1 /* 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include <assert.h> 12 #include <stdio.h> 13 #include <limits.h> 14 15 #include "vpx/vpx_encoder.h" 16 #include "vpx_dsp/bitwriter_buffer.h" 17 #include "vpx_dsp/vpx_dsp_common.h" 18 #include "vpx_mem/vpx_mem.h" 19 #include "vpx_ports/mem_ops.h" 20 #include "vpx_ports/system_state.h" 21 22 #include "vp9/common/vp9_entropy.h" 23 #include "vp9/common/vp9_entropymode.h" 24 #include "vp9/common/vp9_entropymv.h" 25 #include "vp9/common/vp9_mvref_common.h" 26 #include "vp9/common/vp9_pred_common.h" 27 #include "vp9/common/vp9_seg_common.h" 28 #include "vp9/common/vp9_tile_common.h" 29 30 #include "vp9/encoder/vp9_cost.h" 31 #include "vp9/encoder/vp9_bitstream.h" 32 #include "vp9/encoder/vp9_encodemv.h" 33 #include "vp9/encoder/vp9_mcomp.h" 34 #include "vp9/encoder/vp9_segmentation.h" 35 #include "vp9/encoder/vp9_subexp.h" 36 #include "vp9/encoder/vp9_tokenize.h" 37 38 static const struct vp9_token intra_mode_encodings[INTRA_MODES] = { 39 { 0, 1 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, { 58, 6 }, 40 { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 } 41 }; 42 static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] = 43 { { 0, 1 }, { 2, 2 }, { 3, 2 } }; 44 static const struct vp9_token partition_encodings[PARTITION_TYPES] = { 45 { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 } 46 }; 47 static const struct vp9_token inter_mode_encodings[INTER_MODES] = { 48 { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 } 49 }; 50 51 static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode, 52 const vpx_prob *probs) { 53 vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]); 54 } 55 56 static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode, 57 const vpx_prob *probs) { 58 assert(is_inter_mode(mode)); 59 vp9_write_token(w, vp9_inter_mode_tree, probs, 60 &inter_mode_encodings[INTER_OFFSET(mode)]); 61 } 62 63 static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data, 64 int max) { 65 vpx_wb_write_literal(wb, data, get_unsigned_bits(max)); 66 } 67 68 static void prob_diff_update(const vpx_tree_index *tree, 69 vpx_prob probs[/*n - 1*/], 70 const unsigned int counts[/*n - 1*/], int n, 71 vpx_writer *w) { 72 int i; 73 unsigned int branch_ct[32][2]; 74 75 // Assuming max number of probabilities <= 32 76 assert(n <= 32); 77 78 vp9_tree_probs_from_distribution(tree, branch_ct, counts); 79 for (i = 0; i < n - 1; ++i) 80 vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]); 81 } 82 83 static void write_selected_tx_size(const VP9_COMMON *cm, 84 const MACROBLOCKD *const xd, vpx_writer *w) { 85 TX_SIZE tx_size = xd->mi[0]->tx_size; 86 BLOCK_SIZE bsize = xd->mi[0]->sb_type; 87 const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; 88 const vpx_prob *const tx_probs = 89 get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs); 90 vpx_write(w, tx_size != TX_4X4, tx_probs[0]); 91 if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { 92 vpx_write(w, tx_size != TX_8X8, tx_probs[1]); 93 if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) 94 vpx_write(w, tx_size != TX_16X16, tx_probs[2]); 95 } 96 } 97 98 static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *const xd, 99 int segment_id, const MODE_INFO *mi, vpx_writer *w) { 100 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { 101 return 1; 102 } else { 103 const int skip = mi->skip; 104 vpx_write(w, skip, vp9_get_skip_prob(cm, xd)); 105 return skip; 106 } 107 } 108 109 static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w, 110 FRAME_COUNTS *counts) { 111 int k; 112 113 for (k = 0; k < SKIP_CONTEXTS; ++k) 114 vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]); 115 } 116 117 static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w, 118 FRAME_COUNTS *counts) { 119 int j; 120 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) 121 prob_diff_update(vp9_switchable_interp_tree, 122 cm->fc->switchable_interp_prob[j], 123 counts->switchable_interp[j], SWITCHABLE_FILTERS, w); 124 } 125 126 static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp, 127 const TOKENEXTRA *const stop, 128 vpx_bit_depth_t bit_depth) { 129 const TOKENEXTRA *p; 130 const vp9_extra_bit *const extra_bits = 131 #if CONFIG_VP9_HIGHBITDEPTH 132 (bit_depth == VPX_BITS_12) 133 ? vp9_extra_bits_high12 134 : (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10 : vp9_extra_bits; 135 #else 136 vp9_extra_bits; 137 (void)bit_depth; 138 #endif // CONFIG_VP9_HIGHBITDEPTH 139 140 for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) { 141 if (p->token == EOB_TOKEN) { 142 vpx_write(w, 0, p->context_tree[0]); 143 continue; 144 } 145 vpx_write(w, 1, p->context_tree[0]); 146 while (p->token == ZERO_TOKEN) { 147 vpx_write(w, 0, p->context_tree[1]); 148 ++p; 149 if (p == stop || p->token == EOSB_TOKEN) { 150 *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN); 151 return; 152 } 153 } 154 155 { 156 const int t = p->token; 157 const vpx_prob *const context_tree = p->context_tree; 158 assert(t != ZERO_TOKEN); 159 assert(t != EOB_TOKEN); 160 assert(t != EOSB_TOKEN); 161 vpx_write(w, 1, context_tree[1]); 162 if (t == ONE_TOKEN) { 163 vpx_write(w, 0, context_tree[2]); 164 vpx_write_bit(w, p->extra & 1); 165 } else { // t >= TWO_TOKEN && t < EOB_TOKEN 166 const struct vp9_token *const a = &vp9_coef_encodings[t]; 167 const int v = a->value; 168 const int n = a->len; 169 const int e = p->extra; 170 vpx_write(w, 1, context_tree[2]); 171 vp9_write_tree(w, vp9_coef_con_tree, 172 vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v, 173 n - UNCONSTRAINED_NODES, 0); 174 if (t >= CATEGORY1_TOKEN) { 175 const vp9_extra_bit *const b = &extra_bits[t]; 176 const unsigned char *pb = b->prob; 177 int v = e >> 1; 178 int n = b->len; // number of bits in v, assumed nonzero 179 do { 180 const int bb = (v >> --n) & 1; 181 vpx_write(w, bb, *pb++); 182 } while (n); 183 } 184 vpx_write_bit(w, e & 1); 185 } 186 } 187 } 188 *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN); 189 } 190 191 static void write_segment_id(vpx_writer *w, const struct segmentation *seg, 192 int segment_id) { 193 if (seg->enabled && seg->update_map) 194 vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0); 195 } 196 197 // This function encodes the reference frame 198 static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *const xd, 199 vpx_writer *w) { 200 const MODE_INFO *const mi = xd->mi[0]; 201 const int is_compound = has_second_ref(mi); 202 const int segment_id = mi->segment_id; 203 204 // If segment level coding of this signal is disabled... 