/external/autotest/client/common_lib/cros/ |
perf_stat_lib.py | 73 variance = sum([(elem - mean) ** 2 for elem in num_list]) / (n -1) 74 return round(sqrt(variance), 2
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
api_def_BatchNormWithGlobalNormalizationGrad.pbtxt | 20 A 1D variance Tensor with size matching the last dimension of t. 54 1D backprop tensor for variance.
|
api_def_BatchNormWithGlobalNormalization.pbtxt | 20 A 1D variance Tensor with size matching the last dimension of t.
|
/external/libvpx/libvpx/vp9/encoder/ |
vp9_blockiness.c | 23 static int variance(int sum, int sum_squared, int size) { function 45 // by dividing the blockiness by the variance of the pixels on either side 70 var_0 = variance(sum_0, sum_sq_0, size); 71 var_1 = variance(sum_1, sum_sq_1, size); 102 var_0 = variance(sum_0, sum_sq_0, size); 103 var_1 = variance(sum_1, sum_sq_1, size);
|
vp9_noise_estimate.c | 173 // the variance to update estimate of noise in the source. 220 // Compute variance. 221 unsigned int variance = cpi->fn_ptr[bsize].vf( local 224 // average term (sse - variance = N * avg^{2}, N = 16X16) of the 227 if ((sse - variance) < thresh_sum_diff) { 231 // Avoid blocks with high brightness and high spatial variance. 234 avg_est += low_res ? variance >> 4 235 : variance / ((spatial_variance >> 9) + 1);
|
/packages/apps/Dialer/java/com/android/incallui/answer/impl/classifier/ |
AnglesClassifier.java | 26 * A classifier which calculates the variance of differences between successive angles in a stroke. 30 * calculated angle. Then it calculates the variance of the differences from a stroke. To the 36 * biggest angle is. It calculates the angle variance of the two parts and sums them up. The reason 39 * The final result is the minimum of angle variance of the whole stroke and the sum of angle 147 // the angle variance so far and start to count the values for the angle 148 // variance of the second part.
|
/external/python/cpython3/Lib/ |
statistics.py | 5 averages, variance, and standard deviation. 52 pvariance Population variance of data. 53 variance Sample variance of data. 80 'pstdev', 'pvariance', 'stdev', 'variance', 515 # See http://mathworld.wolfram.com/Variance.html 520 # variance", as that is only suitable for hand calculations with a small 546 def variance(data, xbar=None): function 547 """Return the sample variance of data. 554 calculate the variance from the entire population, see ``pvariance`` [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
fused_batch_norm_op.cc | 100 Eigen::Tensor<U, 1, Eigen::RowMajor> variance(depth); 113 variance.device(d) = x_centered.square().sum(reduce_dims) * rest_size_inv; 114 batch_var.device(d) = variance * rest_size_adjust; 115 saved_var.device(d) = variance; 117 variance.device(d) = estimated_variance; 120 auto scaling_factor = ((variance + epsilon).rsqrt() * scale) 148 typename TTypes<U>::ConstVec variance(variance_input.vec<U>()); 155 // x_backprop = scale * rsqrt(variance + epsilon) * 157 // mean(y_backprop * (x - mean(x))) / (variance + epsilon)] 159 // (x - mean(x)) * rsqrt(variance + epsilon) [all...] |
/frameworks/base/tests/JankBench/scripts/external/ |
statistics.py | 22 averages, variance, and standard deviation. 68 pvariance Population variance of data. 69 variance Sample variance of data. 96 'pstdev', 'pvariance', 'stdev', 'variance', 482 # See http://mathworld.wolfram.com/Variance.html 487 # variance", as that is only suitable for hand calculations with a small 513 def variance(data, xbar=None): function 514 """Return the sample variance of data. 521 calculate the variance from the entire population, see ``pvariance`` [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
AbstractMultipleLinearRegression.java | 25 import org.apache.commons.math.stat.descriptive.moment.Variance; 289 * Estimates the variance of the error. 291 * @return estimate of the error variance 317 * Calculates the beta variance of multiple linear regression in matrix 320 * @return beta variance 326 * Calculates the variance of the y values. 328 * @return Y variance 331 return new Variance().evaluate(Y.getData()); 335 * <p>Calculates the variance of the error term.</p> 342 * @return error variance estimat [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/ |
StatUtils.java | 25 import org.apache.commons.math.stat.descriptive.moment.Variance; 63 /** variance */ 64 private static final Variance VARIANCE = new Variance(); 301 * Returns the variance of the entries in the input array, or 304 * See {@link org.apache.commons.math.stat.descriptive.moment.Variance} for 312 * @return the variance of the values or Double.NaN if the array is empty 315 public static double variance(final double[] values) { method in class:StatUtils 316 return VARIANCE.evaluate(values) 339 public static double variance(final double[] values, final int begin, method in class:StatUtils 370 public static double variance(final double[] values, final double mean, method in class:StatUtils 397 public static double variance(final double[] values, final double mean) { method in class:StatUtils [all...] |
/external/tensorflow/tensorflow/contrib/timeseries/examples/ |
predict.py | 61 # variance. SQUARED_LOSS overestimates variance when there are trends in 89 variance = np.squeeze(np.concatenate( 92 upper_limit = mean + np.sqrt(variance) 93 lower_limit = mean - np.sqrt(variance)
|
/external/webrtc/webrtc/common_audio/ |
