantize = color_quantize;
    759     break;
    760   case JDITHER_ORDERED:
    761     if (cinfo->out_color_components == 3)
    762       cquantize->pub.color_quantize = quantize3_ord_dither;
    763     else
    764       cquantize->pub.color_quantize = quantize_ord_dither;
    765     cquantize->row_index = 0;   /* initialize state for ordered dither */
    766     /* If user changed to ordered dither from another mode,
    767      * we must recreate the color index table with padding.
    768      * This will cost extra space, but probably isn't very likely.
    769      */
    770     if (! cquantize->is_padded)
    771       create_colorindex(cinfo);
    772     /* Create ordered-dither tables if we didn't already. */
    773     if (cquantize->odither[0] == NULL)
    774       create_odither_tables(cinfo);
    775     break;
    776   case JDITHER_FS:
    777     cquantize->pub.color_quantize = quantize_fs_dither;
    778     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
    779     /* Allocate Floyd-Steinberg workspace if didn't already. */
    780     if (cquantize->fserrors[0] == NULL)
    781       alloc_fs_workspace(cinfo);
    782     /* Initialize the propagated errors to zero. */
    783     arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR));
    784     for (i = 0; i < cinfo->out_color_components; i++)
    785       jzero_far((void *) cquantize->fserrors[i], arraysize);
    786     break;
    787   default:
    788     ERREXIT(cinfo, JERR_NOT_COMPILED);
    789     break;
    790   }
    791 }
    792 
    793 
    794 /*
    795  * Finish up at the end of the pass.
    796  */
    797 
    798 METHODDEF(void)
    799 finish_pass_1_quant (j_decompress_ptr cinfo)
    800 {
    801   /* no work in 1-pass case */
    802 }
    803 
    804 
    805 /*
    806  * Switch to a new external colormap between output passes.
    807  * Shouldn't get to this module!
    808  */
    809 
    810 METHODDEF(void)
    811 new_color_map_1_quant (j_decompress_ptr cinfo)
    812 {
    813   ERREXIT(cinfo, JERR_MODE_CHANGE);
    814 }
    815 
    816 
    817 /*
    818  * Module initialization routine for 1-pass color quantization.
    819  */
    820 
    821 GLOBAL(void)
    822 jinit_1pass_quantizer (j_decompress_ptr cinfo)
    823 {
    824   my_cquantize_ptr cquantize;
    825 
    826   cquantize = (my_cquantize_ptr)
    827     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    828                                 sizeof(my_cquantizer));
    829   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
    830   cquantize->pub.start_pass = start_pass_1_quant;
    831   cquantize->pub.finish_pass = finish_pass_1_quant;
    832   cquantize->pub.new_color_map = new_color_map_1_quant;
    833   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
    834   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
    835 
    836   /* Make sure my internal arrays won't overflow */
    837   if (cinfo->out_color_components > MAX_Q_COMPS)
    838     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
    839   /* Make sure colormap indexes can be represented by JSAMPLEs */
    840   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
    841     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
    842 
    843   /* Create the colormap and color index table. */
    844   create_colormap(cinfo);
    845   create_colorindex(cinfo);
    846 
    847   /* Allocate Floyd-Steinberg workspace now if requested.
    848    * We do this now since it may affect the memory manager's space
    849    * calculations.  If the user changes to FS dither mode in a later pass, we
    850    * will allocate the space then, and will possibly overrun the
    851    * max_memory_to_use setting.
    852    */
    853   if (cinfo->dither_mode == JDITHER_FS)
    854     alloc_fs_workspace(cinfo);
    855 }
    856 
    857 #endif /* QUANT_1PASS_SUPPORTED */
    858