205 // or the segment allows multiple reference frame options 206 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { 207 assert(!is_compound); 208 assert(mi->ref_frame[0] == 209 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); 210 } else { 211 // does the feature use compound prediction or not 212 // (if not specified at the frame/segment level) 213 if (cm->reference_mode == REFERENCE_MODE_SELECT) { 214 vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd)); 215 } else { 216 assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); 217 } 218 219 if (is_compound) { 220 vpx_write(w, mi->ref_frame[0] == GOLDEN_FRAME, 221 vp9_get_pred_prob_comp_ref_p(cm, xd)); 222 } else { 223 const int bit0 = mi->ref_frame[0] != LAST_FRAME; 224 vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd)); 225 if (bit0) { 226 const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME; 227 vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd)); 228 } 229 } 230 } 231 } 232 233 static void pack_inter_mode_mvs( 234 VP9_COMP *cpi, const MACROBLOCKD *const xd, 235 const MB_MODE_INFO_EXT *const mbmi_ext, vpx_writer *w, 236 unsigned int *const max_mv_magnitude, 237 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { 238 VP9_COMMON *const cm = &cpi->common; 239 const nmv_context *nmvc = &cm->fc->nmvc; 240 const struct segmentation *const seg = &cm->seg; 241 const MODE_INFO *const mi = xd->mi[0]; 242 const PREDICTION_MODE mode = mi->mode; 243 const int segment_id = mi->segment_id; 244 const BLOCK_SIZE bsize = mi->sb_type; 245 const int allow_hp = cm->allow_high_precision_mv; 246 const int is_inter = is_inter_block(mi); 247 const int is_compound = has_second_ref(mi); 248 int skip, ref; 249 250 if (seg->update_map) { 251 if (seg->temporal_update) { 252 const int pred_flag = mi->seg_id_predicted; 253 vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); 254 vpx_write(w, pred_flag, pred_prob); 255 if (!pred_flag) write_segment_id(w, seg, segment_id); 256 } else { 257 write_segment_id(w, seg, segment_id); 258 } 259 } 260 261 skip = write_skip(cm, xd, segment_id, mi, w); 262 263 if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) 264 vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd)); 265 266 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && 267 !(is_inter && skip)) { 268 write_selected_tx_size(cm, xd, w); 269 } 270 271 if (!is_inter) { 272 if (bsize >= BLOCK_8X8) { 273 write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]); 274 } else { 275 int idx, idy; 276 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; 277 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; 278 for (idy = 0; idy < 2; idy += num_4x4_h) { 279 for (idx = 0; idx < 2; idx += num_4x4_w) { 280 const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode; 281 write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]); 282 } 283 } 284 } 285 write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]); 286 } else { 287 const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]]; 288 const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx]; 289 write_ref_frames(cm, xd, w); 290 291 // If segment skip is not enabled code the mode. 292 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { 293 if (bsize >= BLOCK_8X8) { 294 write_inter_mode(w, mode, inter_probs); 295 } 296 } 297 298 if (cm->interp_filter == SWITCHABLE) { 299 const int ctx = get_pred_context_switchable_interp(xd); 300 vp9_write_token(w, vp9_switchable_interp_tree, 301 cm->fc->switchable_interp_prob[ctx], 302 &switchable_interp_encodings[mi->interp_filter]); 303 ++interp_filter_selected[0][mi->interp_filter]; 304 } else { 305 assert(mi->interp_filter == cm->interp_filter); 306 } 307 308 if (bsize < BLOCK_8X8) { 309 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; 310 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; 311 int idx, idy; 312 for (idy = 0; idy < 2; idy += num_4x4_h) { 313 for (idx = 0; idx < 2; idx += num_4x4_w) { 314 const int j = idy * 2 + idx; 315 const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; 316 write_inter_mode(w, b_mode, inter_probs); 317 if (b_mode == NEWMV) { 318 for (ref = 0; ref < 1 + is_compound; ++ref) 319 vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv, 320 &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, 321 nmvc, allow_hp, max_mv_magnitude); 322 } 323 } 324 } 325 } else { 326 if (mode == NEWMV) { 327 for (ref = 0; ref < 1 + is_compound; ++ref) 328 vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv, 329 &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc, 330 allow_hp, max_mv_magnitude); 331 } 332 } 333 } 334 } 335 336 static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd, 337 vpx_writer *w) { 338 const struct segmentation *const seg = &cm->seg; 339 const MODE_INFO *const mi = xd->mi[0]; 340 const MODE_INFO *const above_mi = xd->above_mi; 341 const MODE_INFO *const left_mi = xd->left_mi; 342 const BLOCK_SIZE bsize = mi->sb_type; 343 344 if (seg->update_map) write_segment_id(w, seg, mi->segment_id); 