audio_converter_unittest.cc | 58 float variance = 0; local 64 variance += ref.channels()[i][j] * ref.channels()[i][j]; 71 variance /= length; 73 variance -= mean * mean; 76 snr = 10 * std::log10(variance / mse);
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/inference/ |
TTestImpl.java | 191 return t(StatUtils.mean(observed), mu, StatUtils.variance(observed), 235 * and <strong><code>var</code></strong> is the pooled variance estimate: 239 * with <strong><code>var1<code></strong> the variance of the first sample and 240 * <strong><code>var2</code></strong> the variance of the second sample. 256 StatUtils.variance(sample1), StatUtils.variance(sample2), 276 * <strong><code> var1</code></strong> is the variance of the first sample; 277 * <strong><code> var2</code></strong> is the variance of the second sample; 293 StatUtils.variance(sample1), StatUtils.variance(sample2) [all...] |
/external/libchrome/base/trace_event/ |
memory_dump_scheduler.cc | 249 uint64_t variance = 0; local 251 variance += (polling_state_->last_memory_totals_kb[i] - mean) * 254 variance = variance / PollingTriggerState::kMaxNumMemorySamples; 261 bool is_stddev_low = variance < mean / 500 * mean / 500; 268 (3.69 * 3.69 * variance);
|
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
cudnn_batchnorm_rewriter.cc | 121 // {output, mean, rsqrt(variance + epsilon)}, 122 // but the batchnorm HLO returns {output, mean, variance}. Fix it up. 131 HloInstruction* variance = local 142 variance, 173 // The cudnn libcall expects its input to be rsqrt(variance + epsilon), but 174 // the batchnorm HLO takes plain variance as input. Fix it up.
|
/frameworks/base/packages/SystemUI/src/com/android/systemui/classifier/ |
AnglesClassifier.java | 29 * A classifier which calculates the variance of differences between successive angles in a stroke. 33 * previously calculated angle. Then it calculates the variance of the differences from a stroke. 39 * angle is. It calculates the angle variance of the two parts and sums them up. The reason the 42 * final result is the minimum of angle variance of the whole stroke and the sum of angle variances 152 // the angle variance so far and start to count the values for the angle 153 // variance of the second part.
|
/external/tensorflow/tensorflow/python/ops/ |
nn_impl.py | 571 """Calculate the sufficient statistics for the mean and variance of `x`. 579 axes: Array of ints. Axes along which to compute mean and variance. 621 """Calculate the mean and variance of based on the sufficient statistics. 627 variance_ss: A `Tensor` containing the variance sufficient statistics: the 628 (possibly shifted) squared sum of the data to compute the variance over. 634 Two `Tensor` objects: `mean` and `variance`. 644 variance = math_ops.subtract( 647 name="variance") 648 return (mean, variance) 658 """Calculate the mean and variance of `x` [all...] |
/cts/apps/CameraITS/tests/scene0/ |
test_jitter.py | 31 MAX_VAR_FRAME_DELTA = 0.01 # variance of frame deltas 51 print "Variance:", var
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
WeibullDistributionImpl.java | 61 /** Cached numerical variance */ 64 /** Whether or not the numerical variance has been calculated */ 320 * Calculates the variance. 322 * The variance is 326 * @return the variance 355 * Returns the variance of the distribution. 357 * @return the variance (possibly Double.POSITIVE_INFINITY as 372 * Invalidates the cached mean and variance.
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
StatisticalSummary.java | 33 * Returns the variance of the available values. 34 * @return The variance, Double.NaN if no values have been added
|
/external/opencv/cvaux/src/ |
cvbgfg_gaussmix.cpp | 79 icvMatchTest(...) assumes what all color channels component exhibit the same variance 120 //Rw is the learning rate for weight and Rg is leaning rate for mean and variance 126 //The list is maintained in sorted order using w/sqrt(variance) as a key 132 //v[n+1] = v[n] + Rg*((x[n+1] - u[n])*(x[n+1] - u[n])) - v[n]) variance 206 bg_model->g_point[n].g_values[0].variance[m] = var_init; 214 bg_model->g_point[n].g_values[k].variance[m] = var_init; 390 var_threshold += g_point->g_values[k].variance[m]; 420 sum_d2 += (d*d) / (g_point->g_values[k].variance[m] * g_point->g_values[k].variance[m]); 452 g_point->g_values[k].variance[m] = g_point->g_values[k].variance[m] [all...] |
/external/tensorflow/tensorflow/python/layers/ |
normalization.py | 64 epsilon: Small float added to variance to avoid dividing by zero. 73 moving_variance_initializer: Initializer for the moving variance. 301 # Disable variable partitioning when creating the moving mean and variance 395 variance=self.moving_variance, 400 output, mean, variance = utils.smart_cond( 404 # Note that the variance computed by fused batch norm is 407 array_ops.size(inputs) / array_ops.size(variance), variance.dtype) 408 factor = (sample_size - math_ops.cast(1.0, variance.dtype)) / sample_size 409 variance *= facto [all...] |
/external/libmpeg2/common/ |
ideint_structs.h | 57 /** Adaptive variance used in spatio temporal filtering */
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
normalization.py | 69 epsilon: Small float added to variance to avoid dividing by zero. 73 moving variance. 153 mean, variance = nn.moments(inputs, moments_axes, keep_dims=True) 157 inputs, mean, variance, beta, gamma, epsilon, name='instancenorm')
|