345 346 write_skip(cm, xd, mi->segment_id, mi, w); 347 348 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT) 349 write_selected_tx_size(cm, xd, w); 350 351 if (bsize >= BLOCK_8X8) { 352 write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0)); 353 } else { 354 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; 355 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; 356 int idx, idy; 357 358 for (idy = 0; idy < 2; idy += num_4x4_h) { 359 for (idx = 0; idx < 2; idx += num_4x4_w) { 360 const int block = idy * 2 + idx; 361 write_intra_mode(w, mi->bmi[block].as_mode, 362 get_y_mode_probs(mi, above_mi, left_mi, block)); 363 } 364 } 365 } 366 367 write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]); 368 } 369 370 static void write_modes_b( 371 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, 372 vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, 373 int mi_row, int mi_col, unsigned int *const max_mv_magnitude, 374 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { 375 const VP9_COMMON *const cm = &cpi->common; 376 const MB_MODE_INFO_EXT *const mbmi_ext = 377 cpi->td.mb.mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); 378 MODE_INFO *m; 379 380 xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); 381 m = xd->mi[0]; 382 383 set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->sb_type], 384 mi_col, num_8x8_blocks_wide_lookup[m->sb_type], cm->mi_rows, 385 cm->mi_cols); 386 if (frame_is_intra_only(cm)) { 387 write_mb_modes_kf(cm, xd, w); 388 } else { 389 pack_inter_mode_mvs(cpi, xd, mbmi_ext, w, max_mv_magnitude, 390 interp_filter_selected); 391 } 392 393 assert(*tok < tok_end); 394 pack_mb_tokens(w, tok, tok_end, cm->bit_depth); 395 } 396 397 static void write_partition(const VP9_COMMON *const cm, 398 const MACROBLOCKD *const xd, int hbs, int mi_row, 399 int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, 400 vpx_writer *w) { 401 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); 402 const vpx_prob *const probs = xd->partition_probs[ctx]; 403 const int has_rows = (mi_row + hbs) < cm->mi_rows; 404 const int has_cols = (mi_col + hbs) < cm->mi_cols; 405 406 if (has_rows && has_cols) { 407 vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]); 408 } else if (!has_rows && has_cols) { 409 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); 410 vpx_write(w, p == PARTITION_SPLIT, probs[1]); 411 } else if (has_rows && !has_cols) { 412 assert(p == PARTITION_SPLIT || p == PARTITION_VERT); 413 vpx_write(w, p == PARTITION_SPLIT, probs[2]); 414 } else { 415 assert(p == PARTITION_SPLIT); 416 } 417 } 418 419 static void write_modes_sb( 420 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, 421 vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, 422 int mi_row, int mi_col, BLOCK_SIZE bsize, 423 unsigned int *const max_mv_magnitude, 424 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { 425 const VP9_COMMON *const cm = &cpi->common; 426 const int bsl = b_width_log2_lookup[bsize]; 427 const int bs = (1 << bsl) / 4; 428 PARTITION_TYPE partition; 429 BLOCK_SIZE subsize; 430 const MODE_INFO *m = NULL; 431 432 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; 433 434 m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]; 435 436 partition = partition_lookup[bsl][m->sb_type]; 437 write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w); 438 subsize = get_subsize(bsize, partition); 439 if (subsize < BLOCK_8X8) { 440 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, 441 max_mv_magnitude, interp_filter_selected); 442 } else { 443 switch (partition) { 444 case PARTITION_NONE: 445 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, 446 max_mv_magnitude, interp_filter_selected); 447 break; 448 case PARTITION_HORZ: 449 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, 450 max_mv_magnitude, interp_filter_selected); 451 if (mi_row + bs < cm->mi_rows) 452 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col, 453 max_mv_magnitude, interp_filter_selected); 454 break; 455 case PARTITION_VERT: 456 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, 457 max_mv_magnitude, interp_filter_selected); 458 if (mi_col + bs < cm->mi_cols) 459 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs, 460 max_mv_magnitude, interp_filter_selected); 461 break; 462 case PARTITION_SPLIT: 463 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, subsize, 464 max_mv_magnitude, interp_filter_selected); 465 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs, 466 subsize, max_mv_magnitude, interp_filter_selected); 467 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col, 468 subsize, max_mv_magnitude, interp_filter_selected); 469 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col + bs, 470 subsize, max_mv_magnitude, interp_filter_selected); 471 break; 472 default: assert(0); 473 } 474 } 475 476 // update partition context 477 if (bsize >= BLOCK_8X8 && 478 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) 479 update_partition_context(xd, mi_row, mi_col, subsize, bsize); 480 } 481 482 static void write_modes( 483 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, 484 vpx_writer *w, int tile_row, int tile_col, 485 unsigned int *const max_mv_magnitude, 486 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { 487 const VP9_COMMON *const cm = &cpi->common; 488 int mi_row, mi_col, tile_sb_row; 489 TOKENEXTRA *tok = NULL; 490 TOKENEXTRA *tok_end = NULL; 491 492 set_partition_probs(cm, xd); 493 494 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; 495 mi_row += MI_BLOCK_SIZE) { 496 tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile->mi_row_start) >> 497 MI_BLOCK_SIZE_LOG2; 498 tok = cpi->tplist[tile_row][tile_col][tile_sb_row].start; 499 tok_end = tok + cpi->tplist[tile_row][tile_col][tile_sb_row].count; 500 501 vp9_zero(xd->left_seg_context); 502 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; 503 mi_col += MI_BLOCK_SIZE) 504 write_modes_sb(cpi, xd, tile, w, &tok, tok_end, mi_row, mi_col, 505 BLOCK_64X64, max_mv_magnitude, interp_filter_selected); 506 507 assert(tok == cpi->tplist[tile_row][tile_col][tile_sb_row].stop); 508 } 509 } 510 511 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size, 512 vp9_coeff_stats *coef_branch_ct, 513 vp9_coeff_probs_model *coef_probs) { 514 vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size]; 515 unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = 516 cpi->common.counts.eob_branch[tx_size]; 517 int i, j, k, l, m; 518 519 for (i = 0; i < PLANE_TYPES; ++i) { 520 for (j = 0; j < REF_TYPES; ++j) { 521 for (k = 0; k < COEF_BANDS; ++k) { 522 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { 523 vp9_tree_probs_from_distribution(vp9_coef_tree, 524 coef_branch_ct[i][j][k][l], 525 coef_counts[i][j][k][l]); 526 coef_branch_ct[i][j][k][l][0][1] = 527 eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; 528 for (m = 0; m < UNCONSTRAINED_NODES; ++m) 529 coef_probs[i][j][k][l][m] = 530 get_binary_prob(coef_branch_ct[i][j][k][l][m][0], 531 coef_branch_ct[i][j][k][l][m][1]); 532 } 533 } 534 } 535 } 536 } 537 538 static void update_coef_probs_common(vpx_writer *const bc, VP9_COMP *cpi, 539 TX_SIZE tx_size, 540 vp9_coeff_stats *frame_branch_ct, 541 vp9_coeff_probs_model *new_coef_probs) { 542 vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; 543 const vpx_prob upd = DIFF_UPDATE_PROB; 544 const int entropy_nodes_update = UNCONSTRAINED_NODES; 545 int i, j, k, l, t; 546 int stepsize = cpi->sf.coeff_prob_appx_step; 547 548 switch (cpi->sf.use_fast_coef_updates) { 549 case TWO_LOOP: { 550 /* dry run to see if there is any update at all needed */ 551 int savings = 0; 552 int update[2] = { 0, 0 }; 553 for (i = 0; i < PLANE_TYPES; ++i) { 554 for (j = 0; j < REF_TYPES; ++j) { 555 for (k = 0; k < COEF_BANDS; ++k) { 556 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { 557 for (t = 0; t < entropy_nodes_update; ++t) { 558 vpx_prob newp = new_coef_probs[i][j][k][l][t]; 559 const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; 560 int s; 561 int u = 0; 562 if (t == PIVOT_NODE) 563 s = vp9_prob_diff_update_savings_search_model( 564 frame_branch_ct[i][j][k][l][0], oldp, &newp, upd, 565 stepsize); 566 else 567 s = vp9_prob_diff_update_savings_search( 568 frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); 569 if (s > 0 && newp != oldp) u = 1; 570 if (u) 571 savings += s - (int)(vp9_cost_zero(upd)); 572 else 573 savings -= (int)(vp9_cost_zero(upd)); 574 update[u]++; 575 } 576 } 577 } 578 } 579 } 580 581 // printf("Update %d %d, savings %d\n", update[0], update[1], savings); 582 /* Is coef updated at all */ 583 if (update[1] == 0 || savings < 0) { 584 vpx_write_bit(bc, 0); 585 return; 586 } 587 vpx_write_bit(bc, 1); 588 for (i = 0; i < PLANE_TYPES; ++i) { 589 for (j = 0; j < REF_TYPES; ++j) { 590 for (k = 0; k < COEF_BANDS; ++k) { 591 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { 592 // calc probs and branch cts for this frame only 593 for (t = 0; t < entropy_nodes_update; ++t) { 594 vpx_prob newp = new_coef_probs[i][j][k][l][t]; 595 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; 596 const vpx_prob upd = DIFF_UPDATE_PROB; 597 int s; 598 int u = 0; 599 if (t == PIVOT_NODE) 600 s = vp9_prob_diff_update_savings_search_model( 601 frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd, 602 stepsize); 603 else 604 s = vp9_prob_diff_update_savings_search( 605 frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); 606 if (s > 0 && newp != *oldp) u = 1; 607 vpx_write(bc, u, upd); 608 if (u) { 609 /* send/use new probability */ 610 vp9_write_prob_diff_update(bc, newp, *oldp); 611 *oldp = newp; 612 } 613 } 614 } 615 } 616 } 617 } 618 return; 619 } 620 621 case ONE_LOOP_REDUCED: { 622 int updates = 0; 623 int noupdates_before_first = 0; 624 for (i = 0; i < PLANE_TYPES; ++i) { 625 for (j = 0; j < REF_TYPES; ++j) { 626 for (k = 0; k < COEF_BANDS; ++k) { 627 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { 628 // calc probs and branch cts for this frame only 629 for (t = 0; t < entropy_nodes_update; ++t) { 630 vpx_prob newp = new_coef_probs[i][j][k][l][t]; 631 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; 632 int s; 633 int u = 0; 634 635 if (t == PIVOT_NODE) { 636 s = vp9_prob_diff_update_savings_search_model( 637 frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd, 638 stepsize); 639 } else { 640 s = vp9_prob_diff_update_savings_search( 641 frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); 642 } 643 644 if (s > 0 && newp != *oldp) u = 1; 645 updates += u; 646 if (u == 0 && updates == 0) { 647 noupdates_before_first++; 648 continue; 649 } 650 if (u == 1 && updates == 1) { 651 int v; 652 // first update 653 vpx_write_bit(bc, 1); 654 for (v = 0; v < noupdates_before_first; ++v) 655 vpx_write(bc, 0, upd); 656 } 657 vpx_write(bc, u, upd); 658 if (u) { 659 /* send/use new probability */ 660 vp9_write_prob_diff_update(bc, newp, *oldp); 661 *oldp = newp; 662 } 663 } 664 } 665 } 666 } 667 } 668 if (updates == 0) { 669 vpx_write_bit(bc, 0); // no updates 670 } 671 return; 672 } 673 default: assert(0); 674 } 675 } 676 677 static void update_coef_probs(VP9_COMP *cpi, vpx_writer *w) { 678 const TX_MODE tx_mode = cpi->common.tx_mode; 679 const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; 680 TX_SIZE tx_size; 681 for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) { 682 vp9_coeff_stats frame_branch_ct[PLANE_TYPES]; 683 vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES]; 684 if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 || 685 (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) { 686 vpx_write_bit(w, 0); 687 } else { 688 build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs); 689 update_coef_probs_common(w, cpi, tx_size, frame_branch_ct, 690 frame_coef_probs); 691 } 692 } 693 } 694 695 static void encode_loopfilter(struct loopfilter *lf, 696 struct vpx_write_bit_buffer *wb) { 697 int i; 698 699 // Encode the loop filter level and type 700 vpx_wb_write_literal(wb, lf->filter_level, 6); 701 vpx_wb_write_literal(wb, lf->sharpness_level, 3); 702 703 // Write out loop filter deltas applied at the MB level based on mode or 704 // ref frame (if they are enabled). 705 vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled); 706 707 if (lf->mode_ref_delta_enabled) { 708 vpx_wb_write_bit(wb, lf->mode_ref_delta_update); 709 if (lf->mode_ref_delta_update) { 710 for (i = 0; i < MAX_REF_LF_DELTAS; i++) { 711 const int delta = lf->ref_deltas[i]; 712 const int changed = delta != lf->last_ref_deltas[i]; 713 vpx_wb_write_bit(wb, changed); 714 if (changed) { 715 lf->last_ref_deltas[i] = delta; 716 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); 717 vpx_wb_write_bit(wb, delta < 0); 718 } 719 } 720 721 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { 722 const int delta = lf->mode_deltas[i]; 723 const int changed = delta != lf->last_mode_deltas[i]; 724 vpx_wb_write_bit(wb, changed); 725 if (changed) { 726 lf->last_mode_deltas[i] = delta; 727 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); 728 vpx_wb_write_bit(wb, delta < 0); 729 } 730 } 731 } 732 } 733 } 734 735 static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) { 736 if (delta_q != 0) { 737 vpx_wb_write_bit(wb, 1); 738 vpx_wb_write_literal(wb, abs(delta_q), 4); 739 vpx_wb_write_bit(wb, delta_q < 0); 740 } else { 741 vpx_wb_write_bit(wb, 0); 742 } 743 } 744 745 static void encode_quantization(const VP9_COMMON *const cm, 746 struct vpx_write_bit_buffer *wb) { 747 vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); 748 write_delta_q(wb, cm->y_dc_delta_q); 749 write_delta_q(wb, cm->uv_dc_delta_q); 750 write_delta_q(wb, cm->uv_ac_delta_q); 751 } 752 753 static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd, 754 struct vpx_write_bit_buffer *wb) { 755 int i, j; 756 757 const struct segmentation *seg = &cm->seg; 758 759 vpx_wb_write_bit(wb, seg->enabled); 760 if (!seg->enabled) return; 761 762 // Segmentation map 763 vpx_wb_write_bit(wb, seg->update_map); 764 if (seg->update_map) { 765 // Select the coding strategy (temporal or spatial) 766 vp9_choose_segmap_coding_method(cm, xd); 767 // Write out probabilities used to decode unpredicted macro-block segments 768 for (i = 0; i < SEG_TREE_PROBS; i++) { 769 const int prob = seg->tree_probs[i]; 770 const int update = prob != MAX_PROB; 771 vpx_wb_write_bit(wb, update); 772 if (update) vpx_wb_write_literal(wb, prob, 8); 773 } 774 775 // Write out the chosen coding method. 776 vpx_wb_write_bit(wb, seg->temporal_update); 777 if (seg->temporal_update) { 778 for (i = 0; i < PREDICTION_PROBS; i++) { 779 const int prob = seg->pred_probs[i]; 780 const int update = prob != MAX_PROB; 781 vpx_wb_write_bit(wb, update); 782 if (update) vpx_wb_write_literal(wb, prob, 8); 783 } 784 } 785 } 786 787 // Segmentation data 788 vpx_wb_write_bit(wb, seg->update_data); 789 if (seg->update_data) { 790 vpx_wb_write_bit(wb, seg->abs_delta); 791 792 for (i = 0; i < MAX_SEGMENTS; i++) { 793 for (j = 0; j < SEG_LVL_MAX; j++) { 794 const int active = segfeature_active(seg, i, j); 795 vpx_wb_write_bit(wb, active); 796 if (active) { 797 const int data = get_segdata(seg, i, j); 798 const int data_max = vp9_seg_feature_data_max(j); 799 800 if (vp9_is_segfeature_signed(j)) { 801 encode_unsigned_max(wb, abs(data), data_max); 802 vpx_wb_write_bit(wb, data < 0); 803 } else { 804 encode_unsigned_max(wb, data, data_max); 805 } 806 } 807 } 808 } 809 } 810 } 811 812 static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w, 813 FRAME_COUNTS *counts) { 814 // Mode 815 vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2); 816 if (cm->tx_mode >= ALLOW_32X32) 817 vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT); 818 819 // Probabilities 820 if (cm->tx_mode == TX_MODE_SELECT) { 821 int i, j; 822 unsigned int ct_8x8p[TX_SIZES - 3][2]; 823 unsigned int ct_16x16p[TX_SIZES - 2][2]; 824 unsigned int ct_32x32p[TX_SIZES - 1][2]; 825 826 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { 827 tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p); 828 for (j = 0; j < TX_SIZES - 3; j++) 829 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]); 830 } 831 832 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { 833 tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p); 834 for (j = 0; j < TX_SIZES - 2; j++) 835 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j], 836 ct_16x16p[j]); 837 } 838 839 for (i = 0; i < TX_SIZE_CONTEXTS; i++) { 840 tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p); 841 for (j = 0; j < TX_SIZES - 1; j++) 842 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j], 843 ct_32x32p[j]); 844 } 845 } 846 } 847 848 static void write_interp_filter(INTERP_FILTER filter, 849 struct vpx_write_bit_buffer *wb) { 850 const int filter_to_literal[] = { 1, 0, 2, 3 }; 851 852 vpx_wb_write_bit(wb, filter == SWITCHABLE); 853 if (filter != SWITCHABLE) 854 vpx_wb_write_literal(wb, filter_to_literal[filter], 2); 855 } 856 857 static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) { 858 if (cm->interp_filter == SWITCHABLE) { 859 // Check to see if only one of the filters is actually used 860 int count[SWITCHABLE_FILTERS]; 861 int i, j, c = 0; 862 for (i = 0; i < SWITCHABLE_FILTERS; ++i) { 863 count[i] = 0; 864 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) 865 count[i] += counts->switchable_interp[j][i]; 866 c += (count[i] > 0); 867 } 868 if (c == 1) { 869 // Only one filter is used. So set the filter at frame level 870 for (i = 0; i < SWITCHABLE_FILTERS; ++i) { 871 if (count[i]) { 872 cm->interp_filter = i; 873 break; 874 } 875 } 876 } 877 } 878 } 879 880 static void write_tile_info(const VP9_COMMON *const cm, 881 struct vpx_write_bit_buffer *wb) { 882 int min_log2_tile_cols, max_log2_tile_cols, ones; 883 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); 884 885 // columns 886 ones = cm->log2_tile_cols - min_log2_tile_cols; 887 while (ones--) vpx_wb_write_bit(wb, 1); 888 889 if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0); 890 891 // rows 892 vpx_wb_write_bit(wb, cm->log2_tile_rows != 0); 893 if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1); 894 } 895 896 int vp9_get_refresh_mask(VP9_COMP *cpi) { 897 if (vp9_preserve_existing_gf(cpi)) { 898 // We have decided to preserve the previously existing golden frame as our 899 // new ARF frame. However, in the short term we leave it in the GF slot and, 900 // if we're updating the GF with the current decoded frame, we save it 901 // instead to the ARF slot. 902 // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we 903 // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it 904 // there so that it can be done outside of the recode loop. 905 // Note: This is highly specific to the use of ARF as a forward reference, 906 // and this needs to be generalized as other uses are implemented 907 // (like RTC/temporal scalability). 908 return (cpi->refresh_last_frame << cpi->lst_fb_idx) | 909 (cpi->refresh_golden_frame << cpi->alt_fb_idx); 910 } else { 911 int arf_idx = cpi->alt_fb_idx; 912 if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { 913 const GF_GROUP *const gf_group = &cpi->twopass.gf_group; 914 arf_idx = gf_group->arf_update_idx[gf_group->index]; 915 } 916 return (cpi->refresh_last_frame << cpi->lst_fb_idx) | 917 (cpi->refresh_golden_frame << cpi->gld_fb_idx) | 918 (cpi->refresh_alt_ref_frame << arf_idx); 919 } 920 } 921 922 static int encode_tile_worker(void *arg1, void *arg2) { 923 VP9_COMP *cpi = (VP9_COMP *)arg1; 924 VP9BitstreamWorkerData *data = (VP9BitstreamWorkerData *)arg2; 925 MACROBLOCKD *const xd = &data->xd; 926 const int tile_row = 0; 927 vpx_start_encode(&data->bit_writer, data->dest); 928 write_modes(cpi, xd, &cpi->tile_data[data->tile_idx].tile_info, 929 &data->bit_writer, tile_row, data->tile_idx, 930 &data->max_mv_magnitude, data->interp_filter_selected); 931 vpx_stop_encode(&data->bit_writer); 932 return 1; 933 } 934 935 void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi) { 936 if (cpi->vp9_bitstream_worker_data) { 937 int i; 938 for (i = 1; i < cpi->num_workers; ++i) { 939 vpx_free(cpi->vp9_bitstream_worker_data[i].dest); 940 } 941 vpx_free(cpi->vp9_bitstream_worker_data); 942 cpi->vp9_bitstream_worker_data = NULL; 943 } 944 } 945 946 static int encode_tiles_buffer_alloc(VP9_COMP *const cpi) { 947 int i; 948 const size_t worker_data_size = 949 cpi->num_workers * sizeof(*cpi->vp9_bitstream_worker_data); 950 cpi->vp9_bitstream_worker_data = vpx_memalign(16, worker_data_size); 951 memset(cpi->vp9_bitstream_worker_data, 0, worker_data_size); 952 if (!cpi->vp9_bitstream_worker_data) return 1; 953 for (i = 1; i < cpi->num_workers; ++i) { 954 cpi->vp9_bitstream_worker_data[i].dest_size = 955 cpi->oxcf.width * cpi->oxcf.height; 956 cpi->vp9_bitstream_worker_data[i].dest = 957 vpx_malloc(cpi->vp9_bitstream_worker_data[i].dest_size); 958 if (!cpi->vp9_bitstream_worker_data[i].dest) return 1; 959 } 960 return 0; 961 } 962 963 static size_t encode_tiles_mt(VP9_COMP *cpi, uint8_t *data_ptr) { 964 const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); 965 VP9_COMMON *const cm = &cpi->common; 966 const int tile_cols = 1 << cm->log2_tile_cols; 967 const int num_workers = cpi->num_workers; 968 size_t total_size = 0; 969 int tile_col = 0; 970 971 if (!cpi->vp9_bitstream_worker_data || 972 cpi->vp9_bitstream_worker_data[1].dest_size > 973 (cpi->oxcf.width * cpi->oxcf.height)) { 974 vp9_bitstream_encode_tiles_buffer_dealloc(cpi); 975 if (encode_tiles_buffer_alloc(cpi)) return 0; 976 } 977 978 while (tile_col < tile_cols) { 979 int i, j; 980 for (i = 0; i < num_workers && tile_col < tile_cols; ++i) { 981 VPxWorker *const worker = &cpi->workers[i]; 982 VP9BitstreamWorkerData *const data = &cpi->vp9_bitstream_worker_data[i]; 983 984 // Populate the worker data. 985 data->xd = cpi->td.mb.e_mbd; 986 data->tile_idx = tile_col; 987 data->max_mv_magnitude = cpi->max_mv_magnitude; 988 memset(data->interp_filter_selected, 0, 989 sizeof(data->interp_filter_selected[0][0]) * SWITCHABLE); 990 991 // First thread can directly write into the output buffer. 992 if (i == 0) { 993 // If this worker happens to be for the last tile, then do not offset it 994 // by 4 for the tile size. 995 data->dest = 996 data_ptr + total_size + (tile_col == tile_cols - 1 ? 0 : 4); 997 } 998 worker->data1 = cpi; 999 worker->data2 = data; 1000 worker->hook = encode_tile_worker; 1001 worker->had_error = 0; 1002 1003 if (i < num_workers - 1) { 1004 winterface->launch(worker); 1005 } else { 1006 winterface->execute(worker); 1007 } 1008 ++tile_col; 1009 } 1010 for (j = 0; j < i; ++j) { 1011 VPxWorker *const worker = &cpi->workers[j]; 1012 VP9BitstreamWorkerData *const data = 1013 (VP9BitstreamWorkerData *)worker->data2; 1014 uint32_t tile_size; 1015 int k; 1016 1017 if (!winterface->sync(worker)) return 0; 1018 tile_size = data->bit_writer.pos; 1019 1020 // Aggregate per-thread bitstream stats. 1021 cpi->max_mv_magnitude = 1022 VPXMAX(cpi->max_mv_magnitude, data->max_mv_magnitude); 1023 for (k = 0; k < SWITCHABLE; ++k) { 1024 cpi->interp_filter_selected[0][k] += data->interp_filter_selected[0][k]; 1025 } 1026 1027 // Prefix the size of the tile on all but the last. 1028 if (tile_col != tile_cols || j < i - 1) { 1029 mem_put_be32(data_ptr + total_size, tile_size); 1030 total_size += 4; 1031 } 1032 if (j > 0) { 1033 memcpy(data_ptr + total_size, data->dest, tile_size); 1034 } 1035 total_size += tile_size; 1036 } 1037 } 1038 return total_size; 1039 } 1040 1041 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { 1042 VP9_COMMON *const cm = &cpi->common; 1043 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; 1044 vpx_writer residual_bc; 1045 int tile_row, tile_col; 1046 size_t total_size = 0; 1047 const int tile_cols = 1 << cm->log2_tile_cols; 1048 const int tile_rows = 1 << cm->log2_tile_rows; 1049 1050 memset(cm->above_seg_context, 0, 1051 sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols)); 1052 1053 // Encoding tiles in parallel is done only for realtime mode now. In other 1054 // modes the speed up is insignificant and requires further testing to ensure 1055 // that it does not make the overall process worse in any case. 1056 if (cpi->oxcf.mode == REALTIME && cpi->num_workers > 1 && tile_rows == 1 && 1057 tile_cols > 1) { 1058 return encode_tiles_mt(cpi, data_ptr); 1059 } 1060 1061 for (tile_row = 0; tile_row < tile_rows; tile_row++) { 1062 for (tile_col = 0; tile_col < tile_cols; tile_col++) { 1063 int tile_idx = tile_row * tile_cols + tile_col; 1064 1065 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) 1066 vpx_start_encode(&residual_bc, data_ptr + total_size + 4); 1067 else 1068 vpx_start_encode(&residual_bc, data_ptr + total_size); 1069 1070 write_modes(cpi, xd, &cpi->tile_data[tile_idx].tile_info, &residual_bc, 1071 tile_row, tile_col, &cpi->max_mv_magnitude, 1072 cpi->interp_filter_selected); 1073 1074 vpx_stop_encode(&residual_bc); 1075 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { 1076 // size of this tile 1077 mem_put_be32(data_ptr + total_size, residual_bc.pos); 1078 total_size += 4; 1079 } 1080 1081 total_size += residual_bc.pos; 1082 } 1083 } 1084 return total_size; 1085 } 1086 1087 static void write_render_size(const VP9_COMMON *cm, 1088 struct vpx_write_bit_buffer *wb) { 1089 const int scaling_active = 1090 cm->width != cm->render_width || cm->height != cm->render_height; 1091 vpx_wb_write_bit(wb, scaling_active); 1092 if (scaling_active) { 1093 vpx_wb_write_literal(wb, cm->render_width - 1, 16); 1094 vpx_wb_write_literal(wb, cm->render_height - 1, 16); 1095 } 1096 } 1097 1098 static void write_frame_size(const VP9_COMMON *cm, 1099 struct vpx_write_bit_buffer *wb) { 1100 vpx_wb_write_literal(wb, cm->width - 1, 16); 1101 vpx_wb_write_literal(wb, cm->height - 1, 16); 1102 1103 write_render_size(cm, wb); 1104 } 1105 1106 static void write_frame_size_with_refs(VP9_COMP *cpi, 1107 struct vpx_write_bit_buffer *wb) { 1108 VP9_COMMON *const cm = &cpi->common; 1109 int found = 0; 1110 1111 MV_REFERENCE_FRAME ref_frame; 1112 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { 1113 YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); 1114 1115 // Set "found" to 0 for temporal svc and for spatial svc key frame 1116 if (cpi->use_svc && 1117 ((cpi->svc.number_temporal_layers > 1 && 1118 cpi->oxcf.rc_mode == VPX_CBR) || 1119 (cpi->svc.number_spatial_layers > 1 && 1120 cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) || 1121 (is_two_pass_svc(cpi) && 1122 cpi->svc.encode_empty_frame_state == ENCODING && 1123 cpi->svc.layer_context[0].frames_from_key_frame < 1124 cpi->svc.number_temporal_layers + 1))) { 1125 found = 0; 1126 } else if (cfg != NULL) { 1127 found = 1128 cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height; 1129 } 1130 vpx_wb_write_bit(wb, found); 1131 if (found) { 1132 break; 1133 } 1134 } 1135 1136 if (!found) { 1137 vpx_wb_write_literal(wb, cm->width - 1, 16); 1138 vpx_wb_write_literal(wb, cm->height - 1, 16); 1139 } 1140 1141 write_render_size(cm, wb); 1142 } 1143 1144 static void write_sync_code(struct vpx_write_bit_buffer *wb) { 1145 vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8); 1146 vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8); 1147 vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8); 1148 } 1149 1150 static void write_profile(BITSTREAM_PROFILE profile, 1151 struct vpx_write_bit_buffer *wb) { 1152 switch (profile) { 1153 case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break; 1154 case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break; 1155 case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break; 1156 case PROFILE_3: vpx_wb_write_literal(wb, 6, 3); break; 1157 default: assert(0); 1158 } 1159 } 1160 1161 static void write_bitdepth_colorspace_sampling( 1162 VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) { 1163 if (cm->profile >= PROFILE_2) { 1164 assert(cm->bit_depth > VPX_BITS_8); 1165 vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1); 1166 } 1167 vpx_wb_write_literal(wb, cm->color_space, 3); 1168 if (cm->color_space != VPX_CS_SRGB) { 1169 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] 1170 vpx_wb_write_bit(wb, cm->color_range); 1171 if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { 1172 assert(cm->subsampling_x != 1 || cm->subsampling_y != 1); 1173 vpx_wb_write_bit(wb, cm->subsampling_x); 1174 vpx_wb_write_bit(wb, cm->subsampling_y); 1175 vpx_wb_write_bit(wb, 0); // unused 1176 } else { 1177 assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); 1178 } 1179 } else { 1180 assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3); 1181 vpx_wb_write_bit(wb, 0); // unused 1182 } 1183 } 1184 1185 static void write_uncompressed_header(VP9_COMP *cpi, 1186 struct vpx_write_bit_buffer *wb) { 1187 VP9_COMMON *const cm = &cpi->common; 1188 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; 1189 1190 vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2); 1191 1192 write_profile(cm->profile, wb); 1193 1194 vpx_wb_write_bit(wb, 0); // show_existing_frame 1195 vpx_wb_write_bit(wb, cm->frame_type); 1196 vpx_wb_write_bit(wb, cm->show_frame); 1197 vpx_wb_write_bit(wb, cm->error_resilient_mode); 1198 1199 if (cm->frame_type == KEY_FRAME) { 1200 write_sync_code(wb); 1201 write_bitdepth_colorspace_sampling(cm, wb); 1202 write_frame_size(cm, wb); 1203 } else { 1204 // In spatial svc if it's not error_resilient_mode then we need to code all 1205 // visible frames as invisible. But we need to keep the show_frame flag so 1206 // that the publisher could know whether it is supposed to be visible. 1207 // So we will code the show_frame flag as it is. Then code the intra_only 1208 // bit here. This will make the bitstream incompatible. In the player we 1209 // will change to show_frame flag to 0, then add an one byte frame with 1210 // show_existing_frame flag which tells the decoder which frame we want to 1211 // show. 1212 if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only); 1213 1214 if (!cm->error_resilient_mode) 1215 vpx_wb_write_literal(wb, cm->reset_frame_context, 2); 1216 1217 if (cm->intra_only) { 1218 write_sync_code(wb); 1219 1220 // Note for profile 0, 420 8bpp is assumed. 1221 if (cm->profile > PROFILE_0) { 1222 write_bitdepth_colorspace_sampling(cm, wb); 1223 } 1224 1225 vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); 1226 write_frame_size(cm, wb); 1227 } else { 1228 MV_REFERENCE_FRAME ref_frame; 1229 vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); 1230 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { 1231 assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); 1232 vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), 1233 REF_FRAMES_LOG2); 1234 vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]); 1235 } 1236 1237 write_frame_size_with_refs(cpi, wb); 1238 1239 vpx_wb_write_bit(wb, cm->allow_high_precision_mv); 1240 1241 fix_interp_filter(cm, cpi->td.counts); 1242 write_interp_filter(cm->interp_filter, wb); 1243 } 1244 } 1245 1246 if (!cm->error_resilient_mode) { 1247 vpx_wb_write_bit(wb, cm->refresh_frame_context); 1248 vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode); 1249 } 1250 1251 vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); 1252 1253 encode_loopfilter(&cm->lf, wb); 1254 encode_quantization(cm, wb); 1255 encode_segmentation(cm, xd, wb); 1256 1257 write_tile_info(cm, wb); 1258 } 1259 1260 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { 1261 VP9_COMMON *const cm = &cpi->common; 1262 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; 1263 FRAME_CONTEXT *const fc = cm->fc; 1264 FRAME_COUNTS *counts = cpi->td.counts; 1265 vpx_writer header_bc; 1266 1267 vpx_start_encode(&header_bc, data); 1268 1269 if (xd->lossless) 1270 cm->tx_mode = ONLY_4X4; 1271 else 1272 encode_txfm_probs(cm, &header_bc, counts); 1273 1274 update_coef_probs(cpi, &header_bc); 1275 update_skip_probs(cm, &header_bc, counts); 1276 1277 if (!frame_is_intra_only(cm)) { 1278 int i; 1279 1280 for (i = 0; i < INTER_MODE_CONTEXTS; ++i) 1281 prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i], 1282 counts->inter_mode[i], INTER_MODES, &header_bc); 1283 1284 if (cm->interp_filter == SWITCHABLE) 1285 update_switchable_interp_probs(cm, &header_bc, counts); 1286 1287 for (i = 0; i < INTRA_INTER_CONTEXTS; i++) 1288 vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], 1289 counts->intra_inter[i]); 1290 1291 if (cpi->allow_comp_inter_inter) { 1292 const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE; 1293 const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; 1294 1295 vpx_write_bit(&header_bc, use_compound_pred); 1296 if (use_compound_pred) { 1297 vpx_write_bit(&header_bc, use_hybrid_pred); 1298 if (use_hybrid_pred) 1299 for (i = 0; i < COMP_INTER_CONTEXTS; i++) 1300 vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], 1301 counts->comp_inter[i]); 1302 } 1303 } 1304 1305 if (cm->reference_mode != COMPOUND_REFERENCE) { 1306 for (i = 0; i < REF_CONTEXTS; i++) { 1307 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0], 1308 counts->single_ref[i][0]); 1309 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1], 1310 counts->single_ref[i][1]); 1311 } 1312 } 1313 1314 if (cm->reference_mode != SINGLE_REFERENCE) 1315 for (i = 0; i < REF_CONTEXTS; i++) 1316 vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i], 1317 counts->comp_ref[i]); 1318 1319 for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) 1320 prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i], 1321 counts->y_mode[i], INTRA_MODES, &header_bc); 1322 1323 for (i = 0; i < PARTITION_CONTEXTS; ++i) 1324 prob_diff_update(vp9_partition_tree, fc->partition_prob[i], 1325 counts->partition[i], PARTITION_TYPES, &header_bc); 1326 1327 vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc, 1328 &counts->mv); 1329 } 1330 1331 vpx_stop_encode(&header_bc); 1332 assert(header_bc.pos <= 0xffff); 1333 1334 return header_bc.pos; 1335 } 1336 1337 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) { 1338 uint8_t *data = dest; 1339 size_t first_part_size, uncompressed_hdr_size; 1340 struct vpx_write_bit_buffer wb = { data, 0 }; 1341 struct vpx_write_bit_buffer saved_wb; 1342 1343 write_uncompressed_header(cpi, &wb); 1344 saved_wb = wb; 1345 vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size 1346 1347 uncompressed_hdr_size = vpx_wb_bytes_written(&wb); 1348 data += uncompressed_hdr_size; 1349 1350 vpx_clear_system_state(); 1351 1352 first_part_size = write_compressed_header(cpi, data); 1353 data += first_part_size; 1354 // TODO(jbb): Figure out what to do if first_part_size > 16 bits. 1355 vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16); 1356 1357 data += encode_tiles(cpi, data); 1358 1359 *size = data - dest; 1360 } 1361